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ABSTRACT Flow Shop Scheduling Problem (FSSP) has significant application in the industry, and therefore
it has been extensively addressed in the literature using different optimization techniques. Current research
investigates Permutation Flow Shop Scheduling Problem (PFSSP) to minimize makespan using the Hybrid
Evolution Strategy (HESSA). Initially, a global search of the solution space is performed using an Improved
Evolution Strategy (I.E.S.), then the solution is improved by utilizing local search abilities of Simulated
Annealing (S.A.). I.E.S. thoroughly exploits the solution space using the reproduction operator, in which
four offsprings are generated from one parent. A double swap mutation is used to guide the search to
more promising areas in less computational time. The mutation rate is also varied for the fine-tuning of
results. The best solution of the I.E.S. acts as a seed for S.A., which further improved the results by
exploring better neighborhood solutions. In S.A., insertion mutation is used, and the cooling parameter
and acceptance-rejection criteria induce randomness in the algorithm. The proposed HESSA algorithm is
tested on well-known NP-hard benchmark problems of Taillard (120 instances), and the performance of
the proposed algorithm is compared with the famous techniques available in the literature. Experimental
results indicate that the proposed HESSA algorithm finds fifty-four upper bounds for Taillard instances,
while thirty-eight results are further improved for the Taillard instances.

INDEX TERMS Permutation flow shop scheduling problems, improved evolution strategy, simulated
annealing, Taillard problems, makespan.

I. INTRODUCTION
In a flow shop production environment, machines are
arranged in series, and the product is moved from one
machine to the next machine in a fixed sequence [1].
In FSSP, when the processing sequence for all the machines
is the same, it is termed Permutation Flow Shop Scheduling
(PFSSP). It has a wide range of applications in the indus-
tries, i.e., automobile, pharmaceutical, fertilizer, and food
industry, and several researchers in literature have addressed
it. The FSSP was first proposed by Johnson to minimize
makespan. Since then, makespan is considered as most used
objective in the literature to optimize PFSSP (Pinedo [1]).
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Makespan is the total time required to complete all the jobs
on all the machines [2]. For the current world’s dynamic
environment, the makespan criterion is considered the most
relevant for PFSSP [3]. PFSSP is regarded as a complex prob-
lem (Yenisey and Yagmahan [4]), and it is NP-hard (Garey,
Johnson [6]).

II. LITERATURE REVIEW
PFSSP is addressed in the literature using different
optimization techniques, including Exact methods, Heuris-
tics, and Meta-heuristics. Numerous researchers used
exact methods to solve flow shop problems. Initially,
Schrage [7] applied branch and bound (B&B) to minimize
the 2-machines flow shop problem’s mean completion time.
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Moursli and Pochet [8] minimized the initial gap between
the upper and lower bound to 50%, using the B&B method.
Chung, Flynn [9] studied PFSSP to minimize total flow
time using the B&B method. Ronconi [10] minimized the
makespan of PFSSP using the B&B method. Ng, Wang [11]
introduced numerous dominance properties to minimize
total completion time in PFSSP. Moukrim, Rebaine [12]
proposed the B&B method for 2-machine PFSSP. Nagano,
Robazzi [13] suggested an improved B&B using a new
machine-based lower bound that considers machine block-
ing and idleness. Isenberg and Scholz-Reiter [14], Rossit,
Tohmé [15], and Meng, Zhang [16] used mathematical pro-
gramming techniques to solve PFSSP.

However, most of the literature used exact methods to
solve small instances of PFSSP’s. Algorithms before Moursli
were applicable to test problems with several jobs less than
15, while Moursli and Della’s algorithms are suitable to test
problems with several jobs and machines less than 20 and 45,
respectively. Except for Ronconi [10], the most recent exact
methods can solve problems with jobs up to 20 and machines
up to 8. PFSSP is a combinatorial optimization problem [17];
hence, it becomes difficult to solve these complex problems
using exact methods when problem size increases. Therefore,
heuristics and Meta-heuristics have been used to solve com-
plex PFSSP in literature.

Johnson developed the first heuristic technique in 1951.
Since then, several researchers have proposed heuristic tech-
niques to solve the PFSSP of various sizes in reason-
able computational time to minimize makespan. Tseng and
Lin [18] classified heuristics into constructive, improvement,
and composite heuristics.

Initially, Palmer [19] proposed a constructive heuristic
to minimized makespan in PFSSP. Nawaz, Enscore [20]
developed a constructive heuristic to solve PFSSP to min-
imize makespan for n-jobs with m number of machines.
This technique processes jobs with the highest processing
time first by Nawaz, Encore, and Ham (N.E.H.). A heuristic
is the best heuristic for optimizing PFSSP’s. Ronconi [21]
proposed three constructive heuristics for PFSSP, namely
MinMax (MM), MinMax based on N.E.H. (M.M.E.), and
Profile Fitting based on N.E.H. (P.F.E.); he compared the
results with N.E.H., both the M.M.E. and P.F.E. outper-
formed N.E.H. Heuristic. Ribas, Companys [22] improved
the M.M.E. algorithm using the Blocking flow shop prob-
lem’s reversible property. Shao, Shao [23] proposed two con-
structive methods and two Iterated greedy (I.G.) algorithms
for distributed blocking FSSP. To avoid local minima,
he used acceptance criteria based on fuzzy characteristics.
Other common constructive heuristics are developed by
Liu and Reeves [3]; Kalczynski and Kamburowski [24];
Pan and Wang [25]; Benavides and Ritt [26]. However,
constructive heuristics produce infeasible results and takes
considerable computational time to find near optimum
solutions [27].

Besides, there are improvement heuristics proposed in
the literature to solve PFSSP (e.g., Suliman [28]; Chen,

Tzeng [29]; Ye, Li [30]). These heuristics improved some
of the already developed heuristics by considering specific
knowledge of some problems. Moreover, PFSSP has also
been addressed by composite heuristic (e.g., Benavides and
Ritt [26]; Ribas, Companys [31]; Lin, Wang [32]), which
combines different heuristics to solve PFSSP. Composite
heuristics have yielded much better results as compared
to constructive and improvement heuristics. However, most
of the heuristics developed in literature are independent
of a time limit, and they stop after a predefined num-
ber of steps. It can give a possibility to trap in the local
optima.

Therefore, meta-heuristics have been developed in the
literature to search near-optimal solutions considering the
termination criteria (e.g., CPU time, number of itera-
tions). Meta-heuristics can obtain better solutions than
heuristics, but they require more computational time
(Tseng and Lin [18]). In literature, Meta-heuristic algorithms
have been developed to solve PFSSP by several researchers.
Most significant meta-heuristics used in literature are Arti-
ficial Bee Colony Algorithm (ABC) (Deng, Xu [33]; Han,
Gong [34]; Li and Pan [35], [36]), Differential Evolution
Algorithm (DE)(Liu, Yin [37]), Evolutionary Algorithm
(EA)(Qian, Wang [38], Yeh and Chiang [39]), Genetic
Algorithms (GA) (Caraffa, Ianes [40]; Ruiz, Maroto [41];
Vallada and Ruiz [42]; Akhshabi, Haddadnia [43]; Andrade,
Silva [44]), Hybrid Discrete Differential Evolution (HDDE)
(Wang, Pan [45]), Hybrid Differential Evolution Algo-
rithm (HDEA) (Liu, Yin [37]), Simulated Annealing (SA)
(Laha and Chakraborty [46]; Lin and Ying [47]; Moslehi
and Khorasanian [48]) Lin, Cheng [49], Tabu Search (TS)
(Taillard [50]; Grabowski and Wodecki [51]; Grabowski and
Pempera [52]; Arık [53]), TS and ABC (Li and Pan [35]),
HybridWhale optimization algorithm(HWO) (Abdel-Basset,
Manogaran [54]), Particle swarm optimization (PSO) (Zhao,
Qin [55]) Evolution Strategy (ES) (de Siqueira, Souza [56];
Khurshid, Maqsood [57]), among others. These algorithms
have found competitive results for different PFSSP’s com-
pared to heuristics; however, they requiremore computational
time, as they initiate from a sequence constructed by heuris-
tics and is iterated until termination criteria are achieved.

Over the past years, significant research has been carried
out on combining various Meta-heuristics. So that valuable
features of each Meta-heuristic are used to get the desired
results. A good option is to combine a global search tech-
nique with a local search technique to fine-tuning results.
In this research, I.E.S. is combined with S.A. to minimize the
makespan of PFSSP. I.E.S. performs best for global search;
however, sometimes it gets stuck around local minima. Hence
I.E.S. is combined with S.A., as S.A. avoids local minima and
finds the best solution available in its neighborhood. S.A. was
first used by.Kirkpatrick, Gelatt [58] to solve the traveling
salesman problem. S.A. is a stochastic local search method
taken from nature. In annealing, metals are slowly cooled to
form a uniform crystallization instead of fast cooling, leading
to poor crystallization. Similarly, the search process for a

94506 VOLUME 9, 2021



B. Khurshid et al.: I.E.S. Hybridization With S.A. for PFSSPs

global minimum in S.A. mimics the crystallization cooling
method. S.A. starts from a random solution and then finds
the best solution available in its neighborhood.

E.S. is a type of evolutionary algorithm that mimics natural
evolution to solve optimization problems [59]. E.S. has been
developed in Germany by Rechenberg in the late 1960s,
which operates with a population of size (µ+, λ), where µ
stands for individual parent and λ represents the offspring.
Rechenberg [60] completed the first dissertation in the field of
E.S. Rechenberg used rectangular corridor and hypersphere
models for the approximate analysis of the (1 + 1)-E.S.
with Gaussian mutation. E.S. is an iterative process that uses
a population of individual solutions to search the solution
space [61]. Each individual represents a possible solution
to the optimization problem. E.S. has been developed for
numerical optimization problems and is widely used for its
efficiency and robustness.

The performance of E.S. is mostly dependent on the adjust-
ment of its internal parameters, i.e., mutation strength [61].
In E.S., all parents can be chosen to produce offsprings,
as there is no compulsion that parents involved should be
different. In E.S., there are no mating selection criteria. In lit-
erature, different reproduction operators have been used in ES
i.e. (1 + 1), (1 + 4), (1 + 9) and (1 + 16) [62]. One parent
can produce 1, 4, 9, and 16 offsprings in these operators,
respectively.

E.S. has been used in flow shop problems of limited
size. For example, de Siqueira, Souza [56] applied E.S.
on hybrid flow shop problems to minimize makespan con-
sidering 50 jobs and eight machines. They used a ran-
dom N.E.H. heuristic and Iterated Greedy Search (I.G.S.)
meta-heuristic to create the solutions’ initial population.
Khurshid, Maqsood [57] used Hybrid Evolution Strategy
for Robust PFSSP to minimize the makespan. Khurshid,
Maqsood [63] used a fast E.S. algorithm to solve Carlier
and Reeves benchmark PFSSP and validated the algorithm’s
result to solve a battery manufacturing case from the industry.
In addition to flow shop problems, E.S. is also used in the
evolutionary design of digital circuits (Miller [64]), forecast-
ing foreign currency exchange rates (Rehman, Khan [65]),
and for feedforward and recurrent networks (Mahsal Khan,
Masood Ahmad [66]). However, Limited researchers used
E.S. to solve PFSSP of large sizes instances. Further-
more, E.S. is better in performance than the other meta-
heuristics, including G.A. (Costa and Oliveira [67]), and
is used in current research to solve the considered PFSSP.
In Table 1, various techniques used for solving PFSSP are
summarized.

In this paper, an I.E.S. algorithm is hybridized with S.A.
to minimize makespan for PFSSP. I.E.S. is recommended for
global search; however, it tends to get trapped in local minima
after few iterations. Hence, to use a salient feature of the
local search technique, it is hybridized with SA. S.A. avoids
local minima by accepting new solutions in its neighborhood
even if it is inferior to the previous solution. Combining
both these algorithms gives improved results for PFSSP.

The following section reports the problem statement, which
provides assumptions used in PFSSP. Next, the methodology
is presented, which explains the proposed improvement over
E.S. and S.A. Computational experiments, and results are
shown in section 4, and the final section reports the conclu-
sions and recommendations.

III. PROBLEM STATEMENT
PFSSP can be formulated as follows. Flow-shop scheduling
involves n number of processed on m number of machines in
the sequence of machines arranged in the shop. The process-
ing time of Job Ji on machineMj is given as Pi,j. The machine
executes only one job, and it is processed in the same order.
The goal is to find an optimum sequence so that the makespan
(Cmax) is reduced. Processing times are known in advance,
and they are non-negative with fixed values. The assumptions
used in the current problem and the objective function and
constraints are as follows.
• At any time, one and only one job is operated by a
machine.

• Anticipation is not permissible, all jobs are independent,
and any job can be started as first.

• Machine downtime is ignored, and machines are contin-
uously available.

• The Job processing sequence is the same for each
machine.

• The setup time is incorporated into the machine process-
ing times.

For n jobs andmmachines, the makespan can be calculated
using Eq. 1- Eq. 4.

Cmax = max(Ca,J1 ,C1,Jb , . . . ,Ca,Jb (1)

where,

Ca,J1 =
a∑
l=1

Pl,J1 a = 1, . . . ,m (2)

C1,Jb =

b∑
l=1

P1,Jl b = 1, . . . , n (3)

Ca,Jb = max(Ca−1,Jb ,Ca,Jb−1)+ Pa,Jb

a = 2, . . . ,m b = 2, . . . , n (4)

Minimization of makespan is the most common objective
for PFSSP as it directly correlates to the maximum utilization
of machines [2]. This research aims to reduce makespan for
PFSSP using a Hybrid E.S. In this research 120, Taillard
PFSSP’s comprises 12 different problem sets, ranging from
20 jobs and five machines to 500 jobs 20 machines are solved
using the proposed technique.

IV. METHODOLOGY
A. INTRODUCTION TO ES
Evolutionary strategy imitates the principle of natural evo-
lution to solve parameter optimization problems. E.S. was
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TABLE 1. Summary of literature on single objective PFSSP’s.

introduced by [60]. E.S. depends on the collective learn-
ing model gathered from natural evolution and principles of
reproduction, recombination, mutation, and selection. Dur-
ing the optimum search, E.S. tries to adapt its strategy
parameters by using a collective self-learning mechanism.
In E.S., strong emphasis is done on the mutation to cre-
ate offsprings. For faster results, mutation parameters are
changed during the execution of the program. In the evolution
strategy, floating-point representation is used, and mutation
is the only recombination operator. Initially, experiments

were performed having one descendant and one ancestor
per generation, and mutation was done by subtracting two
numbers drawn from a binomial distribution. The offspring
replaced the ancestor if it was found better. After the arrival
of computers, this two-membered or (1+1)-E.S. technique is
complemented by the multi-membered version with recom-
bination. Now within one cycle, parents create offsprings.
Two or more parents may be involved in the recombination
step, two extreme forms known as intermediate and discrete,
respectively. In intermediate recombination, parental variable
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average values are shifted to the new offspring, while discrete
recombination selects each component from one parent at
random.

The basic steps of E.S. are as follows:
Step 1: Initialization
Step 2: Reproduction
Step 3: Recombination
Step 4:Mutation
Step 5: Selection
Step 6: Termination

B. SIQUEIRA E.S. FOR HYBRID FLEXIBLE FLOW LINE
PROBLEMS
Siqueira (2013) used E.S. to minimize the makespan of
Hybrid Flexible Flow Line Problems (HFFL). The pseu-
docode for the Siqueira E.S. Algorithm is shown in Figure 1.

FIGURE 1. Pseudocode for HFFL algorithm.

For reproduction Siqueira (2013) used (1 + 1)-E.S., from
1 parent, one offspring was generated, and the selection pools
consist of 2 entities. Although less computational time is con-
sumed for the (1+1)-E.S. reproduction operator, the selection
pool is tiny to exploit the solution space thoroughly. Therefore
ample iterations are required to find the optimum solution.

The mutation rate used by Siqueira (2013) is not changed
constantly; however, to increase genetic variation in the pop-
ulation and improve results in fewer iterations, a variable
mutation rate should be used. Siqueira(2013) applied E.S.
on HFFL problems with jobs up to 50 and machines up to 8.
E.S. should be tested on complex benchmark PFSSP’s (i.e.,
Taillard, Vallada, Carlier, and Reeves Flow Shop problems)
to validate its performance.

C. THE PROPOSED I.E.S. ALGORITHM
In this proposed I.E.S., the following improvements have
been made as compared to Siqueira (2013).
• To thoroughly exploit solution space, (1 + 4)-E.S. has
been used instead of (1 + 1)-E.S. Four offsprings are
generated from one parent. The selection pool consists
of 5 entities, one parent, and four offsprings.

• For maximum exploitation of solution space in min-
imum computational time, Double swap mutation is
used.

• Initially, a highmutation rate is used; however, the muta-
tion rate varies to avoid local minima and fine-tuning
results. Variation in mutation rate is the crucial advan-
tage of E.S.

• To test I.E.S. on a complex problem, it has been applied
to Taillard Problems with the number of jobs ranging
from 20 to 500 and the number ofmachines ranging from
5 to 20. (Taillard problems are the most complex bench-
mark flow shop problems available in the literature).

Pseudocode for the proposed I.E.S. is shown in Figure 2.
Flowcart for HESSA is shown in graphical form in Figure 5.

1) SELECTION OPERATOR (PARENT)
The parent population is randomly generated. For a popula-
tion size of five, the randomly generated parent population is
as follows.

Parent 2 1 4 3 5

2) REPRODUCTION OPERATOR
Siqueira (2013) used (1+ 1)-E.S. for reproduction, although
(1 + 1)-E.S. is fast, but the solution space is not thoroughly
exploited. To overcome this problem, (1+ 4)-E.S. is used in
this paper as it explores more solution space and find better
results from small to large sized problems. The reproduction
operator selects the parents who take part in the generation of
offsprings. From 1 parent, four offsprings are generated ran-
domly, as shown in Figure. 3. Other reproduction operators,
i.e. (1 + 5), (1 + 9), and (1 + 16), can be used; however,
they will take ample computational time to solve complex
scheduling problems.

3) RECOMBINATION OPERATOR
Recombination operator brings similarities between parents
and their offsprings. Recombination itself has no benefit;
however, it is useful when combined with enormous mutation
strength and selection. A mutation is mandatory for evolu-
tionary progress and new offsprings production; however,
most offsprings are harmful. The selection operator must
select suitable mutants. The recombination then extracts stan-
dard features, i.e., the similarity in these selected individuals
and reduce uncorrelated part. Hence the chosen similarities
are the most beneficial ones. Discrete recombination is used
in this research. In discrete recombination, variable values of
individuals are exchanged. Equal probability is used by the
parent to share its variable with the offspring and is done
randomly.

4) DOUBLE SWAP MUTATION OPERATOR
The mutation operator is the most important operator of the
E.S. besides the selection and reproduction operator. It intro-
duces genetic variation in the population. In E.S., mutation
operators are problem-dependent. Their accurate design is
essential in E.S. The double Swapmutation operator is used in
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FIGURE 2. Pseudo code for IES.

FIGURE 3. (1 + 4) reproduction strategy.

FIGURE 4. Double swap mutation.

this research; the procedure of double swapmutation operator
(with 40% mutation rate) is illustrated in Figure. 4. The
position of Gene 1 is interchanged with Gene 5, while the
position of Gene 2 is interchanged with Gene 4 simultane-
ously. Double swap mutation takes less time and guides the
solution to more promising areas.

The mutation rate varies after a specified time interval
to reduce genetic variation with an increasing number of
iterations and fine-tune the results. Variable mutation rate

increases the chances of attaining the best results in minimum
computational time and prevents the algorithm from trapping
in the local minima. The mutation rate varies depending on
the size of problems as for large-size problems low mutation
rate is used; otherwise, the mutation operator becomes a
random search operator. Taillard 120 benchmark problems
can be divided into five categories depending on the number
of jobs, i.e., 20, 50, 100, 200, and 500, respectively. For each
category, a specific mutation rate is used depending on the
computational time. The mutation rate against the number of
jobs is mentioned in Table 2.

5) SELECTION OPERATOR (SURVIVOR)
From λ descendants, µ best individuals are determinis-
tically chosen. In 1975, [70] introduced two new multi
membered-ES survivor selection schemes, i.e. (µ + λ)-E.S.,
(µ, λ)-E.S.
In (µ + λ)-E.S., parents, and offsprings are consid-

ered in the selection pool, (µ + λ)-the selection is recom-
mended for the combinatorial optimization problem. While
in (µ, λ)-E.S., only offsprings are considered in the selection
pool, while parents die out of the selection pool, (µ, λ)-
Selection is recommended for real-valued parameter opti-
mization.

In this paper (µ + λ) selection scheme is used as it
guides solutions to promising areas. Since four offsprings are
generated from 1 parent, hence the selection pool consists
of 5 entities. The parent can survive for many generations
unless replaced by a better offspring.

6) TERMINATION
Termination criteria, i.e., the maximum number of iterations,
computational time, and fitness value, are commonly used.
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TABLE 2. Mutation rate against the number of jobs for taillard instances.

The stopping criteria used in HESSA is the Maximum com-
putational time, set at n2/2× 10 ms for each instance. Hence
the whole algorithm constituting of I.E.S. and S.A. is run for
n2/2× 10 ms.

D. SIMULATED ANNEALING
S.A. is a local search procedure originating from material
science and was initially used as a simulation model in the
solids’ annealing process. S.A. does not guarantee an optimal
solution; however, it will find a better neighborhood solution.
At each iteration, S.A. searches within the neighborhood
and evaluates the possible candidate solutions. Based on
the acceptance-rejection criteria, the candidate solution is
either accepted or rejected, and the correct selection of these
criteria has a significant effect on the performance of the
S.A. algorithm. The main criteria in designing the S.A. algo-
rithm are i) Schedule representation ii) Neighborhood design,
iii) Searching within the neighborhood, and iv) Acceptance-
rejection criteria. In S.A., a probabilistic procedure is used for
the acceptance-rejection criteria.

Several iterations are performed in S.A. At iteration k,
the best-known schedule is termed as So, while the current
schedule is termed as Sk. G(So) and G(Sk) are the corre-
sponding values. G(So) is also termed as aspiration criteria.
S.A. algorithm moves from one schedule to another in search
of an optimal schedule. At iteration k, a new schedule is
searched in the neighborhood of Sk. A candidate schedule
Sc is either randomly selected or through a genetic operator.

A move is made If G(Sc) < G(Sk) and set Sk+1 = Sc.
If G(Sc) < G(S0), then S0 is equal to Sc. While a move is
allowed with probability P(Sk, Sc) if G(Sc) ≥ G(Sk),

P (Sk , Sc) = e

{
G(Sk )−G(Sc)

βk

}
(5)

If G(Sc) ≥ G(Sk), then a random number (µk) between
0 and 1 and compared with probability if µk ≤ P(Sk, Sc),
then set Sk+1 = Sc else set Sk+1 = Sk. βk is the cooling
parameter (analogous to the annealing process). Its initial
value is between 0.9 to 0.95, which reduces with an increase
in the number of iterations.

Unlike E.S., in S.A., the worst move is allowed, giving
S.A. a chance to escape local minima and find a suitable
solution in a later search. As βk reduces with the number
of iterations, the acceptance probability of a non-improving
search is minimal as the number of iterations approaches its
limit. If a neighborhood is worse, then acceptance probability
ensures that a move is avoided. Several stopping criteria can
be used in S.A., i.e., the number of iterations, the value of
an objective function is met, or no improvement is observed
for a specific interval. In this S.A., the computational time is
used.

The best solution of I.E.S. is used as a seed for the S.A.
algorithm. S.A. algorithm uses it as the initial schedule and
then finds candidate schedules in its neighborhood.Mutation,
cooling parameter, and acceptance-rejection criteria induce
randomness in the solution search procedure. Insertion muta-
tion is used in S.A. while cooling parameters vary between
0.95 and 0.6. The pseudocode for the S.A. algorithm is shown
in Figure 6.

V. COMPUTATIONAL RESULTS
A. EXPERIMENTAL SETUP
The algorithm is coded in MATLAB and run on a
CoreTMi5 with 2.6 GHz and 4 G.B. memory and tested on
Taillard [71] benchmark PFSSP. Taillard PFSSP is the most
challenging combinatorial optimization problem. A cush-
ion for improvement is still available; for more than 100,
the Upper bound schedule is still unknown for most instances.
Taillard instances data is taken from OR Library. The bench-
mark set contains 120 different problems and divided into
12 groups, with each group containing ten instances with
machines ranging from 5 to 20 and jobs ranging from 20 to
500. For each instance, Taillard has used a seed. Compu-
tational time was used as the termination criteria, and each
instance was run for n2/2 ∗ 10 ms.

B. COMPARISON OF RESULTS
Results of the empirical tests for the suggested HESSA
are reported, and computational results from algorithms
of Zobolas, Tarantilis [72], Chen, Huang [73], Marinakis,
and Marinaki [74], and Abdel-Basset, Manogaran [54].
Zobolas, Tarantilis [72] suggested a Hybrid meta-heuristic
(NEGAVNS) by combining a Greedy randomized con-
structive heuristic, a Genetic algorithm, and a Variable
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FIGURE 5. Flowchart for HESSA algorithm.

FIGURE 6. Pseudocode for S.A. algorithm.

neighborhood search (V.N.S.) method to minimize the
makespan of PFSSP. For the first time, the algorithm com-
bined G.A. with a V.N.S. for fine-tuning results and escaping
local minima. The algorithm was coded in C++ and run a
Pentium R©IV with 2.6 GHz and 1 GB Ram and tested on
Taillard [71] benchmark instances. The maximum running

time for the algorithm was n×m/10 s. Marinakis and Mari-
naki [74] proposed a Particle swarm optimization algorithm
(PSOENT) with a new algorithmic nature-inspired technique
to minimize the makespan of PFSSP. The PSOENT algorithm
combines the PSO algorithm with expanding neighborhood
topology, a variable neighborhood search technique, and a
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TABLE 3. PRD comparison of HESSA values with NEGAVNS, PSOENT, RDPSO, and H.W.A. algorithms.

path relinking technique. Starting from a small-sized neigh-
borhood, the neighborhood sizes increase with each iteration,
and the neighborhood ends to a limit so that all swarms are
included in it. The algorithm utilizes the global neighborhood
technique’s exploration ability and exploitation ability of the
local neighborhood technique. The algorithm was coded in
Fortran 90 and tested on Taillard [71] benchmark instances,
and the termination criteria for instances with 20, 50, 100,
200, and 500 jobs was 60 sec, 120 sec, 180 sec, 300 sec, and
500 sec respectively.

Chen, Huang [73] proposed a revised discrete particle
swarm optimization algorithm (RDPSO) for PFSSP to min-
imize makespan. A new particle swarm learning strategy is
introduced in the RDPSO algorithm for guiding the search
to find the personal and global best solutions. A new filtered
local search is applied to avoid premature convergence, which
guides the search to new solution areas and avoids already
reviewed regions. The algorithm was tested on Taillard [71]
benchmark instances with a P.C. having Intel Pentium IV
at 2.6 GHz. The termination criteria were 1000 iterations
for all the instances, and the population size is set at 60.
Abdel-Basset, Manogaran [54] proposed a Hybrid algorithm
(H.W.A.) that combined a Whale optimization algorithm as
a Local search strategy to minimize makespan in PFSSP.
To use the most considerable rank value, discrete search
space is required in the algorithm. By using swap muta-
tion, the candidate solution’s diversity is improved, and to
escape local optima. An insert-reversed block operation is
incorporated in the algorithm. The performance of the initial
solutionwas improved by using theN.E.H. heuristic [20]. The
algorithm was coded in Java and run on a Core TMi5-3317U
with 1.7 GHz and 4 GB Ram. The algorithm was tested

on Taillard [71], Carlier [75], Reeves [76], and.Heller [77]
benchmark instances.

For a fair comparison of HESSA with NEGAVNS,
PSOENT, RDPSO, and H.W.A., the termination criteria for
all these algorithms were computational time. The maximum
computational time was set at n2/2 ∗ 10 ms. These algorithms
were tested on the same processor, i.e., Core TMi5 with
2.6 GHz and 4 GB RAM.

The effectiveness of the suggested technique is analyzed in
terms of solution quality. For each group, the quality of the
algorithm was evaluated using Eq. 6.

PRD =
100 ∗ (C − Cm)

C
(6)

where

PRD- Percentage relative difference
Cm
= Makespan found from the algorithm of
HESSA, NEGAVNS ,

PSOENT, RDPSO and HWA
C = Upper bound for Taillard Instances

In the case of HESSA, the values are averaged values
over 30 runs of each instance. We summarized the results
in Table 3. A positive value of PRD shows that the results
are better than C, and the best values of PRD are highlighted
in Bold. For the first three groups where the number of
jobs is 20 respectively, PRD values for all these algorithms,
i.e., HESSA, NEGAVNS, RDPSO, and H.W.A., are zero,
which means all algorithms have found the same optimal
makespan for these groups. PRD values for PSOENT are
zero for Group 1 and 2 while it is −0.04 for group 3;
hence, it cannot find the optimal schedule for Group 3 and
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performs inferior compared to other algorithms. For Group 4,
the P.D.R. values for HESSA, NEGAVNS, PSOENT, RDPSO,
and H.W.A. are also zero. So for this group, all algorithms
have found the upper bound values. Moreover, their perfor-
mance is at par with each other. For Group 5 (50- 10), HESSA
performs better than PSOENT, RDPSO.However, NEGAVNS
and H.W.A. perform slightly better than HESSA. For Group 6
(50- 20) and 8 (100- 10), NEGAVNS performs better than
all other algorithms. Group 7 (100- 5) all algorithms have
found the upper boundmakespan and have performed equally
well. For Group 9 (100- 20), 10 (200- 10), 11 (200- 20),
and 12 (500- 20), HESSA outperforms NEGAVNS, H.W.A.,
RDPSO, and PSOENT as its PRD values are minimum for
these four groups, and also these four groups contain the most
challenging instances of Taillard Flow shop problems.

The average PRD values for HESSA, NEGAVNS, H.W.A.,
RDPSO, and PSOENT are−0.38,−0.46,−0.49,−1.16, and
−1.61, respectively. In terms of overall performance, HESSA
outperformed all others algorithms as its overall PRD value
is less than all other algorithms. As the Average PRD value
of HESSA is minimum than all other algorithms, it shows
the HESSA algorithm’s robustness for all size problems,
i.e., small, medium, and significant problems.

C. NEW UPPER BOUNDS AND IMPROVED SOLUTION FOR
TAILLARD INSTANCES
Table 4 makespan values of HESSA compared with
the makespan values of NEGAVNS, PSOENT, RDPSO,
and H.W.A. algorithms. The HESSA algorithm has found
54 Upper bound makespan values for Taillard instances
(Highlighted in bold). While makespan values of 38 solutions
are improved (Highlighted in bold and underlined). For the
remaining 28 Taillard instances, makespan values are very
close to NEGAVNS and H.W.A. algorithms’ makespan val-
ues. For the first 4 Groups (TA 01-30), all algorithms find
the upper bound makespan for Taillard Instances except for
TA- 07. So all algorithms can find the optimal schedules for
small-size problems. For Group 5 (50- 5), all algorithms’
performance is leveled as they find the same makespan val-
ues. Afterward, with the increase in the Several jobs and
machines, PSOENT and RDPSO, lag behind other algo-
rithms. In the case of Group 6 (50 -20), both PSOENT and
RDPSO fall behind HESSA, NEGAVNS, and H.W.A. algo-
rithms. In comparison, H.W.A. performs better than other
algorithms in this group. In Group 8, HESSA, improve the
solution for seven instances and performs better than other
instances.

The main feature of the HESSA algorithm is its robustness
and effectiveness in solving all sized problems, as it has found
Upper bounds for small instances, i.e., 20 × 5 (TA- 01), and
even for large instances, i.e., 200 × 10 (TA- 95). Moreover,
it has improved solutions from medium-sized problems to
large-sized problems (Highlighted in bold and underlined
in Table 4).

Figure 7-10 provides a graphical view and comparison
of makespan values of NEGAVNS, PSOENT, RDPSO, and

H.W.A. with HESSA. For all the 120 Taillard instances for
PFSSP. Each Figure covers 30 Taillard instances. Figure 7
compares all algorithms’ makespan values for TA 01-30
instances, and it appears that almost all algorithms found an
upper bound for small-sized Taillard instances. For instance,
in TA-07 (20 × 5), the makespan values for NEGAVNS,
PSOENT, RDPSO, and H.W.A. with HESSA is 1239, while
for the upper bound is 1234. This is currently the only unre-
solved problem in the first 30 Taillard instances whose Upper
bound is still pending. Figure 8 compares makespan values
for the following 30 instances, i.e., TA 31-60. From Figure 8,
it is apparent that HESSA provides a lower makespan com-
pared to NEGAVNS, PSOENT, RDPSO, and H.W.A. Results
of PSOENT and RDPSO are inferior to NEGAVNS, H.W.A.,
and HESSA. Figure 9 compares the makespan values for
the following 30 instances, i.e., TA 61-90. From Figure 8,
it is apparent that HESSA provides the best results for all
the instances compared to NEGAVNS, PSOENT, RDPSO,
and H.W.A. However, the results of PSOENT, RDPSO
are much inferior to other algorithms. Figure 10 com-
pares the makespan values for the last 30 instances,
i.e., TA 91-120. From Figure 9, it is apparent that HESSA per-
forms best for all the Taillard instances. Results of PSOENT,
RDPSO are inferior to other algorithms. While results of
NEGAVNS, H.W.A., and HESSA are at a level with each
other and is, for some instances, H.W.A. provides the best
results.

From Figure 7-10, it is eminent that the makespan values
of HESSA are minimal compared to NEGAVNS, PSOENT,
RDPSO, and H.W.A. algorithms, and it is equally efficient
to small, medium, and large-sized problems.

D. COMPARISON OF MAKESPAN WITH-SEED AND
WITHOUT-SEED HESSA ALGORITHM
In Table 5, a comparison is made for the makespan calculated
with-seed and without-seed HESSA algorithm for the twelve
different groups of Taillard Problems. The value of % Diff
Makespan for each instance is calculated using Eq. 7.

%Diff Cmax =
100 ∗

(
Cseed

− Cw/seed
)

Cseed (7)

where

Cseed
= Makespan calculated using Taillard seed

Cw/seed
= Makespan calculated without using Taillard
seed

It shows that the with-seed HESSA algorithm exploits more
solution space and finds better makespan values than the
without-seed HESSA algorithm. % Diff Cmax values depict
the algorithm’s performance; a negative value of the % Diff
Cmax shows that the makespan with-seed algorithm has a
better makespan value compared to a without-seed algo-
rithm, as shown in Table 5. Makespan values are calculated
at two termination criteria based on computational time,
i.e., n2/2 ms and n2/2×10 ms. for the 1st termination criteria
(n2/2 ms), all twelve %Diff Cmax values are negative. For the
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TABLE 4. Makespan comparison of HESSA with NEGAVNS, PSOENT, RDPSO, and H.W.A. algorithms.
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TABLE 4. (Continued.) Makespan comparison of HESSA with NEGAVNS, PSOENT, RDPSO, and H.W.A. algorithms.
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TABLE 4. (Continued.) Makespan comparison of HESSA with NEGAVNS, PSOENT, RDPSO, and H.W.A. algorithms.

FIGURE 7. Makespan for TA01-TA30.

2nd termination criteria (n2/2 × 10 ms), all the twelve
% Diff Cmax values are also negative. Hence by increas-
ing the computational time, the % Diff Cmax values of
the with-seed HESSA algorithm are still better than the
without-seed HESSA algorithm as it explores more solution

space. Hence, a with-seed HESSA algorithm should be used
to start from a fixed starting point and then improve the
solution, which helps the algorithm yield better results.

All the above results confirm that the proposed HESSA
has outperformed the algorithms of NEGAVNS, PSOENT,
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FIGURE 8. Makespan for TA31-TA60.

FIGURE 9. Makespan for TA61-TA90.

RDPSO, and H.W.A. in terms of makespan values. Also,
with-seed HESSA performs better than without-seed HESSA;
hence it is recommended to solve complex problems.
HESSA has been a robust technique as it has solved

small, medium, and significant size problems, respectively.
Since HESSA has also proven its robustness and efficiency,
it should be applied to real-life problems from industry to its
effectiveness.
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FIGURE 10. Makespan for TA91-TA120.

TABLE 5. Makespan and CPU time for different iterations using seed and without seed.

VI. CONCLUSION AND RECOMMENDATIONS
In this paper, Hybrid Evolution Strategy (HESSA) is proposed
to minimize makespan for PFSSP, and the results are vali-
dated on Taillard benchmark PFSSP. In HESSA, an Improved
Evolution Strategy is combined with simulated annealing to
find optimal schedules for PFSSP, and the programwas coded

in MATLAB. To avoid trapping of I.E.S. local minima and
fine-tune the results, it is hybridized with S.A. to improve the
results further. The hybridization ensures that exploitation of
solution space and exploration of neighbors can be carried
out simultaneously. In I.E.S., double swap mutation is used
to save computational time, and also, the mutation rate is
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varied to find better schedules. While in S.A., an insertion
mutation is used, and the cooling parameter is gradually
reduced for fine-tuning results. The results obtained from the
proposed approach in terms of PRD and makespan values are
compared with NEGAVNS, PSOENT, RDPSO, and H.W.A.
algorithms. Results suggest that the HESSA algorithm is a
robust technique and is equally applicable to small, medium,
and significant size problems, as new upper bound are found
in 54 instances, while improved makespan values are found
for 38 instances.

Since HESSA has been applied to the Scheduling problem
for the first time, the following work can be performed in
the future. For significant size problems (i.e., jobs ranging
from 200 to 500 and machines up to 20), ample computa-
tional time is required to solve them; hence a quad swap
mutation operator should reduce the computational time.
Makespanminimization has been the performancemeasure in
this research. Different performance measures can be imple-
mented usingHESSA, i.e., Tardiness, maximumutilization of
the machine in future studies. By developing multi-objective
HESSA, this technique can be applied to multi-objective
PFSSP’s. Additionally, this technique should be applied to
a real-life case from any industry to validate its practical
implementation.
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