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ABSTRACT This paper presents a new automatic detection and classification approach of power qual-
ity (PQ) problems using Kalman filter. Kalman filter is used as an estimator to calculate the fundamental
frequency and harmonic components amplitudes of the voltage or current signals. Then the instantaneous
total harmonic distortion (iTHD) and the energy are calculated. For each half cycle of the processed
signal, five decision quantities are calculated based on iTHD and energy and these quantities are the three
consecutive maximum values of iTHD, standard deviation and energy difference between distorted signal
and its fundamental frequency component. Decision rules based on these decision quantities are applied
to identify and classify the PQ events in this captured signal. The proposed approach is tested on single
and combined PQ events that are generated using the MATLAB with the help of mathematical models
that are conformity with standard IEEE-1159. The performance is assessed using more than 100 dataset
of every PQ event and the results show that the accuracy is 100 and 98.8 for noiseless and high-level of
noise, respectively. In addition, the proposed approach performance is validated through comparisons with
other classification. Several practical PQ events are generated by lab experiments to validate the proposed
approach. The simulation and experimental results show that the proposed approach is efficient and robust
and can be implemented to design PQ monitoring device.

INDEX TERMS Feature extractions, harmonics, Kalman Filter, power quality.

I. INTRODUCTION
Power Quality (PQ) is becoming increasingly of a concern
due to the increase of nonlinear loads and the proliferation of
power-electronic interfaced distributed generation [1]. Poor
PQ causes many issues such as mal-operation of protection
devices, overheating of equipment leading to their failure, etc.
Standard PQ problems such as sag, swell, interruption and
flicker get exacerbated when harmonics are considered. [2].
Identification and classification of PQ problems in the voltage
and current waveforms is the first step in mitigating effect of
these problems [3]. PQ identification and classification are
discussed in different works [4]–[6]. In the literature, the pro-
cess of PQ identification and classification is two consecutive
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stages; viz.,(a) features extraction from the waveform and
(b) problem classification.

Traditionally, Fourier transform (FT) and its modifica-
tions are the most common techniques used in PQ identi-
fication. Nevertheless, using FT loses the time information
of the waveform [7]–[10]. This drawback is overcome by
the wavelet transform (WT) [11]–[14]. Unlike FT, the WT
decomposes the captured waveform in the time domain.
WT performance depends on the selection of the mother
wavelet and the number of decomposition layers [15]. The
S-transform (ST) is also used to identify PQ events and it is
an extension to wavelet transform [16]–[21]. ST decomposes
the waveform in both time and frequency domains. However,
ST is not practically common due to its hefty computa-
tional burden. Other signal processing algorithms such as
Hilbert-Huang transform [22] and Gabor transform (GT) [23]
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are used in PQ problems identification and classification but
they suffer from large computational and running time.

One of the accurate signal-processing estimators is Kalman
filter (KF). This technique applies a set of mathematical equa-
tions to calculate the states of a measured quantity. KF may
result in inaccurate outputs if the state space model is incor-
rectly developed and/or if the choice of the KF parameters,
e.g., process covariance (Q) andmeasurement covariance (R),
is inaccurate [24]. In the literature, covariance values were
chosen based on either optimal or heuristic based-methods.

Many algorithms are used to identify the optimal values
of these noise covariance matrices. For example, in [25], two
models for Q are provided for the steady state and transient
estimation of power system harmonics. In [26], a reverse
predication is used with Kalman filter to modify value of
Q to enhance the filtering accuracy. In [27], the authors
modified measurement covariance matrix R instead of pro-
cess covariance Q. In [28], genetic algorithm and particle
swarm optimization aided KFwere proposed. In [29], the dis-
crete wavelet transform is used to estimate the measurement
covariance matrix. In [30], the extended Kalman filter is
adapted using maximum likelihood. Albeit being the most
accurate, optimal based-methods are known to increase the
computation times and the complexity of implementation,
and they cannot guarantee robustness with different noise
levels [31].

Recently, the artificial intelligence techniques are used
to classify PQ problems. These techniques include artifi-
cial neural network (ANN) [32], [33], probabilistic neural
network (PNN) [34], support vector machine (SVM) [35],
extreme learning machine (ELM) [36], K-nearest neigh-
bor [37], decision tree (DT) [38], deep convolutional net-
work [39] and long short-term memory networks [40]. These
techniques have some shortages such as disability to classify
complex PQ events and the need to be retrained in case of
appearing a new PQ event [41].

A. RESEARCH GAP
All aforementioned works have many shortages such as:

� The use of two stages, feature extraction and classifi-
cation to identify PQ problems and this increases the
computational time.

� Some techniques cannot analysis big data and this
decreases the accuracy.

� Some techniques cannot detect complicated problems
such as sag with harmonics or swell with harmonics.

� Some techniques require a training period for each new
PQ event.

For all these shortages, the need to an accurate, efficient, and
automatic PQ problems detection technique is necessary.

B. WORK CONTRIBUTIONS
The main contributions of this work are:

• Proposing the Kalman filter to automatically detect (in
real time) and heuristically classify PQ problems. The

proposed real-time detection approach does not need
large memory because it stores only the previous state,
very fast and well suited for online problems.

• Utilizing the fact that the voltage and current waveforms
of modern power systems are sinusoidal waveforms that
are distorted with harmonics that may be exceed or
within the standard limits to models these waveforms
by Kalman filter to estimate the amplitudes of the fun-
damental frequency and other harmonic orders as state
variables with the help of the measured captured voltage
or current waveforms

• Heuristic classification of PQ events (instead of using a
computationally demanding algorithm as reported in the
literature). From the estimated amplitudes, five decision
quantities are calculated based on the instantaneous total
harmonic distortion (iTHD ) and energy. These quanti-
ties are the three consecutive maximum values of iTHD,
standard deviation and energy difference between dis-
torted signal and its fundamental frequency component.

• Implementing the proposed approach both in simulation
and experimental setup to confirm its accuracy, sim-
plicity, and robustness as a real-time application when
subjected to wide spectrum of PQ events, Comparing the
results of the proposed approach to those of other works
is also conducted to confirm the validity of the proposed
approach.

• Proving – through simulations and measurements – that
the proposed approach is immune against impact of
signal noise. The impact of errors that could occur dur-
ing any stage starting from capturing the signal to the
decision stage is studied to assess the performance of
the proposed approach. These errors are represented as
noise of different values of signal to noise ratio (SNR).

The rest of the paper is organized as follows. Section II
presents the model of the generalized KF approach, together
with the algorithm developed to implemented the new tech-
nique. Several PQ phenomena are simulated in Section III
using the MATLAB platform, and the proposed generalized
KF approach is used to detect and classify the PQ issues in
the simulated waveforms. The new KF technique is used in
an experimental setup to confirm the robustness of the tool
and its practicality in Section IV. Conclusions are presented
in Section V.

II. THE PROPOSED METHODOLOGY
At each sampling interval, the proposed generalized Kalman
filter is used to estimate the amplitude of the fundamental
frequency and harmonic components of the recorded wave-
form, and accordingly calculates the instantaneous total har-
monic distortion of the signal. Moreover, for each half cycle,
the model calculates some decision variables, viz., the energy
of the harmonic contents, standard deviation and the maxi-
mum values of the calculated total harmonic distortion. This
section introduces the principles of Kalman filter, its novel
implementation as a generalized tool, and the details of the
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decision variables that are used to classify the power quality
disturbances.

A. PRINCIPLES OF KALMAN FILTER
Kalman algorithm is an estimator that is used to estimate
the values of unknown variables with the help of observed
measurements. To apply Kalman filter, initial steps should be
prepared [29]:

� Modeling the state variable of the processes by preparing
a relationship of state variables of the current step and
the next step as follows:

xk+1 = ∅kxk + wk (1)

� Iterative processing of the input signal that represents the
noisy measurement, as follows:

Zk = Hkxk + vk (2)

where: xk and xk+1 are state variables at the current
and next time steps k and k + 1, respectively, ∅k is a
relationship matrix between xk and xk+1 and is called
the transition matrix, wk is a row vector represents the
state variables error, Hk is a matrix that represents the
relationship between the noiseless measurements and
the state variables and vk is a row vector represents
the measurements error. KF has two operation steps;
prediction and correction. The prediction step updates
the state variables and the associated error covariance
using the following equations [29]:

x̂−k+1 = ∅k x̂
−

k (3)

P−k+1 = ∅kPk∅
T
k + Qk (4)

where: x̂−k+1 and x̂
−

k are prior estimated state variables at
current, k , and next time step, k+1, respectively, Pk and
P−k+1 are the a posterior and a prior estimated covariance
of the process at current, k , and next time step, k + 1,
respectively and Qk is the covariance matrix of wk .
The correction step updates Eq. (3) and Eq. (4) with the
help of observable measurements, where Kalman gain
Kk used in this step is defined in Eq. (5) [25]:

Kk = P−k H
T
k

(
HkP

−

k H
T
k + Rk

)−1
(5)

where: Rk is the covariance matrix of vk .
With this estimated Kalman gain and the measured value
Zk , the state variables are updated using Eq. (6) [25]:

x̂k = x̂−k + Kk
(
Zk − Hk x̂

−

k

)
(6)

where: x̂k and x̂
−

k are posterior and prior estimated state
variables at the time steps k .
The process covariance is updated by [25]:

Pk = (I − KkHk)P
−

k (7)

B. IMPLEMENTATION OF GENERALIZED KALMAN FILTER
In modern power systems, voltage and current waveforms are
distorted sinusoidal waveforms due to harmonics associated
with loads, non-linearities due to transformer saturation and
inrush currents, as well as proliferation of power electronics.
As such, voltage and current waveforms are expressed as
sinusoidal functions with angular frequencies iω, where i is
the harmonic order, and with sampling interval 1T and time
step k as follows:

Zk =
n∑
i=1

Aisin (iωk1T + θi) (8)

where Ai is the amplitude of the ith harmonic component.
The measured quantity at time instant k + 1 is expressed

as:

Zk+1 =
n∑
i=1

Aisin (iω (k + 1)1T + θi) (9)

For each harmonic component, two state variables are
modeled, with total number of state variables equals to 2n.
The state variables are modeled as follows:

For fundamental harmonic order,

x1 = A1 cos (θ1) x2 = A1 sin (θ1)

For 2nd order of harmonics,

x3 = A2 cos (θ2) x4 = A2 sin (θ2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

For nth order of harmonics,

x2n−1 = An cos (θn) x2n = An sin (θn)

The relationship between state variables at the current and
next time steps is modeled by:

xk+1 =


x1
x2
·

·

x2n−1
x2n


k+1

=


1 0 · · · 0 0
0 1 0 0

...
. . .

...

0 0 · · · 1 0
0 0 0 1



×


x1
x2
·

·

x2n−1
x2n


k

(11)

The measurement signal can be modeled as a relationship
between state variables and matrix H as follows:

Zk = Hkxk =



sin (ωk1T )
cos (ωk1T )

...

...

sin (nωk1T )
cos (nωk1T )



T 

x1
x2
...
...

x2n−1
x2n


k

(12)
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FIGURE 1. Flow chart of the proposed PQ classification approach
technique.

The process noise covariance matrix Qk , stated in
Eq. (4), is chosen to be equal to the identity matrix
in this model to provide fast tracking of variations in
the system [25]. The measurement covariance matrix Rk ,
stated in Eq. (5), is chosen using an experience-based
method.

At each time instant k , the state variables are estimated
for each harmonic order to calculate the amplitudes and the
instantaneous total harmonic distortion (iTHD).

The fundamental frequency amplitude is calculated by:

A1,k =
√
x21,k + x

2
2,k (13)

The harmonic orders amplitude is calculated by:

Ah,k =
√
x22h−1,k + x

2
2h,k i = 2, 3, . . . ., n (14)

The energy of this signal can be calculated by:

Edistorted =
n∑
i=1

A2i,k (15)

The energy of harmonic distortions is the given by:

Diff _E = Edistorted − Efundamental (16)

The instantaneous total harmonic distortion (iTHD) is esti-
mated by:

iTHDk =

√
A
2
h,k

A1,k
(17)

For each half cycle of the measured signal, five quantities
are calculated from the estimated iTHD as follows:

For each harmonic order, the mean value (M e) is calculated
by:

Mei = mean (Ai) i = 1, 2, . . . , n (18)

The standard deviation quantity is calculated by:

STD = STD


Me2/Me1
Me3/Me1

...

Men−1/Me1
Men/Me1

 (19)

which represents the first quantity that is used in classifying
the PQ problems. The second quantity is M1 that represents
first maximum value of instantaneous iTHD, the third quan-
tity is M2 that represents second maximum value of iTHD,
the fourth quantity is M3 that is the third maximum value of
iTHD and the final value is theDiff _E for this half cycle. The
classification of PQ problems is conducted using the values of
the five decision variables, as shown in Fig. 1. The thresholds
indicted in Fig. 1 are heuristically proposed.

III. SIMULATION RESULTS
A. GENERATION OF WAVEFORMS WITH PQ ISSUES
To illustrate the application of the proposed approach to
detect and classify PQ problems, 16 different PQ events
are generated using the equations depicted in Table 1 [20].
These events include the standard issues; sag, swell, inter-
ruption, flicker, transients, harmonics distortion, notch and
spike, as well as combination of these issues MATLAB
platform is used to generate the waveforms including the
PQ issues. The effect of noise is taken into account by
imposing noise signals to the main waveforms, with different
signal to noise ratio (SNR) values of 20, 30 and 40 db. This
noise represents the errors that could be occurred during the
measurement, processing or classification stags. A sampling
rate of 128 samples per cycle is used in the simulation
environment.
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TABLE 1. PQ modeling equations and their parameter values [20].

TABLE 2. The extracted features of Case I.

B. RESULTS AND DISCUSSIONS
The generalized KF approach discussed in Section II is
applied to analyze the waveforms descried in Section III-A.
Results are presented in this section, including the impact of
noise on the accuracy of the proposed technique.

1) CASE I: NORMAL, SAG AND SWELL EVENTS
Normal sinusoidal waveforms are tested using the proposed
approach and the required features are extracted and shown
in Table 2. The STD feature value is less than 0.02 and
this means that these normal signals do not contain har-
monic distortions or the distortion is within limits. The
frequency spectrum and the calculated iTHD are shown
in Fig. 2(a). This figure shows that the magnitude of the
fundamental component is 1 pu and the magnitude of the
harmonic orders is very small and this is also depicted
in Fig. 3 (b). Where the value of M1 is less than 3 and
this means there is no any PQ events in this processed
signal. A sample example of normal signal is shown in
Fig. 3.

Different case studies of the sag event are generated with
different magnitudes; 0.2, 0.4, 0.6 and 0.8 pu. For these
case studies, there is no harmonic contents because the STD
value is less than 0.02 as shown in Table 2. The values
of M1 and M2 are greater than 5 and M3 is less than
5 and this means that these events are interruption, sag or
swell. Where the value of M1 is less than 125 then these
events are sag or swell. To distinguish between sag and
swell event, the value of last feature, Diff_E, should be
checked.

Form Table 2, the values of these magnitudes, 0.2, 0.4,
0.6 and 0.8 are less than zero, negative values, and this means
these case study events are sag. Fig. 4 shows an example
of sag event with an amplitude of 1 pu. Fig. 4 (a) shows
the waveform of the signal containing sag event. The ampli-
tudes of fundamental frequency and other harmonic orders
are shown in Fig. 4(b). The features M1 and M2 are shown
in Fig. 4(d) and the value of M3 does not appear because
it is very small in comparing with M1 and M2 values. The
frequency spectrum at the starting instant of sag event is
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FIGURE 2. The frequency spectrum and iTHD at the starting of Case I events (a) Normal, (b) Sag, and (c) Swell
events.

FIGURE 3. Case I: Normal event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 4. Case I: Sag event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

shown in Fig. 2(b). From this figure, it is clear that the
magnitude of the fundamental frequency is 0.5 pu and the
other harmonic orders have significant values and this causes
that the iTHD is very high and equals 36.2 % at the starting
of this event.

Fig. 5 shows an example of the swell event. Fig. 5 (d) shows
that the values of M1 and M2 are high but less than 125 and
this means that this event is sag or swell. From Table 2, it is
found that the value of Diff_E is greater than zero and this
means that this event is swell. In addition, the value of STD is
less than 0.02 and this means that this signal does not contain
harmonic distortions.

At the starting instant of the swell event, the calcu-
lated amplitudes of fundamental and harmonic orders using
Eqs. (13) and (14) are shown in Fig. 2(c). The amplitude of
the fundamental frequency is 1.5 pu and the other harmonic

orders have significant values so the calculated iTHD is high
and equals 18.3 %.

2) CASE II: INTERRUPTION EVENT
Table 3 shows different case studies of interruption events.
The values of features M1 and M2 are greater than 5 and
the value of M1 is greater than 125, indicating an inter-
ruption event has occurred. The values of STD feature are
less than 0.02 and this means that these signals are pure
sinusoidal waveforms. Fig. 6 shows the amplitudes of fun-
damental frequency and harmonic orders of the interruption
waveform at the starting of this event. The figure shows that
amplitudes of harmonic orders have high values where the
amplitude of second and third orders are 0.38 and 0.2 pu,
respectively, and this causes a high value of iTHD that
reaches to 185%. Fig. 7 shows an example of interruption
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FIGURE 5. Case I: Swell event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

TABLE 3. The extracted features of Case II.

FIGURE 6. The frequency spectrum and iTHD at the starting of Case II:
interruption event.

event where the values of M1 and M2 are 347.5 and 202,
respectively.

3) CASE III: FLICKER EVENT
Fig. 8(a) shows a sinusoidal waveform with a flicker in
the amplitude i.e., a change of the waveform amplitude but
within the acceptable limits (±10%), which can be detected
in the waveform envelope. The estimated amplitude of the
waveform is shown in Fig. 8(b). The calculated maximum
values of iTHD are shown in Fig. 8(d). From the flow chart
of the proposed approach, the signal contains flicker if the
value of M1 is between three and five. From Fig. 8(d), it is
clear that the value of M1 is 3.5 and also the value of STD
feature is less than 0.02 and this depicts that the waveform
does not contain harmonic distortions. Fig. 9 shows the
frequency spectrum and iTHD value for the flicker event.
The amplitude of the fundamental frequency is 1 pu at the
instant of calculation and the harmonic orders have very
small amplitudes and this is shown in the value if iTHD that
is 3.5 %.

4) CASE IV: TRANSIENT EVENT
The transient event is a sudden increase in the waveform
magnitude for a very small duration of time. The calcu-
lated amplitudes of fundamental and harmonic orders using
Kalman filter at the starting instant of this event are shown
in Fig. 10. It is clear in this figure that the harmonic orders
have high values and rises the iTHD to 156 %. The generated
signal containing transient event is shown in Fig. 11(a). The
value ofM1 is shown in Fig. 11(d) and the value ofM2 is very
small and may not be existed. The STD value reveals that the
signal is free of harmonic contents.

5) CASE V: HARMONIC DISTORTIONS EVENT
Different case studies of this event are generated by superim-
posing the sinusoidal waveform with harmonic distortions of
THD; 10, 15, 20, 25, 30%. These signals are analyzed using
the generalized KF methodology and the results are shown
in Table 4. The values of STD are greater than 0.02 and this
means that all tested signals contain harmonic. The value of
M1 is less than three and this mean that there are no other PQ
problems. Fig. 12 shows an example of a distorted signal by
20% THD.

6) CASE VI: NOTCH AND SPIKE EVENTS
The notch is a periodic decrease in the wave for a very small
duration of time while the spike is a periodic increase. The
frequency spectrum of the notch and spike event is almost the
same as shown in Fig. 13. Fig. 14(a) shows the notch event
waveform while the spike is shown in Fig. 15(a). Different
cases of notch and spike event are tested and their extracted
features are shown in Table 5. The features of notch and spike
events are the same except the Diff_E values where Diff_E
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FIGURE 7. Case II: Interruption event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 8. Case III: Flicker event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 9. The frequency spectrum and iTHD at the starting of Case III:
flicker event.

FIGURE 10. The frequency spectrum and iTHD at the starting of Case IV:
transient event.

values are negative for notch and positive for spikes, as shown
in Table 5. Fig. 14 shows a sample example of the notch event
and Fig. 15 depicts the waveform and features of spike event.

TABLE 4. The extracted features of Case V.

TABLE 5. The extracted features of Case IV.

7) CASE VII: SAG AND SWELL EVENTS WITH HARMONICS
In this case study, the sag or the swell events occur in a
distorted signal. The results of processing different events of
this case study using the proposed methodology are tabulated
in Table 6. The STD values of all sag and swell events
are greater than 0.02 indicating that the waveforms contain
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FIGURE 11. Case IV: Transient event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 12. Case V: Harmonic distortions event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 13. Case VI: The frequency spectrum and iTHD at the starting of
(a) Notch and (b) Spike events.

harmonics. The values of features M1 and M2 are greater
than 5 while the value of M3 is less than 5, i.e., sag or
swell is detected. To distinguish between these two types of
events, the value of Diff_E is used where positive Diff_E
indicates a swell, and a negative Diff_E corresponds to a sag
event. Fig. 16 shows an example of sag with harmonics event.
The amplitudes of fundamental frequency and harmonics are
shown in Fig. 16(b). The example of swell with harmonic
event is shown in Fig. 17. The frequency spectrum of these
two events at the starting instant are shown in Fig. 18. The
amplitude of fundamental order of sag event is 0.5 pu while
it is 1.4 pu for swell event. The iTHD values are close; 25.09
% and 21.4 % for sag, and swell sample example events,
respectively. So iTHD values cannot be used to distinguish
between these two events.

TABLE 6. The extracted features of Cases VII and VIII.

The other combined events, standard event with harmonics,
are generated and tested using the proposed methodology.
The results show that the STD values are greater than 0.02 and
each event has its feature values that are used to identify its
class using the decision variables shown in Fig. 1.

C. ERROR ANALYSIS
The impact of errors that could occur during the measure-
ment, recording and processing stages of captured signals are
studied. These errors are represented by a noise superimposed
on the captured signals. More than 100 case studies are
randomly generated for each PQ event, with different signal
to noise ratios. The proposed approach is applied to identify
the PQ issues in the case studies, and the results are shown
in Table 7. The results show that with increasing the SNR,
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FIGURE 14. Case VI: Notch event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 15. Case VI: Spike event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

FIGURE 16. Case VII: Sag with harmonics event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

the error decreases and thus, the estimated value closes to
the actual value. The mean values of percentage error for
the noiseless and the noisy conditions of 40 dB, 30 dB, and
20 dB are 0%, 0.07%, 0.3% and 1.2%, respectively, and the
corresponding mean accuracies are 100%, 99.93%, 99.7%,
and 98.8%, respectively. All case studies are running on
MATLAB-2019b, Window 10, CPU; Intel core i7-2.7 GHz,
6 GB RAM.

The validation of the proposed approach is assessed by
comparing its results with those of other works. The com-
parison results are tabulated in Table 8. The results show that
the proposed approach has the ability to identify 16 classes of

PQ problemswith high accuracy that equals to 100%, 99.93%
and 99.7% for noiseless, 40 dB SNR and 30 dB SNR signals,
respectively.

IV. EXPERIMENTAL RESULTS
To validate the proposed methodology in detecting and clas-
sifying the PQ events, an experimental model is established
in the laboratory, as shown in Fig. 19. This model con-
tains different types of loads to generate different types of
power quality events. The loads comprise motors, linear and
non-linear loads. Four potential transformers (PT) and four
current transformers (CT) are used to step down the voltages
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FIGURE 17. Case VII: Swell with harmonics event (a) waveform, (b) amplitudes, (c) iTHD and (d) Maximum values of iTHD.

TABLE 7. Simulation tests of PQ events with different SNR.

FIGURE 18. Case VII: The frequency spectrum and iTHD at the starting of
(a) Sag with harmonics and (b) Swell with harmonics events.

and currents to the data acquisition device to convert these
captured waveforms from analog to digital form. The detailed
parameters of this experimental model are provided in Table
9. The data acquisition device (DAS) is Circuit Monitor
2000 (CM2000) model. This DAS captures the voltage
and current waveforms with 6.4 kHz (128 samples/cycle at
50 Hz) sampling frequency. Different case studies of PQ
events are investigated and processed using the proposed

FIGURE 19. The experimental setup.

methodology. The results are explained in details in the fol-
lowing subsections.

A. CASE STUDY I
The experiment is run without nonlinear loads. The syn-
chronous motor and linear RLC load are fed by the
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TABLE 8. Comparison of classification accuracy with the existing
methods.

TABLE 9. Detailed parameters of the experimental model.

FIGURE 20. The captured Voltage waveform of Case I.

autotransformers. For few milliseconds, the linear RLC load
is disconnected. The voltage waveform, captured by DAS,
is shown in Fig. 20.

This waveform is passed to the proposed approach, where
the extracted features are shown in Fig. 21 and Table 10. The
values of the extracted features (STD, M1, M2, and Diff_E)

FIGURE 21. Case I (a) amplitudes, (b) iTHD and (c) Maximum values of
iTHD.

FIGURE 22. The captured waveform of Case I.

FIGURE 23. Case II (a) amplitudes, (b) iTHD and (c) Maximum values of
iTHD.

are listed in Table 10. The values of the decision variables
illustrate that this waveform does not contain harmonics and
comprises a swell event.

B. CASE STUDY II
In this case study, the linear load is connected to the cir-
cuit for few milliseconds to generate a sag event. The volt-
age waveform, shown in Fig. 22, is captured by the (DAS)
and transmitted to the PC to be processed by the proposed
methodology. The extracted features are shown in Fig. 23 and
Table 10. From Table 10, the STD is less than 0.02, cor-
responding to a waveform free of harmonics (no nonlinear
loads were connected in this setup). The values of the other
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FIGURE 24. The captured voltage waveform of Case III.

FIGURE 25. Case III (a) amplitudes, (b) iTHD and (c) Maximum values of
iTHD.

FIGURE 26. The captured waveform of Case IV.

decision variables listed in Table 10 indicate that the captured
waveform contains sag event.

C. CASE STUDY III
This case corresponds to a transient event imposed on a
pure-sinusoidal waveform. To generate the transient event
in this experiment, the linear load is switched off and on
instantaneously. The captured voltage waveform is shown
in Fig. 24. The extracted features are illustrated Fig. 25.
In Fig. 25(c), M1 exceeds 125, indicating a transient event,
while the corresponding STD in Table 10 indicates that the
waveform does not contain harmonics.

D. CASE STUDY IV
In this case, all load types are connected to the circuit. The
captured current waveform and extracted features are shown
in Figs. 26 and 27, respectively. The Kalman filter computes
the amplitudes of the fundamental frequency and harmonics

FIGURE 27. Case IV (a) amplitudes, (b) iTHD and (c) Maximum values of
iTHD.

FIGURE 28. The captured voltage waveform of Case V.

FIGURE 29. Case V (a) amplitudes, (b) iTHD and (c) Maximum values of
iTHD.

TABLE 10. The extracted features of experimental case studies.

and these values are shown in Fig. 27(a). The calculated
features for this case are shown in Table 10. The STD value
is 0.038 and this means this waveform contain harmonics and
the other features depicts that this current waveform does not
comprises any other PQ events.
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E. CASE STUDY V
In this case study, a complicated PQ event is generated
by connecting all loads and disconnecting the linear load
for few milliseconds. The captured current waveform is
illustrated in Fig. 28. The proposed methodology pro-
cessed this waveform and computes the amplitudes that are
shown in Fig. 29(a). The values of M1, M2 and Diff_E
in Table 10 confirm that this current waveform contains sag
event. Considering the value of STD associated with this
case, one can confirm that the waveform is polluted with
harmonics.

V. CONCLUSION
In this paper, the power quality problem identification and
classification are presented. A generalized approach based
on Kalman Filters is developed and tested using simulation
and experimental environments. The new approach is based
on calculating five decision variables in real time. Based on
the ranges of these variables, the algorithm decides whether
the PQ issue is a sag, swell, transient, harmonics, etc. The
thresholds proposed for these decision variables are heuristic.
The simulation and experimental results have proven that
these thresholds are accurate and dependable.

The simulation results for a wide range of cases are pre-
sented and analyzed. The results of the simulations – using
the proposed approach – are compared against other reported
techniques. The proposed approach proved its superiority to
handle any kind of PQ events, even when noise is introduced
to the waveforms. To confirm the practicality of the proposed
KF method, an experimental setup was used to mimic differ-
ent PQ events, with andwithout harmonics. The classification
of the PQ events using the proposed approach were always
correct and proved that it can be implemented to design PQ
monitoring device.

REFERENCES
[1] A. F. Zobaa and S. H. E. A. Aleem, Power Quality in Future Electrical

Power Systems. Edison, NJ, USA: IET, 2017.
[2] X. Liang, ‘‘Emerging power quality challenges due to integration of renew-

able energy sources,’’ IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 855–866,
Mar. 2017.

[3] Y. Han, Y. Feng, P. Yang, L. Xu, Y. Xu, and F. Blaabjerg, ‘‘Cause,
classification of voltage sag, and voltage sag emulators and applications:
A comprehensive overview,’’ IEEE Access, vol. 8, pp. 1922–1934, 2020.

[4] O. P. Mahela, A. G. Shaik, and N. Gupta, ‘‘A critical review of detection
and classification of power quality events,’’ Renew. Sustain. Energy Rev.,
vol. 41, pp. 495–505, Jan. 2015.

[5] S. Khokhar, A. A. B. M. Zin, A. S. B. Mokhtar, and M. Pesaran,
‘‘A comprehensive overview on signal processing and artificial intelligence
techniques applications in classification of power quality disturbances,’’
Renew. Sustain. Energy Rev., vol. 51, pp. 1650–1663, Nov. 2015.

[6] O. A. Alimi, K. Ouahada, and A. M. Abu-Mahfouz, ‘‘A review of machine
learning approaches to power system security and stability,’’ IEEE Access,
vol. 8, pp. 113512–113531, 2020.

[7] T. X. Zhu, ‘‘Detection and characterization of oscillatory transients using
matching pursuits with a damped sinusoidal dictionary,’’ IEEE Trans.
Power Del., vol. 22, no. 2, pp. 1093–1099, Apr. 2007.

[8] F. A. S. Borges, R. A. S. Fernandes, I. N. Silva, and C. B. S. Silva, ‘‘Fea-
ture extraction and power quality disturbances classification using smart
meters signals,’’ IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 824–833,
Apr. 2016.

[9] J. Xu, Y. Zhang, Y. Li, and Y. Fan, ‘‘Comparative study of STFT and
S transform on detecting voltage sag,’’ Power Syst. Protection Control,
vol. 42, no. 24, pp. 44–48, Dec. 2014.

[10] U. Singh and S. N. Singh, ‘‘Application of fractional Fourier transform
for classification of power quality disturbances,’’ IET Sci., Meas. Technol.,
vol. 11, no. 1, pp. 67–76, Jan. 2017.

[11] D. De Yong, S. Bhowmik, and F. Magnago, ‘‘An effective power quality
classifier using wavelet transform and support vector machines,’’ Expert
Syst. Appl., vol. 42, nos. 15–16, pp. 6075–6081, Sep. 2015.

[12] H. Liu, F. Hussain, Y. Shen, S. Arif, A. Nazir, andM. Abubakar, ‘‘Complex
power quality disturbances classification via curvelet transform and deep
learning,’’ Electr. Power Syst. Res., vol. 163, pp. 1–9, Oct. 2018.

[13] K. Thirumala, M. S. Prasad, T. Jain, and A. C. Umarikar, ‘‘Tunable-Q
wavelet transform and dual multiclass SVM for online automatic detection
of power quality disturbances,’’ IEEE Trans. Smart Grid, vol. 9, no. 4,
pp. 3018–3028, Jul. 2018.

[14] M. Sahani, P. K. Dash, and D. Samal, ‘‘A real-time power quality
events recognition using variational mode decomposition and online-
sequential extreme learning machine,’’Measurement, vol. 157, Jun. 2020,
Art. no. 107597.

[15] E. G. Ribeiro, T. M. Mendes, G. L. Dias, E. R. S. Faria, F. M. Viana,
B. H. G. Barbosa, and D. D. Ferreira, ‘‘Real-time system for automatic
detection and classification of single and multiple power quality distur-
bances,’’Measurement, vol. 128, pp. 276–283, Nov. 2018.

[16] S. Mishra, C. N. Bhende, and B. K. Panigrahi, ‘‘Detection and classifi-
cation of power quality disturbances using S-transform and probabilistic
neural network,’’ IEEE Trans. Power Del., vol. 23, no. 1, pp. 280–287,
Jan. 2008.

[17] O. P. Mahela, A. G. Shaik, B. Khan, R. Mahla, and H. H. Alhelou,
‘‘Recognition of complex power quality disturbances using S-transform
based ruled decision tree,’’ IEEE Access, vol. 8, pp. 173530–173547, 2020.

[18] M. V. Reddy and R. Sodhi, ‘‘A modified S-transform and random forests-
based power quality assessment framework,’’ IEEE Trans. Instrum. Meas.,
vol. 67, no. 1, pp. 78–89, Jan. 2018.

[19] N. Huang, D. Wang, L. Lin, G. Cai, G. Huang, J. Du, and J. Zheng,
‘‘Power quality disturbances classification using rotation forest and multi-
resolution fast S-transform with data compression in time domain,’’ IET
Gener., Transmiss. Distrib., vol. 13, no. 22, pp. 5091–5101, Nov. 2019.

[20] R. Kaushik, O. P. Mahela, P. K. Bhatt, B. Khan, S. Padmanaban, and
F. Blaabjerg, ‘‘A hybrid algorithm for recognition of power quality distur-
bances,’’ IEEE Access, vol. 8, pp. 229184–229200, 2020.

[21] T. Zhong, S. Zhang, G. Cai, Y. Li, B. Yang, and Y. Chen, ‘‘Power quality
disturbance recognition based on multiresolution S-transform and decision
tree,’’ IEEE Access, vol. 7, pp. 8392–88380, 2019.

[22] R. Kumar, B. Singh, and D. T. Shahani, ‘‘Recognition of single-stage
and multiple power quality events using Hilbert–Huang transform and
probabilistic neural network,’’ Electr. Power Compon. Syst., vol. 43, no. 6,
pp. 607–619, Apr. 2015.

[23] S. Naderian and A. Salemnia, ‘‘Method for classification of PQ events
based on discrete Gabor transform with FIR window and T2FK-based
SVM and its experimental verification,’’ IET Gener., Transmiss. Distrib.,
vol. 11, no. 1, pp. 133–141, Jan. 2017.

[24] J. Zhang, G. Welch, G. Bishop, and Z. Huang, ‘‘A two-stage Kalman filter
approach for robust and real-time power system state estimation,’’ IEEE
Trans. Sustain. Energy, vol. 5, no. 2, pp. 629–636, Apr. 2014.

[25] K. K. C. Yu, N. R. Watson, and J. Arrillaga, ‘‘An adaptive Kalman filter
for dynamic harmonic state estimation and harmonic injection tracking,’’
IEEE Trans. Power Del., vol. 20, no. 2, pp. 1577–1584, Apr. 2005.

[26] Z. Li and X. Wang, ‘‘Reverse prediction adaptive Kalman filtering algo-
rithm for maneuvering target tracking,’’ J. Comput. Inf. Syst., vol. 6, no. 10,
pp. 3257–3265, 2010.

[27] K.-R. Shih and S.-J. Huang, ‘‘Application of a robust algorithm for
dynamic state estimation of a power system,’’ IEEE Trans. Power Syst.,
vol. 17, no. 1, pp. 141–147, Aug. 2002.

[28] R. K. Jatoth and G. A. Reddy, ‘‘A hybrid GA-adaptive particle swarm
optimization based tuning of unscented Kalman filter for harmonic esti-
mation,’’ in Proc. Int. Conf. Swarm, Evol., Memetic Comput. (SEMCCO),
Chennai, India, Dec. 2010, pp. 380–388.

[29] A. A. Abdelsalam, A. A. Eldesouky, and A. A. Sallam, ‘‘Classification
of power system disturbances using linear Kalman filter and fuzzy-expert
system,’’ Int. J. Electr. Power Energy Syst., vol. 43, no. 1, pp. 688–695,
Dec. 2012.

VOLUME 9, 2021 93627



A. A. Abdelsalam et al.: Generalized Approach for PQ Disturbances Recognition

[30] Y. Xi, Z. Li, X. Zeng, and X. Tang, ‘‘Detection of voltage sag using an
adaptive extended Kalman filter based on maximum likelihood,’’ J. Electr.
Eng. Technol., vol. 12, no. 3, pp. 1016–1026, May 2017.

[31] Y. Xi, Z. Li, X. Zeng, X. Tang, Q. Liu, and H. Xiao, ‘‘Detection of power
quality disturbances using an adaptive process noise covariance Kalman
filter,’’ Digit. Signal Process., vol. 76, pp. 34–49, May 2018.

[32] R. Kumar, B. Singh, D. T. Shahani, A. Chandra, and K. Al-Haddad,
‘‘Recognition of power-quality disturbances using S-transform-based
ANN classifier and rule-based decision tree,’’ IEEE Trans. Ind. Appl.,
vol. 51, no. 2, pp. 1249–1258, Mar. 2015.

[33] J. Wang, Z. Xu, and Y. Che, ‘‘Power quality disturbance classification
based on compressed sensing and deep convolution neural networks,’’
IEEE Access, vol. 7, pp. 78336–78346, 2019.

[34] S. Khokhar, A. A. M. Zin, A. P. Memon, and A. S. Mokhtar, ‘‘A new
optimal feature selection algorithm for classification of power quality
disturbances using discrete wavelet transform and probabilistic neural
network,’’Measurement, vol. 95, pp. 246–259, Jan. 2017.

[35] P. Janik and T. Lobos, ‘‘Automated classification of power-quality distur-
bances using SVM and RBF networks,’’ IEEE Trans. Power Del., vol. 21,
no. 3, pp. 1663–1669, Jul. 2006.

[36] R. Ahila, V. Sadasivam, and K. Manimala, ‘‘An integrated PSO for param-
eter determination and feature selection of ELM and its application in
classification of power system disturbances,’’ Appl. Soft Comput., vol. 32,
pp. 23–37, Jul. 2015.

[37] B. K. Panigrahi and V. R. Pandi, ‘‘Optimal feature selection for classifi-
cation of power quality disturbances using wavelet packet-based fuzzy k-
nearest neighbour algorithm,’’ IETGener., Transmiss. Distrib., vol. 3, no. 3,
pp. 296–306, Mar. 2009.

[38] T. Zhong, S. Zhang, G. Cai, and N. Huang, ‘‘Power-quality disturbance
recognition based on time-frequency analysis and decision tree,’’ IET
Gener., Transmiss. Distrib., vol. 12, no. 18, pp. 4153–4162, Oct. 2018.

[39] R. Gong and T. Ruan, ‘‘A new convolutional network structure for power
quality disturbance identification and classification in micro-grids,’’ IEEE
Access, vol. 8, pp. 88801–88814, 2020.

[40] A. A. Abdelsalam, A. M. Hassanin, and H. M. Hasanien, ‘‘Categorisation
of power quality problems using long short-term memory networks,’’ IET
Gener., Transmiss. Distrib., vol. 15, no. 10, pp. 1626–1639, May 2021.

[41] G. S. Chawda, A. G. Shaik, M. Shaik, S. Padmanaban, J. B. Holm-Nielsen,
O. P. Mahela, and P. Kaliannan, ‘‘Comprehensive review on detection and
classification of power quality disturbances in utility grid with renewable
energy penetration,’’ IEEE Access, vol. 8, pp. 146807–146830, 2020.

[42] S. He, K. Li, and M. Zhang, ‘‘A real-time power quality disturbances
classification using hybrid method based on S-transform and dynamics,’’
IEEE Trans. Instrum. Meas., vol. 62, no. 9, pp. 2465–2475, Sep. 2013.

[43] N. Huang, S. Zhang, G. Cai, and D. Xu, ‘‘Power quality disturbances
recognition based on amultiresolution generalized S-transform and a PSO-
improved decision tree,’’ Energies, vol. 8, no. 1, pp. 549–572, Jan. 2015.

ABDELAZEEM A. ABDELSALAM (Member,
IEEE) received the B.Sc., M.Sc., and Ph.D.
degrees in electrical engineering from Suez
Canal University, Egypt, in 2001, 2005, and
2011, respectively. He is currently an Associate
Professor with Suez Canal University, Egypt.
He was a Postdoctoral Fellow with the Institute
of Technology (UOIT), University of Ontario,
Canada. He has authored or coauthored more than
60-refereed journal and conference papers and

three book chapters. His research interests include power quality, D-FACTS
technology, switched filter compensators, micro-grid interface, and control
and application of artificial intelligence techniques in power systems.

ALMOATAZ Y. ABDELAZIZ (Senior Member,
IEEE) received the B.Sc. and M.Sc. degrees in
electrical engineering from Ain Shams University,
Cairo, Egypt, in 1985 and 1990, respectively, and
the Ph.D. degree in electrical engineering accord-
ing to the channel system from Ain Shams Univer-
sity, Egypt, and Brunel University, U.K., in 1996.
He is a Professor at the Faculty of Engineer-
ing and Technology, Future University in Egypt,
Cairo. He has been a Professor of electrical power

engineering with Ain Shams University, since 2007. He has authored or
coauthored more than 400 refereed journal articles and conference papers,
25 book chapters, and three edited books with Elsevier and Springer. His
research interests include applications of artificial intelligence, evolutionary
and heuristic optimization techniques to power system planning, operation,
and control. He is a member of IET and the Egyptian Sub-Committees of IEC
and CIGRE. He has been awarded many prizes for distinct researches and
international publishing from Ain Shams University and Future University,
Egypt. He is the Chairman of the IEEE Education Society chapter, Egypt.
He is a Senior Editor of Ain Shams Engineering Journal, an Editor of
Electric Power Components and Systems Journal, an editorial boardmember,
an editor, an associate editor, and an editorial advisory board member for
many international journals.

MOHAMED Z. KAMH (Senior Member, IEEE)
received the B.Sc. (Hons.) and M.Sc. degrees in
electrical power and machines engineering from
Ain Shams University, Cairo, Egypt, in 2003 and
2007, respectively, and the Ph.D. degree in elec-
trical engineering from the University of Toronto,
Toronto, ON, Canada, in 2011. He is currently
an Assistant Professor with the Department of
Electrical Power and Machines Engineering, Ain
Shams University. His research interests include

power system planning and operation, power electronics, distributed and
renewable energy resources, smart grids, and application of artificial intelli-
gence in the aforementioned fields. He serves as the Technical Adviser for
the Ministry of Electricity and Renewable Energy for Transmission Network
planning and operation. He is a Registered Professional Engineer in Egypt,
and the Provinces of Alberta and Ontario, Canada, where he served for more
than a decade as a utility leader in the fields of transmission system planning,
operation, and engineering.

93628 VOLUME 9, 2021


