
Received May 31, 2021, accepted June 18, 2021, date of publication June 29, 2021, date of current version July 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093450

QLOC: Quorums With Local Reconstruction Codes
ANWITAMAN DATTA 1, ADAMAS AQSA FAHREZA 1, AND FRÉDÉRIQUE OGGIER 2
1School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798
2Division of Mathematical Sciences, Nanyang Technological University, Singapore 639798

Corresponding author: Anwitaman Datta (anwitaman@ntu.edu.sg)

The work of Anwitaman Datta and Adamas Aqsa Fahreza was supported by the Ministry of Education (MoE), Singapore, through the
Academic Research Fund Tier 1 for the project titled ‘StorEdge: Data store along a cloud-to-thing continuum with integrity and
availability’ under Project 2018-T1-002-076.

This work did not involve human subjects or animals in its research.

ABSTRACT In this paper we study the problem of consistency in distributed storage systems relying on
erasure coding for storage efficient fault-tolerance. We propose QLOC - a flexible framework for supporting
the storage of warm data, i.e., data which, while not being very frequently in use, nevertheless continues to be
accessed for reads or writes regularly. QLOC builds upon (1) a generic family of local reconstruction codes
with guarantees in terms of fault-tolerance, efficient recovery from failures and degraded mode operations,
and can be instantiated with parameters customized to requirements such as storage overhead and reliability
dictated by user needs and operational environments, and (2) quorum-based consistency mechanisms with
support for read-modify-write operations without any underlying atomic primitives, providing deployment
choices trading-off fault-tolerance, consistency and concurrency requirements. We carry out a theoretical
analysis of the code properties, and experimentally benchmark the performance of the consistency enforce-
ment mechanisms, demonstrating the practicality of the proposed approach.

INDEX TERMS Consistency, local reconstruction erasure codes, quorum system, read-modify-write.

I. INTRODUCTION
Erasure codes have become an integral part of the storage
stack for storing humongous volumes of data. For example,
Windows Azure Storage [1], Facebook’s f4 [2], Google File
System Colossus [3], Baidu’s Atlas [4], Cloudera’s Apache
HDFS [5] all adopted erasure codes in their architecture. This
embrace of erasure coding based redundancy is owing to the
significant savings of raw storage for a targeted level of fault
tolerance, as compared to a replication based system. This is
achieved by taking several data blocks and computing linear
combination of these blocks to generate the redundancy (we
call them parity blocks or symbols), such that, as long as
a suitable (determined by the design of the code) subset of
the original data and parity blocks are available, the missing
original data blocks can be recreated. The choice of these
linear combinations also impacts how the systemworks when
in a degraded state, i.e., when some storage nodes become
unavailable but the number of node failures is within the
threshold of fault-tolerance:

(1a) Degraded reads: If a given data object itself is not
available, then one needs to recompute the data item by

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Marozzo .

accessing other data items and parity blocks. This process
of ‘degraded reads’ incurs computation costs, network usage
and storage I/O operations which can be significantly higher
than in a replicated storage system. In the latter, as long as
a copy of the data is available, it can be directly read. Write
operations that rely on read operations naturally have a higher
cost too.

(1b) Repair costs: The system may determine that one of
the original data blocks, or a parity block, needs to be replen-
ished for long term durability, e.g., because the corresponding
storage node is deemed to have permanently failed. Such
a repair process is similarly expensive, in comparison to a
replication based system which needs to access and transfer
only one block of data, with no added computational costs.

Erasure codes for distributed storage typically mitigate
(1a-b) by distinguishing ‘‘local’’ from ‘‘global’’ parities: local
parities are computed from a few data blocks, they are easier
to read in degraded mode or repair than global parities, which
involve many or all data blocks, and are mostly useful when
it comes to simultaneously repair several failures. A concrete
example of such erasure codes is the class of Local Recon-
struction Codes (LRC) used in Windows’s Azure system [1]
and its precursors, Pyramid codes [6]. This paper considers
storage systems using an erasure code with both local and

93298 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-4203-1572
https://orcid.org/0000-0002-2664-917X
https://orcid.org/0000-0003-3141-3118
https://orcid.org/0000-0001-7887-1314

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

semi-global parities, fitting the framework of local recon-
struction codes.

While the problems of repair and operations in a degraded
state have effective mitigations, which have been deployed in
commercial systems, management of mutable content with
erasure coding is in relative nascence, and needs mechanisms
compatible for erasure coded data, which are not immediately
inherited from techniques available for replicated data:

(2a) Update detection and propagation: For replicated data,
hash digest of the data can be used to detect differences
among replicas, and likewise reconciliation of the versions
can be carried out by just transferring and replacing con-
tent with the differences (a popular technique is the Merkle
tree [7] based anti-entropy algorithm). These techniques do
not immediately extend to erasure coded data, where indi-
vidual parity blocks carry information about multiple data
blocks.

(2b) Consistency management: If multiple processes con-
currently read/modify a given data object, they may be
exposed to different values for the same data. When
there are multiple copies of the same data (replication),
the issue of handling consistency gets evenmore complicated.
Multiple techniques (e.g., based on locks and quorums [8],
primary/secondary replicas) for handling consistency for
replicated data exist. They cannot be applied as is for coding
based redundancy.

Given challenges such as (2a-b), real-world large-scale
deployments often relegate erasure codes for ‘‘cold’’ storage,
that is the storage of non-mutating content, e.g., for archival
and append-only data, or for storing data with support for lim-
ited update semantics (e.g., Facebook’s f4 [2] supports dele-
tions). While it makes sense to prefer replication for ‘‘hot’’
data that is frequently accessed and manipulated, we argue
that the volume of ‘‘warm’’ data (infrequently accessed but
manipulated, typically ‘‘older’’ data), continuously grows
over time and thus would benefit from an erasure coding
based storage with support for mutations and consistency
guarantees.

These considerations determine the objectives of this
work— design techniques to support the storage of mutable
data by providing consistency guarantees while also lever-
aging the benefits of storage efficiency and state-of-the-art
solutions for repair and degraded operations as afforded by
local reconstruction codes.

A. SYSTEM ARCHITECTURE & SYSTEM MODEL
We assume a back-end storage system (shown in Figure 1)
which dichotomizes the replication-based storage of the fre-
quently accessed hot data from the erasure code-based stor-
age of the infrequently accessed warm data. This dichotomy,
and use of replication versus erasure coding across hot
and warm data respectively has been deemed practical for
data-center scale storage systems, exemplified, for instance,
by Facebook’s Haystack [9] and f4 [2] systems. Data meant
for archival, which is infrequently read and never edited (but
would typically be expected to support data deletion) after

FIGURE 1. A modular storage architecture for storing the continuum of
hot, warm and (optionally) cold data: Our focus is the warm data store,
which uses local reconstruction coding based redundancy for storage
efficient fault tolerance, and guarantees consistency using quorums.

creation may optionally also be stored in a third storage
subsystem.

We furthermore assume a storage system orchestrator
tasked to determine the category to which a specific data
object ought to belong and accordingly coordinate the migra-
tion of a given data item among hot, warm and cold (archival)
storage subsystems, and route access requests accordingly.

Our work is agnostic to the mechanism of how the orches-
trator determines which data should be placed in a particular
subsystem, or what kind of storage medium - hard-disks
or SSDs - may be suitable to meet specific performance
requirements within the subsystems, or the impact of erasure
codes on the medium of choice (see [10] for a study on the
reliability impact of erasure coding on SSD based storage).

We recognize that erasure codes are already being used
for storing warm data, where access frequency is expected to
be significantly lower than the case for hot data (and thus,
use of erasure coding is deemed practical), and identify a
gap in terms of the kinds of operations (particularly, read-
modify-write operations) and strong consistency semantics
(for example, sequential consistency) that existing techniques
cannot support in conjunction, and accordingly we focus on
how the erasure coded warm data stores can be augmented
with these capabilities, so that a richer set of applications can
be deployed over erasure coded storage systems.

To that end, we assume that coding is carried out at a
granularity of fixed sized data objects (also called data blocks
or symbols): each data object stores multiple arbitrary sized
Binary Large OBjects (BLOBs). This data object abstrac-
tion is similar to the abstraction of ‘chunk’ in Google’s
GFS [11] or ‘volume’ in Facebook’s f4 [2]. The storage sys-
tem orchestrator determines in which subsystem to place indi-
vidual BLOBs, and likewise, how to route access requests.
Within the warm data store, the controller furthermore needs
to handle the placement and subsequent location of the
BLOBs within the data objects, coding of the data objects
(a logical group over which erasure coded parities -‘‘parity
blocks/symbols’’- are computed is formed by choosing data
objects from different physical devices), the location of the
data objects and corresponding parities within the storage
pool, the optimization of space utilization, and reconstruction

VOLUME 9, 2021 93299

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

of the latest version of the data objects if necessitated by
storage node failures. The resulting parities are stored in fur-
ther other devices. This placement strategy avoids correlated
failures of data objects due to co-location. The same idea of
physical dispersal across different racks may also be carried
out [2], [11], [12].

We note that unrelated BLOBs being grouped together,
yields random access requests - both at the logical level
among data objects, as well as among physical storage
resources, so that accesses are independent. This can have
performance benefits, since this naturally leads to indepen-
dent operations, and fewer chance of consistency conflicts
to be dealt with. This last assumption should be deemed
optional and as a recommendation given its implications on
the system’s performance, however, it has no bearings on
the correctness of the consistency mechanisms we propose.
In fact, we will demonstrate that one particular variant of our
mechanism (exploiting semi-global parities for the quorum
mechanism) can guarantee a strong form of sequential consis-
tency at the level of the group of coded objects, demonstrating
the benefit of considering the proposed form of semi-global
parities beyond their immediate impact of improved fault
tolerance.

B. CONTRIBUTIONS AND STRUCTURE
The contributions in this work are two pronged. We build on
the existing literature on local reconstruction codes to propose
(i) a novel instance of highly fault-tolerant yet storage effi-
cient code family, attuned to the (ii) design of flexible quorum
mechanisms which help navigate trade-offs of consistency
and concurrency over a collection of coded data objects,
while supporting read-modify-write operations without any
underlying atomic primitives.

The contributions in terms of erasure code design and
analysis are found in Section III:

(1) A parameterized family of local reconstruction codes,
which uses local and semi-global parities, whose instances
achieve practical storage overheads, e.g. 1.32 − 1.875× and
low single repair costs e.g., 4−10 blocks for coded collections
with 30− 132 blocks.

(2) A rigorous analysis of fault-tolerance of a subset of
practical instances, one using solely local parities having a
lower bound of 2-fault tolerance, and another variation using
semi-global parities that incurs marginally higher storage
overhead but with a lower bound of 5-fault tolerance. The
establishment of such a bound on fault-tolerance is harnessed
to theoretical estimate of the resilience of the code instances
under real-world data-center environments.

Recall that our ultimate objective is to devise a mechanism
to support consistency, rather than create another locally
repairable code optimized for repairability itself, for which a
very rich literature already exists. Consequently, we base our
approach on existing designs that have been demonstrated to
be robust in terms of repairability, instead of creating a totally
new design from scratch. In particular, we inherit and then
adjust the design from [6], [13]. The proposed adjustments

(in the choice of how the semi-global parities are created)
are driven to create dependencies among the coded blocks of
data, which enable us to achieve specific desirable behaviors
which are in turn exploited in our quorum systems design
(discussed next), while preserving the robust repairability
property, while also paying attention to keep the storage
overhead of the codes within ranges that have been deemed
acceptable in real-world deployments.

A rich body of work on locally repairable codes exist,
starting from the early pioneering works on the topic [1],
[6], [14], and it continues to be a topic of research on its
own accord, e.g., there are recent works [15], [16] which
consider repairability of codes with similar array structures
as used in this work. In that context, the current work should
be viewed complementary in nature, and as adding a new
design dimension laying foundations for further future work,
on the amenability of the structures of these other existing
repairable codes, to be leveraged for developing quorum
systems for consistency, and to be evaluated in terms of the
kind of consistency, fault-tolerance and concurrency that can
be achieved by the quorum systems for these other instances
of code families.

The design and analysis of the quorum systems over the
proposed family of locally repairable code instances are pre-
sented in Section IV:

(3) Two quorum variants, one using only the local parities
and the other using also the semi-global parities are proposed.

(4) The design choices of whether to deploy the sys-
tem with semi-global parity, and even if they are deployed,
on whether to use the semi-global parities for the quorum sys-
tem, or use them solely for fault-tolerance lead to three pos-
sible deployment modes, meeting different fault-tolerance,
concurrency and consistency guarantees (sequential consis-
tency, and a weaker variant we christen semantic consistency
following the concept semantic reconciliation from [12]).

II. RELATED WORKS & BACKGROUND
Works as early as from 2000 discussed the possible ben-
efits of using erasure coding for fault-tolerance in storage
systems [17]. They mostly used maximum distance sepa-
rable (MDS) codes, where n − k parity blocks are each
computed using k data blocks, and come with the guarantee
that one can recover the original data symbols as long as
any k among the n blocks are available. However it took
time for codes designed specifically for distributed storage
systems to get traction, starting from the early work [6] and
later [14] which argued that rather than looking at erasure
codes as a black-box, one can instead consider parities involv-
ing different number of data symbols: a small number of
data symbols makes a ‘‘local’’ parity which can be read and
used to repair data symbols faster and using less network and
storage I/O resources, while a large number of data symbols
can be used to create ‘‘global’’ parities which provide bet-
ter fault tolerance per unit of storage space. This naturally
leads to a trade-off involving the degree and number of local
parities and global ones, versus the storage overhead and

93300 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

fault tolerance of the code. See e.g. [18], [19] for surveys on
storage specific coding techniques and bounds.

Contemporaneously, mechanisms to update parities effi-
ciently were studied [20]–[23]. A key idea in these works is
to propagate the differential of the value of a mutating data
block to the parity nodes and use only that to incrementally
update the parities instead of recomputing the parities from
scratch. We are not concerned with re-designing such an
algorithm, rather we use this efficient update technique as is.
We focus on the issue of guaranteeing consistency, a topic
less investigated.

In the context of replication, consistency refers to a setting
where read and write operations are performed on shared
replicas by different processes, yet there should be a ‘‘consis-
tent’’ view of the system, as if a single process were accessing
and modifying a single copy of the data. This is achieved by
fixing a set of rules the processes obey when they want to read
or write the data, so that when one replica is updated by one
of the processes, it ensures that the other copies are updated
accordingly.

There are many definitions of consistency: strict con-
sistency guarantees that the operations follow a wall-clock
time ordering, sequential consistency only requires some
global ordering of the operations. Other forms of consis-
tency include causal and eventual consistencies, see e.g. [24,
Section 7].

Likewise, different write operational semantics are pos-
sible. Consider a data object x with the value xt at time t .
If different processes update based on its current value xt1 ,
they would compute xt2 = f (xt1) and xt ′2 = f ′(xt1). If the con-
straint is that every process in the overall system concurs on
a unique globally agreed sequence of values for x, then either
[xt1 , xt2 = f (xt1), xt ′2 = f ′(xt1)] or [xt1 , xt ′2 = f ′(xt1), xt2 =
f (xt1)] would satisfy the sequential consistency condition.
However, in this scenario, both the second as well as the third
values are determined based on the first value, and the third
value is independent of the second value. This semantics is
termed as atomic multi-reader multi-writer (MRMW) regis-
ter. Though this operation semantics is adequate for certain
applications, it is inappropriate for database like transactional
semantics [25].

In contrast, a stronger form of atomic read-modify-write
semantics requires a sequence of globally agreed changes
ensuring that the third value is determined based on the sec-
ond value in the sequence, and as such, either of [xt1 , xt2 =
f (xt1), xt ′3 = f ′(xt2) = f ′(f (xt1)] or [xt1 , xt ′2 = f ′(xt1), xt3 =
f (xt2) = f (f ′(xt1))] would be agreeable valid outcome
sequences. For this to hold, the operation creating the third
value in the sequence is blocked until the previous operation
is completed. The work presented in this paper looks at how
to achieve this stricter write semantics for erasure coded data,
and we propose doing so using quorums and locks.

We take a quorum system supported locking based
approach [8, Def 3.4] to enable read-modify-write operations
and propose techniques for achieving sequential consistency

as well as a weaker form of consistency which we call seman-
tic consistency. Our quorum system is designed by exploiting
the nuances of a bespoke local reconstruction coding family
we propose, allowing us to explore the trade-offs between
(i) the system’s fault-tolerance, (ii) concurrency of processing
read/write requests for different data objects that are coded
together, and (iii) the form of consistency guaranteed.

A complementary approach for consistency, apart quorum
systems, is the class of primary-based protocols, where each
data block has an associated primary, which is responsible
for coordinating its operations. Above mentioned works [22],
[23] where updates are disseminated in a best effort man-
ner without well-defined consistency guarantees use primary
based protocols. A third option is the adaptation of the Paxos
family of protocols [26] for solving consensus algorithms
for erasure coded data, see e.g. [27], [28]. Coded Atomic
Storage (CAS) [29], [30] aim at mimicking shared memory
MRMW atomic register abstraction for coded data, with an
emphasis on reducing communication cost. Several works
furthermore rely on storing distinct versions [29], [31], [32]
rather than carrying out updates in-place. They naturally incur
much higher storage overhead in order to store the older
versions. None of the existing related works support the read-
modify-write operational semantics over erasure coded data.

III. LOCAL RECONSTRUCTION CODES
A. CONSTRUCTION
Let d1, d2 and r be positive integers. Suppose that we have a
(4d1d2+r, 4d1d2) systematic code, that is a code that encodes
k = 4d1d2 data symbols into n = k+ r = 4d1d2+ r symbols
by adding r parities. We assume every parity in this code is
a linear combination of all data symbols. Since k = 4d1d2,
we may arrange the 4d1d2 data symbols in a 2d1×2d2 logical
square grid, as shown on Figure 2, and label the data symbols
as ui,j, i = 1, . . . , 2d1, j = 1, . . . , 2d2 to attribute a logical
position of each data symbol in the grid. Then row i of the grid
contains (ui,1, ui,2, . . . , ui,2d2). The r parities are computed
using an r × k matrix G asg1,1 . . . g1,k...

...

gr,1 . . . gr,k


︸ ︷︷ ︸

G

 u1,1
...

u2d1,2d2

 =
 p1(u1,1, . . . , u2d1,2d2)...

pr (u1,1, . . . , u2d1,2d2))


(1)

A local reconstruction code is obtained from the above
base code by computing parities as follows:

(i) Take row i, keep data symbols (ui,1, ui,2, . . . , ui,2d2) on
this row and set all other data symbols to be 0. Then use (1)
to compute r1 (r1 ≤ r) parities corresponding to the data
symbols from this single row:

p1(ui,1, ui,2, . . . , ui,2d2), . . . , pr1 (ui,1, ui,2, . . . , ui,2d2).

We use the convention that data symbols that are always
set to 0 are not mentioned as inputs to the parities. Since there

VOLUME 9, 2021 93301

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

are 2d1 rows, this yields a total of 2d1r1 parities, whichwe call
row parities. In Figure 2, the r1 parities obtained by setting
(uj,1, uj,2, . . . , uj,2d2) = 0 for all j 6= i are shown on row i.
This gives a logical 2d1× r1 grid containing the row parities.

(ii) We repeat the same process for the columns, to obtain
2d2r2 column parities, and in turn an r2 × 2d2 logical grid
of column parities. The column parities for column j are

pr1+1(u1,j, u2,j, . . . , u2d1,j), . . . , pr1+r2 (u1,j, . . . , u2d1,j).

We consciously avoided using parities p1, . . . , pr1 that
were already used for the row parities, which results in the
further constraint r1 + r2 ≤ r . One could a priori decide
to repeat parities, but we will infer from our analysis of the
degraded mode that it is best not to (see Corollary 1).

(iii) Finally, consider the original grid containing the data
symbols being divided as four quadrants Q1,Q2,Q3,Q4 of
d1 × d2 nodes each. For each pair of these quadrants, we set
the data symbols contained in the two other quadrants to be
zeroes, and repeat the parity computations, giving

(4
2

)
r3 =

6r3 semi-global parities, which we call quadrant parities.
To avoid parities used for either row or column parities (see
Proposition 1), and to generate the six quadrant parities each
using distinct parities from the base code, we need r1 + r2 +
6r3 ≤ r . The quadrant parities are also shown on Figure 2,
and while there are 6r3 of them, there is no specific dimension
(number of rows and columns) attached to the corresponding
logical grid.
Remark 1: The layout of data and parities in grids is a log-

ical abstraction decoupled from their actual physical place-
ment. Furthermore, codes similar to the case when r3 = 0
have been previously studied [6], [13], which provide a
track-record of practicability, that our proposed generaliza-
tion inherits.

B. PROPERTIES
1) RATE
Adding 2(d1r1 + d2r2) + 6r3 parities to the k = 4d1d2 data
symbols results in a code rate of

k
n
=

4d1d2
4d1d2 + 2(d1r1 + d2r2)+ 6r3

.

Table 1 explores the parameter choices in terms of the
code properties: k , n, the storage overhead n/k and its recip-
rocal, the code rate. The last column shows the number
min(2d1, 2d2) < k of blocks (data and parity) that need
to be accessed to rebuild information when a single storage
node is missing. In comparison, in a traditional maximum
distance separable (MDS) coded system where every parity
is a combination of all k data symbols, k data accesses and
transfers are needed to read or reconstruct a single miss-
ing block. Many practical systems prefer a moderate value
of k in and around 10. For instance Facebook’s f4 [2] uses
a MDS Reed-Solomon code [33] with k = 10. Because
of the local repairability property, we can consider larger
values of k without compromising on performance. Like-
wise, a storage overhead in the range of ≈ 1.4 − 2× is

FIGURE 2. The grid layout for a code encoding k = 4d1d2 data symbols
by adding 2d1r1 row parities, 2d2r2 column parities, and 6r3 quadrant
parities.

FIGURE 3. The logical grid layout for a (30,16) code.

TABLE 1. Code parameter choices.

considered practical. For instance, f4’s Reed-Solomon code
has an overhead of 1.4× which combined with cross-object
redundancy results in an ultimate 2.1× storage overhead.
These industry validated system parameter choices inform
our choice of tabulated parameters. We see that a wide range
of choices is feasible. We next explore the practical implica-
tions of the code design, elaborated with an example instance
(highlighted in the table).
Example 1: Consider that d1 = d2 = 2. We then

have a (16 + 4(r1 + r2) + 6r3, 16) code, which would
be a (30, 16) code for r1 = r2 = r3 = 1, for a rate
of 8/15 ≈ 0.533 and a corresponding storage overhead
of 1.875×. The logical grid layout for this code is illus-
trated in Figure 3. We illustrate the computation of row

93302 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

FIGURE 4. Degraded reads for a (30,16) code. On the left, if the data
symbol u1,2 in position (1, 2) is unavailable, either the row parity in row
1 or the column parity in column 2 could be used for degraded reads.
If however two data symbols are available in column 2, say u1,2 and u3,2,
then the column parity becomes useless, and both row parities 1 and
3 are used. On the right, none of the row/column parities can be used
alone for recovery from this pattern of failures.

parities on this example. We need an MDS code that maps
u1,1, . . . , u4,4 to r parities (we need r ≥ 8 = r1 + r2 +
6r3). The first parity p1(u1,1, . . . , u4,4) of the MDS code is
computed from (1), based on which we compute the 4 row
parities: p1,1 := p1(u1,1, u1,2, u1,3, u1,4) = g1,1u1,1 +
g1,2u1,2 + g1,3u1,3 + g1,4u1,4 , and similarly p1,2 :=
p1(u2,1, u2,2, u2,3, u2,4), p1,3 := p1(u3,1, u3,2, u3,3, u3,4),
p1,4 := p1(u4,1, u4,2, u4,3, u4,4), each obtained by keeping
one row of data symbols, and setting the other rows to 0.

We repeat the same procedure to compute the col-
umn parities, using the second parity of the MDS
code to get p2,1 := p2(u1,1, u2,1, u3,1, u4,1), p2,2 :=

p2(u1,2, u2,2, u3,2, u4,2) = g2,2u1,2 + g2,6u2,2 +
g2,10u3,2 + g2,14u4,2, p2,3 := p2(u1,3, u2,3, u3,3, u4,3),
p2,4 := p2(u1,4, u2,4, u3,4, u4,4). Here, we showed explicitly
the computation of the second column parity, since we will
refer back to it in exposing some other aspect of the code’s
property in the following text.

2) RESILIENCE AGAINST ERASURES ON DATA SYMBOLS
If a failure affects the data symbol ui,j located in row i and
column j of the logical grid, a degraded read can be performed
using either one row parity or one column parity, along with
the other data symbols in the row or column respectively.
More generally, if there are r1 row parities, up to r1 data
symbol failures can be recovered using row parities only and
other data symbols from the given row, and similarly, up to
r2 data symbol failures are at most recoverable using only the
column parities and other data symbols in the corresponding
column. When (1 + r1)(1 + r2) failures are aligned on a
(1 + r1) × (1 + r2) subgrid of the logical grid, none of the
rows/columns can be used independently to recover from any
of the failures. However they may be combined to create an
(1 + r1)(1 + r2) × (1 + r1)(1 + r2) matrix that enables the
recovery of the unavailable data symbols. This is illustrated
for a 2×2 failure cluster in Figure 4 for the above Example 1
coding scenario. For this instance of subgrid failure cluster,
the system of linear equations that need to be solved for

effectuating the data recovery is:
g1,2 g1,4 0 0
0 0 g1,10 g1,12
g2,2 0 g2,10 0
0 g2,4 0 g2,12



u1,2
u1,4
u3,2
u3,4

 =

p̃1,1
p̃1,3
p̃2,2
p̃2,4

 (2)

where p̃i,j denote the available part of the parity equation
obtained from pi,j, e.g. p̃1,1 = p1,1 − g1,1u1,1 − g1,3u1,3,
p̃2,2 = p2,2 − g2,6u2,2 − g2,14u4,2. Now (2) has a unique
solution if and only if the determinant of the recovery matrix
is non-zero:

g1,4 · g1,10 · g2,2 · g2,12 − g1,2 · g1,12 · g2,4 · g2,10 6= 0

This constraint is obtained from the specific configuration
of the 4 node failures. A general expression is derived for any
arbitrary group of 4 failures among the data nodes when r1 =
r2 = 1 and d1, d2 are arbitrary (in our example d1 = d2 = 2),
when these 4 failures share the same rows (say i and j) and
columns (say k and l), giving the following set of constraints:
Lemma 1: If r1 = r2 = 1, a pattern of 4 data symbol

erasures in positions (i, l), (j, k), (i, k), (j, l) is recoverable
using only row and column parities if and only if ∀i, j ∈
{1, . . . , d1}, k, l ∈ {1, . . . , d2}, (i, l) 6= (j, k)

g1,4(i−1)+l · g1,4(j−1)+k · g2,4(i−1)+k · g2,4(j−1)+l
− g1,4(i−1)+k · g1,4(j−1)+l · g2,4(i−1)+l · (g2,4(j−1)+k) 6= 0.

(3)

The ith row k th column node is the 4(i−1)+ k th symbol in
our example, for the computation of any parity as per (1). The
term g1,4(i−1)+l corresponds to the coefficient of a data sym-
bol in any position (i, l). For the next coefficient g1,4(j−1)+k ,
the second lost data symbol can be in any position in a distinct
row and distinct column, that is i 6= j and j 6= l. The
remaining two positions are then determined by the subgrid
layout.
Corollary 1: If a unique parity from the base coding

scheme is used to compute both the row and column parities,
i.e., g2,∗ = g1,∗, then the constraints in (3) are violated by
default.

This justifies the choice of distinct parities from the base
coding scheme to compute the row and column parities.

Existence of suitable coefficients gi,j satisfying (3) depends
on the alphabet: over a binary alphabet {0, 1}, the condi-
tion will not be satisfied. A concrete instance, satisfying (3)
and further constraints as discussed below, for instantiat-
ing a (30, 16) code depicted in Example 1, is given in the
Appendix.

This grid-like failure pattern sharing two rows and two
columns among the data nodes is the worst case scenario from
a data recoverability point of view, for 4 data nodes failures.
Any other 4 failures pattern will necessarily have some fail-
ures which can be recovered using only a row or a column
parity and the other data blocks in the same row or column,
thus improving the ‘health’ of the system to a 3 data nodes

VOLUME 9, 2021 93303

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

failures state, which in turn is always recoverable. The 3 data
node failures may happen in various patterns, but the most
complicated scenario (where recoveries may need sequential
execution) is a ‘L’ shaped layout, where there are two failures
each in same row and same column (one failure being in
the intersection of these groups). In that case, the nodes not
in the intersection can be individually rebuilt first, before
recovering the one in the intersection. In summary:
Proposition 1: The configuration with one set of row par-

ities and one set of column parities can recover from at least
any five simultaneous data symbol erasures.

Indeed, suppose that five data symbols are erased simul-
taneously. Even if any four of those five form a subgrid
cluster, and even if the fifth erasure shares either a row or
columnwith any of the other erasures, it can still be recovered
using a column or row parity. This will revert the system to
a four failure pattern, which has already been shown to be
recoverable.

3) GENERAL FAULT TOLERANCE
Above, all erasures are assumed to be confined to data sym-
bols. If we relax the condition, and consider erasures across
data and parity symbols, then for r1 = r2 = 1 and r3 = 0
(i.e., if there are no quadrant parities), we notice that if there
are three failures affecting a data symbol and the two parity
symbols sharing its row and column, then this data symbol
and the parity symbols all become unrecoverable - thus reduc-
ing the general fault tolerance to two arbitrary erasures, down
from the five erasures of only data symbols as observed above
(Proposition 1). Any individual increment in r1 or r2 can be
used to improve this tolerance by one, but at the minimal cost
of increasing the storage cost by min(d1r1, d2r2). That is the
motivation behind the use of ‘semi-global’ parities, where
k/2 = 2d1d2 data symbols are used to generate individual
parities, where the data symbols are picked as per the two
quadrant groupings. This leads to an increase of storage over-
head equivalent to six symbols, but significantly improves
the general fault tolerance (lower bounded by five failures),
as we discuss next. It might also improve the fault tolerance
of erasures exclusively confined to data symbols, and as such
Proposition 1 provides a pessimistic lower bound. We will
show next a similar lower bound for a general failure pattern,
possibly affecting any nodes, irrespective of whether it stores
a data symbol or a parity of any kind.
Proposition 2: The configuration of r1 = 1 row parities,

r2 = 1 column parities, and a set of six quadrant parities
(r3 = 1) guarantee recovery of all data from at least any five
simultaneous erasures, irrespective of the combination of data
and parity nodes involved.

We start with the ‘L’ configuration where a data symbol
and its row and column parities are erased. Three out of the
six quadrant parities still contain information about this data
node. As long as any one of them is still available (which is the
case if there are five arbitrary erasures in the whole system),
the original data is recoverable, e.g., pattern a© in Figure 5.

For more data symbol erasures, various cases arise:

FIGURE 5. The data symbol u1,1 and both its row and column parities are
erased. Several failure patterns arise: Up to at most two quadrant
parities, e.g. a© may be erased. A second data symbol may be erased,
it could be in a different quadrant, e.g. b©, or in the same quadrant, e.g. c©
or d©. On the right: A subgrid of four data symbols and one of the row or
column parities fail.

(i) If there are two data erasures (shown in Figure 5 on
the left), subject to the cap of five erasures in total, at most
one quadrant parity is erased on top of the row and column
parities of the first data symbol. As such, multiple pathways
for recovery are possible. If the second erased data symbol
(pattern b©) is in a different quadrant, the first data sym-
bol can be recovered independently (of the availability of
the row/column parities of the second data symbol), using
a parity from a quadrant different from that of the second
data symbol. Even if the second data symbol is in the same
quadrant instead (pattern c©), it may be recovered using its
row or column parity. However, if it further shares the row
or column with the first data, and furthermore the other
column/row parity is also missing (pattern d©), then they will
account for the five failures. This would then mean all the
three quadrant parities for the affected quadrant are available.
Say both erased data symbols are missing in quadrant 1, and
let us call qi,j the parity obtained from quadrants i and j.
Then q1,2 = (g3,1u1,1 + g3,2u1,2 + g3,5u2,1 + g3,6u2,2)+
(g3,3u1,3+g3,4u1,4+g3,7u2,3+g3,8u2,4) and similarly q1,3 =
(g4,1u1,1 + g4,2u1,2 + g4,5u2,1 + g4,6u2,2) + (g4,9u3,1 +
g4,10u3,2 + g4,13u4,1 + g4,14u4,2). The recovery matrix then
becomes [

g3,1 g3,5
g4,1 g4,5

][
u1,1
u2,1

]
=

[
q̃1,2
q̃1,3

]
where as earlier q̃i,j denote the available part of the parity
equation obtained from qi,j. Since all 3 quadrant parities
are available, there were 3 choices of 2 parities, we chose
one such a choice. This leads to further constraints, namely,
that this condition should also hold for any combination of
two quadrant parities (we chose the parities from the pairs
(1,2) and (1,3)) to illustrate this example. In Appendix, as a
proof of existence of codes satisfying all the constraints we
have identified, we provide a concrete instantiation (in fact,
we demonstrate two instances over different field-sizes, but
for the same (30, 16) code parameter), accompanied with
an evaluation of the code instance in terms of its resilience
against failures, quantifying the cost of degraded reads and
rebuilds to recover from failures, thus demonstrating the

93304 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

suitability of such codes for realizing a persistent and highly
available distributed data store.

(ii) If three data symbols are missing, given a cap of five
erasures, only two parities would be erased. It implies that
some of the data symbols would retain at least one of their row
or column parities, with which they can be recovered first.

(iii) Finally, a worst case scenario is when a subgrid of
four symbols from the same quadrant as well as a parity from
one of the rows or columns is missing (shown in Figure 5
on the right). In this case, there are still three quadrant par-
ities, and three of the remaining row/column parities carry
information about the four missing data symbols, which can
be used to guarantee recovery using the following recovery
matrix:

g1,1 g1,2 0 0
0 0 g1,5 g1,6
g2,1 0 g2,5 0
g3,1 g3,2 g3,5 g3,6



u1,1
u1,2
u2,1
u2,2

 =

p̃1,1
p̃1,2
p̃2,1
q̃1,2

 (4)

subject to choosing the coefficients so that the matrix is
invertible. We obtain a set of similar constraints for the dif-
ferent combinations of failures satisfying the same pattern.

This analysis helps establish our lower bound on the gen-
eral fault tolerance of five erasures for the proposed code.
Note that the arguments used to establish this lower bound
on 5-faults tolerance generalizes to arbitrary choices of r1, r2
and r3. Larger values for these parameters may (or not) yield
even better fault-tolerance. We defer the establishment of a
tight lower bound for arbitrary code parameters to be studied
in the future.

4) PRACTICAL IMPLICATIONS
An analysis of four years of failure operation tickets from
Baidu’s data centers [34] indicated that more than 80% of
the failures are hard disk failures. A study from Google [35]
likewise observed thousands of hard disk failures annually,
accounting for between 1 − 5% of the disks. Servers on
an average crashed at least twice annually, accounting for
2 − 4% failure rate. This amounted to at least one server
failure daily. These statistics emphasize the need for fault
tolerant storage solutions. They also provide indicators for
the range of environments for which one needs to design.
For instance, using a back of the envelope estimate based
on the 5% annual disk failure rate mentioned above, one can
estimate an indicative 5/365 ≈ 0.014% daily failure rate.
We study the behavior of some of the code choices from

Table 1 assuming simultaneous failures are independent, for
a rate of failures ranging between 0.1% and 2%, which is
essentially an order up to two orders of magnitude higher
than the estimated ‘average’. We consider these higher rates
of simultaneous failures, in part, (i) to compensate for the
fact that real world failures are not always independent and
in fact correlated failures are typical, while (ii) the indepen-
dence assumption allows for simpler mathematical analysis
of the system. Furthermore, note that we are studying the
durability of the data, which will be immune to transient

FIGURE 6. Data durability estimate.

failures, and is affected by permanent failures. As such, while
catastrophic failures or disasters may lead to more than 2%
simultaneous failures, it is a very pessimistic setup for normal
operations.

Given the assumptions regarding failures stated above,
if the probability of failure of a storage node is φ, then in
a cluster of n nodes, the probability that less than six failures
occur simultaneously (since, as per Proposition 2, the lower
bound of arbitrary failures that the proposed coded system
tolerates is five) is

∑5
i
(n
i

)
φi(1− φ)n−i. In Figure 6 we show

the data durability in terms of probability of data recover-
ability, and the 9’s of durability for certain code parameters.
The latter metric, namely 9’s of durability, is a popular
and practical way to express a system’s resilience, e.g., five
nines of durability would mean a minimum of 99.999%
durability.

We notice that even for 0.5% chance of failure of nodes
individually, which is 36 times more than the above estimated
daily failure rate of ≈ 0.014%, all the codes shown in
the Figure achieve five 9s of resilience. Smaller values of
n naturally give higher resilience, since 5 failures need to
occur among a smaller set of nodes - thus the (30, 16) code
has eight 9’s of durability at this operational point, and has
five 9’s of durability even when chance of individual node
failures is 1.5%, which is ≈100 times the estimated daily
failure rate. Aiming beyond four or five 9’s of reliability
for the storage elements may not be meaningful, since the
networking elements of a data center just about achieves four
9’s [36] or reliability and becomes the primary bottleneck at
this point. These results shows that multiple instances of our
proposed code satisfy practical fault tolerance needs and have

VOLUME 9, 2021 93305

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

acceptable storage overhead and cost of repair of failures (the
latter two are aspects we already discussed in the context of
Table 1).

IV. QUORUM SYSTEMS
Definition 1: In the context of replicated systems a quo-

rum system Q has been defined as a set of subsets of replica
nodes called quorums, such that every two quorums intersect,
i.e., Q ∩ Q′ 6= ∅ for all Q,Q′ ∈ Q.
Whenever a quorum needs to be built to read or write data,

failed nodes cannot participate until not only they join the
system anew, but are repopulated with up-to-date content.
A ‘‘vote’’ (or a ‘‘lock’’) is attributed to every node in the
system. Any attempt to either read or write data needs to
gather enough votes in order to perform the operation. Given
the intersecting property of quorums, mutual exclusion of
a write operation with any other write or read operations
is achieved. This mutual exclusion guarantees that a write
operation reads the latest value of the data, and thus can
support read-modify-write operations without any underlying
atomic primitives. In general, it yields consistency by pre-
venting different write operations simultaneously, or for read
operations when a write is being carried out. Read locks are
not mutually exclusive, but are exclusive with respect to write
locks.
Remark 2: We note that the same idea of quorums could

also be used without locks, and by storing multiple logi-
cal time-stamped versions of the data. In such a scenario,
the application layer would have to determine a chronological
ordering based on versions. Such a lock-free approach would
be non-blocking, and thus enjoy higher level of concurrency,
but with the compromise that read-modify-write operations
would not be supported. That would be suitable for appli-
cations where write operations are agnostic of previously
written values. For the rest of the paper, we focus on the
approach that supports causally related read-modify-write
operations.

This locking principle ensures the safety property for con-
sistency, so that two overlapping writes are not possible,
so a new write operation can read the latest previously writ-
ten value, modify it as needed and then complete the write
process before any other write operations try to read and
modify the data. Accordingly, the system achieves sequential
consistency, namely, there is a globally unique ordering for
the read/write operation sequences, where the ordering is
determined as per the sequence in which the locks for the
respective operations are acquired.

There is also the issue of liveliness, which is outside the
scope of this work. If partial locks are acquired by differ-
ent processes, it may lead to deadlocking. Livelocks may
also hinder progress. These are well studied problems and
techniques to detect and deal with these exist (see for exam-
ple [37], [38]). Our work assumes the existence of an extrinsic
distributed locking service such as [39] for orchestrating the
acquisition and release of locks.

Quorum systems are broadly categorized as symmetric and
asymmetric. For the latter, a write quorum’s membership is
different from a read quorum’s, while the former does not
distinguish the two. We consider two variations of our local
reconstruction codes to propose symmetric quorums.

The following discussions on consistency will rely on three
practical assumptions: (i) Any update is atomically executed
across all members of the quorum. (ii) There is a per object
gossip group Gi,j comprising the node storing the data block
ui,j, and all the parities carrying information about this block,
irrespective of whether these parities are part of the quo-
rum or not. When the data object is updated, the (bit wise)
differential of the new version and the previous version is
propagated in Gi,j. Updates are incorporated at the parities
that were not in the quorum but receive them by gossip
only in proper order using logical clocks [40]. Parities in the
quorum necessarily execute them in order. Such differentials
are garbage collected at all the nodes only after ascertaining
that all the other members of the group have incorporated the
update. We note that the size of each of these gossip groups is
1+r1+r2+3r3 (which is 6 when r1 = r2 = r3 = 1) and thus
the update propagation should be very fast, posing negligible
and temporary overheads of storing the differentials. (iii) The
number of total failures in the system is capped at the lower
bound of fault tolerance of the coded system deployed.
Definition 2: Quorum system Qrc for codes with only

row and column parities, i.e. r3 = 0: The quorum Qi,j to
access the data symbol ui,j comprises the nodes in position
{(i, j), (i, 2d2 + l), (2d1 + k, j)} for l = {1, . . . , r1} and
k = {1, . . . , r2}, i.e., the data symbol and the parities sharing
its row and column in the logical grid layout.

The proposed quorum in Definition 2 does not satisfy the
condition from Definition 1, since Qi,j ∩ Qk,l = ∅ if both
i 6= k and j 6= l hold. Still, it is adequate to satisfy necessary
mutual exclusion for guaranteeing consistency subject.

Given that we consider the case of r3 = 0, i.e., there are
no quadrant parities, we need mutual exclusions of two write
operations, or a write operation with other read operations
only in the rows and columns of the concerned data objects.
If this mutual exclusion is not guaranteed, simultaneous write
operations at different data objects in the same row or column
may render the corresponding parities in inconsistent state,
thus rendering them useless for data recovery.
Example 2: As a very simplified example, consider two

data objects with the values 3 and 7 and the parity carries
the sum of these two values, thus initially it is 10. If the two
write operations are increasing the values of the two data
objects to 5 and 12 respectively, but these updates happen
simultaneously and thus one of the changes in the parity is
overwritten, it may end up with a value of 12, reflecting only
the change of value from 3 to 5. If this data object is later
lost, and one tried to recover it using the parity 12 and the
other surviving data object, which also has a value 12, then
one would wrongly ‘recover’ the value 0 which is neither the
present nor even any of the past values of the data object.

93306 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

When two data objects share no row or column in the
grid layout, the parities they influence comprise disjoint
sets. Mutual exclusion among them is thus immaterial to
prevent inconsistency. Hence the proposed quorum achieves
sequential consistency at the granularity of individual data
objects.

The quorum composition can be extended for the case
where quadrant parities also exist (i.e., r3 > 0):
Definition 3: Quorum system Qrcq for codes with row,

column as well as quadrant parities, i.e. r3 > 0: The quorum
Qi,j to access the data symbol ui,j comprises the nodes from
Definition 2 as well as the 3r3 quadrant parities that are
determined according to the quadrant to which ui,j belongs.
The quorum systemQrcq satisfies the condition from Def-

inition 1. Consider Qi,j and Qk,l . If positions i, j and k, l
belong to the same quadrant, then their quorums will intersect
at all the 3r3 quadrant parities of each of their respective
quorums. If they belong to two different quadrants, say Qx
and Qy where x 6= y, they will intersect at the r3 quadrant
parities that are computed using the data symbols from the
quadrants x and y. This ensures mutual exclusion and thus
sequential consistency at the granularity of the set of data
objects being coded together, and thus also for the individual
data objects. The immediate downside in this case, unlike the
former scenario without quadrant parities is that, because of
the mutual exclusion among all the data objects, paralleliza-
tion of processing is by design not possible.

This observation prompts us to propose an alternatemecha-
nismwhich considers a laxer form of consistency (see Defini-
tion 4) where the quadrant parities are used for fault-tolerance
but are not involved in the quorummechanism, that is, deploy
a code with r3 > 0 but use the quorums as per Definition 2.
In this setup, the quadrant parities are to be updated in a
best-effort manner [20]–[23] through a background propaga-
tion of the updates to the quadrant parities.

The background best-effort update process is possible in
linear codes by propagating the update deltas of the original
data object values, since only the product of this update delta
and the corresponding code coefficient need to be locally
multiplied and added to the previous value of the parity,
and these operations commute across updates from differ-
ent objects. While the operations would also commute for
multiple updates for the same data object, we apply multiple
updates from a single object only in sequence determined by
a logical clock. The implications of this choice are discussed
later.

Furthermore, under most failure scenarios, only the row
and column but not the quadrant parities are used for recov-
ering the lost data objects, in which case, they continue to
exhibit sequential consistency at the object level granularity.
In some situations where the data can only be recoverable
using quadrant parities, we guarantee a weaker kind of con-
sistency, which we call semantic consistency, inspired by the
concept of semantic reconciliation studied in the Dynamo
system [12]. Consider an object that undergoes updates over
time, following the sequence of versions V = (v0, v1 . . . vt)

and then the disk storing it fails, so that it has to be recov-
ered using the coded redundancy. For guaranteeing sequential
consistency, one should recover the last updated version vt .
However, the idea of semantic reconciliation is to let the
application layer to deal with inconsistencies based on appli-
cation logic, instead of enforcing it at storage layer. The
weaker form of guarantees that the data object takes any one
of the historical values fromV above (and avoids a scenario as
the one discussed in Example 2), which we term as semantic
consistency.
Definition 4: Semantic consistency is said to be achieved

if the value of a data symbol being recovered from a fail-
ure corresponds to any of the past legitimate values V =
(v0, v1 . . . vt) it has had before the failure.

Semantic consistency suffices in many scenarios where
applications can carry out semantic reconciliation [12].
Our overall approach thus allows the deployment of the
quorum system in different modes - using the quorums
described in Definition 3 to guarantee sequential consis-
tency which will however by design (as per traditional quo-
rum systems) not support concurrency of reads and writes,
or deploy it using quorums described in Definition 2 to
achieve semantic consistency which allows such concurrent
operations.

The semantic consistency guarantee is achieved as fol-
lows. There are broadly three possible scenarios. The latest
update(s) of the data node which needs to be recovered has
been received by (i) some or (ii) all of the concerned quadrant
parities. In these cases, they can ensure that all of them incor-
porate these updates. The other situation is when (iii) all the
live parities miss certain updates. In this case they ignore any
updates if intermediate differentials are unavailable. So they
all reflect the same legitimate past version. Likewise, all the
parities incorporate any other updates corresponding to all the
other live data objects in the system, obtained by participating
in the respective update propagation gossip groups.

The recovery operation is carried out subsequent to these
steps. As a consequence, if there are certain missed updates,
then the recovered data object corresponds to an older ver-
sion, while if there were no missed updates, the latest version
happens to be created; in all cases the system strictly gener-
ates a version that was the result of legitimate past operations.

A. SIMULATIONS
We carried out a discrete rounds based simulation to study the
effect of the granularity of mutual exclusions achieved byQrc
(only row/column parities are used) versus Qrcq (quadrant
parities are also used) quorums, to determine their effect on
concurrency.

1) WORKLOAD
We study how the proposed mechanism performs over one
group of coded data, using a (54, 36) code, i.e., there
were 36 original data blocks, and further 18 parity blocks,
thus incurring a storage overhead of 1.5×. A workload
of read/write requests was randomly generated, with the

VOLUME 9, 2021 93307

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

FIGURE 7. Performance of Qrc and Qrcq quorums for different read/write mixes. Superscripts R/W indicate read/write.

probability of read requests being 0.6 and 0.8 in two sets
of separate experiments, for which we show the results
in Figure 7. Recall that the proposed mechanism is designed
for warm (and not hot) data. As such, the absolute access rate
on the data is supposed to be low, and the relative frequency of
write operations is supposed to be particularly low. We nev-
ertheless choose a very high proportion of write accesses,
to study the proposed mechanisms under what may be termed
as a ‘stressed’ condition. We consider a snapshot of the sys-
tem, which involves a 200 requests overall, with the request
types mix as described above. Additionally, we assume that
the requests are furthermore for data objects chosen uni-
formly at random within the group of coded data blocks. The
choice of random accesses for the workload is aligned with
the systems architecture and assumptions presented earlier in
Section I-A. In particular, recall that the logical data objects
comprise independent BLOBs, and the group of such data

objects to be coded together are placed in physically distinct
nodes, and the derived parities are placed in further distinct
storage nodes.

2) THROUGHPUT THROTTLED SIMULATIONS
In order to achieve a read-modify-write operational seman-
tics, write operations on the same data object are necessarily
mutually exclusive, yielding a blocking algorithm that needs
to prevent other reads or writes simultaneously on the same
data object. Conversely, since a read lock in Qrcq would
make any other simultaneous write operations infeasible,
if we consider only the quorum based locking constraint, all
other read requests can be serviced immediately. However,
in practice, storage nodes may not have the capacity to pro-
cess all requests simultaneously. As such, in the simulations,
we throttle the number of read requests that a given storage
node processes in a single time round in order to capture

93308 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

such extrinsic limitations. Thus, overall, both because of
this artificially imposed cap to throttle the processing rate,
as well as because we consider a high relative frequency
(20%-40%) of write operations, the results presented here
are under extremely pessimistic set-up, and thus provides a
very conservative estimate of performance of the envisioned
system applying QLOC for concurrency control in order to
achieve consistency. The reported results are with a cap of 2
operations per storage node. Since we used a (54, 36) code for
these experiments, this constraint meant that not more than 72
read requests across the 36 data objects could be processed
in a given round. Even without this cap, the characteristic
behavior of Qrcq remains the same - namely, whenever there
is a write operation, no other read or write operations are
possible in the given round.

3) FINDINGS FROM THE SIMULATIONS
For the simulated setups, with Qrcq we needed 33 rounds to
process all the requests in the system. In contrast, with Qrc,
these jobs could be finished in 26 and 13 rounds respectively,
for the ∼60/40% and ∼80/20% read/write mixes. This is
so, because with Qrc simultaneous read and even multiple
write operations can be carried out concurrently involving
data objects which do not share either the row or the column
in the logical grid. On the downside, when a write lock is
acquired for a given data object, it prevents reads on other
data objects sharing the same row or column. Thus the peak
number of read requests processed per round is typically
lower thanwithQrcq. If the workload contains relativelymore
write requests, then Qrc may require more time than Qrcq to
service some of the read requests, even though Qrc services
the complete set of requests faster than Qrcq. We have tried
other parameter values in terms of code configurations, work-
load mix, cap on the number of simultaneous reads on any
given data object. We consistently observed the same relative
behaviors.

The earlier theoretical analysis had helped us establish
the extent of fault-tolerance one can achieve, depending on
whether the semi-global parities are deployed (r3 > 0) or not
(r3 = 0), namely, guaranteed data recovery in the presence of
arbitrary 5 or 2 failures respectively. We had also determined
by logical analysis the characteristics of consistency depend-
ing on the choice of nodes involved in creating the quorums.
Namely, sequential consistency at the level of objects or
group of coded objects can be achieved withQrc when r3 = 0
versusQrcq (r3 > 0 by default) respectively. In contrast, if the
semi-global parities are leveraged solely for fault-tolerance
and not for the quorum induced locking mechanism, then a
weaker semantic consistency at object level can be achieved.
The simulations complement these analysis, to establish the
relative level of concurrency and thus throughput that are
yielded by these different choices. In Table 2 this spectrum
is summarized. In particular, we notice that withQrc, we can
support some extent of concurrent write operations within a
coded group while reducing marginally the read throughput,
while Qrcq does not allow any concurrent writes across the

TABLE 2. QLOC deployment modes.

whole group, but consequently higher throughput for read
operations become possible. More crucially, Qrcq allows for
the strongest form of consistency guarantee, since it extends
the guarantee at the granularity of the whole object group.
As such, it would be effective for providing strong sequential
consistency guarantee even for applications which transcend
our optional assumption that the BLOBs within data objects
and the data objects being coded together are independent.

B. QUORUM LOAD
A classical metric to evaluate a quorum system is to study
its load - a measure of how often quorums are accessed. For
every quorum Q ∈ Q, an access probability PS (Q) is defined
for an access strategy S. By definition,

∑
Q∈Q PS (Q) = 1.

Then the load LS (m) of a nodem using the access strategy S is

LS (m) =
∑
Q∈Q
m∈Q

PS (Q) (5)

so that the load induced by S on the system is the load
imposed by the busiest node LS (Q) = maxm LS (m). The load
of a quorum systemQ is the minimal load, across all possible
access strategies that can be used.

Quorums in both Qrc and Qrcq are invoked only because
of access requests for data nodes. Assuming data nodes are
equally likely to be accessed, we thus have PS (Qi,j) = 1

4d1d2
and PS (Q) is uniform. From (5), the load of node m for S
uniform is

LS (m) =
∑
Q∈Q
m∈Q

1
4d1d2

=
|Q ∈ Q, m ∈ Q|

4d1d2

so LS (m) ∈
{

1
4d1d2

, 1
2d2
, 1
2d1
, 12

}
since node m belongs to a

single quorum if it is a data symbol, to 2d1 quorums if it is
a column parity, to 2d2 quorums if it is a row parity, and to
2d1d2 quorums if it is a quadrant parity. In summary:
Proposition 3: For a quorum access probability PS (Q)

uniform over Q ∈ Q, the quorum system Q has load

LS (Q) =


1

2min{d1, d2}
for Q = Qrc

1
2

for Q = Qrcq.

We immediately see from the analysis that the quorum
system Qrcq involving quadrant parities has a higher load
than Qrc. This has two related implications. The higher load
reflects that Qrcq consumes more system resources. A direct

VOLUME 9, 2021 93309

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

consequence is that fewer requests can be handled for a
given capacity of resources, impacting the request processing
throughput in the system. Since the load indicates how busy
nodes are, in our setting it also acts as a proxy to theoretically
estimate the relative extent of concurrency the two modes of
quorum deployments can handle.

V. CONCLUSION
In this paper we extended the work on local reconstruction
codes and proposed a novel parameterized family of codes
using local and semi-global parities. We established theoret-
ical results on the lower bound of fault-tolerance for code
instances with practical parameters, and established their
efficacy in real-world set-ups in terms of storage overhead
and resilience. We demonstrate the existence of such codes,
by providing a concrete instantiation, and benchmarking
the fault-tolerance characteristics of the instance to further
demonstrate the suitability of such codes for practical deploy-
ment. We laid conceptual foundations for flexible quorum
systems over coded data, exploiting the existence of local
and semi-global parities to navigate trade-offs in terms of
fault-tolerance, concurrency of read and (read-modify-)write
operations, consistency guarantees and quorum system load.
In the process, we proposed a weaker form of consistency
which we named semantic consistency. The trade-offs arising
in the different deployment modes of our flexible framework
are summarized in Table 2.

Providing mechanisms to guarantee consistency in erasure
coded data will enable the deployment of a richer variety
of applications using such storage cost efficient approach,
triggering a second stage of wider adoption of erasure coded
storage systems, similar in impact as the earlier research on
efficient computation and repair of erasure coded data.

This is a first work of its kind - establishing the the-
oretical foundations and demonstrating the feasibility to
achieve sequential consistency for read-modify-write oper-
ational semantics over locally repairable erasure-coded
distributed data. It ushers into multiple future research direc-
tions. For the specific locally repairable code family, we have
showcased their feasibility with code instances derived using
numerical methods. Other ways to construct codes satisfying
the constraints is of immediate interest. At a fundamental
level and in terms of longer term implications, this work
is embryonic in nature — properties of locally repairable
codes with very different code structures may also potentially
be exploited to build quorum systems that provide same
functionalities of concurrency control, consistency and oper-
ations semantics which we achieve. This thus yields a new
aspect that both coding theorist and distributed algorithms
researchers alike may pursue, to establish different, and pos-
sibly better performing alternative solutions.

APPENDIX
EXAMPLE CODE INSTANCE
The objective of this paper was to identify mechanisms
to achieve a strong form of consistency, namely sequential

consistency, while supporting a strict form of operational
semantics, namely read-modify-write operations, over dis-
tributed data stored redundantly using locally repairable
codes. The QLOC framework, and the high-level description
of the code (accompanied with the set of constraints that it
needs to satisfy) suffices to that end. Nonetheless, we also
need to demonstrate that such codes can actually be real-
ized. To that end, in this appendix, we provide an explicit
construction of such a code instance. We use the specific
instance to also benchmark its properties and demonstrate
its suitability in meeting practical requirements in terms of
storage overhead, fault-tolerance, and cost of data recovery
or degraded reads in presence of faults.

Specifically, we choose a (30, 16) code that was analyzed
in Example 1. We show next how to instantiate such a code,
starting from a (24, 16) base code. We find the code instance
using a numerical approach analogous to [1]. This example
uses F26 for the base field – specifically, F26 = {0, α

i, i =
0, . . . , 63}, for α satisfying α6 + α + 1 = 0 over F2. The
(24, 16) code can be described by the generator polynomial∏r

j=1(x − α
j) for r = 8 (r = 8 gives the number of parities),

that is g(x) = x8+α43x7+α59x6+α31x5+α10x4+α40x3+
α14x2 + α7x + α36.

Since we will use the systematic form of this code, we only
store the coefficients used to compute the parities, giving
an r × k = 8 × 16 matrix. As for the entries of this
matrix, we calculate the remainder of x(n−j) · xr modulo
g(x) for j = 1, 2, . . . , n, and write the coefficients of these
remainders as entries, in descending order of power. For
example, we compute that the remainder of x15 modulo g(x)
isα23x7+α31x6+α43x5+α48x4+α50x3+α43x2+α53x+α13,
the remainder of x14 modulo g(x) is α40x7+α52x6+α30x5+
α21x4 + α60x3 + α33x2 + α5x + α48.
Repeating the above computations for each power of x

yields the following matrix:

GT =



α23 α31 α43 α48 α50 α43 α53 α13

α40 α52 α30 α21 α60 α33 α5 α48

α12 1 α45 α2 α27 α37 α52 α57

α21 α26 α47 α8 α62 α58 α47 α32

α59 α48 α23 α23 α18 α43 α18 α40

α4 α49 α8 α25 α59 α25 α29 α37

α α59 α11 α12 1 α5 α13 α50

α14 α20 α48 α42 α14 α36 α20 α61

α25 α50 α26 α33 α61 α4 α5 α22

α49 α49 α44 α62 α40 α39 α24 α58

α22 α19 α52 α26 α15 α27 α5 α23

α50 α7 α37 α49 α57 α17 α8 α19

α46 α30 α20 α29 α12 α54 α56 α17

α44 α11 α28 α60 α40 α57 α15 α50

α14 α16 α16 α12 α15 α29 α25 α16

α43 α59 α31 α10 α40 α14 α7 α36


The same procedure, changing the base field and using

instead the element α such that α8 + α4 + α3 + α2 + 1 = 0

93310 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

yields the following GT matrix:

α60 α226 α198 α10 α65 α188 α84 α44

α8 α240 α206 α208 α106 α247 α145 α96

α60 α85 α117 α113 α201 α185 α101 α54

α18 α237 α62 α124 α206 α125 α139 α110

α74 α191 α210 α65 α213 α126 α75 α144

α108 α60 α232 α26 α222 α201 α144 α148

α112 α232 α239 α186 α66 α93 α102 α100

α64 α252 α172 α209 α242 α208 α10 α74

α38 α207 α195 α145 α13 α132 α128 α240

α204 α205 α174 α192 α228 α182 α76 α127

α91 α4 α60 α59 α163 α30 α14 α218

α182 α218 α186 α17 α102 α37 α189 α228

α192 α243 α79 α77 α249 α165 α130 α82

α46 α3 α109 α230 α59 α62 α8 α28

α247 α163 α175 α56 α8 α178 α211 α212

α176 α240 α211 α253 α220 α3 α203 α36


Once these matrices are constructed, one can check

whether these constructions satisfy the constraints or not (we
have verified that they do, for these examples).
In Table 3 we report the fault tolerance of the above codes,

as determined by exhaustively enumerating all failure com-
binations. Since the construction of our codes is numerical
in nature, the actual fault tolerance depends on the choice
of coefficients used to compute the parities, which in turn
may be influenced by the underlying size of the Galois
Field. Consequently, we also report the absolute number of
combinations of configurations for a given number of fail-
ures that were unrecoverable, for given choice of code. For
instance, there are

(30
9

)
= 14,307,150 configurations of 9

faults. Among these, for 53,995 or 53,468 configurations
respectively for the codes instantiated with field sizes F26

and F28 , not all the 9 erasures can be recovered. Effectively,
in both these scenarios, for 99.62% of the fault configurations
the system is fully recoverable.

TABLE 3. Fault tolerance of the code instances.

From these results, we first observe that the analytical
bounds we had established in Proposition 2 hold, i.e., the
system recovers for any arbitrary combination of 5 simulta-
neous faults. Moreover, for these particular code instances,
the bound is also tight, i.e., there exists at least some (16 to be

precise) 6-failures configurations, which are not recoverable,
even though almost all (593,759 among

(30
6

)
= 593, 775

to be precise) configurations of 6-failures are recoverable.
To put this in context, 6 simultaneous failures among 30 nodes
amounts to 20% simultaneous failures. Usually, the sys-
tem would continuously monitor and repair isolated failures
before failures can accumulate.

Most theoretical works on code designs assume that repair
happens after a single failure, thus looking at the case of
one erasure. A few works studying codes tolerating several
failures can be found in the category of codes with avail-
ability, or codes with sequential recovery [41, Section VIII].
None of those works study the implications which primar-
ily concern our current work which focuses on consistency.
Even so, even from a repairability and resilience perspective,
these theoretical works do not yield practical solutions. For
instance, [42] proposes a code for n = 7m, k = 3m where m
is a (positive integer) parameter, where the code can support
up to 3 erasures (as opposed to our proposed code, which
tolerates up to 5 arbitrary erasures), thus tolerating fewer
erasures while incurring a fixed and high storage overhead
(specifically, it incurs 2.33× overhead which is beyond what
has been deemed desirable in practice [2]). In [43], codes
supporting 5 erasures would need a parameter r ≥ 6, yielding
n =

(5+r
5

)
, meaning that say for r = 6, 462 nodes are

needed. Though these codes have nominally more reasonable
storage overhead (e.g., 1.83× for the mentioned parameters)
a single system of coded data dispersed over such a large
number of nodes is plainly impractical. Moreover, for such
a large number of nodes, the chances of more than 5 failures
are considerable, creating a serious threat to data durability,
adding to their impracticality.

Data centers have reasonably stable environments [3],
[34]–[36], [44]. e.g., [3] reported between 2-10% annualized
failure rates for disk drives, though frequent but short dura-
tion outage events (more than 90% of these were for less
than 10 minutes) in individual storage system components
occur. Thus, with a storage overhead of 1.875×, tolerance
of 5 simultaneous failures, and its ability to be recovered
from a single failure with only 4 node accesses (refer to
Table1) the code and the family of codes in general satisfy
well the basic requirements for practical deployments, even
if one were to ignore their amenability to support protocols
for consistency, these include — choice of a range of code
parameters that fit the number of nodes involved in a single
system of coded data, practical storage overheads, low cost
for repairs, resilience from multiple erasures.

In Figure 8 we report results from an in-depth study of
the code’s resilience. Specifically, for the range of failures
where data is fully recoverable, till the configurations with
6 failures, when, for some configurations data cannot any
more be recovered, we study the number of node accesses
required for data recovery (only if the data is recoverable).

This is achieved using a greedy algorithm, which builds a
matrix, adding rows one by one: each row is related to some
parity node that is computed from one or more failed data

VOLUME 9, 2021 93311

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

FIGURE 8. Cost of carrying out degraded reads and rebuilds under a given number of node
failures (for the code over F26).

93312 VOLUME 9, 2021

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

nodes, and rows are kept linearly independent, meaning that
if a row introduces a linear combination, it is discarded.

We study two distinct scenarios: (i) degraded reads shown
on top in Figure 8 , where only original missing data but
not parity blocks are recreated, and (ii) rebuild shown at the
bottom in Figure 8 , where all missing data blocks, original as
well as parity, are recovered. In both scenarios, we consider
that the failures can identically affect data and parity nodes.
The former scenario is relevant to deal with relatively fre-
quent but transitionary outages, in which case, an application
may still want to carry onwith its operations, by reading some
or all the missing data by accessing other available nodes.
The latter is the scenario where the system determines that
the missing data needs to be recreated at a new live node.
Degraded Reads: Since there is a non-trivial probability

that all the failures affect nodes storing parities only, there is
a non-zero probability that no other nodes need to be accessed
to read the data nodes. In general, the local repairability
helps significantly, and for all the recoverable configurations
for even up to 6 simultaneous failures, access to less than
k = 16 other nodes was adequate to carry out the degraded
reads. In Table 4 we report the expected number of other data
blocks that need to be accessed for carrying out degraded
reads, given a particular number of node failures. Observe
that the expected numbers are significantly lower than 16 in
all these scenarios. Furthermore, for up to 4 simultaneous
failures, degraded reads could be carried out by accessing
less than 8 other nodes for much more than a simple majority
of the configurations. Moreover, depending on end-user and
application needs, a degraded read may not need to access all
the missing data blocks but only a subset of those, in which
case, the cost of degraded read would potentially be lower,
bounded by the ones determined in this study.

TABLE 4. Expected number of block accesses.

Rebuilds: Rebuilds are carried out for data as well as parity
nodes. As such, even for a single failure, if a semi-global
parity is affected, 8 nodes need to be accessed, while data
or local parities can be rebuilt with 4 accesses. For up to
two failures, most configurations can be rebuilt by accessing
8 or less nodes. These, i.e., one or two failure cases are the
typical scenarios, since the system should not let failures to
cumulate - doing so not only risk the loss of data, but also
has performance penalties in the form of degraded operations.
For larger number of failures, we notice that for certain
configurations, even more than k = 16 nodes may need
to be contacted. This exhibits a fundamental trade-off that
originates from the design of locally repairable codes. In the
process of optimizing for repair of data nodes, these codes

cease to have the optimality of maximum distance separa-
ble (MDS) codes, leading to certain configurations where
more than 16 nodes may need to be involved for rebuild. Even
so, even till 5 simultaneous failures, more than a majority of
the configurations require 16 or less node accesses, in contrast
to MDS codes, which would require 16 accesses in all cases.
In Table 4 we also report the expected number of other data
blocks that need to be accessed for carrying out rebuilds.
For up to 5 failures, the expected number of blocks accessed
is less than 16. Furthermore, as stated above, in all these
scenarios, degraded reads continue to be muchmore efficient.

Together, these experiments provide a complete under-
standing of the behavior of the particular code instance and
demonstrate its practicality. They also provide qualitative
understanding of this family of codes. We conclude the eval-
uation of the particular code instances studied here, we note
that the QLOC framework provides a set of constraints that
the codes need to satisfy. As such, other constructions, possi-
bly with further better properties may or not exist. In any case,
it might be possible to device constructions following a differ-
ent methodology than the numerical approach presented here.
The principal objective of this work was to demonstrate the
viability of a quorum system that exploits the structural prop-
erties of a locally repairable code, and to that end, to design
a locally repairable code that leverages on existing practical
codes. Nevertheless, it was also essential to demonstrate the
actual feasibility to realize a code satisfying the constraints
laid out previously. The code instances presented here fulfil
that purpose, demonstrating the existence of such codes by
example. On top of that, we see from the experiments that
the codes also meet multiple practically desirable properties -
particularly in terms of the storage overhead, fault-tolerance,
degraded read and rebuilds from failures.

REFERENCES
[1] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,

and S. Yekhanin, ‘‘Erasure coding in windows Azure storage,’’ in Proc.
USENIX Annu. Tech. Conf. (ATC), 2012, pp. 15–26.

[2] S.Muralidhar,W. Lloyd, S. Roy, C. Hill, E. Lin,W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, and S. Kumar, ‘‘F4: Facebook’s warm BLOB
storage system,’’ in Proc. Symp. Oper. Syst. Design Implement. (OSDI),
2014, pp. 383–398.

[3] A. Fikes, ‘‘Storage architecture and challenges,’’ Google,
Mountain View, CA, USA, Tech. Rep., 2010. [Online]. Available: https://
cloud.google.com/files/storage_architecture_and_challenges.pdf

[4] C. Lai, S. Jiang, L. Yang, S. Lin, G. Sun, Z. Hou, C. Cui, and J. Cong,
‘‘Atlas: Baidu’s key-value storage system for cloud data,’’ in Symp. Mass
Storage Syst. Technol. (MSST), 2015, pp. 1–4.

[5] A. Wang, ‘‘Introduction to HDFS erasure coding in apache Hadoop,’’
Cloudera, Palo Alto, CA, USA, Tech. Rep., 2015. [Online]. Available:
https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-
hadoop/

[6] C. Huang, M. Chen, and J. Li, ‘‘Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,’’ in
Proc. 6th IEEE Int. Symp. Netw. Comput. Appl. (NCA), 2007, pp. 79–86,
doi: 10.1109/NCA.2007.37.

[7] R. C. Merkle, ‘‘A certified digital signature,’’ in Proc. Conf. Theory Appl.
Cryptol., 1989, pp. 218–238.

[8] M. Vukolić, Quorum Systems With Appllications to Atorage and Consen-
sus. San Rafael, CA, USA: Morgan & Claypool, 2012.

[9] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, ‘‘Finding a needle
in haystack: Facebook’s photo storage,’’ in Proc. Conf. Oper. Syst. Design
Implement., 2010, pp. 47–60.

VOLUME 9, 2021 93313

http://dx.doi.org/10.1109/NCA.2007.37

A. Datta et al.: QLOC: Quorums With Local Reconstruction Codes

[10] S. A. Chamazcoti, B. Safaei, and S. G. Miremadi, ‘‘Can erasure codes
damage reliability in SSD-based storage systems?’’ IEEE Trans. Emerg.
Topics Comput., vol. 7, no. 3, pp. 435–446, Jul. 2019.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung, ‘‘The Google file system,’’ in
Proc. 19th ACM Symp. Oper. Syst. Princ. (SOSP), 2003, pp. 29–43.

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘‘Dynamo:
Amazon’s highly available key-value store,’’ ACM SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[13] K. S. Esmaili, L. Pamies-Juarez, and A. Datta, ‘‘CORE: Cross-object
redundancy for efficient data repair in storage systems,’’ in Proc. IEEE
Int. Conf. Big Data, Oct. 2013, pp. 246–254.

[14] F. Oggier and A. Datta, ‘‘Self-repairing homomorphic codes for distributed
storage systems,’’ in Proc. IEEE INFOCOM, Apr. 2011, pp. 1215–1223.

[15] Y.Wu,H.Hou, Y. S. Han, P. P. C. Lee, andG.Han, ‘‘Generalized expanded-
blaum-roth codes and their efficient encoding/decoding,’’ in Proc. IEEE
Global Commun. Conf., Dec. 2020, pp. 1–6.

[16] M. Blaum and S. R. Hetzler, ‘‘Array codes with local properties,’’ IEEE
Trans. Inf. Theory, vol. 66, no. 6, pp. 3675–3690, Nov. 2020.

[17] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, ‘‘OceanStore: An architecture for global-scale persistent stor-
age,’’ ACM SIGARCH Comput. Archit. News, vol. 28, no. 5, pp. 190–201,
Dec. 2000.

[18] F. Oggier and A. Datta, ‘‘Coding techniques for repairability in networked
distributed storage systems,’’ Found. Trends Commun. Inf. Theory, vol. 9,
no. 4, pp. 1–96, 2013.

[19] S. Liu and F. Oggier, ‘‘An overview of coding for distributed stor-
age systems,’’ in Network Coding and Subspace Designs (Signals and
Communication Technology), M. Greferath, M. Pavcevic, N. Silberstein,
and M. Vázquez-Castro, Eds. Cham, Switzerland: Springer, 2018,
doi: 10.1007/978-3-319-70293-3_14.

[20] K. S. Esmaili, A. Chiniah, and A. Datta, ‘‘Efficient updates in cross-
object erasure-coded storage systems,’’ in Proc. IEEE Int. Conf. Big Data,
Oct. 2013, pp. 28–32.

[21] A. Singh Rawat, S. Vishwanath, A. Bhowmick, and E. Soljanin, ‘‘Update
efficient codes for distributed storage,’’ in Proc. IEEE Int. Symp. Inf.
Theory Proc., Jul. 2011, pp. 1457–1461.

[22] K. Peter and A. Reinefeld, ‘‘Consistency and fault tolerance for erasure-
coded distributed storage systems,’’ in Proc. Int. Workshop Data-Intensive
Distrib. Comput., 2012, pp. 23–32.

[23] M. K. Aguilera, R. Janakiraman, and L. Xu, ‘‘Using erasure codes effi-
ciently for storage in a distributed system,’’ in Proc. Int. Conf. Dependable
Syst. Netw. (DSN), 2005, pp. 336–345.

[24] A. S. Tanenbaum and M. V. Steen, Distributed Systems, Principles and
Paradigms. London, U.K.: Pearson, 2007.

[25] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok, ‘‘Extending ACID
semantics to the file system,’’ ACM Trans. Storage, vol. 3, no. 2, p. 4,
Jun. 2007.

[26] L. Lamport, ‘‘The part-time parliament,’’ ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[27] S. Mu, K. Chen, Y. Wu, and W. Zheng, ‘‘When Paxos meets erasure code:
Reduce network and storage cost in state machine replication,’’ in Proc.
23rd Int. Symp. High-Perform. Parallel Distrib. Comput., 2014, pp. 61–72.

[28] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and D. Phillips, ‘‘Giza:
Erasure coding objects across global data centers,’’ in Proc. Annu. Tech.
Conf. (ATC), 2017, pp. 539–551.

[29] V. R. Cadambe, N. Lynch, M. Mèdard, and P. Musial, ‘‘A coded shared
atomic memory algorithm for message passing architectures,’’ Distrib.
Comput., vol. 30, no. 1, pp. 49–73, Feb. 2017.

[30] N. Nicolaou, V. Cadambe, N. Prakash, K. Konwar, M. Medard, and
N. Lynch, ‘‘ARES: Adaptive, reconfigurable, erasure coded, atomic stor-
age,’’ in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2019, pp. 2195–2205.

[31] K. Taranov, G. Alonso, and T. Hoefler, ‘‘Fast and strongly-consistent
per-item resilience in key-value stores,’’ in Proc. 13th EuroSys Conf.,
Apr. 2018, pp. 1–14.

[32] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, ‘‘Efficient
Byzantine-tolerant erasure-coded storage,’’ in Proc. Int. Conf. Dependable
Syst. Netw. (DSN), 2004, pp. 135–144.

[33] I. S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[34] G. Wang, L. Zhang, and W. Xu, ‘‘What can we learn from four years of
data center hardware failures?’’ in Proc. 47th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2017, pp. 25–36.

[35] J. Dean, ‘‘Designs, lessons and advice from building large distributed
systems,’’ in Proc. Keynote LADIS, Large Scale Distrib. Syst. Middleware
(LADIS), 2009.

[36] P. Gill, N. Jain, and N. Nagappan, ‘‘Understanding network failures in
data centers: Measurement, analysis, and implications,’’ in Proc. ACM
SIGCOMM Conf., 2011, pp. 350–361.

[37] K.-C. Tai, ‘‘Definitions and detection of deadlock, livelock, and starvation
in concurrent programs,’’ in Proc. Int. Conf. Parallel Process. (ICPP),
Aug. 1994, pp. 69–72.

[38] A. Ho, S. Smith, and S. Hand, ‘‘On deadlock, livelock, and forward
progress,’’ Comput. Lab., Univ. Cambridge, Cambridge, U.K., Tech.
Rep. UCAM-CL-TR-633, 2005.

[39] R. Labs. Distributed Locks With Redis. Accessed: May 11, 2021. [Online].
Available: https://redis.io/topics/distlock

[40] M. Raynal, ‘‘About logical clocks for distributed systems,’’ ACM SIGOPS
Oper. Syst. Rev., vol. 26, no. 1, pp. 41–48, Jan. 1992.

[41] S. Balaji, M. Krishnan, andM. E. A. Vajha, ‘‘Erasure coding for distributed
storage: An overview,’’ Sci. China Inf. Sci., vol. 612, no. 10, pp. 1–45,
2018.

[42] S. Kadhe and R. Calderbank, ‘‘Rate optimal binary linear locally repairable
codes with small availability,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 166–170.

[43] A. Wang, Z. Zhang, and M. Liu, ‘‘Achieving arbitrary locality and avail-
ability in binary codes,’’ in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 1866–1870.

[44] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, ‘‘Are disks the dominant
contributor for storage failures?: A comprehensive study of storage subsys-
tem failure characteristics,’’ ACM Trans. Storage, vol. 4, no. 3, pp. 1–25,
Nov. 2008.

ANWITAMAN DATTA is currently an Associate
Professor with the School of Computer Science
and Engineering, Nanyang Technological Univer-
sity, Singapore. He serves as a Senior Scientific
Officer in a consulting role with QPQ.IO. His core
research interests include large-scale resilient dis-
tributed systems, information security, and appli-
cations of data analytics. He is exploring topics
at the intersection of computer science and pub-
lic policies and regulations along with the wider

societal and (cyber) security impact of technology. This includes the topics
of social media and network analysis, privacy, cyber-risk analysis and man-
agement, cryptocurrency forensics, the governance of disruptive technolo-
gies, and impact and use of disruptive technologies in digital societies and
government.

ADAMAS AQSA FAHREZA is currently a
Researcher with the School of Computer Science
and Engineering, Nanyang Technological Univer-
sity, Singapore.

FRÉDÉRIQUE OGGIER is currently an Asso-
ciate Professor with the Division of Mathemati-
cal Sciences, Nanyang Technological University,
Singapore. Her interests include algebra and num-
ber theory and their applications to coding theory
and security.

93314 VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-319-70293-3_14

