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ABSTRACT Air quality prediction is an important reference for meteorological forecast and air controlling,
but over fitting often occurs in prediction algorithms based on a single model. Aiming at the complexity of
air quality prediction, a prediction method based on integrated dual LSTM (Long Short-Term Memory)
model was proposed in this paper. Firstly, the Seq2Seq (Sequence to Sequence) technology is used to
establish a single-factor prediction model which can obtain the predicted value of each component in air
quality data, independently. Each component of air quality is regarded as time series data in the forecasting
process. Then, the LSTM model with attention mechanism is used as the multi-factor prediction model.
The influencing factors of air quality, like the data of neighboring stations and weather data, are considered
in the model. Finally, XGBoosting (eXtreme Gradient Boosting) tree is used to integrate two models. The
final prediction results can be obtained by accumulating the predicted values of the optimal subtree nodes.
Through evaluation and analysis using five evaluation methods, the proposed method has better performance
in terms of error and model expression power. Compared with other various models, the precision of
prediction data has been greatly improved in our model.

INDEX TERMS Air quality prediction, integrated dual model, LSTM model with attention mechanism,
Seq2Seq technology, XGBoosting tree.

I. INTRODUCTION
With the improvement of the level of industrialization,
the exhaust gas produced by a large number of factories and
cars continues to increase, resulting in the air pollution rises
seriously. Air quality has a great impact on people’s daily life.
Accurate prediction of air quality has become an important
measure to control air pollution and improve the air quality.

Air quality data has been widely concerned in the
world. Time series data prediction method, like traditional
machine learning methods [1]–[6] and time series predic-
tion models [7]–[9], is often used for air quality prediction.
However, the existing air quality prediction methods cannot
effectively capture the complex nonlinearity of air quality,
like PM2.5 concentrations. The prediction models based on
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deep learning [10]–[15] can extract the features existing in the
air quality data and can achieve higher prediction accuracy.
Some methods [16]–[26] simulate the temporal and spatial
dependence of air quality data at the same time. But widely-
used machine learning methods often suffer from high vari-
ability in performance in different circumstances. Air quality
is affected by many factors, such as temperature, wind power
and spatial relationship. As a result, the common singlemodel
prediction method is difficult to obtain certain and accurate
prediction results. Integrating multiple models to predict air
quality [27]–[35] is a type of method that appears in the
latest literature, and it is also the source of our ideas in this
article. The integrated model can significantly improve the
forecasting ability compared with existing models. However,
how to integrate the advantages of multiple models according
to the characteristics of the data set is still an important topic
that needs to be studied.
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The supporting evidences of the model proposed in this
paper are mainly the characteristics of air quality data. Air
quality data is a type of data set with complex and various
characteristics. According to our in-depth analysis of air
quality data, we found that air quality data has many types
of characteristic, which are mainly reflected in two aspects.

Firstly, in some peaceful weather with sunshine, stable
air pressure, and breeze, meteorological factors have a par-
ticularly small impact on the changes in air quality data.
In this situation, the air quality data basically conforms to the
characteristics of time series data, like stable change trend
and periodicity, etc. Figure 1 shows the correlation between
air quality data of the current moment and the data of 24 hours
ago or 48 hours ago in peaceful weather. The air quality
values at the current moment are in vertical axes of Fig. 1(a)
and Fig. 1(b), while the values of 24 hours ago and 48 hours
ago are in the horizontal axes, respectively. A preliminary
conclusion can be drawn from Figure 1 that the air quality
data shows a greater correlation with that of 24/48 hours ago
in the calm weather.

FIGURE 1. The correlation between the air quality data of the current
moment and the data of 24 hours ago or 48 hours ago in peaceful
weather, (a) the correlation between the data of the current moment and
24 hours ago, (b) the correlation between the data of the current moment
and 48 hours ago.

Secondly, in other types of weather, like strong winds and
heavy pollution in some areas, meteorological factors have
a greater impact on the air quality data. In this case, the air
quality data shows the characteristics of the spatial data.
Figure 2 shows the clustering results of air quality data for

FIGURE 2. The clustering results of air quality data for different stations
in windy weather, (a) the data of adjacent stations tend to be similar high
values; (b) the data of adjacent stations tend to be similar low values.

different stations in windy weather. The results in Fig. 2 are
obtained using the K-Means clustering method based on
DTW distance, in which the sliding window size is set as
5 hours. From Fig. 2, it can be found that the air quality data
of different stations under windy weather will gradually tend
to be similar in values.

According to the in-depth analysis of the different char-
acteristics of the air quality data, the research work of this
article established two independent models from both time
dimension and spatial dimension. XGBoosting technology
was used to implement the integration of dual model. First,
the single-factor model for each component was established
in the time dimension. Single factors, like PM2.5, are used
as the input of single-factor models. The forecast results are
obtained by using the characteristics in the time dimension.
Then, the multi-factor model is established in the spatial
dimension. Multiple factors, such as data from the current
station and surrounding stations, as well as weather data,
are selected as the input of the multi-factor model together.
The prediction results are obtained according to the spatial
characters. Finally, XGBoosting tree takes the output of the
single-factor time model and the multi-factor spatial model
as input. The optimized predicted value is obtained by cal-
culating the weight of each leaf node and accumulating its
predicted value. The proposed prediction method can adapt
to the complex changing characteristics of the data set.

In summary, the contributions of this article are shown in
the following aspects.

(1) Two types of forecasting models were adopted sep-
arately from the time dimension and spatial dimension to
better meet the different types of characteristics of air quality
data. Single-factor forecasting models were used to obtain
the characteristics of each component of the data from the
time dimension. Multi-factor forecasting models were used
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to acquire the characteristics of influence among data of the
current weather station and surrounding weather stations,
as well as weather data from the space-time dimension.

(2)Meteorological data, as themost influential factor, were
combined into the training process of XGBoosting tree to
reach the optimal subtree. The confidence weights of the
prediction results between the two models were set based
on the optimal subtree, which can effectively improve the
prediction ability.

The method in this article not only can be used for the
prediction of air quality data, but also can be adopted to
predict and analyze various data sets with multiple data
characteristics. For this type of data set, a variety of model
stacking methods can be used to improve the accuracy of the
prediction results. In the process, the influencing factors of
feature changes, like meteorological data, can be used as a
reference for the model stacking process.

The rest of this paper is organized as follows. The related
work will be discussed in Part II. The materials and the
detailed description of our proposedmethodwill be described
in Part III. Part IV will display the experimental results of
the integrated model, as well as the comparisons and anal-
ysis between our model and other methods. Finally, we will
present the conclusion of our work and the direction of further
researches.

II. RELATED WORK
Many researchers have made great contributions to the prob-
lem of air quality prediction in recent years. Various patterns
and basic trends in air quality are identified by quantitative
researches combining the latest technology. The main tech-
nologies and implementation methods in these achievements
include the following categories.

A. PREDICTION BASED ON CLASSIC MACHINE LEARNING
METHODS
Classic machine learning techniques, such as regression anal-
ysis, principal component analysis, BP (Back Propagation)
network and artificial neural network, were once the main-
streammethod of air quality prediction. Petr and Vladimir [1]
designed a model based on feed-forward neural networks
of perceptron and fuzzy inference systems for air quality
prediction. Kang and Qu [2] established BP neural network
based on genetic simulated annealing algorithm optimization
to predict air quality. Wang et al. [3] trained a BP neu-
ral network based on the historical monitoring data of air
pollutants to predict PM2.5 mass concentration. Rajput and
Sharma [4] represented the variation of AQI (Air Quality
Index) with a multivariate regression model. Major param-
eters, such as ambient temperature, relative humidity and
bar pressure, were considered in the regression model for
AQI computation. Mahajan et al. [5] clustered the monitoring
stations based on the geographical distance to reduce the
forecasting errors and achieve acceptable forecast results of
PM2.5 concentrations. Li et al. [6] built a dynamic evaluation
model for forecasting the air quality data based on the fuzzy

mathematical synthetic evaluation. The future air quality sta-
tus would be built by the fuzzy synthetic assessment model
based on entropy weighing method and whose results showed
that the proposed evaluation model is a practical tool.

These classic methods and models have some advantages,
such as simple algorithms, easy-to-understand processing and
acceptable prediction results. These methods can well predict
the trend of air quality changes. However, it is difficult to
obtain specific accurate forecast values of air quality.

B. PREDICTION BASED ON TIME SERIES MODEL
The second type of methods are the prediction methods based
on time series data. These methods regard continuous air
quality data over a period of time as time series data, and
obtain specific forecast values of air quality. Liu et al. [7]
proposed an attention-based air quality predictor (AAQP),
which used an n-step recurrent prediction to solve the prob-
lem of error accumulation produced in recurrent processing.
Gu et al. [8] proposed a heuristic recurrent air quality pre-
dictor (RAQP) to exploit the meteorological factors and air
pollutant concentration data which have strong influences
on air quality of the next adjacent moment. Benhaddi and
Ouarzazi [9] built a WaveNet architecture to forecast the
conditional multivariate time series data. The architecture
is composed of stacked residual convolutions which used
parameterized skip connections to catch early trends in a large
scope in the time series history.

In time series prediction methods, like RNN (Recurrent
Neural Network), future data can be predicted according to
the rules of data changes. However, when facing data with too
long sequence information, gradient disappearance or gradi-
ent explosion may be occurred, which will lead to inaccurate
prediction results.

C. PREDICTION BASED ON LSTM MODEL
The third type of methods are the LSTM-based prediction
models. LSTM is an improved algorithm of RNN network,
which can memorize long-term information in sequence data.
Song et al. [10] proposed LSTM-Kalman time prediction
model. The model stores the information contained in the
pre-order data by using LSTM, while adjusts the basic time
data sequence by Kalman filtering. Wang et al. [11] estab-
lished CT-LSTM by combining CT (Chi-square Test) and
LSTM. CT is used to determine the influencing factors
of air quality which can help improving the accuracy and
performance of prediction. Jianhui et al. [12] proposed the
LSTM-FWA model based on LSTM and FWA (FireWorks
Algorithm). The model is optimized with temporal, spatial,
spatio-temporal techniques respectively. Qin et al. [13] inte-
grated a hyperbolic model to predict PM2.5 concentrations as
time series based on CNN (Convolutional Neural Network)
and LSTM network. CNN network is used to extract features
of input data, while LSTM network is used to consider the
time dependence of air pollutants. Li et al. [14] introduced
the attention mechanism into the LSTM to capture the impor-
tance degrees of featured states at different times. The model
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can predict the PM2.5 concentrations over the next 24 hours
by using air quality data. Luo et al. [15] established the
BiLSTM (bidirectional long short-term memory) network,
in which an EMD (empirical mode decomposition) step is
introduced to reduce error accumulation in PM2.5 multi-step
prediction.

LSTM-based model solves the problems of gradient explo-
sion and gradient disappearance in RNN, and has a faster
learning speed. Therefore, the LSTM-based model can effec-
tively obtain better prediction results. However, it is still
difficult to obtain a high accuracy rate for data prediction
because of too many factors affecting air quality changes.

D. PREDICTION ON SPATIO-TEMPORAL FACTORS
The fourth type of methods are the prediction methods which
treat air quality data as spatio-temporal data in analyzing.
A variety of influencing factors are considered from the time
dimension and space dimension to improve the predictive
ability. Belavadi et al. [16] used a scalable architecture to
monitor and gather real-time air pollutant concentration data
fromwireless sensor network in various places and to forecast
future air pollutants concentrations. Sun et al. [17] estab-
lished a spatio-temporal GRU-based (Gated Recurrent Units)
prediction framework which takes the spatial information
into consideration to predict PM2.5 concentrations in the
hour scale. Xiangyu et al. [18] established STA-LSTM neural
network based on LSTM, in which a STA (Spatio-Temporal
Attention) mechanism was introduced to capture the rela-
tive influence of surrounding stations on the prediction area.
Qin et al. [19] predicted the short-term air quality based
on KNN (K-nearest neighbor) and LSTM. The training pro-
cesses are constructed on the AQI sequences of the space-
related monitoring stations selected by KNN algorithm.

Zhao et al. [20] used a fully connected neural network
to combine the spatial information of surrounding stations,
and achieve an accurate prediction of urban PM2.5 contam-
inations over 48 hours. Ping-Wei et al. [21] implemented
the air quality forecasting for up to 48 hours using a com-
bination of multiple neural networks. Altitude information
and meteorology data are combined with the air quality data
from the previous few hours to improve the forecasting abil-
ity of the model. Qi et al. [22] integrated Graph Convolu-
tional Networks and LSTM networks (GC-LSTM) to model
and forecast the spatio-temporal variation of PM2.5 con-
centrations. The historical observations on different stations
are constructed as spatio-temporal graph series for 72-hour
predictions.

Seng et al. [23] proposed a multi-output and multi-index
supervised learning (MMSL) model to integrate the con-
centration data, the meteorological data, and the gaseous
pollutant data of the present monitoring station and its
nearest neighbor stations of the same period. LSTM was
used for training to obtain the predicted values of air qual-
ity pollution indicators. Zhou et al. [24] proposed a Deep
Multi-output LSTM (DM-LSTM) neural network model
which integrates three deep learning algorithms for the air

quality forecasting. The model extracts the key factors of
complex spatio-temporal relations to reduce error accumu-
lation and propagation in the multi-step air quality fore-
casting. Yan et al. [25] established a multi-time, multi-site
forecasting model based on spatiotemporal clustering for air
quality forecasting. The spatiotemporal distribution charac-
teristics were introduced into the forecasting processing. The
CNN-LSTMand the LSTMmodel were provedmore suitable
for the multiple-hour forecasting in the comparing experi-
ments. Xu and Yoneda [26] proposed the LSTM auto-encoder
multitask learning model to predict PM2.5 time series in mul-
tiple locations. The model utilized the multi-layer LSTM net-
works to simulate the spatiotemporal characteristics of urban
air pollution particles. The pattern of urban meteorological
systems and the dynamical relationship among multiple key
pollution time series were adopted to provide important aux-
iliary information for PM2.5 time-series prediction in the
model.

In the prediction method combining time and space fac-
tors, the data continuity between geographic locations can
be used to further improve the accuracy of prediction. But
widely-usedmachine learningmethods often suffer from high
variability in performance in different circumstances. The
best machine learning method varies between regions and
times, making method selections difficult.

E. PREDICTION ON INTEGRATED MODEL
Leizhi et al. [27] proposed a model stacking approach
where the outputs of five widely-used individual machine
learning models are taken as input features of the ensem-
ble model. The models which are selected include mul-
tiple linear regression, partial least square, sparse partial
least square, random forest, and Bayesian network. The
model stacking approach was able to generate more reliable
prediction results than others models. Guoyan et al. [28]
implemented an integration method of GRU neural net-
work based on empirical mode decomposition (EMD-GRU).
The sub-sequences extracted from the time series of mul-
tiple stations are added to obtain the prediction results of
PM2.5 concentrations. Yue-Shan et al. [29] proposed a
stacking-based ensemble learning scheme to integrate various
forecasting models together. Pearson correlation coefficient
is adopted to calculate the correlation between different mod-
els in the stacking-based scheme. Jiaqi et al. [30] designed
an attention-based parallel network (APNet), which uses a
Bi-LSTM parallel module to extract the periodic charac-
teristics of PM2.5 concentrations from both previous and
posterior directions.

The hybrid model based on model stacking can signif-
icantly improve the forecasting accuracy compared with
existing models. Bai et al. [31] proposed an ensemble long
short-term memory neural network (E-LSTM) model. The
ensemble empirical mode decomposition were employed in
the feature extraction and multi-modal feature estimated inte-
gration. The multiple LSTMs structure in E-LSTM model
achieved better forecasting performance than the single
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LSTM structure. Wei [32] established an accurate wind
speed prediction model for future typhoons based on stacked
long short-term memory (SLSTM). The experimental results
showed that the SLSTM yielded more accurate results than
MLP and DRNN. Moniz and Krueger [33] proposed Nested
LSTMs (NLSTM), which add depth to LSTMs via nesting
as opposed to stacking. NLSTM outperformed both stacked
and single-layer LSTMs with similar numbers of parameters.
Jin et al. [34] proposed a novel deep learning framework
combiningmultiple nested long short-termmemory networks
(MTMC-NLSTM) for accurate AQI forecasting. The feder-
ated learning in the framework strengthened the performance
of obtaining more accurate prediction results.

Tree boosting is a highly effective and widely used
machine learning method. XGBoost [35] implements
machine learning algorithms under the Gradient Boosting
framework. XGBoost improves the accuracy of prediction
results by adding trees one by one. In XGBoosting tree, each
addition of subtrees will improve accuracy of the prediction
results, and finally the most accurate prediction results are
obtained.

III. INTEGRATED DUAL LSTM MODEL METHOD
Aiming at improving the accuracy of air quality prediction,
a multi-model integration method was proposed in the paper.
The detailed process of air quality prediction based on inte-
grated dual LSTM model in this paper is shown in Fig. 3.

FIGURE 3. The process flow of the air quality prediction based on LSTM
model stacking method.

The whole framework of the method is composed of four
main parts. The first part is preprocessing the data, including

filling inmissing values and normalizing all the data. The sec-
ond part is constructing a single-factor prediction model
based on Seq2Seq to forecast each influencing factor indi-
vidually. The encoding and decoding structure consists of
LSTM units. The third part is constructing a multi-factor
prediction model based on the attention mechanism and
Seq2Seq. Various influencing factors, such as historical data
of the current station and surrounding stations, as well as
weather data, are used as input of the multi-factor model.
The encoding and decoding structure are composed of two
layers of LSTM units. Finally, XGBoosting tree is used to
integrate the prediction results of the single-factor model and
the multi-factor model. The best prediction results obtained
through regression calculation are used as the final prediction
value of the air quality data.

A. DATA SET AND DATA PREPROCESSING
1) DATA SET DESCRIPTION
We collected hourly data frommultiple air quality monitoring
stations in Beijing from 2013 to 2018. The air pollutants
in the data include PM2.5, PM10, NO2, CO, O3 and SO2.
In addition, the data set contain meteorological data of the
same period, including weather type, temperature, pressure,
humidity, wind speed and wind direction. The unit of air pol-
lutants is g/m3. Weather types mainly include sunny, snowy,
cloudy, light rain, heavy rain, and blowing sand. The unit of
temperature is Celsius (◦C). The unit of air pressure is hec-
topascals (hPa). Humidity refers to the content of water vapor
in the air, expressed as percentage (%). The unit of wind speed
is meters per second (m/s). The wind direction is defined by
the clockwise angle from the north. For example, the direction
of the wind blowing from the south is 180 degrees, and the
direction of thewind blowing from the east is 90 degrees. This
data set mainly come from the Meteorological Data Center of
China Meteorological Administration.

2) DATA FILLING WITH EM ALGORITHM
When the monitoring station acquires air quality data, there
may be missing values in the air quality data due to sensor
device failures or network problems. Dataset containing null
values may lead to unreliable output. Therefore, the data set
needs to be interpolated and filled with data before prediction.

Traditional data filling methods mainly include dele-
tion, mean filling and neighbor replacement, etc. EM
algorithm [36] was selected to complete the null value in this
article. EM algorithm is a data filling algorithm proposed by
Dempster, Arthur P. of Harvard University in 1977. It is a
classic data filling algorithm for incomplete data sets. The
most special feature of EM algorithm is to find the maximum
likelihood estimation or maximum posteriori estimation of
parameters in the probability model, where the probability
model depends on unobservable hidden variables.

The main reason we chose EM algorithm is that the data
set completed by the EM algorithm can maintain a similar
distribution probability with the original data set. It can make
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the filled data keep the distribution probability close to the
original data. The theoretical basis for applying the EM algo-
rithm to the filling of air quality data sets is as follows. Air
quality data have many different characteristics, as described
in the part of Introduction. But the distribution probability
of data with different pollutant concentrations is basically
stable. For example, the proportion of PM2.5 data between
100 and 120 in all data is basically stable for a period of time.
According to the conclusion of our previous data analysis, the
air quality data set in this article conforms to the Gaussian
normal distribution, and the Gaussian function is used as the
distribution function in the EM algorithm.

Specifically, EM algorithm includes E steps and M steps,
where the E step seeks the maximum likelihood estimations
of the sample, and the M step seeks the maximum likelihood
results.

For givenmutually independent data samples {x1, . . . ,xm},
the goal of EM algorithm is to find the implicit category
z of each sample, so that the maximum likelihood function
p(x, z) is the largest. The goal of E step is to calculate the log
likelihood expectation function based on the sample x, and
estimate the maximum likelihood z of the hidden variables,
which can be expressed as Equation (1),

Qi
(
z(i)
)
= p

(
z(i)|x(i); θ

)
(1)

where, x is the given sample {x1, . . . ,xm}, and z is the hidden
variable. p

(
z(i)|x(i); θ

)
is the posterior probability of given

sample x(i) and the parameter θ . Qi
(
z(i)
)
can be selected by

the posterior probability of z(i).
For the M step, the expected result of the E step likelihood

function will be maximized. The maximum lower bound of
the log likelihood function is selected in the E step, as shown
in Equation (2),

θ = argmax
θ

∑
i

∑(i)

z
Qi
(
z(i)
)
log

p
(
z(i)|x(i); θ

)
Qi
(
z(i)
) (2)

The new expected value will be obtained by executing
repeatedly E step and M step until convergence. The new
expected value will be used to complete missing values.

3) NORMALIZING THE DATA SET
The value ranges of different components of air quality data
vary greatly because of differences of their measurement
units. The data should be normalized to eliminate the influ-
ences of different numerical ranges. Normalization of data set
can also speed training up and improve prediction accuracy.

The normalization processing of the original sample data
is shown in Equation (3). Where, X is the original data, Xmin
represents the minimum value in the original data, and Xmax
represents the maximum value in the original data.

X ′ =
X − Xmin

Xmax − Xmin
(3)

Each component in the processed data set will be dis-
tributed in the interval [0, 1]. The normalized data set is
divided into training data set and test data set at a ratio of 8:2.

B. SINGLE-FACTOR PREDICTION MODEL BASED ON LSTM
The structure of a single-factor prediction model includes an
input layer, hidden layers and an output layer. Each historical
concentration data of the six pollutants, PM2.5, PM10, NO2,
CO, O3, SO2, can be used as the inputs of the model. The
structure of the hidden layer is a Seq2Seq module including
encoding and decoding parts. The output of the model is the
corresponding prediction values of the pollutants in the input
data. The structure of single-factor prediction model can be
described as Fig. 4.

FIGURE 4. Structure of single-factor prediction model.

In terms of time dimension, air quality data sequence can
be divided into trend, periodicities and residual items. Our
selected periodicities include daily, weekly, monthly, quar-
terly and yearly period. Time features are related to cycles,
for example, 23 o’clock and 0 o’clock should be adjacent in
terms of value. Cos or Sin function can be used to encode
them, as shown in Equation (4).

vhour = cos
(
2 ∗ pi ∗

hour
24

)
(4)

Taking PM2.5 data prediction as an example, the dimen-
sion of the input layer is t∗1, where t represents the number of
selected historical data in the input of the model. The number
of input data in the model can be shown in Equation (5).

ninput = 24+ 6 ∗ x (5)

Among them, 24 means that the input data of the single-
factor model contains historical data of 24 hours before the
current moment; x means that it also contains x hours one day
ago, x hours two days ago, x hours one week ago, x hours a
month ago, x hours a quarter ago, and x hours a year ago.

The hidden layer adopts the Seq2Seq module and uses the
encoder-decoder structure. Both of the encoder and decoder
are a structure consisting of multi-layered LSTM units. The
encoder of the single-factor model consists of two layers
of RNN, and each layer is equipped with 64 LSTM neural
units. For a given sequence x = {x1, x2, . . . , xt }, the specific
formula for the encoder is shown as Equation (6),

ht = f
(
h(t−1), xt

)
(6)
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where, t is the current time, ht is the hidden state at time t ,
and f is the LSTM encoder.
After encoding, the context vector c, obtained by combin-

ing all ht , can be used to express important features of the
input data.

The decoder consists of two layers of RNN, and each layer
is equipped with 64 LSTM units. The specific formula of the
decoding part is shown as Equation (7),

ht = f
(
h(t−1), y(t−1), c

)
p
(
yt |y(t−1), y(t−2), . . . , y1, c

)
= g

(
ht , y(t−1), c

)
(7)

where, ht is the output of the encoder, c is the context vector
produced in the encoder, f () and g() are non-linear activation
functions of LSTM units.

The dimension of the output layer is 1 ∗ k , where k repre-
sents the model can produce the air quality prediction results
from 1 hour to k hours in the future.

The training parameter settings of the model are shown
in Table 1.

TABLE 1. The training parameter settings of the single-factor model.

C. MULTI-FACTOR PREDICTION MODEL BASED ON LSTM
WITH ATTENTION MECHANISM
In terms of spatial dimension, there is a data correlation
between each monitoring station and its surrounding stations.
In addition, air quality data will be affected by weather fac-
tors. A multi-factor forecasting model is established based on
LSTMwith attentionmechanism. The input data of themodel
include the air quality data of the current station and the
neighboring stations, as well as meteorological data. The hid-
den layer structure consists of Seq2Seq modules with atten-
tion mechanism. The Seq2Seq module is an encoder-decoder
structure. Two attention mechanisms are added before the
encoder and decoder respectively. The output data are the
predicted values of air quality data.

The structure of multi-factor prediction model can be
described as Fig. 5.

For the given sequence xk =
(
xk1 , x

k
2 , . . . , x

k
T

)
, the

encoder part constructs a feed forward neural network
with an attention mechanism. The specific formula is

FIGURE 5. Architecture of multi-factor prediction model.

shown as Equation (8),

ekt = ve tanh
(
we
[
h(t−1); s(t−1)

]
+ uexk

)
(8)

where, h(t−1) and s(t−1) are the hidden state and neuron
state of the previous section, and we and ue are the learning
parameters. Softmax function is used to ensure that the sum
of the weights akt is equal to 1. The calculation method of the
weight akt of e

k
t is shown as in Equation (9),

akt =
exp

(
ekt
)∑n

i=1 xp
(
eit
) (9)

where, akt is the attention weight of the k sequence at
time t . According to these attention weights, a new sequence
with attention weights can be calculated, as shown in
Equation (10).

x̃t =
(
a1t x

1
t , a

2
t x

2
t , . . . , a

n
t x

n
t

)
(10)

The next multi-layer LSTM network is used for encoding,
whose encoding method is shown as Equation (11).

ht = f
(
h(t−1), x̃t

)
(11)

where, f is the LSTM unit, x̃t is the new sequence with
attention weights, and ht is the hidden state at time t .

For the state ht obtained after encoding, an attention mech-
anism is added, as shown in Equation (12),

λit = vd tanh
(
w
[
d(t−1); s(t−1)

]
+ udhi

)
(12)

where, λit is the weight of the k sequence at time t , d(t−1) and
s(t−1) are the hidden state and neuron state of the previous
section, and w and ud are the learning parameters. Softmax
function is used to ensure that the sum of all the weights of
λit is equal to 1. The calculation method for the weight β it of
λit is shown as in the Equation (13),

β it =
exp

(
λit
)

∑T
j=1 xp

(
λ
j
t

) (13)

where, β it is the weight of the encoder output state at time i.
The weighted sum of the attention weight and the hidden state
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of the encoder is used as the context vector, and its calculation
method is shown as in Equation (14),

ct =
∑T

i=1
β ithi (14)

where, ct is the context vector, {h1, h2, . . . hT } is the hidden
state of the encoder, and β it is the attention weight.
In the decoder, the context vector ct is combined with a tar-

get sequence (y1, y2, . . . , yT−1), as shown in Equation (15),

ỹ(t−1) = w̃
[
y(t−1); c(t−1)

]
+ b̃ (15)

where, w̃ and b̃ are related to the size of the decoder input,
ỹ(t−1) is the new decoder state. Through the LSTM unit,
the decoder state ỹ(t−1) can be converted into the final output,
as shown in Equation (16),

dt = g
(
d(t−1), ỹ(t−1)

)
(16)

where, g is the LSTM unit, and dt is the final output.
The training parameter settings of the multi-factor predic-

tion model are shown in Table 2.

TABLE 2. The training parameter settings of the multi-factor prediction
model.

D. DUAL MODEL INTEGRATION USING XGBoost
Themain reason we chose the XGBoost includes two aspects.
One is the characteristics of air quality data, which is a type of
data set with complex and various characteristics. The other is
that XGBoost can integratemultiple types ofmodels, which is
consistent with our needs. XGBoost improves the accuracy of
prediction results by adding trees one by one. In XGBoosting
tree, each addition of subtrees will improve accuracy of the
prediction results, and finally the most accurate prediction
results are obtained.

XGBoost integrates multiple trees into a strong classifier.
The feature with the largest information gain is selected as
the split point. The feature is split by continuously adding
trees. Each leaf node of the subtree is assigned a weight value.
In each round of training, the weight value of each leaf node
is adjusted according to the objective function. After multiple
iterations, the optimal subtree is achieved. Each leaf node in
the optimal subtree corresponds to a predicted value.

The CART (Classification and Regression Tree) is the
base learner of XGBoost. But the output results of CART
tree and XGBoosting tree are generated with different ways.
Each output value of XGBoosting tree is a weighted sum
generated by a function, while each output result in the CART
regression tree is the mean value of all sample points of the
leaf node.

The input data of the integration process include the results
of the single-factor model, the results of the multi-factor
model and current weather data. Specifically, the input data
of XGBoost regression are xi = {pi, zi, g}, where p are the
results of the single-factor model, z are the results of the
multi-factor model, and g are the meteorological data at cur-
rent moment. Meteorological data are used to flexibly adjust
the weight of the air quality data to obtain accurate prediction
values. For a given air quality data sample {xi, yi}ni=1}, the pro-
cess of completing the sequence prediction with XGBoost
regression is as follows.

If there are k trees in XGBoost as in Equation (17),

ŷi =
k∑
i=1

fk (xi), fkεF (17)

where, F represents all the function space in the regression
forecast, ŷi is the predicted value of the model, and fk (xi)
represents the weight value of the ith sample in the k th tree
leaf. The structure of each tree and the weight of each leaf,
fk of each subtree, are what needs to be solved during the
training process.

The structure of each tree and the weight of each leaf need
to be solved by the objective function obj(2). For the param-
eter {2 = f1, f2, . . . fk}, the objective function is composed
of an error function and a penalty function, and its formula is
as Equation (18),

obj (2) = L (2)+�(2) (18)

where, L (2) is the error function used to express the differ-
ences between the fitted value and the actual data, and �(2)
is the regularization term used to punish complex models.

During the training process, each tree will accumulate
until it stops at k trees. The training process is shown in
Equation (19),

ŷ(0)i = 0

ŷ(1)i = ŷ(0)i + f1 (xi) = f1 (xi)

ŷ(2)i = ŷ(1)i + f2 (xi) = f1 (xi)+ f2 (xi)
...

ŷ(t)i = ŷ(t−1)i + ft (xi) =
t∑

k=1

fk (xi) (19)

where, t represents the t th round of model training, and ŷ(t)i
represents the predicted value of xi after the ith round. The
error during training is shown in Equation (20),

L (2)=
∑n

i=1
l
(
yi, ŷi

)
=

∑n

i=1
l
(
yi,
∑t

k=1
fk (xi)

)
(20)
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where, l() represents the loss function which commonly is
square loss or logistic loss, yi is the labeled data, and ŷi is the
predicted data.

Each subtree of the XGBoost tree is established as
Equation (21). Data features are mapped to the leaf nodes of
each subtree.

ft (x) = wq(x),wεRT , q : Rd → {1, 2, . . . ,T } (21)

where, ft (x) represents the node prediction value of each
subtree,w represents the weight value of the leaf, q represents
the structure of the tree, T represents the number of leaves of
the tree, and Rd represents the data set where the number of
features is d .
The objective function can be used to evaluate the model,

but it cannot avoid the phenomenon of overfitting. In order
to reduce the model bias caused by data noise, penalty terms
are added during training. The penalty term during training is
shown in Equation (22),

�(2) =
∑t

k=1
�(fk ) (22)

After training, the subtree will be updated according to the
optimal value of the objective function. The leaf node of each
subtree, which represents a predicted value, will be adjusted.
The prediction results of air quality can be obtained finally
by accumulating the predicted value of each subtree.

We have implemented the XGBoost regression using
Python and XGBoost library. The parameters and their train-
ing settings of the regression are shown in Table 3.

TABLE 3. The training parameter settings of the XGBoost regression.

Where, Subsample is used to control the proportion of
each tree randomly adopted. When its value is set to a
smaller value, the regression may be more conservative and
may reduce overfitting.Gamma represents the minimum loss
function drop value required for node splitting. The larger the
value is, the more conservative the model is.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We have implemented detailed experiments to verify our
proposed method. The experimental results show that our
method has higher prediction accuracy than other methods.

A. EXPERIMENTAL ENVIRONMENT
We adopted the GPU version of TensorFlow as our experi-
mental environment. Some other development tools, such as
python, numpy, scikit-learn and XGBoost library, are used in
our experiments. The detailed hardware configurations and
software versions are shown in Table 4.

TABLE 4. The detailed hardware configurations and software versions.

B. EXAMPLE OF PREDICTION RESULTS
Based on our proposed prediction method, the comparison
between the prediction results and the actual values for
PM2.5 data are shown in Fig. 6. It can be seen from the
figure that the method can obtain prediction results that are
very similar to the actual values.

At the same time, for the PM10 data, the comparison
between the prediction results and the actual values are
shown in Fig 7, which can draw an approximate conclu-
sion that the proposed method has a satisfying prediction
accuracy.

C. EVALUATION METHOD OF EXPERIMENTAL RESULTS
Five evaluation methods, RMSE (Root Mean Square Error),
MAE (Mean Absolute Error), MAPE (Mean Absolute Per-
centage Error), R-square and IA (Index of Agreement), were
used to evaluate and analyze the final prediction results of our
proposed model.

RMSE is the square root of the ratio of the square of the
deviation between the predicted value and the true value. It is
more sensitive to outliers in the data. RMSE is used as an
evaluation index, whose calculation method is shown in the
Equation (23),

RMSE =

√∑n
i=1

(
yi − ŷi

)2
n

(23)

where, yi represents the true value, ŷi represents the predicted
value, and n represents the number of true values. The smaller
RMSE value is, the stronger the model’s ability to fit experi-
mental data is.

MAE is mainly to better reflect the actual situation
of the predicted value error, whose calculation method is
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FIGURE 6. Comparison between the prediction results and the actual values for PM2.5 data.

FIGURE 7. Comparison between the prediction results and the actual values for PM10 data.

shown in Equation (24),

MAE =
1
n

∑n

i=1

∣∣yi − ŷi∣∣ (24)

where, yi represents the true value, ŷ represents the predicted
value, and n represents the number of true values.

MAPE is usually used to compare predictions of different
proportions. Its calculationmethod is shown in Equation (25),

MAPE =
100%
n

∑n

i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (25)

where, yi represents the true value, ŷi represents the pre-
dicted value, and n represents the number of true values.
The advantage of MAPE is that it provides a benchmark for
comparison. The lower the result of MAPE is, the better the
model is. When the predicted ŷ is exactly the same as the
real y, the minimum of MAPE value is 0.
R-square is an important statistic reflecting the goodness

of fit of the model. It is used as the evaluation index of

regression analysis, whose calculation method is shown in
Equation (26),

R2 = 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳi)

2 (26)

where, yi represents the true value, ŷi represents the predicted
value, ȳi represents the average value of yi, and n represents
the number of true values. The larger R-square is, the better
the fitted regression model is.

IA is a dimensionless and bounded metric index which is
commonly used to evaluate the average loss of the predicted
values of the model. Its calculation method is shown in
Equation (27),

IA = 1−

∑n
i=1 (yi − Yi)

2∑n
i=1

(∣∣yi − Ȳi∣∣+ ∣∣Yi − Ȳi∣∣)2 (27)

where, yi is the true value, Yi is the predicted value, Ȳi
represents the average value of Yi. The bigger IA value is,
the better the consistency of the model is.
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TABLE 5. Comparison of RMSE error of multi-factor model under input and output sequence of various lengths.

TABLE 6. Comparison of the prediction error based on various models.

D. PREDICTION ACCURACY CAUSED BY INPUT DATA OF
VARIOUS LENGTHS
In Seq2Seq, the length of the input sequence will affect the
expressive ability of the model, thereby affecting the predic-
tion accuracy of the model.

Figure 8 shows the comparison of RMSE error of
multi-factor model under input and output sequence of var-
ious lengths. The detailed data of Fig. 8 are descripted
in Table 5. It can be seen from the table and figure that when
the input sequence length is 48 (x = 4), the model will have
the smallest error range.

FIGURE 8. Comparison of RMSE error of multi-factor model under input
and output sequence of various lengths.

E. COMPARISON BETWEEN OUR METHOD AND OTHER
METHODS
We implemented our proposed integrated dual LSTM model
method. Table 6 compares the error conditions of the

prediction results of various models, including SVR (Support
Vector Regression), Ridge Regression, pure XGBoost model,
SLSTM [31], NLSTM [32], single-factor prediction model,
multi-factor prediction model and our integrated dual LSTM
model in this article.

Table 6 uses five evaluation indicators, RMSE, MAE,
MAPE, R-square and IA, to evaluate the methods. The
scores in the table are obtained when the length of the input
sequences is 48 and the output is 1 hour. It can be seen from
the table that our proposed prediction method can obtain less
RMSE and MAE errors, and better performances in terms of
error and expressiveness of the model.

V. CONCLUSION AND FUTURE WORK
In order to improve the accuracy of air quality data prediction,
we proposed a prediction model based on integrated dual
LSTM model method. The realization process and effect of
the integrated model can be described as follows. Firstly,
a single-factor prediction model is established to predict each
component of air quality data. Then, a multi-factor prediction
model is established to predict the data of the current station
by combining the historical data of the current station and
surrounding stations, as well as meteorological data. Next,
XGBoost regression is adopted to build the optimal boost
tree, in which the best prediction results can be obtained
by combining the single-factor model and the multi-factor
model.

The method in this paper combined two models, which
were established in two dimensions of time and space,
to obtain the best prediction results. First, the single-factor
model for each factor was established in the time dimen-
sion. Single factors, like PM2.5, are used as the input
of single-factor models. The forecast results are obtained
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by using the characteristics in the time dimension. Then,
the multi-factor model is established in the spatial dimension.
Multiple factors, such as data from the current station and
surrounding stations, as well as weather data, are selected
as the input of the multi-factor model together. The pre-
diction results are obtained according to the spatial charac-
ters. Finally, the XGBoosting tree takes the output of the
single-factor time model and the multi-factor spatial model
as input. The optimized predicted value is obtained by cal-
culating the weight of each leaf node and accumulating its
predicted value. Based on evaluating the experimental results
using five evaluation indicators, the method proposed in this
paper can obtain prediction results with higher accuracy.

In the future work, the next step of the research is to expand
the range of application of the integrated dual LSTM model
method to improve the accuracy of various data prediction
due to the integration of the advantages of multiple models.
In addition, we have found some prediction results with
outlier values, although there are very small probabilities in
the results of our model. The analysis of this kind of outlier
value is one of the problems that need to be solved in the next
step of this article.
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