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ABSTRACT Fault diagnosis for a multiprocessor system is a process of identifying the faulty nodes in the
system and is an important issue on the reliability of the system. As to the problem that there are few effective
algorithms to diagnose faulty nodes in a given star network system in the literature, this paper proposes a
precise fault diagnosis algorithm to identify faulty nodes in a star network system with a given syndrome
under the comparison model. Such an algorithm contains three main parts. In the first part, we present an
algorithm called Partition-Cycle for partitioning a cycle into sequences based on a given syndrome of the
cycle. In the second part, we introduce an algorithm called Digout to diagnose these cycle sequences obtained
the first part, which can diagnose each node in the cycle to be faulty or fault-free or unknown. In the third part,
we design a diagnosis algorithm called Star-Digout to diagnose faulty nodes in an n-dimensional (n > 6) star
networks, which is proved to contain a cycle that contains all nodes in the network and is not the same two
nodes. Our theoretical analysis shows the time complexity of the diagnosis algorithm isO(n!). Our simulation
results show that our algorithm is a precise diagnosis algorithm for a star network system.

INDEX TERMS Fault diagnosis, star network, Hamiltonian cycle, the comparison model, multiprocessor
system.

I. INTRODUCTION
W ith the rapid development of semiconductor technology,
multiprocessor systems can contain hundreds and thousands
of nodes. To ensure the reliability, the system should have
ability to identify the faulty node and repair or replace it
with a fault-free one. The process of identifying faulty nodes
is called diagnosis of the system. The maximum number of
faulty nodes in a system that the system can guarantee to
identify is called the diagnosability of the system.

For a given multiprocessor system S, its interconnection
network is usually abstracted as a graph G = (V ,E), where a
vertex of G denotes a processor in S, for two vertex u, v ∈ V ,
(u, v) ∈ E implies that their corresponding processors can
communication each other. The choice of network topology
is very important to the performance of a multiprocessor
system. For example, a smaller diameter interconnection net-
work is expected to cause less delay when a message is sent
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between two different processors. Due to its small diameter,
high degree of fault-tolerance, low node degree and recursive,
and structure symmetry, permutation star graphs have been
proposed to model the interconnection network of multipro-
cessor systems and have been widely studied. [1] investigated
several topological properties of the n-dimensional star graph
Sn. In [2], the authors presented some novel structure prop-
erties and conditional diagnosability for star graphs under the
PMC model. In 1996, Battayeb et al. studied the problem of
embedding star networks into hypercube networks [3].

So far, there are two fault diagnosis approaches for the
problem of locating faulty processors in a network system.
One is system-level diagnosis, another is logical-circuit-level
diagnosis. For interconnection networks in multiproces-
sor systems, since there exists large number of proces-
sors, to locate faulty processors in such interconnection
networks, one trends to use system-level diagnosis rather
than logical-circuit-level diagnosis (see [4]). To diagnose
faulty processors, it is necessary to perform some test for
diagnosed network systems and to obtain corresponding
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test results. For different system-level diagnosis models, their
test assumption and the definition of their test results may
be different. Over past years, two system-level diagnosis
models, Preparata, Metze, and Chien’s model (in brief, PMC
model [5]) and the comparison model [6], were widely inves-
tigated and applied. The PMC model is the first system-level
diagnosis model proposed by Preparata et al. [5]. In the PMC
model, after node u sends a test task to node v, node v replies
with a response message to node u. If the response is correct,
then the result of node u testing node v is 0, denoted as
σ (u, v) = 0; otherwise, the result of node u testing node
v is 1, denoted as σ (u, v) = 1. The set of all test results
for a test is called a syndrome. The comparison model is
introduced by Sengupta and Dahbura [6]. In the comparison
model, a comparator node k compares the outputs produced
by two nodes i and j in response to the same input and task
sent by k . If the output of node i is the same as that of
node j, then the comparison result is 0, denoted by ω(k :
i, j) = 0; otherwise, the comparison result is 1, denoted by
ω(k : i, j) = 1. A syndrome ω in a test for the comparison
model consists of all comparison results in the test. Sengupta
and Dahbura [6] pointed out that the PMC model is a special
case of the comparisonmodel. In other words, the comparison
model is more universal than the PMCmodel in terms of fault
diagnosis approach.

To the best our knowledge, there are a few algorithms
for the problem of fault diagnosis in interconnection net-
works under the PMC model in the existing literature. Chwa
and Hakimi [7] proposed a fault diagnosis algorithm for
asymmetric modular architectures under the PMC model.
Dahbura and Masson [8] introduced a fault diagnosis algo-
rithm with time complexity O(N 2.5) for diagnosable inter-
connection networks under the PMC model. These two
algorithms cannot be used to diagnose the faulty nodes
in interconnection networks under the comparison model.
Ye et al. [9] proposed a pessimistic diagnosis algorithm for
an n-dimensional hypercube under the comparison model,
which costs O(n2n) time and cannot be used to deter-
mine the faulty nodes in a star network. They proposed a
five-round fault diagnosis algorithm for identifying the faulty
nodes in a Hamiltonian network under the PMC model [10],
which can achieve almost complete diagnosis for a given
Hamiltonian network with at least 4 node degree. To the
best our knowledge, there are few papers to present a pre-
cise fault diagnosis algorithm for star networks under the
comparison model.

In the paper, the problem of fault diagnosis for star net-
works under the comparisonmodel is studied.We summarize
our contributions in the paper as follows.

1. We present an algorithm to partition a given cycle into
sequences based on a given syndrome under the comparison
model. We prove that after the algorithm is finished, a given
cycle with N nodes and t fault nodes (N > 3t + 1) can be
divided sequences with the test result form as 0 · · · 01 · · · 10,
which can easily be used to determine faulty nodes in its
corresponding sequence.

2. We introduce some important properties for sequences
obtained by partitioning a cycle with N nodes and t fault
nodes (N > 3t + 1). Using these properties, we present
and prove that the upper bound of t is b

√
18+ 2N − 5.5c,

denoted by T such that after implementing Cycle-Partition for
a N -node cycle with t faulty nodes (N > 3t+1), a sequence,
whose first node is fault-free, is always obtained provided
that t 6 T .
3. We proposed a precise fault diagnosis algorithm for

computing faulty nodes in a star network under the compar-
ison. At first, we use an algorithm called Digout, which is
introduced by us in the paper, to diagnose the nodes in the
star network into fault-free nodes, faulty nodes and unknown
nodes. Next, for each unknown nodew, construct its n−1 dif-
ferent branch paths and check test results of each path. If there

exists a branch Qi with Tlink (Sn(w,Qi)) = 1

n︷ ︸︸ ︷
000 · · · 000, then

diagnose it to be faulty nodes. Otherwise, diagnose it to be
fault-free.

The rest of this paper is organized as follow. In section II,
relatedworks are introduced. In section III, we shall introduce
a cycle partition method to divide the Hamiltonian cycle into
sequences and derive the fault bound T . Besides, a cycle diag-
nosis algorithm is also presented. In section IV, combining the
theory of cycle diagnosis and the properties of n-dimensional
star graphs, we propose a precise diagnosis algorithm, called
Star-DigOut. Using Star-DigOut, we prove that the all faulty
nodes can be detected in O(N ) time provided the number
of faulty nodes does not exceed n − 1 for an n-dimensional
(n > 6) star graph. The simulation results of the algorithm
Star-DigOut are presented in the section V. Section VI draws
a conclusion.

II. RELATED WORK
Over the past years, the problem of fault diagnosis for
interconnection networks attracted a lot of attentions.
System-level fault diagnosis model and logic-circuit-level
fault diagnosis model are two fault diagnosis models for
the problem of computing faulty nodes in network systems.
In [11], Friedman and Simoncini pointed out that to solve
the problem of fault diagnosis for interconnection networks,
people tend to use a system-level fault diagnosis model rather
than a logic-circuit-level fault diagnosis model and provided
the explanations of related reasons. The PMC model, which
are proposed by Preparata et al. in [5], is the first system-level
fault diagnosis model. The authors introduced the concept
of one-step t-fault diagnosable system and the concept of
sequentially t-fault diagnosable system. Hakimi and Naka-
jima [12] studied the general theory on t-fault diagnosable
analog systems. In [13], Barsi et al. modified the hypothesis
of the PMC model and proposed the BGM model. Under
the BGM model, when fault-free node u tests node v, if v is
fault-free, then σ (u, v) = 0. Otherwise, σ (u, v) = 0. When
faulty node u tests node v, if v is fault free then σ (u, v) = 1
or σ (u, v) = 0. Otherwise, σ (u, v) = 1, which is different
from the corresponding test result of the PMC model that
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when a faulty node u tests a faulty node v, σ (u, v) = 1 or
σ (u, v) = 0. In 1992, Sengupta and Dahbura [6] proposed
another system-level diagnosis model called by the compari-
son model. In the comparison model, a test result ω(w : u, v)
can be obtained by a comparator node w comparing the
responses of two compared nodes u and v. If w is fault-free
and the responses of u and v are the same, then ω(w : u, v) =
0. If w is faulty, then ω(w : u, v) = 0 or ω(w : u, v) = 1
whether their response is the same or not. Overs the past
years, in the literature, there are few papers for the problem of
fault diagnosis in interconnection networks under the BGM
model.

As a key measure of diagnostic capability, diagnosability
is widely studied in the literature. Many results have been
obtained for the diagnosabilities of interconnection networks.
In [14], Hakimi and T introduced the characterization of con-
nection assignment for diagnosable interconnection network
under the PMC. Using this characterization, they proved that
both the diagnosability of n-dimensional hypercube network
Qn and the diagnosability of n-dimensional star network Sn
are (n−1). To compute the t/k-diagnosability ofQn under the
PMC model, Somani and Peleg [15] introduced the concept
of t/k-diagnosable system. Next, they proposed a sufficient
condition and a necessary condition for testing whether a
system is t/k-diagnosable or not. Using these two conditions,
they proved that Qn is T/k-diagnosable for T = (k + 1)n −
(k+1)(k+2)

2 + 1, where k 6 n and n > 4. In [16], Lai et al.
studied the problem of conditional diagnosability measures
under the PMC model. They thought that the probability that
all neighbor nodes are faulty in a real large-scale system
is very small. To this end, they introduced the concept of
conditionally t-diagnosable system and proved that the con-
ditional diagnosability of Qn is 4(n − 2) + 1 for n > 5,
3 for n = 3 and 7 for n = 4. Furthermore, in [17], the
authors investigated the relationship between two of classical
diagnosability, strong diagnosability and conditional diag-
nosability for strong networks. They proved that for a strong
network G is strongly t-diagnosable if and only if its con-
ditional diagnosability is more than or equal to its classical
diagnosability under the comparisonmodel. They also proved
that a regular strong network G is strongly t-diagnosable if
and only if its conditional diagnosability is more than or equal
to its classical diagnosability under the PMC model. Other
results on diagnosabilities for interconnection networks can
be found in [18]–[29].

Fault diagnosis algorithms are very important for the prob-
lem of fault diagnosis in interconnection networks. Over
years, a few fault diagnosis algorithms have been obtained.
In [30], the authors presented an algorithm for the system
with Dδ,t testing interconnection assignments, which is a
system G = (V ,E) with V = {v1, v2, · · · , vn} and E =
{(vi, vj)|j − i = δm(modulo n), 1 6 m 6 t}, under
the PMC. By modifying the hypothesis of the algorithm in
[30], Dahbura and Masson [8] proposed a fault diagnosis
algorithm for the system with Dδ, t testing interconnection

assignments. They claimed their algorithm can be applied
under both of the PMC model and the BGMmodel. In 1984,
Dahbura and Masson [8] introduced an algorithm with time
complexity O(N 2.5) for the problem of fault diagnosis in
interconnection networks under the PMC model, which is
not suitable to be used diagnose the faulty nodes in inter-
connection networks under the comparison model. In 2012,
Lai [31] proposed an system-level fault diagnosis algorithm
for computing the faulty nodes in a hypercube network under
the comparison model. Tsai [32] introduced a pessimistic
diagnosis algorithm for hypercube-like networks under PMC
model. Recent, Ye et al. [9] also proposed a pessimistic diag-
nosis algorithm for hypercube-like networks under the com-
parison model, which is different from the PMC model used
in [32]. They proved that the time complexity is O(n2n).
In [1], Ye and Hiesh presented a fault diagnosis algorithm
for hypercube-like networks. They proved that their algo-
rithm needs to cost O(n22n) time, which is much bigger than
O(n2n), the time complexity of the algorithm in [9].

III. THE HAMILTONIAN CYCLE DIAGNOSIS METHOD
It is known that a multiprocessor system can be modeled as
a graph G(V ,E), where V denotes the set of all nodes in the
system and E denotes the connection relationship between
each pair of nodes, for u, v ∈ V , (u, v) ∈ E if and only if
node u can send messages to node v.

In the comparison model, it is necessary that some assump-
tions are made [6], which are described as follows.

1. All faulty nodes are permanent;
2. For each faulty node and each it’s given task, it’s output

is incorrect;
3. The outcome of a comparison performed by a faulty

node is unreliable;
4. Any two faulty nodes, when they are sent the same inputs

and task, do not generate the same output.
In the comparison model, node k ∈ V is a comparator

for node i ∈ V and j ∈ V if and only if (i, k) ∈ E and
(j, k) ∈ E . We use ω(k : i, j) to represent the test result of
comparator k testing nodes i and j. According to definition
of the comparison model [6], when a comparator k compares
the outputs generated by i and j, if these two output is not the
same, then the comparison result ω(k : i, j) = 1, whereas if
these two outputs are the same, then the comparison result
ω(k : i, j) = 0. Figure 1 shows the possible comparison
results for different conditions of three nodes in the compar-
ison model. The collection of all comparison results is called
a syndrome, denoted by ω.

A. CYCLE-PARTITION METHOD
AHamiltonian path is a path in a system that visits each node
exactly once. A Hamiltonian cycle is a Hamiltonian path that
is a cycle. In the discussion on the Cycle-Partition method
proposed by the section, some properties of Hamiltonian
cycle under the comparison model are necessary, which are
introduced as follows.
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FIGURE 1. Invalidation Rule of the Comparison Model.

Lemma 1: Suppose that there are N nodes and t
faulty nodes in a system with a Hamiltonian cycle. Let
u1, u2, · · · , un denote these N nodes in a clockwise direction
in the Hamiltonian cycle. If N > 3t+1, then there exist three
nodes ui−1, ui and ui+1 such that ω(ui : ui−1, ui+1) = 0 in the
Hamiltonian cycle.

Proof: Since there are at most t faulty nodes in the
Hamiltonian cycle and this Hamiltonian cycle consists of at
least 3t+1 nodes, theremust exist three consecutive fault-free
nodes ui,uj,uk such that ω(uj : ui, uk ) = 0.
In the following, to partition the Hamiltonian cycle with N
nodes and t faulty nodes into sequences under the com-
parison model, an algorithm called Cycle-Partition is intro-
duced. A detail description for this algorithm can be found in
Algorithm 1.

Algorithm 1 Algorithm of Cycle-Partition
1: Choose a test result 0 following a test result 1 in clock-

wise direction.
2: Proceed inspecting the following test result in clockwise

direction. If the test result is 0, perform step 2 on the
following test results. Otherwise, markP for the node and
go to step 3.

3: Proceed inspecting the following test result in clockwise
direction. If the test result is 1, perform step 3 on the
following test results. If the node was not previously
marked and its test result is 0, mark X for the node and
go to step 2. If the test result was previously marked, then
the algorithm terminates.

Remark: in Step 1 of Algorithm 1, in the considered Hamil-
tonian cycle, the existence of a 0 is guaranteed by Lemma 1;
the existence of a 1 is assured for the number of the faulty
nodes in the Hamiltonian cycle is between 1 and t .
After finishing Algorithm 1, we obtain the sequences for

the considered Hamiltonian cycle according to the following
rules:

FIGURE 2. A Hamiltonian cycle of 12 nodes.

1) Each sequence of the Hamiltonian cycle consists of
nodes comprised between two successive X-marked nodes
and their connecting links in clockwise direction.

2)The first node marked with X in one sequence is the last
node of the following sequence in clockwise direction.

For the sake of understanding the result after Algorithm 1,
we consider an example shown in Figure 2, where the gray
nodes are faulty nodes and the white nodes are fault-free
nodes.

According to Cycle-Partition, for the Hamiltonian cycle
with 12 nodes, the results for the nodes marked with X or
P can be shown in Figure 2 and the obtained sequences of
the Hamiltonian cycle are as follows, which can visually be
shown in Figure 3.

Sequence 1: 1, 2, 3, 4;
Test results of sequence 1: 0010.
Sequence 2: 4, 5, 6;
Test results of sequence 2: 010.
Sequence 3: 6, 7, 8;
Test results of sequence 3: 010.
Sequence 4: 8, 9, 10, 11, 0, 1;
Test results of sequence 4: 011110.
According to Cycle-Partition, we can easily obtain

some useful properties about the sequences generated by
Cycle-Partition for a Hamiltonian cycle with N nodes and t
faulty nodes (N > 3t+1), which are summarized as follows:
Property 1: The test result of a sequence is always of the

form: 0 · · · 01 · · · 10, and if a sequence consists of three nodes
and their connecting links, then the test result of the sequence
must be 010.
Property 2: Every sequence contains at least one faulty

node.
Property 3: If a Hamiltonian cycle with N nodes and t

faulty nodes (N > 3t + 1) is divided into s sequences by
Cycle-Partition, then 2t > s.
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FIGURE 3. The sequences of a 12-nodes Hamiltonian cycle divided by
Cycle-Partition.

Lemma 2: If a sequence consists of x + 1 test results
of 0 and y test results of 1, then following two conditions hold:

i) In the sequence, if the first node is fault-free, then the
first x + 1 consecutive nodes are fault-free and the (x + 2)th
node is faulty.

ii)In the sequence, if the first node is faulty, then the first x
consecutive nodes are faulty.

The proof of Lemma 2 is easily obtained by the definition
of the comparison model and is omitted.
Lemma 3: Suppose a sequence consists of x+1 test results

of 0 and y test results of 1, if the first node of the sequence is
faulty, then there must exist at least x+b y+13 c faulty nodes in
the sequence.

Proof: According to Lemma 2, we have that the first
x consecutive nodes of the sequence are faulty. Consider the
remaining y+ 1 nodes in the sequence:

Case 1 y = 1, it is obvious that Lemma 3 holds;
Case 2 y > 2. In this case, according to the rule of the test

result under the comparison model and Property 1, we obtain
that there must exist at least one faulty in every continuous
three nodes in the remaining y + 1 nodes of the sequence.
Otherwise it would contradict to. Hence there are at least
b
y+1
3 c faulty nodes in the last y+1 consecutive nodes. Above

all, the result of Lemma 3 is true.
Let t be the number of faulty nodes in an N -node ring with

N > 3t + 1 and s be the number of sequences generated
by Cycle-Partition for the N -node ring. Suppose that the ith
sequence consists of xi + 1 test results of 0 and yi test results
of 1, let Si = xi + b

yi+1
3 c and Smax = max{Si, 1 6 i 6 s}.

Lemma 4: For the ith sequence, if Si > t−b s−12 c+1, then
its first node is fault-free.

Proof: Let Fj be the set of faulty nodes in the jth
sequence. To the contrary, assume the first node of the ith
sequence is faulty. According to Lemma 3, we have that
|Fi| > Si = xi + b

yi+1
3 c. Consider the remaining s − 1

sequences. Note that |Fj| > 1 and there is at most one
common faulty node shared by the jth sequence and the
(j+1)th sequence, it can be obtained that |Fj∩Fj+1| 6 1(j 6= i

and j 6= i−1). Since the first node of the ith sequence is faulty,
then the last node of the (i − 1)th sequence must be faulty.
Thus, there exist at least b s−12 c faulty nodes in remaining s−1
sequences, which implies that |F1∪F2 · · ·∪Fi−1∪Fi+1 · · ·∪
Fs − Fi| > b s−12 c. Then t = |F | = |F1 ∪ F2 ∪ · · · ∪ Fi−1 ∪
Fi+1∪· · ·Fs−Fi|+|Fi| > xi+b

yi+1
3 c+b

s−1
2 c = Si+b s−12 c,

a contradiction to the assumption that Si > t − b s−12 c + 1.
For a given Hamiltonian cycle with the different distribu-

tion of faulty nodes, the results generated by our algorithm
may be different. For a Hamiltonian cycle with N nodes
and t faulty nodes (N > 3t + 1), assume that it has m
different distributions of faulty nodes. Let R(j, Smax) denote
the Smax of the jth distribution(1 6 j 6 m) and Rmin =
min{R(j, Smax), 1 6 j 6 m}. According to Lemma 4, if the
following inequality is true, then there must exist a sequence
satisfying that its first node is fault-free.

t − b
s− 1
2
c + 1 6 Rmin (1)

Next, we discuss the upper bound of t , denoted by T , such
that after implementing Cycle-Partition for a N -node cycle
with t faulty nodes ( N > 3t + 1), there always exists a
sequence with fault-free first node provided t 6 T .
Let t ′ be the number of test results of 1, then N − t ′ is the

number of test results of 0. Consider the following cases:
Case1: N−t

′

s is not an integer :

R(j, Smax) > d
N − t ′

s
e + b

b
t ′
s + 1c

3
c. (2)

Case2: N−t
′

s is an integer :

R(j, Smax) > d
N − t ′

s
e + b

d
t ′
s + 1e

3
c. (3)

Note that the right side of the above inequalities (2) and (3)
decreases as t ′ increases. Since a Hamiltonian cycle with T
faulty nodes have at most 3T test results of 1, when t ′ = 3T ,
the right sides of the above inequalities get the minimum.
In order to obtain the upper bound T , we let

Rmin = d
N − 3T

s
e + b

b
3T
s + 1c

3
c (4)

According to (1) and (4), we can get the following
inequality.

T − b
s− 1
2
c + 1 6 d

N − 3T
s
e + b

b
3T
s + 1c

3
c. (5)

After transposition, (5) is as follows:

T − d
N − 3T

s
e − b

b
3T
s + 1c

3
c 6 b

s− 1
2
c − 1. (6)

It is very difficult to obtain the solution of (6), but we can
consider the solution of the following inequality:

T −
N − 3T

s
−
T
s
+ 1 6

s− 1
2
− 2. (7)
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It is obvious that for independent variable T , the solution
of (7) is also that of (6). After simplifying (7), we have:

T 6
s2 − 7s+ 2N

2(s+ 2)
(8)

On the other hand, according to Cycle-Partition, we have
the following result.

2T > s (9)

For these two inequalities (8) and (9), using the method
of solving extreme value for a given function by function
derivative, we can obtain a upper bound of T as follows:

T 6
√
18+ 2N − 5.5.

Since T is an integer, the upper bound can be denoted as
b
√

18+ 2N − 5.5c. According to Lemma 4, for a Hamil-
tonian cycle with N nodes and at most T faulty nodes
(N > 3T + 1), after partitioning it by Partition-Cycle, we can
obtain a sequence, whose first node is fault-free and in which
at least one faulty node can be identified.

B. ALGORITHM OF DigOut
In the previous section, it was shown that for a Hamil-
tonian cycle with N nodes and a fault bound T =

b
√

18+ 2N − 5.5c, there always exists a sequence obtained
by Cycle-Partition such that the first node of it is fault-free
provided the number of faulty nodes in the Hamiltonian cycle
does not exceed fault bound T . In this section, we shall use
the identified nodes in this sequence to identify more nodes in
other sequences. In the section, to identify the faulty nodes in
this given Hamiltonian cycle, we present a cycle diagnosis
algorithm DigOut. See Algorithm 2 for details. After the
executing of DigOut, the nodes in the cycle will be divided
into three parts: faulty nodes, fault-free nodes and unknown
nodes.

Algorithm 2 Algorithm of DigOut
Require:

An N -node cycle with their test results and fault bound T
(N > 3T + 1).

Ensure:
The sequences and the states of all nodes: {faulty, fault-
free, unknown}.
1: Partition the cycle into sequences in clockwise
direction by Cycle-Partition.
2: For each sequence i (with xi + 1 test results 0 and yi
test results 1 ), if |Si| > T − b s−12 c + 1, then mark the
first x + 1 consecutive nodes as fault-free and the
(x + 2)th node as faulty.
3: Output the faulty nodes set, the fault-free nodes set and
the unknown nodes set.

Remark: In [10], the authors proposed a five-round diag-
nosis algorithm for Hamiltonian networks under the PMC

FIGURE 4. 4-dimensional star graph with 24 nodes.

model, which does not work for the problem of fault diag-
nosis in Hamiltonian networks under the comparison model.
As mentioned in the part of introduction, the PMC model
is only a special case of the comparison model. As a result,
this algorithm, DigOut, is better than the algorithm proposed
by [10] in some sense.

IV. A PRECISE DIAGNOSIS ALGORITHM FOR STAR
GRAPHS
A. THE PROPERTIES OF STAR GRAPH AND THE
COMPARISON MODEL
An n-dimensional star graph, denoted by Sn, is a graph with
the node set V (Sn) = {a1a2a3 · · · an|a1a2a3 · · · an is a per-
mutation of 1, 2, 3, · · · n} and the edge set E(Sn) =

{(a1a2a3 · · · an, aia2a3 · · · ai−1a1ai+1 · · · an)|2 6 i 6 n}.
There is an edge between two nodes in Sn if and only if they
can be obtained from each other by swapping the leftmost
number with one of the other n − 1 numbers. For a node
v ∈ V (Sn), we use add(v) to denote the address of the node v.
Lemma 5 [23]: In an n-dimensional star graph, there are

no odd cycles and there are even cycles with length l where
l > 6 and l 6 n!.
Definition 1: Let G = (V ,E) be a network system. For a

node v0 ∈ V , a branch path of node v0 is a path denoted by
P = v0v1v2 · · · vk , (vi, vi+1) ∈ E , 0 6 i 6 k − 1, vi 6= vj(i 6=
j, 0 6 i, j 6 k).
For the convenience of discussion, we use G(v0,P) to

denote the branch path P of node v0.
Lemma 6: For each node v of an n-dimensional (n > 5)

star graph Sn, there exist n−1 different branch paths of node v,
say Q1,Q2, · · · ,Qn−1(see Figure 5), such that the following
conditions hold.

i) Each branch pathQi(1 6 i 6 n−1) contains n+3 nodes.
ii) V (Qi) ∩ V (Qj) = {v}, where 1 6 i, j 6 n− 1 and i 6= j.
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FIGURE 5. An illustration of n− 1 different branch paths of node v in Sn.

FIGURE 6. An example of S5(v ) with add (v ) = 12345.

Proof: For each node v of an n-dimensional (n > 5) star
graph with address a1a2a3 · · · an, we introduce a method to
construct Q1,Q2, · · · ,Qn−1: Construction:
V (Qi) = {v, vi,1, vi,2, · · · , vi,n+2|where 1 6 i 6 n − 1}

and the address of node vi,1 is obtained by swapping the
first position with the (i + 1)th position from the left of the
address of node v: add(vi,1) = ai+1a2a3 · · · aia1ai+2 · · · an.
And the addresses of the other n + 1 nodes can be obtained
by executing following rules:

begin:
k = 2;

for(j = 2 : j 6 n+ 2; j++;)
{

if(k > n+ 1) then k = 2;
if(k == i+ 1) then k = k + 1;
add(vi,j) can be obtained by swapping the first posi-

tion with the kth position from the left of the address of node
vi,j−1.

k = k + 1;
}
end
According to above rules, for any two different nodes

u1, u2 ∈ V (Sn(v,Qi)) (1 6 i 6 n − 1), we claim that
add(u1) 6= add(u2). In fact, for any two nodes vi,j ∈
V (Qi), vk,l ∈ V (Qk ) where 1 6 i, k 6 n−1, 1 6 j, l 6 n+2
with i 6= k , since the (i + 1)th position of add(vi,j) is a1
and number (k + 1)th position of add(vk,l) is a1, add(vi,j) 6=
add(vk,l).
An example: 4 different branch paths of node v with

add(v) = 12345 in S4 can be shown in Figure 6.

FIGURE 7. An example of Tlink (Sn(v, Q1)).

For each branch Sn(v,Qi), let Tlink (Sn(v,Qi)) denote to a
test result link which consists of the test results of the follow-
ing nodes: vi,1, vi,2, · · · , vi,n+2. For example, Tlink (S4(v,Q1))
can be shown by Figure 7.
Lemma 7: Let n be n-dimensional (n > 5) star graph with

at most (n − 1) faulty nodes and σ be a syndrome under
the comparison model. For any node v in an n-dimensional
(n > 5) star graph Sn and its n − 1 different branch
paths Q1,Q2, · · · ,Qn−1 obtained by the construction rule of
Lemma 6, if the number of faulty nodes in Sn does not exceed
n− 1, then the following conditions hold:
i) If there exists a branch Sn(v,Qi) such that

Tlink (Sn(v,Qi)) = 1

n︷ ︸︸ ︷
000 · · · 000 ⊂ σ , where 1 6 i 6 n − 1,

then v is faulty.
ii) If there does not exist a branch Sn(v,Qi) such that

Tlink (Sn(v,Qi)) = 1

n︷ ︸︸ ︷
000 · · · 000 ⊂ σ , where 1 6 i 6 n − 1,

then v is fault-free.
Proof:

i) Without loss of generality, let Tlink (Sn(v,Q1)) =

1

n︷ ︸︸ ︷
000 · · · 000. If v1,2 is faulty, then v1,3, v1,4, · · · , v1,n+1 are

all faulty, which implies that there are at least n faulty nodes
in the star graph, which is an contradiction to the assumption.
Hence, v1,2 is fault-free, which implies that v1,1 is fault-free
and v is faulty.

ii) Assume that there is no branch Sn(v,Qi) such that

Tlink (Sn(v,Qi)) = 1

n︷ ︸︸ ︷
000 · · · 000, where 1 6 i 6 n − 1.

Consider following cases:
Case1: If there exists a branch Sn(v,Qi) such that

Tlink (Sn(v,Qi)) =

n+1︷ ︸︸ ︷
000 · · · 000,

Similar argument of condition i) can be used to prove that
each node in V (Qi) is fault-free.
Case2: The other possible cases.
There is at least one test result 1 in the Tlink (Sn(v,Qi)),

which implies there is at least one faulty node in
V (Qi)− {v}. Overall, there are at least n − 1 faulty nodes in
V (Q1) ∪ V (Q2) ∪ · · · ∪ V (Qn−1)− {v}, which implies that v
is fault-free.
Lemma 8: For a system modelled by an n-dimensional

(n > 5) star graph G = (V ,E) and a syndrome ω under
the comparison model, after Digout is used to diagnose this
system modelled by the star graphs with the syndrome ω,
there exist at most d 4n

2
+12n−15

8 e unknown nodes in the system
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provided the number of faulty nodes does not exceed (n− 1)
in the system.

Proof: According to Lemma 1, there exists a Hamil-
tonian cycle with length n!. The cycle can be divided
into sequences by Cycle-Partition. Since (n − 1) −
b
√

18+ 2 ∗ (n!) − 5.5c 6 0 for n > 5, then in these
sequences obtained by Cycle-Partition, there exists at least a
sequence such that the first node of this sequence is fault-free.
Assume that the cycle is divided into s sequences by Cycle-
Partition, then 1 6 s 6 2(n − 1)(Property 3). Let Li with
xi + 1 test results 0 and yi test results 1 be the ith (1 6 i 6 s)
sequence obtained by Cycle-Partition.

For the sake of convenience, we call the first xi nodes of Si
as the previous part of Li.
For Li, according to Lemma 7 and the assumption that the

number of nodes in the system does not exceed (n-1), we can
obtain that if xi+1+b s−12 c > n−1, then the first xi+1 nodes
are fault-free. And then, if xi + 1+ b s−12 c 6 n− 1, then the
first xi nodes of Limay be unknown. In other words, the nodes
in the previous part of Li may be diagnosed to be unknown.
On the other hand, according to above discussion, it is easily
known that there are at most s − 1 sequences such that the
nodes in their previous part may be diagnosed to be unknown.
At the same time, since there is at most (n− 1) faulty nodes,
there are at most 3(n − 1) nodes with test results 1 such that
they may be diagnosed to be unknown. Therefore, there are
at most 3(n − 1) + (s − 1)(n − 2 − b s−12 c) nodes which can
be diagnosed to be unknown. Let f (s) = (s − 1)(n − 2 −
b
s−1
2 c). Now, we discuss the maximum value of this function.

Consider the following cases:
Case 1: s = 2m, where 1 6 m 6 n− 1.
f (s) = (2m − 1)(n − 2 − b 2m−12 c) = (2m − 1)(n − 2 −

(m−1)) = (2m−1)(n−m−1) = −2m2
+(2n−1)m−(n−1).

It is easily seen that when m = 2n−1
4 , the function gets the

maximum value (2n−3)2
8 .

Case 2: s = 2m+ 1, where 0 6 m 6 n− 2.
f (s) = 2m(n − 2 − b 2m2 c) = 2m(n − 2 − m) = −2m2

+

(2n− 4)m. It is easily seen that when m = n−2
2 , the function

gets the maximum value (n−2)2
2 .

Therefore, after Digout is finished, in the considered sys-
tem, there are at most d 4n

2
+12n−15

8 e nodes that can be diag-
nosed to be unknown.

Next, we shall introduce a fast precise diagnosis algorithm,
whose time complexity isO(N ) for n-dimensional star graphs
(N = n!).

B. A DIAGNOSIS ALGORITHM FOR STAR GRAPHS
In this section, we present a precise diagnosis algorithm to
diagnose a n-dimensional (n > 5) star graph network system,
called by Star-DigOut, which can identified all faulty nodes in
the system provided the number of faulty nodes in the system
does not exceed n−1. The detail description for Star-DigOut
can be found in Algorithm 3.

Remark: According to Lemma 8, we have that after the
execution of step 1), there are at most O(n2) unknown nodes

Algorithm 3 Algorithm of Star-DigOut
Require: An n-dimensional (n > 5) star graph given by

G = (V ,E) with their test results and the fault bound
n− 1. Let T = F = U = ∅.

Ensure: The statue of all nodes: faulty or fault-free. 1:Use
Digout to diagnose the Hamiltonian cycle which belongs
to the given n-dimensional star graph. For each node v ∈
V , if v is marked with faulty, then F = F ∪ {v}. If v is
marked with fault-free, then T = T ∪ {v}. Otherwise,
U = U ∪ {v}.
2: For each node w ∈ U , use the Construction of
Lemma 2 to produce n− 1 different branch paths of
node w. Meanwhile, check each test results link:
If there exists a branch, say Qi, such that

Tlink (Sn(w,Qi)) = 1

n︷ ︸︸ ︷
000 · · · 000, then F = F ∪ {w}.

Otherwise, T = T ∪ {w}.
If |F | = n− 1, then T = T ∪ U and goto step 3).
3: Output the nodes set T ,F .

in the system. Furthermore, according to Lemma 6 and
Lemma 7, step 2) and step 3) can identify all unknown nodes
as faulty or fault-free.
Theorem 1: For an n-dimensional (n > 6) star graph with

N = n! nodes, the time complexity of algorithm Star-DigOut
is O(N ).

Proof: Step 1) needsO(N ) time. In step 2), constructing
subgraph for each unknown node and checking its test
results links needs O(n) time. And there are at most
O(n2) unknown nodes in the system, which implies that
step 2) needs O(n2) ∗ O(n) time. Step 3) needs O(1) time.
Hence the time complexity of algorithm Star-DigOut is
O(N )+ O(n3)+ O(1) = O(N ).

In the next section, some simulations are presented to show
the efficiency of the algorithm Star-DigOut.

V. SIMULATION
In this section, the performance of the algorithm Star-DigOut
is evaluated by the computer simulation. We randomly
deployed t faulty nodes in an n-dimensional star graph G =
(V ,E), where n > 5 and 1 6 t 6 n− 1, and assume that the
faulty nodes present test results 1 and 0 with probability 0.5
and 0.5, respectively.

To obtain simulation results, we first obtain a syndrome.
According to the definition of the comparison model, this
syndrome ω is a set of comparator w testing its two neighbors
u and v by comparing their responses, namely ω = {ω(w :
u, v)|w, u, v ∈ V , (w, u) ∈ E, ((w, v) ∈ E}. A syndrome ω is
a compatible syndrome with the fault set F if and only if for
any ω(w : u, v) ∈ ω, if w, u, v ∈ V −F , then ω(w : u, v) = 0,
and if w ∈ V − F and u, v∩ 6= φ, then ω(w : u, v) = 1.
After a syndrome had been generated, we checked if it was
compatible with fault set F consisting of t nodes deploy-
ing previously in n-dimensional star graph G = (V ,E).
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TABLE 1. The number of faulty nodes detected by the algorithm
Star-DigOut under the comparison model.

If not, we renounced such a syndrome. Otherwise, it was
regarded as a candidate syndrome for testing. By repeating
this procedure, we obtained all syndrome candidates for each
performance measure. For each candidate syndrome, we run
our algorithm and obtained the corresponding fault set F ,
repeating 100000 times, we took the intersection of all Fs as
the fault setF ′ determined by the candidate syndrome. At last,
we took the intersection of theseF ′s, which are determined by
these corresponding candidate syndrome, respectively, as the
simulation result.

Table 1 presents the results of our simulations. And it is
clear that the algorithm successfully identifies the all faulty
nodes in the system. The hardware and software used to per-
form the simulation are Intel Core i5-5200U CPU 2.20 GHz,
8 GB DRAM, 64-bit Windows 7 OS, and Java is used to
program the algorithm.

VI. CONCLUSION
We present a novel method to partition a Hamiltonian cycle
with N nodes and t fault nodes (N > 3t + 1) into sequences,
such that the first node of one of them is fault-free. At the
same time, we have theoretically derived a upper bound for
the number of faulty nodes t , T = b

√
18+ 2N−5.5c. Based

on th partition method and the result that any star graph has a
Hamiltonian cycle, we introduce a fast precise diagnosis algo-
rithm for an n-dimensional (n > 6) star graph under the com-
parison model, which consists of Algorithm 1, Algorithm 2
and Algorithm 3. We prove that the time complexity of this
algorithm for an n-dimensional (n > 6) star graph is O(N ),
where N = n!. Similar fault diagnosis algorithms may be
able to diagnose other network structures such as hypercubes,
exchanged hypercubes and augmented hypercubes, and will
be investigated by us in the future.
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