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ABSTRACT Extreme learning machine (ELM) is a novel single-hidden layer feedforward neural network to
obtain fast learning speed by randomly initializing weights and deviations. Due to its extremely fast learning
speed, it has been widely used in training of massive data in recent years. In order to adapt to the real network
environment, based on the ELM, we propose an improved particle swarm optimized online regularized
extreme learning machine (IPSO-IRELM) intrusion detection algorithm model. First, the model replaces
the traditional batch learning with sequential learning by dynamically adapting the new data obtained
in the training network instead of training all collected samples in an offline manner; second, we improve
the particle swarm optimization algorithm and compare it with typical improved algorithms to prove its
effectiveness; finally, to solve the random initialization problem of IRELM, we use IPSO to optimize the
initial weights and deviations of IRELM to improve the classification ability of IRELM. The experimental
results show that IPSO-IRELM algorithm has better generalization ability, which not only improves the
accuracy of intrusion detection, but also has certain recognition ability for minority class samples.

INDEX TERMS Online regularized extreme learning machine, sequential learning, intrusion detection,
improved particle swarm optimization, network security.

I. INTRODUCTION
The widespread use of information technology and the emer-
gence and development of cyberspace have greatly con-
tributed to economic and social prosperity and progress, but
at the same time brought new security risks and challenges.
Network intrusion detection system is the first step of network
security situation awareness and an important part of compre-
hensive network security defense, which perceives whether
there are behaviors and signs of network intrusion by analyz-
ing various traffic data of key nodes in the network, so as to be
fully prepared for network defense [1]. Traditional network
intrusion detection systems build models based on pattern
matching methods [2], [3], collecting attack samples first and
then training all collected samples in an offlinemanner, which
has an inherent drawback of not detecting emerging types of
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attacks and lacks adaptiveness and scalability.With the devel-
opment of network automation and intelligence, new types
of adaptive and dynamically scalable intrusion detection sys-
tems have emerged [4], [5]. With the advantages of adaptive,
self-learning, self-organization, better fault tolerance and the
ability to perform massively parallel computation and non-
linear mapping, neural networks are very suitable for variable
intrusion detection systems [6].Moreover, themost important
thing in switching from offline learning to online learning
is the time problem [7], if the learning time is too long,
the online intrusion detection system will have the problem
of not being able to detect the attack in time, which leads to
the system paralysis. Therefore, this paper uses the extreme
learning machine (ELM) with fast learning characteristics as
the basis.

Extreme learning machine [8] is a typical classification
algorithm in machine learning, characterized by randomly
selected input layer weights and hidden layer deviations.
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It is based on a single hidden layer feedforward neural
network and computationally resolves the output layer
weights according to Moore-Penrose generalized inverse
matrix theory, and thus has the advantages of few training
parameters, fast learning speed, and strong generalization
ability. Its good generalization performance and extremely
fast learning speed have been successfully applied to many
real-world problems [9], [10]. However, ELM is vulnerable
to the interference of outlier sample points during training,
which affects the classification accuracy of the model. There-
fore, Jose’ et al. [11] proposed a regularized extreme learn-
ing machine (RELM) based on ELM. RELM considers the
structural error while solving the least squares error, which
effectively avoids the overfitting problem caused by the
excessive number of hidden layers and can further improve
the classification. Although RELM solves the overfitting
problem compared to ELM, RELM also has some problems,
such as the selection of the appropriate regularization factor
is random and time-consuming. Several scholars have also
studied the improvement of RELM: to automatically select a
satisfactory regularization factor, Zhang et al. [12] proposed
an adaptive RELMwith a function instead of a regularization
factor; Gautam et al. [13] proposed an ELM with a regu-
larization kernel, used a single-class ELM classifier based
on the regularization kernel to detect outliers, and extended
it to adaptive online learning, whose experimental results
show that the classifier has faster learning capability and is
more suitable for real-time anomaly detection; reference [14]
proposed a new binary grey wolf optimization-regularized
extreme learning machine wrapper; reference [15] used adap-
tive whale optimization algorithm (AWOA) to determine
the input weights and hidden layer deviations of ELM.;
Kumar et al. [16]and Zhi et al. [17] proposed biogeography-
based extreme learning machine (BBO-ELM)model and a
GAPSO-Enhanced ELM method respectively. They also
compared them with genetic algorithm (GA)-based ELM,
and particle swarm optimization (PSO)-based ELM, to verify
the effectiveness of the proposed methods. Kanimozhi and
Singaravel [18] andWang et al. [19] have combined PSOwith
ELM and applied it to different scenarios, both of which have
yielded good results. However, the improved RELM, if used
directly for intrusion detection, still uses batch learning and
trains all samples obtained once, and subsequently does not
learn new knowledge and still fails to detect new attacks in
the network.

To address this problem, this paper continues to propose an
online regularized ELM (IRELM) based on RELM, which
has the ability of dynamic sequential learning and adap-
tively learns the constant flow of traffic in the network for
intrusion detection; meanwhile, we improve the PSO algo-
rithm to reduce the probability of falling into local extremum
points, which in turn better optimizes IRELM. In summary,
IPSO-IRELM has better classification performance in all
experiments. The research in this paper will improve the
adaptiveness and expandability of the intrusion detection
system.

The main contributions of this paper are as follows:
1. Proposing an online regularized ELM based on the

RELM, which dynamically trains the added data instead of
the traditional batch learning.

2. Adding a perturbation mechanism to PSO, and the
improved PSO is compared with other improved classical
PSO to prove its effectiveness.

3. IPSO optimizes the initial weights and deviations of
IRELM to avoid the impact of randomly generated initial
weights and biases on the final results.

The complete model is used in intrusion detection and the
model has better recognition capability.

The remainder of this paper is organized as follows.
In Section II, we present the current studies related to

our work and summarize the parameters used by others’
techniques and the limitations in Table 1. In Section III,
we describe the IPSO-IRELM algorithm in detail.
In Section IV, we derive the comparison results between
IPSO-IRELM and other algorithms on the UCI dataset,
NSL-KDD binary classification dataset, NSL-KDD multi-
variate classification dataset, and UNSW-NB15 multivari-
ate classification dataset. In Section V, we summarize the
research of this paper and point out the next research
directions afterwards.

II. RELATED WORK
The RELM is proposed mainly to solve the problem that the
standard ELM is affected by outlier points resulting in low
generalization ability and lack of stability [20]. Regulariza-
tion is essentially a structural risk minimization strategy that
adds a regularization term representing the complexity of the
model to the empirical risk. The standardmathematical model
of RELM is represented as follows:

min
1
2
‖β‖σ1p +

C
2
‖ξ‖σ2q (1)

where σ1 > 0, σ2 > 0; p, q = 0, 12 , 1, 2, . . . ,+∞; ‖ · ‖p
is the Lp norm of the vector or matrix; ‖β‖σ1p is the regular-
ization term, indicating the complexity of the model; ‖ξ‖σ2

is the total error of training and represents the empirical risk;
C is a regularization parameter to balance the empirical risk
and model complexity. When σ1 = σ2 = 2, (1) is a quadratic
programming problem under the equation constraint. When
the regularization term is the L2 norm and L1 norm of the
parameter vector, it is called ridge regression (L2 regulariza-
tion) and LASSO (L1 regularization), respectively, which are
the two most typical regularization methods. Deng et al. [21]
studied L2 RELMwith hidden layer neurons as Sigmoid func-
tions, and proposed the Unweighted RELM and Weighted
RELM (WRELM) algorithms for the presence of noise in
the dataset. WRELM uses weighted least squares to calculate
the output weights, which has some noise anti-interference
ability, but the training process adds the process of calculating
the weights of errors, which leads to increased time consump-
tion when the training data is large. Huang et al. [22] pro-
posed Semi-Supervised ELM (SS-ELM) and Unsupervised
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ELM (US-ELM) algorithms based on stream regularization
theory to deal with the relationship between unlabeled sam-
ples, which greatly extended the applicability of ELM.Yu and
Sun [23] proposed a Sparse coding ELM algorithm (ScELM),
which uses a sparse coding technique instead of random
mapping to map the input feature vector to the hidden layer to
improve the classification accuracy. An optimization method
based on gradient projection andL2 norm is used in the coding
stage, while the output weights are derived by the Lagrange
multiplier method. Zhao et al. [24] proposed the Robust
ELM algorithm (RRELM) by introducing both the devia-
tion and variance of the model into the objective function
for optimization and keeping the L2 penalty term constant.
RRELM considers both the variance and deviation of the
model and seeks to achieve the best compromise between
them to enhance the network generalization performance and
robustness. For the classification problem of imbalanced data,
Xiao et al. [25] proposed the Class-specific Cost Regulation
ELM algorithm (CCR-ELM), which achieves a compromise
between the number of misclassified samples and the gen-
eralization ability of the model by applying different penalty
factors tomisclassified samples of different classes. However,
since the number of hidden layer nodes, positive and negative
sample weights, and kernel parameters in CCR-ELM have a
large impact on the performance of the model, how to develop
a more effective method to determine these parameters needs
to be further investigated.

To address the problem that the input weights and hid-
den layer deviations of ELM are randomly generated, some
scholars have also optimized the network structure of ELM.
Zhu et al. [26] introduced differential evolution to ELM and
proposed an Evolutionary ELM algorithm (E-ELM), which
uses differential variation and crossover operators with sim-
ple structure and searches for optimal input weights and
hidden layer deviations according to the dynamic adjustment
of the population to obtain a more compact network structure.
Xu and Shu [27] used the good global search ability of par-
ticle swarm optimization algorithm to optimize the number
of hidden layer neurons of ELM, and proposed a PSO-ELM
algorithm, which encodes the input weights and implied layer
deviations of ELMas particles in the PSO search space, and in
each iteration all particles update their positions by their own
historical optimal solutions and the current global optimal
solutions of the whole population to achieve the search for
the optimal value in the solution space. The effectiveness of
PSO optimization depends on its topology. Figueiredo and
Ludermir [28] studied the effect of eight different topologies
on PSO-ELM performance, and the results also did not find
the best topology for all problems.

The above research on RELM shows that introducing reg-
ularization into ELM can solve the overfitting problem to a
certain extent and improve the robustness and generalization
ability of the model. However, the learning efficiency of the
algorithm is reduced due to the addition of the regularization
parameter in the objective function that needs to be optimized.
Studies on the optimization of network structures for ELM

have shown that there is no optimal topology for all problems,
but there is always a topology that is suitable for a particular
problem. Meanwhile, all the above studies do not adopt a
dynamic way to train the data. Therefore, this paper combines
both RELM and optimization of ELM network structure,
and proposes an online regularized extreme learning machine
model, which not only solves the initialization problem of
ELM and improves the generalization ability of the model,
but also transforms offline learning into online learning with-
out reducing the learning efficiency of the algorithm, and
has the ability to be more adaptable to modern intrusion
detection. We have summarized the current partial RELM
models, the optimized ELM network structure models, and
our proposedmodel in Table. 1, and compared the algorithmic
ideas, regularization methods used, feature mapping, robust-
ness, evaluation data, and the drawbacks.

III. IPSO-IRELM ALGORITHM
The idea of RELM is to solve the pathological problem of the
hidden layer matrix when ELM fails by limiting the parity
of the output weights of ELM, while sacrificing the bias
to solve the overfitting problem, thus improving the overall
generalization ability [29]. However, RELM still suffers from
the generic problem of ELM, where random input weights
and hidden layer deviations can be potentially unreliable and
unstable, affecting the classification performance. Therefore,
we use the improved classical PSO algorithm for the initial-
ization of RELM, and combine it with the actual situation by
replacing the batch learning idea with the sequential learning
idea, so that the matrix multiplication and inverse decompo-
sition in the output weight calculation process are gradually
updated, while adding various mechanisms to reduce the
computational load and maintain the efficiency of RELM.

A. IRELM BASED ON SEQUENTIAL LEARNING
RELM adds a regularization parameter to ELM to adjust the
coefficient β. The objective function is as follows:

min ‖Hβ − T‖2 +
1
C
‖β‖2 (2)

where H is the hidden layer output matrix; β is the output
weight matrix;T is the objective matrix. Therefore, the output
weight can be expressed as:

β = H†T = (HTH +
I
C
)−1HTT

= HT (HHT
+

I
C
)−1T (3)

When the input data size n is less than the number of
neurons in the hidden layer L, because the dimension of
(HHT

+
I
C )
−1 is n× n and the dimension of (HTH + I

C )
−1

is L × L. Therefore, when n < L, the IRELM is constructed
by HT (HHT

+
I
C )
−1T .

Define a recursive hidden layer output matrix Hk , where
k is 0 or any positive integer, representing the number of
sequential updates in the matrix. Assuming that the first
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TABLE 1. Comparison of various improved ELM models.

output matrix is H0, according to (3), the inverse matrix is
obtained as follows:

K−10 = (H0HT
0 +

I
C
)−1 (4)

herefore, the output weight matrix β0 is:

β0 = H0K−10 T0 (5)

When γN1 number of new samples arrives, γN1 =

1, 2, 3 . . ., the new hidden layer output matrix H1 becomes:

H1 =

[
H0
γH1

]
(6)

where γH1 is the γ number of output matrix. Similarly,
according to (3), the inverse matrix K−11 can be constructed
as:

K−11 = (H1H−11 +
I
C
)−1

=

H0H−10 +
I
C

H0γHT
1

γH1HT
0 γH1γHT

1 +
I
C


−1

(7)

Therefore, the output weight matrix can be expressed as
β1 = H1K−11 T1. With the successive arrival of block data,
the update of K and β can be implemented in Algorithm 1.
With the continuous learning, the dimension of K becomes

larger and larger. When n > L, the speed advantage brought
by (HHT

+
I
C )
−1 disappears. Therefore, the update scheme

is changed to (HTH+ I
C )
−1. Assuming that n ≥ L in step m,

K−1m+1 can be expressed as:

K−1m+1 = (HT
m+1Hm+1 +

I
C
)−1 (8)

where:

Hm+1 =

[
Hm

γHm+1

]
(9)

When new data is input in Step i+ 1 and i > m, thenH i+1
is:

H i+1 =

[
H i

γH i+1

]
(10)

Algorithm 1 IRELM Update Formula When n < L
1. Input the first batch of samples;
2. K−10 = (H0HT

0 +
I
C )
−1;β0 = H0K−10 T0 (if necessary);

3. Assuming that n ≥ L in step
for i = 1 : m− 1 do

Si+1 = γH i+1γHT
i+1 +

I
C
− γH i+1HT

i K
−1
i H iγHT

i+1;

A = K−1i + K
−1
i H iγHT

i+1S
−1
i+1γH i+1HT

i K
−1
i ;

B = −K−1i H iγHT
i+1S

−1
i+1;

C = −S−1i+1γH iHT
i K
−1
i ;

D = S−1i+1;

K−1i+1 =
[
A B
C D

]
;

β i+1 = H i+1K−1i+1T i+1 (if necessary);

end

Therefore, the inverse matrix K−1i+1 can be calculated as
follows:

K−1i+1

=

[
K i + γHT

i+1IγH i+1

]−1
= K−1i − K

−1
i γHT

i+1(I + γH i+1K−1i γHT
i+1)γH i+1K−1i

(11)

When n > L, the sequential updating formula of IRELM
can be implemented according to Algorithm 2.

According to Algorithm 1 and Algorithm 2, the advantages
of IRELM are as follows:

1. Dimension reduction of inverse matrix. In RELM,
the process that consumes the most computing power
is the calculation of (HTH)−1 and K−1i+1. In IRELM’s
updating scheme, the dimension of inverse matrix S−1i+1
is only γNi×γNi, which is far less than L×L, avoiding
the most complex part of RELM.

VOLUME 9, 2021 94829



Y. Tang, C. Li: Online Network Intrusion Detection Model Based on IRELM

Algorithm 2 IRELM Update Formula When n > L
1. Connect Algorithm1;
2. Assuming that n ≥ L in step;
3. Hm+1 =

[
Hm γHm+1

]
;

4. K−1m+1 = (HT
m+1Hm+1 +

I
C )
−1;

5. i = m+ 1;
6. while No termination do

H i+1 =
[
H i γH i+1

]
;

K−1i+1 = K−1i − K
−1
i γHT

i+1(I + γH i+1K−1i γHT
i+1)

γH i+1K−1i ;

β i+1 = H i+1K−1i+1T i+1 (if necessary);

i = i+ 1;

end

2. Calculate the value of β if necessary. The calculation
of β i+1 value does not depend on the previous value,
so it needs to be updated when necessary, and does not
need to be updated when unnecessary, which reduces the
calculation cost.

3. The batch learning is replaced by sequential learning,
which is more suitable for the actual situation, not only
maintains the generalization ability of RELM, but also
maintains the efficiency of the algorithm.

B. DESIGN PSO ALGORITHM
Particle swarm optimization [30] is one of the classic heuris-
tic algorithms, and its main idea comes from the predatory
behavior of a flock of birds. The core is to make use of the
information sharing of individuals in the group so that the
movement of the whole group has an evolutionary process
from disorder to order in the problem solving space, so as to
get the optimal solution of the problem. Suppose that there
is a group of particles in a D-dimensional search space, and
each particle has an initial velocity vk , initial position sk and
fitness value gk . In each iteration, each particle constantly
updates its own velocity and position. At the same time,
the fitness value is used to determine the optimal position pk
of the updated individual and the optimal position pg of the
population. Assuming that the optimal position is the initial
position of particles in the first iteration, the update formula
of the velocity and position of particles in the population are
as follows:

vkd (u+ 1) = zvkd (u)+ c1r1(pkd (u)− skd (u))

+c2r2(pgd (u)− skd (u)) (12)

skd (u+ 1) = skd (u)+ vkd (u+ 1) (13)

where k represents the kth particle in the population; u repre-
sents the current iteration times; z is the inertia factor, whose
value is nonnegative.When z is large, the global search ability
is strong; when z is small, the global search ability becomes
weak; c1 and c2 are the individual learning factors and social
learning factors of particles, whose values are nonnegative

Algorithm 3 The Framework of IPSO
1. for each particle k do

Initialize velocity vkd and position skd for particle k;
Evaluate particle k and set pkd = skd ;

end
pgd = min {pkd };

2. while not stop
for k = 1 : a

Update the velocity and position of particle k
using (14) and (13);

Evaluate particle k;
if fit (skd ) < fit (pkd )

pkd = skd ;
if fit (pkd ) < fit (pgd )

pgd = pkd ;
end

3. Select the top S elite particle and implement adaptive
mutation for them by (16);

4. Get the current new position;
5. If the new position is better than before, update it;
end

constants; r1 and r2 are independent random numbers in the
range of [0,1].

In order to make the parameters of PSO adjust adaptively
with the number of iterations, many scholars have proposed
a variety of autonomous particle swarm optimization algo-
rithms, which effectively balance the global and local search
ability of particles, but still cannot solve the defect that parti-
cles are easy to fall into local optimum. Therefore, this paper
proposes a Cauchy-Gaussian mutation strategy to make the
particles which fall into local optimum get rid of stagnation
and continue to search. Secondly, according to Clerc’s idea
of shrinkage factor [31], only use a global contraction factor
to replace other adaptive parameters. The improved particle
velocity update formula and Cauchy-Gaussianmutation strat-
egy are as follows:

vkd (u+ 1) = K [vkd (u)+ c1r1(pkd (u)− skd (u))

+c2r2(pgd (u)− skd (u))] (14)

K =
2∣∣∣2− ϕ −√ϕ2 − 4ϕ

∣∣∣ ,
where ϕ = c1 + c2, ϕ > 4 (15)

xkd (u) = skd (u)

×

[
1+ λ1cauchy(0, σ 2)+ λ2Gauss(0, σ 2)

]
,

(16)

σ =

1, f (sbest )< f (skd (u))

exp
(
f (sbest )− f (skd )
|f (sbest )|

)
, otherwise

(17)

where sbest is the optimal individual position; xkd (u) repre-
sents the position of the optimal individual after mutation;
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σ 2 is the standard deviation; λ1 and λ2 are the dynamic
parameters of adaptive adjustment. In the search process, λ1 is
larger in the initial stage, and then gradually decreases, so that
the algorithm can explore in a larger range with a larger
mutation step; λ2 is increasing, which is conducive to the
algorithm to search the near optimal solution.

IPSO pseudo code is as follows:

TABLE 2. Updating strategies.

C. INTRUSION DETECTION ALGORITHM BASED ON
IPSO-IRELM
Based on the above analysis and derivation, we introduce
IPSO into IRELM algorithm and establish an intrusion detec-
tion model based on IPSO-IRELM. The role of IPSO is
to find a group of particle swarm positions with the best
fitness function, and assign them to the optimal initial weight
and deviation of IRELM after the iteration to establish an
intrusion detection model. The model description is shown
in the Fig.1:

IV. EXPERIMENTAL RESULTS
A. PARAMETER SETTING
Experiment 1: The parameters of classic PSO and its deriva-
tive algorithms (MPSO [32], TACPSO [33], AGPSO [34])
compared with IPSO are as follows:

Among them,MPSO is to incorporate an asymmetric time-
varying acceleration coefficients adjusting strategy, which
maintains the balance between global and local search with
the great advantages of convergence property and robust-
ness compared with basic PSO algorithm; In TACPSO, ran-
dom velocities are added to reinitialize the velocities of
particles in order to avoid searching for particles with zero

TABLE 3. Benchmark functions.

VOLUME 9, 2021 94831



Y. Tang, C. Li: Online Network Intrusion Detection Model Based on IRELM

velocity prematurely. Also, to enhance early exploration
and later exploitation, exponential time-varying acceleration
coefficients are introduced, and the algorithm has a better
probability of finding the global optimum and the aver-
age optimum than other algorithms; The main idea of the
AGPSO algorithm is inspired by the diversity of individu-
als in bird or insect flocks, using different functions with
different slopes, curvatures and intercept points to tune the
social and cognitive parameters of the particle swarm algo-
rithm in order to endow the particles with behaviors different
from those of the natural population, further alleviating the
problem of getting stuck in local minima and slow conver-
gence of high-dimensional problems. The MPSO, TACPSO
and AGPSO were chosen for comparison because these
three improvement methods are more classical and more
effective.

When doing the experiment, the number of particles is set
to 30; the number of iterations is 1000. Take the average of
50 runs of the experiment.
Experiment 2-4: The parameters of the IRELM neural

network model are: 41—39—1, and the number of iterations
is 100. The model parameters of IRELM are determined by
the two-classification experiment of GA-IRELM. First, set
the number of hidden layer nodes to 10, 20, 30, 40, and
50 respectively. The experimental results show that the model
with 40 hidden layer units has the best detection accuracy.
Then set the number of hidden layer nodes to 36, 37, 38, 39,
40, 41, 42. The results show that the model with 39 hidden
layer units has the best detection accuracy. When the number
of hidden layer nodes is increased from 39 to 42, the accuracy
of intrusion detection decreases. Keeping the hidden layer
nodes unchanged, increasing the number of iterations will
only cause overfitting and fluctuate the detection efficiency
of the model.

B. IRELM BASED ON SEQUENTIAL LEARNING
Experiment1: We choose 13 benchmark functions for
testing, among which F1-F7 are single-peak bench-
mark functions, and F8-F13 are multimodal benchmark
functions [35].
Experiment2: The UCI data sets [36] are as follows:

TABLE 4. UCI datasets details.

Experiment3: The NSL-KDD data set [37] is as follows:

TABLE 5. NSL-KDD classification situation.

Experiment4:TheUNSW-NB15 data set [38] is as follows:

TABLE 6. UNSW-NB15 classification situation.

C. IPSO EXPERIMENT RESULTS
In order to verify that IPSO has a better optimization effect,
we use the 13 benchmark functions in Table. 3 to do
experiments, and verify whether IPSO is applicable to any
dimension from the perspective of low-dimensional and high-
dimensional. Fig.2 shows the images of thirteen benchmark
functions and the convergence curves of the algorithms
in 30 dimensions. Table. 7 and Table. 8 respectively show
the best optimization result, average optimization result and
standard deviation of optimization result of unimodal func-
tion and multimodal function in low dimension. Table. 9 and
Table. 10 respectively show the best optimization result, aver-
age optimization result and standard deviation of optimiza-
tion result of unimodal function and multimodal function in
high dimension respectively. The best result represents the
optimization ability of the algorithm, and the average result
and standard deviation of the optimization results reflect
the stability and robustness of the algorithm. For attention,
the best values in Table. 7-10 are marked in bold.

According to Table. 7-10, when the dimension of the
benchmark function is 30, first, IPSO obtains 11 minimum
values of 13 benchmark functions except F8 and F9. Sec-
ondly, 8 average optimal values are obtained in 13 bench-
mark functions. At the same time, IPSO’s standard deviation
of the optimal results is also significantly better than other
algorithms. When the dimension of benchmark function is
300, IPSO obtains 6 minimum values, 3 average optimal
values and 2 standard deviations of optimal results, while
PSO obtains 5 minimum values, 8 average optimal values
and 7 standard deviations of optimal results. This shows that
through the comparison of Table. 7 and Table. 8, IPSO can
obtain better optimization results in low-dimensional bench-
mark functions, but the effect on multimodal functions is not
as good as that of unimodal functions; through the compari-
son of Table. 9 and Table. 10, in high-dimensional benchmark
functions, other improved PSO algorithms are inferior to the
original PSO, and in the improved PSO, the comprehensive
effect of IPSO is relatively the best; through the comparison
of Table. 7 and Table. 9, the comparison of Table. 8 and
Table. 10, we can conclude that the higher the dimension-
ality of the benchmark function, the worse the optimization
effect. Therefore, the original PSO has a better effect on the
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FIGURE 1. IPSO-IRELM algorithm intrusion detection framework.

high-dimensional benchmark function, and other improved
PSOs are slightly inferior.

D. UCI DATA SET EXPERIMENTAL RESULTS
In order to verify the effectiveness of the proposed algorithm
on the real classification data set, IPSO-IRELM was com-
pared with PSO-IRELM, GA-IRELM, IRELM and RELM
on the UCI data set. The performance evaluation indexes of
each algorithm are listed in Table. 11-13, and the detection
results of each algorithm are given in Fig.3. It can be seen
intuitively from Fig.3 that whether it is the Iris data set or the
Wine data set, the predicted value of IPSO-IRELM coincides

perfectly with the true value, and the classification accuracy
rate reaches 100%. It can be seen from Table. 11-13 that
the performance evaluation indicators of other comparison
algorithms are better, but not as good as IPSO-IRELM. This
is because the two selected data sets are balanced data sets,
so the detection results are better. IPSO-IRELM has the best
performance evaluation index, which indicates that IPSO
has better optimization ability than PSO and GA algorithm,
and the necessity of introducing IPSO into IRELM; it also
verifies that IPSO-IRELM algorithm has better classification
performance. Therefore, it is further used in network intrusion
detection to verify the feasibility of IPSO-IRELM.
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FIGURE 2. Convergence curve.
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TABLE 7. The experimental results of single peak when dim = 30.

TABLE 8. The experimental results of multimodal when dim = 30.

TABLE 9. The experimental results of single peak when dim = 300.

E. NSL-KDD DATA SET 2-ELEMENT CLASSIFICATION
EXPERIMENT RESULTS
Wemerged the four types of attacks in the NSL-KDD dataset
into Abnormal and denoted as 2 and Normal as 1. The

experiment changed from a multi-classification problem to a
two-element classification problem. The experimental results
of each algorithm are shown in Table. 14 and Table. 15.
Fig.4 is a comparison diagram of the confusion matrix
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TABLE 10. The experimental results of multimodal when dim = 300.

FIGURE 3. The detection results of each algorithm on UCI datasets.

TABLE 11. Accuracy of each algorithm on UCI dataset (%).

and ROC curve of the binary classification results. From
Table. 14, compared with other algorithms, IPSO-IRELMhas
the highest accuracy rate of up to 91.13%, but the NSL-KDD
data set is an unbalanced data set. Therefore, in addition to

the accuracy rate, the precision, the true positive rate (TPR),
the false positive rate (FPR), the F-score, and the area under
curve (AUC) are used to evaluate the classification [39].
It can be seen from Table. 15 that for category 1, the TPR
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TABLE 12. Performance evaluation index of each algorithm on Iris dataset.

TABLE 13. Performance evaluation index of each algorithm on wine dataset.

TABLE 14. Accuracy of each algorithm on NSL-KDD dataset (%).

TABLE 15. Performance evaluation index of each algorithm on NSL-KDD dataset.

of SVM, ELM, RELM, IRELM, and GA-IRELM is better,
reaching more than 97%, while the TPR of PSO-IRELM and
IPSO-IRELM is a little worse. This is because the first five

algorithms misjudge a large amount of attack data as normal
data, so for category 2, their TPR is very low compared to
IPSO-IRELM, and IPSO-IRELM’s TPR can reach 94.24%.

VOLUME 9, 2021 94837



Y. Tang, C. Li: Online Network Intrusion Detection Model Based on IRELM

FIGURE 4. Binary classification confusion matrix and ROC curve comparison diagram.

TABLE 16. Accuracy of different algorithms (%).

TABLE 17. Performance evaluation index of each algorithm on normal.

Looking at the F-score and AUC, IPSO-IRELM is the best.
In terms of precision, for category 2, IPSO-IRELM is a bit
worse than other algorithms, but the difference is not big.

The confusion matrix is used to summarize the records
in the data set according to the actual results and prediction
results to realize visualization. As can be seen from Fig.4,
IPSO-IRELM has the best performance in predicting cat-
egory 2. At the time, the value corresponding to the sec-
ond quadrant is the largest, which also corresponds to the
TPR value of IPSO-IRELM corresponding to category 2 in
Table. 15. ROC curve is a curve reflecting the relationship
between TPR and FPR. The curve divides the graph into two
parts, and the part below the curve is expressed as AUC,
which is used to illustrate the accuracy of prediction. It can be
seen from Fig.4 that the AUC of IPSO-IRELM is the highest
in both category 1 and category 2, which fully indicates

the excellent performance of IPSO-IRELM and verifies that
IPSO-IRELM has better binary classification detection effect
than other algorithms. Overall, IPSO-IRELM has the best
performance.

F. NSL-KDD DATA SET MULTIVARIATE CLASSIFICATION
EXPERIMENT RESULTS
Divide Normal, Dos, Probe, U2R, and R2L into five
categories, denoted as 1, 2, 3, 4, and 5 respectively. The
experiment has changed from two classifications to multi-
ple classifications. The experimental results are shown in
Table. 16-21. The confusion matrix and ROC curve diagram
of multiclass classification are given in Fig.5.

From Table. 16, IPSO-IRELM has the highest accuracy
rate of 85.58%. Since the NSL-KDDmulti-classification data
set is still an unbalanced data set, the intrusion detection
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TABLE 18. Performance evaluation index of each algorithm on Dos.

TABLE 19. Performance evaluation index of each algorithm on probe.

TABLE 20. Performance evaluation index of each algorithm on U2R.

TABLE 21. Performance evaluation index of each algorithm on R2L.

capabilities of each algorithm are further analyzed in terms
of precision, TPR, FPR, F-score and AUC.

It can be seen from Table. 17 that for the Normal type data,
the TPR of each algorithm is better, all above 97%. For other
performance indicators, the precision, FPR, F-score and AUC
of IPSO-IRELM are the highest among the comparison algo-
rithms, indicating that IPSO-IRELM has better classification
performance for Normal type data.

It can be seen from Table. 18 that for DOS data, IPSO-
IRELM has the highest precision, TPR and F-score, but FPR
is a little worse than SVM, ELM, RELM and IRELM. This
is because in IPSO-IRELM, other types of data are predicted
to have too many DOS data, resulting in slightly poor FPR.
For AUC, IPSO-IRELM is second only to IRELM. In gen-
eral, IPSO-IRELM has a strong ability to identify DOS type
attacks.

From Table. 19, for Probe type data, the TPR of
IPSO-IRELM is the highest, but the FPR is also the highest.
This is because in addition to the better detection ability of
IPSO-IRELM for Probe type data, other types of data will
also be mistakenly detected as Probe type data, resulting in
the highest FPR and low precision, but the F-score and AUC
are still the highest.

It can be seen from Table. 20 that for U2R data, there
are only 11 training data and 200 test data, so SVM, ELM,
RELM, IRELM, GA-IRELM and PSO-IRELM all have
poor recognition effect for U2R data. Although the TPR
of IPSO-IRELM is only 5%, it is still the best, and the
F-score and AUC are also the highest, with an precision rate
of 76.92%, which other algorithms cannot do, indicating that
IPSO-IRELM also has a certain ability to detect a few types
of data, but it needs to be improved.
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FIGURE 5. Multiple classification confusion matrix and ROC curve comparison diagram.

From Table. 21, for R2L type data, SVM and GA-IRELM
still cannot recognize R2L data because it is still a minority
type of data. Other algorithms have recognition capabilities,
but they are still not prominent. IPSO-IRELM’s TPR, F-score
and AUC are second only to RELM, but the precision rate is
higher than RELM. This is because RELM recognizes that
other types of data are more R2L data during classification,
which leads to a higher TPR than IPSO-IRELM, but the
accuracy rate is not as good as IPSO-IRELM.

Through the analysis of Table. 17-21, we can conclude
that in the multivariate classification problem, it is not only
necessary to consider some performance indicators. When
the TPR conflicts with the precision rate, the comparison
between models is relatively complicated. The F-score just
reconciles the TPR and precision rate. In Table. 17-21, the F
value is better, indicating that IPSO-IRELM has a better
classification effect than other algorithms.

In the analysis of Table. 17-21, we found that when the
classification error occurs, only looking at the precision rate
and TPR can potentially see which category is more, which
category is less. We do not know how many types of spe-
cific errors are classified into. Therefore, we still use the
confusion matrix to show the difference of the data with its
color difference, brightness, etc., which is easy to understand.
The dark area indicates that the true value and the predicted
value overlap more, and the light area is the opposite. It can
be seen from Fig.5 that the dark areas of the first three
categories of each algorithm are concentrated on the diagonal,
and the latter two categories are concentrated on the lower left
corner, which is caused by the imbalance of the data. Because
the latter two types of data are too small, the algorithm’s

recognition ability is not sufficient for high-level recognition,
which leads to the recognition result tends to the category 1.
From the comparison between the algorithms, for category 1,
the classification accuracy of each algorithm is not much
different. For category 2 and category 3, the good classifica-
tion performance of the IPSO-IRELM algorithm is reflected,
which is the best among all the comparison algorithms. As for
the minority categories 4 and 5, IPSO-IRELM also has a
certain recognition ability, while the recognition ability of
other algorithms is basically zero.

The ROC curve has a huge advantage. When the distri-
bution of positive and negative samples changes, its shape
can remain basically unchanged. Therefore, the ROC curve
can reduce the interference caused by different test sets and
more objectivelymeasure the performance of themodel itself.
It can be seen from Fig.5 that IPSO-IRELM has the best AUC
for Normal, Dos, Probe and U2R. For R2L type, it is second
only to RELM with a difference of 0.00472.

In summary, on the UCI balanced data set, the performance
of IPSO-IRELM is better than that of IRELM and the tra-
ditional RELM algorithm, which shows the necessity of the
improved method. On the NSL-KDD binary classification
and multivariate classification data sets, it is also verified
that the IPSO-IRELM algorithm has better classification
performance.

G. UNSW-NB15 DATA SET MULTIVARIATE CLASSIFICATION
EXPERIMENT RESULTS
The UNSW-NB15 dataset contains new patterns of modern
network features with nine types of attacks, so this paper also
uses the UNSW-NB15 dataset to verify whether the proposed
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TABLE 22. Accuracy of different algorithms (%) and time(s).

TABLE 23. Performance evaluation index of each algorithm on normal.

TABLE 24. Performance evaluation index of each algorithm on Dos.

TABLE 25. Performance evaluation index of each algorithm on exploits.

TABLE 26. Performance evaluation index of each algorithm on fuzzers.

algorithm can have a better classification effect in the current
network environment. Since the UNSW-NB15 dataset is also
a non-equilibrium dataset, neither the proposed algorithm
nor the comparison algorithms can identify the four attacks:
Analysis, Backdoor, shellcode and Worms in the experiment,
so the final experimental results are shown in Table. 22-28
and Fig.6.

From Table. 22, it is concluded that IPSO-IRELM has
the highest accuracy rate of 88.53%. Also, IRELM has the
shortest training time, which indicates that IRELM is more

efficient. The training time of IPSO-IRELM increases due to
the optimization of IPSO, but it does not increase compared
with GA-IRELM and PSO-IRELM, which indicates that our
improvement of PSO does not increase its complexity. Sim-
ilarly, since the UNSW-NB15 multiclassification dataset is
also an unbalanced dataset, the intrusion detection capability
of each algorithm is further analyzed in terms of precision,
TPR, FPR, F-score, and AUC.

From Fig.6, a portion of the Exploits data is mistaken for
Dos; a portion of the Fuzzers data is mistaken for Exploits;
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TABLE 27. Performance evaluation index of each algorithm on generic.

TABLE 28. Performance evaluation index of each algorithm on reconnaissance.

FIGURE 6. UNSW-NB15 dataset multiple classification confusion matrix.

and a portion of the Normal data is mistaken for Fuzzers
in the final classification results obtained by all algorithms,
which leads to the low precision rates in Table. 24-26. For
Generic data, as in Table. 27, each algorithm can detect it
well, but IPSO-IRELM has the smallest FPR, indicating that

IPSO-IRELM can detect Generic while not mistaking
Generic for other classes. For Normal data, as shown
in Table. 23, the TPR, F-value and AUC of IPSO-IRELM
are the highest, which indicates that IPSO-IRELM has bet-
ter classification performance for Normal data. In summary,
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IPSO-IRELM not only has the highest accuracy rate, but also
the training time does not increase. Although some classi-
fications are not recognized for the UNSW-NB15 dataset,
it has the best classification results for the remaining six
classifications, indicating that IPSO-IRELM still has better
classification ability in modern network environments as
well.

V. CONCLUSION
We propose an IPSO-IRELM intrusion detection model,
which overcomes the shortcomings of offline learning of tra-
ditional intrusion detection models. It uses sequential learn-
ing to classify the types of attacks in the network, and
jointly optimizes the initial weights and deviations of IRELM
through improved particle swarms. The experimental results
show that IPSO-IRELM has obvious advantages in all eval-
uation indicators, no matter on the UCI balance data set or
the NSL-KDD intrusion detection data set, or the UNSW-
NB15 data set, which contains many new types of attacks.
The next step will be to study how to have a higher recog-
nition rate for minority samples on unbalanced data sets,
and apply the IPSO-IRELM algorithm to actual dynamic
intrusion detection networks to test its classification effect in
the real environment.
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