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ABSTRACT In grid-tied power converters, the grid parameters such as the frequency, phase angle of the
fundamental component, and the harmonics are essential to the control of power converters, the fast and
accurate estimation of the grid parameters is a challenge especially for high-order harmonics. This paper
proposes a one-step-prediction (OSP) discrete observer (OSPDO) to observe the fundamental and harmonic
sequence components of the grid voltage. Based on the proposed OSPDO, a frequency locked loop (FLL)
is designed. The proposed OSPDO-FLL has a good robustness to sampling frequency on dynamic response
and high precision for frequency estimation. The proposed algorithm can estimate up to maximum 50th
harmonic with a low sampling frequency thanks to the robust properties. Finally, the good characteristics of
the proposed synchronization algorithm are verified by simulations and laboratory experiments.

INDEX TERMS One-step prediction, frequency locked loop, adaptive state observer, harmonic detection,
grid synchronization.

I. INTRODUCTION
The distributed generations are playing important roles in the
electric grids all over the world. In the distributed scenario,
electricity networks of the future will have a high penetra-
tion of power electronic devices as an interface between the
generation systems and the grid. The synchronization with
the voltage at the point of common coupling (PCC) is a
key prerequisite in the realization of the power converters
connected to the grid [1], [2].

The most popular grid synchronization techniques are
phase-locked loops (PLLs) [1], [3]–[6] and frequency locked
loops (FLLs) [2], [9]–[19]. The PLL and FLL techniques
are not only simple to implement on a real-time DSP and
can also provide instantaneous estimation of the grid voltage
parameters and harmonics. The biggest distinctions between
the PLL and FLL are the application background and feed-
back variable. The PLL generally provides an accurate phase
angle estimation (the phase angle is the feedback variable)
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for the control of the power converter under a synchronous
reference frame (SRF) where a Park transformation is the
prerequisite. In contrast, the FLL offers a precise estimation
of the fundamental frequency (the frequency is the feed-
back variable) for resonant controllers of the power converter
under the stationary reference frame, where the precision of
the frequency is very important. Because small frequency
variation will result in the steady-state error and the phase
delay for the sinusoidal signal tracking control.

The synchronous reference frame phase locked loop (SRF-
PLL) has been a traditional synchronization technique for
grid voltage and has been widely applied in the control of
grid-tied converters [3], [4]. A lot of efforts have been ded-
icated to the PLL techniques under distorted grid conditions
and numerous synchronization algorithms are developed
with excellent performance [3]–[6]. A decoupled network is
adopted to eliminate the influence of negative sequence com-
ponents in [3]. A single-phase PLL is proposed in [4] based on
a second-order generalized integrator (SOGI) which is used
to generate the in-phase and orthogonal signals. A nonlinear
active disturbance rejection loop filter is proposed for the
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PLL to achieve a good performance. The linear time-periodic
model is established in [6] to analyze and improve the per-
formance of the PLL. Generally, the improvement of the PLL
mainly focuses on the prefilter and the in-loop filter [1]. More
information concerning the advanced PLL can refer [1].

References [7]–[19] focus on the advanced FLL tech-
niques, which can also estimate the harmonic components.
On the basis of the research in [9]–[17], lots of improved
FLLs were developed based on continuous-time adaptive
filters, including the adaptive vectorial filter (AVF–FLL)
[7], reduced-order generalized integrator (ROGI-FLL) [8],
and the second-order generalized integrator (SOGI–FLL)
[9]–[12] for frequency estimation and harmonic detection.
A modified SOGI is proposed in [12] with additional control
gain, so that the real parts of the poles can be chosen arbi-
trarily. The increased control degree of the freedom (DOF)
improves the dynamic response of the SOGI. A reduced
order observer which only adopts three state variables is pro-
posed in [14] for estimating grid voltage fundamental positive
and negative sequences and frequency. The Popov’s MRAC
approach is adopted in [15] to generalize the framework of the
FLL design. The proportional-integral-based FLL is recom-
mended in [15]. Later, the proportional-integral-based FLL is
further modelled in [16] and [17] to achieve a better dynamic
response in synchronized reference frame than conventional
FLL. In [18], the repetitive controller is employed to replace
the SOGI, so that the implementation of the FLL becomes
simpler. While in [19], the direct transfer delay link is used
to generate the in-phase and orthogonal signals of the input
voltage.

Although these advanced continuous time FLL techniques
demonstrate an outstanding performance on frequency esti-
mation and harmonic detection, their estimation precision
and response performance highly depend on the discretiza-
tion method and sampling frequency [20]–[23]. The bet-
ter choice is to design the FLL in discrete-time domain as
in [13] and [23]. In [13], a discrete-time algorithm is designed
directly in discrete-time domain to achieve a good estimation
performance. A straightforward discrete-time filter without
feedback loop is proposed to design the FLL in [23]. Further-
more, in grid-tied applications, the grid regulations require
fast transient responses [10], [11], and in some grid standards,
the maximum 50th harmonic component is specified [24].
Besides that, in aircraft AC power system, up to 360-900 Hz
signals often needs to be estimated [25], the estimation for
such a high frequency usually requires a high sampling fre-
quency according to Nyquist sampling theory. In this con-
dition, the low ratio between the sampling frequency and
the signal frequency has to be faced in the implementation
of the synchronization algorithm. It increases the difficulty
to select the suitable sampling frequency. Therefore, it is
important to develop an algorithm that can estimate the high
frequency signal with a non-exorbitant sampling frequency
(less sampled points in one period of the input signal). A high
performance in low sampling frequency is achieved by the
method in [23]. However, the error signal is absence in the

FLL due to the straightforward implementation [23], which
increases the difficulties for the FLL, since the error signal is
generally used as the input of the frequency estimation loop.
Moreover, the stability is not analyzed in [23].

To develop an algorithm which has good dynamic and
steady state performance with low sampling frequency, a one-
step-prediction (OSP) discrete observer (OSPDO) based fre-
quency locked loop (OSPDO-FLL) is proposed in this paper.
Compared with the method in [23], the feedback structure is
employed, consequently, the error signal is available which
is benefit for the implementation of the FLL. Furthermore,
the improved stability of the OSPDO is analyzed in this
paper. The parameter design for multiple OSPDO is also
demonstrated. The analysis indicates that the proposed algo-
rithm can demonstrate good robust properties to sampling
frequency. The good performance of the proposed algorithm
is finally verified by the simulations and experiments.

II. ONE-STEP PREDICTION DISCRETE OBSERVER
A. OBSERVER FOR SINGLE SEQUENCE COMPONENT
It is well-known that the three-phase fundamental positive
sequence fundamental grid voltage can be expressed as fol-
lowing equation in the αβ stationary reference frame:

v(+1)αβ =

[
V (+1) cos (ωt)
V (+1) sin (ωt)

]
(1)

where ω =2π f is the angle frequency and f is the fundamen-
tal frequency, and V (+) is the amplitude. Then the dynamic
characteristics of v(+1)αβ can be formulated as:

dv(+1)αβ

dt
=

[
−ωV (+1) sin (ωt)
ωV (+1) cos (ωt)

]
=

[
0 −ω
ω 0

]
v(+1)αβ = Av(+1)αβ

y = v(+1)αβ , v(+1)αβ,0 =v
(+1)
αβ (0) (2)

where y = v(+1)αβ is the output of the three-phase voltage in
form of sequence component when single sequence compo-
nent is considered, and v(+1)αβ,0 is the initial values that includes
the initial phase information. Discretizing (2) with sampling
frequency fs = 1/Ts > 0, Ts is the sampling time, the follow-
ing discrete-time state space model is obtained as:

v(+1)αβ,k+1 =

[
cos (ωTs) − sin (ωTs)
sin (ωTs) cos (ωTs)

]
v(+1)αβ,k = G (ωTs) v

(+1)
αβ,k

yk = v(+1)αβ,k , v
(+1)
αβ,0 = v(+1)αβ (0) (3)

in which the subscript k indicates the sampling point, and the
transition matrix G(ωTs) is derived by

G (ωTs) = eATs =
[
cos (ωTs) − sin (ωTs)
sin (ωTs) cos (ωTs)

]
. (4)

From the perspective of the state observer, as shown in
FIGURE 1 (a), the conventional observer can be designed
as

v̂(+1)αβ,k+1 = G (ωTs) v̂
(+1)
αβ,k +M (ωTs) (v

(+1)
αβ,k − v̂

(+1)
αβ,k )

ŷc,k = v̂(+1)αβ,k (5)
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FIGURE 1. (a) Conventional observer; (b) proposed OSPDO.

whereM(ωTs) is the matrix gain and the term ŷc,k = v̂(+1)αβ,k is
the estimate of the input voltage. Differently, in this paper, the
one-step prediction term v̂(+1)αβ,k+1 is designed as the estimation
of the input voltage. Consequently, a novel discrete observer
is proposed for the positive sequence voltage v(+1)αβ as:

v̂(+1)αβ,k+1 = G (ωTs) v̂
(+1)
αβ,k +M (ωTs) (v

(+1)
αβ,k − v̂

(+1)
αβ,k+1)

ŷp,k = v̂(+1)αβ,k+1 (6)

whereM(ωTs) is the matrix gain and the one-step prediction
ŷp,k = v̂(+1)αβ,k+1 is adopted as the estimate of v(+1)αβ,k . Generally,
the matrix gain is helpful for the dynamic improvement for
SOGI [12], and the matrix gain is also adopted in [8]. How-
ever, it is pointed out in [26] that thematrix gain will occur the
coupling between the amplitude and frequency estimation for
ROGI-FLL.Moreover, the matrix gain hinders the solution of
the algebraic loop in (6). Hence, the parameter is designed as

M (ωTs) = µωTsI2 (7)

where I2 is the identity matrix. Then, solving (6), the ultimate
observer becomes

v̂(+1)αβ,k+1 =
G (ωTs)
1+ µωTs

v̂(+1)αβ,k +
µωTs

1+ µωTs
v(+1)αβ,k (8)

Defining v̂(+1)αβ,k = x̂(+1)k and uk = µek = µ
(
yk − ŷ

(+1)
p,k

)
,

a discrete-time dynamic model (DTDM) in (6) can be
extracted with a normalized form as shown in FIGURE 1
(b). Then, the one-step prediction discrete observer (OSPDO)
is a closed-loop feedback of the DTDM, however, the feed-
back variable is the one-step prediction term. The transfer
functions (TFs) of the DTDMs for OSPDO and conventional
observer can be derived as:

Tp (z, ωTs) =
ŷ(+1)k

uk
= ωTs

(
G (zI − G)−1 + I

)
=

ωTs
z2 − 2z cos(ωTs)+ 1

×

[
z2 − z cos(ωTs) −z sin(ωTs)
z sin(ωTs) z2 − z cos(ωTs)

]
(9)

T c (z, ωTs) =
ŷ(+1)k

uk
= ωTs (zI − G)−1

=
ωTs

z2 − 2z cos(ωTs)+ 1

×

[
z− cos(ωTs) − sin(ωTs)
sin(ωTs) z− cos(ωTs)

]
(10)

where z is the Z transform variable. Using complex variables,
those transfer functions can be further derived as:

Tp (z, ωTs) =
ωTsz

z− ejωTs
(11)

T c (z, ωTs) =
ωTs

z− ejωTs
(12)

B. OBSERVER FOR MULTIPLE SEQUENCE COMPONENTS
In practice, the voltage always contains harmonics, con-
sequently the dynamic of the three-phase voltage can be
expressed as (13), as shown at the bottom of the next page:
where the output of the voltage is the superposition of the
harmonics and DC component [27], [28]. Considering the
harmonic property of three-phase system: the balanced condi-
tion harmonic sequences are . . . ,−11,−5,+1,+7,. . . , 6n+ 1,
with n = . . . , -2, -1, 0, 1, 2, . . . , and the unbalanced condition
harmonic sequences are . . . ,−13,−7,−1,+5,+11,−13,. . . ,
6n− 1, hence, the order m can be deployed as −11, −5, −1,
0, +1, +7 [11]. Therefore, the DTDM with harmonic digital
angular frequency mωTs

DTDM[G (mωTs)] =
|m|ωTsz
z− ejmωTs

(14)

can be used to estimate the harmonic sequence components
with the structure shown in FIGURE 2 [28]. To make the
figure more concise, the term ŷ(+1)k is used to replace ŷ(m)p,k .
When m = 0, the DTDM[G(0ωTs)] = I2 results in

v(0)αβ,k+1 = v(0)αβ,k (15)

which represents the dynamic of DC signal, hence it is used
in FIGURE 2 to address the DC offset [28].

C. SOLUTION OF ALGEBRAIC LOOP WITH HARMONIC
ESTIMATION
It is worth noting that there is an algebraic loop between the
error signal ek and the output yk . In case of multiple DTDMs,
the algebraic loop equation can be obtained as

ŷk =
∑
m

ŷ(m)k

=

∑
m

(
G (mωTs) x̂

(m)
k + µm |m|ωTs(vαβ,k − ŷk )

)
(16)

Solving ŷk from (16)

ŷk =

(
ωTs

∑
m
µm |m|

)
vαβ,k +

∑
m

(
G (mωTs) x̂

(m)
k

)
1+ ωTs

∑
m
µm |m|

(17)
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FIGURE 2. Block diagram of the harmonic observer.

then, ek is calculated by

ek = vαβ,k − ŷk =
vαβ,k −

∑
m

(
G (mωTs) x̂

(m)
k

)
1+ ωTs

∑
m
µm |m|

(18)

among which the term G(mωTs)x̂
(m)
k should be computed at

first. Then, ek can be obtained from (18), and the reconstruc-
tion of harmonics can be computed by

ŷ(m)k = G (mωTs) x̂
(m)
k + µm |m|ωTsek (19)

In (18), the division term may introduce some computa-
tional burden which will be addressed later.

D. PERFORMANCE ANALYSIS
From (11) and (12), it can be found that the two complex vari-
ables transfer functions have a common feature that they own
the same pole at ejωTs. This feature makes the two DTDMs
have infinite gain at the positive frequency ω, which guar-
antees the zero-steady-state-error estimation of the positive
sequence of the input voltage signal. Nevertheless, the trans-
fer functions own different zeroes, which will affect the per-
formance of the corresponding closed-loop observers.

To further analyze the performance of the proposed
observer, we define n = fs/f . Then the bode diagrams
of Tp and Tc with different n are shown in FIGURE 3.
As shown in FIGURE 3, both Tp and Tc have the same
magnitude response which make they can achieve the zero-
steady-state-error estimation of the input voltage. However,
the different phase features result in different stabilities for
Tp and Tc. The phase of the proposed OSPDO Tp always

FIGURE 3. Comparison bode diagram of Tp and Tc with different n.

less than 180◦ regardless of n which leads in an infinite
amplitude margin (AM). Nevertheless, with the reduction
of n, the phase of Tc. exceeds 180◦ which will reduce
the stability (the AM will not be infinite as shown by the
magnitude response). Moreover, the phase margin (PM) of
the conventional observer also reduces remarkably with the
reduction of n as shown in the zoom in figure. Therefore,
the proposed OSPDO has stronger robustness against the
sampling frequency.

E. SELECTION OF THE PARAMETERS
According to FIGURE 1 (b) and (11), the closed-loop eigen-
value of the OSPDO can be calculated as:

λ1 = (1+ µωTs)−1 ejωTs (20)

From (20), it can be deduced that the dynamic response of
the OSPDO is highly related with the coefficient µ. Defining
(1+µωTs)−1 = e−δTs, the settling time within 2% steady
error can be approximated as

τset ≈
−4Ts

ln
(
e−δTs

) = 4
δ

(21)

Therefore, the tuning of µ for single IM is straightforward.
In multiple DTDMs condition, the setting of µm, which

determines the dynamic performance of m-order harmonic
estimation, should be done with consideration of the inter-


v(0)αβ,k+1
v(+1)αβ,k+1
...

v(m)αβ,k+1

 =

G (0ωTs)

G (ωTs)
. . .

G (mωTs)



v(0)αβ,k
v(+1)αβ,k
...

v(m)αβ,k


‘yk = vαβ,k =

∑
m

v(m)αβ,k , m = 0,±1,±2,±3, · · · (13)
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action influence of each DTDMs, and the root locus method
is adopted to study this issue.

FIGURE4 shows three representative root locus plots with
different varying parameters, where λm represents the pair
of characteristic roots of m-order DTDM. From FIGURE 4
it can be concluded that the harmonic DTDMs (m = −11,
−5, 7) impose little influence on fundamental DTDMs (m =
±1) and vice versa. However, the fundamental positive and
negative sequence components affect each other remarkably.
When µ+1 is varying, λ−1 moves evidently, and λ1 moves
withµ−1 varying as well. Hence the set for negative sequence
component should be careful. The corresponding accepted
zones, which optimally consider the root distribution of posi-
tive and negative sequence components, for µ+1 and µ−1 are
marked in FIGURE 4. According to the root locus plots,µ+1
is set to 1 (beneficial for the computational burden) which
results δ = 310.366 with sampling frequency 12800 Hz
and τset = 12.8 ms. The µ−1 is set to 0.7 considering the
interaction of fundamental positive sequence and negative
sequence components. The value of µm is set as µ+1 / |m|
where |m| = 5, 7, 11 based on two points: 1) this selection is
beneficial for reducing computational cost; 2) this selection
makes harmonic estimation has the same settling time with
fundamental positive sequence components. Furthermore,
a generic method is proposed in [28] to tune the parameters
by pole placement which allows for an arbitrary design for
the dynamic response of dc-offset and harmonic components
estimation. If the matrix gains are adopted observers, then
the method in [28] will be a good choice for the parameters
design.

Based on the selected µm, 6µm|m| = 4.7µ1. According
to Nyquist sampling theorem, the digital angle frequency
|m|ωTs must be less than π . For the 11-orders harmonic
observing in this paper, the limitation ωTs < π /11 is the min-
imum requirement. In practical case for harmonics detection,
more sampling points in one period are required, making the
term ωTs6µm|m| often a small value, such as ωTs6µm|m|
< 4.7π / 110 = 0.134 in the case of ten points in one period
of 11th harmonic. Hence, the division term in (18) can be
replaced by Taylor formula:(

1+ ωTs
∑
m

µm |m|

)−1
≈ 1− ωTs

∑
m

µm |m|

+

(
ωTs

∑
m

µm |m|

)2

(22)

where the 2-order term can be neglected with acceptable
performance of OSPDO.

III. FLL DESIGN
If the IMs have a different frequency parameter than the input
signal the output signal recreated by the IMs will not approx-
imate the input signal. Hence, it is necessary to develop a
frequency adaptation loop to compute the correct parameter
ω of the IMs. This mission can be performed by a FLL.

FIGURE 4. Root locus with (a) µ1 varying and others is set 1 / |m|; (b) µ−1
varying and others is set 1 / |m|; (c) µ−5 varying and others is set 1 / |m|;.

A. FREQUENCY ERROR ANALYSIS
Supposing that the frequency parameter of the DTDMs is ω̂
and considering the fundamental positive sequence condition,
the closed-loop dynamic process of the sequence component
can be rewritten as

x̂(+1)αβ,k+1 = hG
(
ω̂Ts

)
x̂(+1)αβ,k + (1− h) v

(+1)
αβ,k (23)

where h =
(
1+ µω̂Ts

)−1. To explicitly illustrate the implicit
dynamic process of the frequency error under the estimating,
two new state variables are defined:

xd,k = v(+1)Tαβ,k x̂(+1)αβ,k+1 (24)

xc,k = ek ⊗ x̂
(+1)
αβ,k+1 = v(+1)Tαβ,k

[
0 1
−1 0

]
x̂(+1)αβ,k+1 (25)

where the superscript ‘T’ represents transposition. Utiliz-
ing (3) and (23) it has[

xd,k+1
xc,k+1

]
= hGe

[
xd,k
xc,k

]
+ (1− h)

[
1
0

] ∥∥∥v(+1)αβ,k

∥∥∥2 (26)

where Ge =G(−ωeTs) and ωe = ω − ω̂ representing fre-
quency error. From (26), it is clear that xd,k ultimately con-
verges to ||v(+1) α β||2 which is the square of the amplitude
of the input positive sequence voltage and xc,k converges to
0 if ωe = 0.
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B. FREQUENCY ESTIMATION
The steady-state value of xck for the proposed algorithm is:

xc_∞ =
−µω̂Tsv

(+1)T
αβ,k v(+1)αβ,k sin(ωeTs)

(1+ µω̂Ts)2 − 2(1+ µω̂Ts) cos(ωeTs)+ 1
(27)

Apparently, xc,k carries the frequency error information.
To estimate ω, it is necessary to consider that ω is a slow
varying direct current signal, namely

ωk+1 − ωk ≈ 0 (28)

Consequently, the frequency can be estimated by the adap-
tive update law

ω̂k+1 = ω̂k + 0xc,k (29)

where xc,k is the correction term, since xck includes the fre-
quency error formation. The dynamic of ωe is

ωe,k+1 = ωe,k − 0xc,k (30)

whichmaymakeωe converge to zero if0 is selected properly.
Assuming that ω̂ is close to ω, then sin(ωeTs) ≈ ωeTs,

cos(ωeTs) ≈ 1 and v(+1)αβ,k ≈ x̂(+1)αβ,k+1. From(27) it can be
derived:

xc,∞ ≈
−xd,∞ωeTs
µω̂Ts

≈ −
v(+1)Tαβ,∞ x̂

(+1)
αβ,∞

µω̂
ωe ≈ −

∥∥∥y(+1)k

∥∥∥2
µω̂

ωe

(31)

Considering (31), the gain 0 is set as γTsµω̂k

/∥∥∥y(+1)k

∥∥∥2
to normalize the gain design. Consequently, the dynamic of
the frequency estimation can be approximated as

ωe,k+1 = ωe,k + γTsωe,k (32)

As long as γ satisfies |1+γTs| < 1 which yields γ <

0, ωek will converge to zero. As a result, (26) will also
converge to corresponding ||v(+1)αβ ||

2 and zero. The definition
(1+γTs)−1 = e−δωTs is made to approximately tune γ by
settling time τω = 4/δω.

IV. STABILITY ANALYSIS
First, the input of (26) is ||v(+1)αβ ||

2 which is irrelevant to the
frequency error ωe. Then, considering the Lyapunov function
V = xTPx, P > 0 and x = [xd,k , xc,k ]T, it has

1Vk = Vk+1 − Vk = xT
(
h2GTe PGe − P

)
x (33)

Setting P = I2 and GTe Ge = I2, where I2 is a second-order
unity matrix, it has 1Vk = (h2−1)xTx < 0 which means
that the negative definiteness of 1Vk is independent on ωe
because of the orthogonality of Ge. Therefore, (26) will be
stable regardless the value of ωe, and the stability of (26) is
independent on (29). This property is important, because it
ensures that provided the frequency estimation loop is stable,
then the whole system is stable.

To further analyze the dynamic process of the system
when considering the observer and FLL together, the second

TABLE 1. Parameters and signals used in the simulation and experiment.

equations of (26) and the corresponding counterpart of the
proposed FLL and the one in [13] are rewritten as (the defini-
tions of the auxiliary variables are similar with the proposed
method):

xc,k+1 = −hxd,k sin(ωeTs)+ hxc,k cos(ωeTs) (34)

xc,k+1 = (1− b)xc,k cos(ωeTs)

+(1− b)xd,k sin(ωeTs)− b sin(ωeTs)
∥∥∥v(+)αβ,k

∥∥∥2 (35)

where (35) is for the method in [13] and b is the defined
parameter in [13]. Considering the first-order approximation
of the triangle function and combing (34), (35) and (30),
the following error dynamic systems can be deduced to eval-
uate the performance of the proposed FLL and the one in [13]
(36) and (37), as shown at the bottom of the next page:

To analyze the effect of Ts (1/fs) to the system, it is rea-
sonable to consider another parameters invariant. Then, the
performance can be simply analyzed by the time-invariant
system (36) and (37). The root locus of (36) and (37) with
γ = 120 and µ = 1 are shown in FIGURE 5. As shown in
FIGURE 5, obviously the proposed algorithm has a stronger
robustness to the sampling frequency. With the decreasing
of the sampling frequency, the damping ratio of the method
in [13] reduces faster and ultimately becomes unstable. How-
ever, the proposed algorithm remains stable even the sam-
pling frequency reduces to 100 Hz (n = 2).
It is worth mentioning that (36) can also be used to tune

the parameter γ . It will lead to the similar result with the
one tuned by (32), but (36) gives higher accuracy. Further-
more, the effects of other parameters to the system can also
be analyzed through (36) and (37) with the same approach
(for example the effect of µ to the frequency estimation).
Comparing (36) and (37), it is not difficult to predict that
the dynamic response of (36) is better than (37). Therefore,
the proposed algorithm has the better performance.

V. RESULTS
A. SIMULATION
In this section, some simulations built in MATLAB/Simulink
are conducted to demonstrate the excellent characteristics
of the proposed method. The parameters are displayed
in Table 1.
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FIGURE 5. Root locus with Ts (1/fs) varying for proposed method and the
one in [13].

FIGURE 6. Simulation results of the harmonic estimation.

FIGURE 6 displays the results of sequence component
estimation without the frequency estimation loop when the
input signal vαβ,k changes from 311 V fundamental positive
sequence voltage into a 260 V fundamental positive sequence
with different harmonics at 0.1 s. The harmonics are shown in
Table 1. Obviously, the estimate results in FIGURE 6 illus-
trate the excellent filter performance of the proposedOSPDO.
The harmonics are successfully detected in about 12 ms. The
same distorted three-phase voltage with the voltage presented
in FIGURE 6 is used to test the performance of the proposed
OSPDO with the frequency estimation loop. The difference
is that the frequency changes from 50 Hz to 48 Hz occurs
simultaneously at 0.1 s. The simulation results are shown
in FIGURE 7. As displayed in FIGURE 7, the proposed
OSPDO-FLL gives an excellent dynamic performance. The
harmonics are estimated in about 10 ms. And the frequency is
estimated successfully within 26 ms within 2% steady-state
error. Compared to the results in FIGURE 6, the dynamic
response of the OSPDO is slightly affected by the frequency
adaptive law.

FIGURE 7. Simulation results of the harmonic and frequency estimation.

FIGURE 8. Simulation results of frequency estimation of the proposed
algorithm with different sampling frequencies.

FIGURE 8 shows the step response of the proposed
FLL with different sampling frequency. As predicted in
Section III, the results in FIGURE 8 prove that the pro-
posed algorithm has a strong robustness to different sampling
frequencies. The ratio of the sampling frequency and the
frequency of contained harmonic can achieve a very small
value, whichmeans that a low sampling frequency is available
when the high-order harmonics need to be addressed for
frequency estimating. Moreover, as shown in FIGURE 8 and
corresponding to FIGURE 5 with the sampling frequency
reducing, the damping ratio is reduced slighted. This verify
the correctness of the conclusion in Section III.C.

B. PERFORMANCE COMPARISON
The behavior of the proposed algorithm was tested in a prac-
tical test system with a 32-bit TMS320F28335-based control
board. In the experiments, the test voltages simulated by a
programmable AC source Chroma 61511 were measured and
processed by the control board. The result data were exported
from the DSP buffer.

The steady-state precision and dynamic response of the
frequency estimation for various synchronization methods
were experimentally compared. A pure positive sequence

[
xc,k+1
ωe,k+1

]
=

[
h −hxd,kTs
−0 1

] [
xc,k
ωe,k

]
(36)

[
xc,k+1
ωe,k+1

]
=

 1− b −xd,kTs + bTs

(
xd,k −

∥∥∥v(+)αβ,k

∥∥∥2)
−0 1

[ xc,k
ωe,k

]
(37)
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FIGURE 9. Experimental comparison of different algorithms with
different sampling frequencies, (a) SOGI-TOI; (b) AVF-TUSTIN;
(c) Algorithm in [13] and (d) OSPDO-FLL.

fundamental voltage signal was applied to these meth-
ods which include the SOGI discretized by a third order
integrator (SOGI-TOI) [4], AVF discretized by Tustin
(AVF-TUSTIN) [7], and the proposed algorithm. The param-
eters of SOGI-based FLL and AVF-based FLL were set
according to [10] and [7], respectively. The set of σ and γ
for the method in [13] is also based on the guideline stated
in [13]. For the proposed algorithm, γ is set to −90 resulting
about 44 ms settling time.

The experimental comparison of the proposed algorithm
and the existing algorithms from other papers are shown in
FIGURE 9which verifies the stability analysis in Section III
and performance improvements of the proposed algorithm.
FIGURE 9 (a) is based on SOGI-TOI, from which, it can
be seen that as the sampling frequency decreased, the per-
formance of SOGI-TOI evidently deteriorated and the steady
state error also appeared. The performance of AVF-TUSTIN
also deteriorated as displayed in FIGURE 9 (b). Hence, the
observers (SOGI and AVF) designed in continuous domain
are not suitable to work in low sampling frequency conditions
(less than 2000Hz). Therefore, they also cannot be used to
estimate and address the maximum 50-order harmonic with
accepted sampling frequencies or cannot apply to the aircraft
power system. FIGURE 9 (c) shows the experimental results
of the algorithm proposed in [13]. Although the algorithm
proposed in [13] can converge to the real frequency of input
signal with sampling frequency of 1000 Hz, the dynamic
performance became deteriorated too. The results of the pro-
posed OSPDO-FLL are shown in FIGURE 9 (d). It shows

FIGURE 10. Experiment result of frequency jump with different initial
values.

FIGURE 11. Experiment result of 40◦ phase jump.

that theOSPDO-FLL performs better dynamic response, such
as the small oscillation and faster settling time compared to
the other synchronization methods. These results also prove
the correctness of the conclusion in Section III.C.

Furthermore, the precision of the steady-state fre-
quency estimation was computed through p% = (|fest −
fnorm|×100/fnorm)% where fnorm (50Hz) is the nominal fre-
quency of input signal and fest is the steady state estimation
value of the synchronization methods. The precisions of the
different methods are listed in Table 2. It is obviously to see
from Table 2. that the proposed OSPDO-FLL can meet the
error criteria (less than 0.03%) of the frequency estimation
specified by IEC standard 61000-4-7 [ [29]]. Moreover,
the lowest ratio of sampling frequency and estimated fre-
quency is decreased to 2. This is meaningful for decreasing
the sampling frequency when high-order harmonics exist
in the estimated input voltage. To sum up, the proposed
algorithm demonstrates performance improvement in both
dynamic and steady response on frequency estimation.

C. FREQUENCY AND PHASE JUMP TEST
To further verify the performance of the proposed OSPDO-
FLL, the frequency jump with different initial values and
phase jump are tested. FIGURE 10 shows the frequency
jumps from 45 Hz to 55 Hz and then returns to 45 Hz. As can
be seen in FIGURE 10, the proposed OSPDO-FLL performs
a good dynamic response for the frequency estimation with
different initial values. FIGURE 11 shows the result of the
40◦ phase jump. Obviously, the proposed OSPDO-FLL can
successfully estimate the frequency in case of the phase jump.

D. ESTIMATION FOR 50th HARMONIC
Based on some standards which require to estimate harmon-
ics up to 50th, the proposed method is used to estimate the
high order harmonics under 5000 Hz sampling frequency to
highlight its superiority on high-order harmonic estimation.
A 36 V 2500 Hz harmonic component was suddenly added
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FIGURE 12. Estimation of maximum 2,500 Hz harmonic with 5,000 Hz sampling frequency: (a) input voltage (red line is the FFT);
(b) zoom of the input voltage; (c) Top figure: the frequency estimation, bottom figure: estimation of the 50-th harmonic.

FIGURE 13. Performance of the harmonics detection of OSPDO-FLL when frequency jumps.

TABLE 2. Precision comparison of different algorithms with different
sampling frequencies.

to the fundamental positive sequence component as shown
in FIGURE 12. Meanwhile, the frequency decreased from
55 Hz to 50 Hz. For the results shown in FIGURE 1 (c),
the green line denotes the amplitude of the 50th harmonic
component, while blue and red lines indicate the instan-
taneous estimated value of the 50th harmonic. The results
prove that the estimation performance will not be deteriorated
when observing the high order harmonic with a relatively low
sampling frequency. The frequency and 50th harmonic can be
fast estimated with high precision.

E. HARMONIC DETECTION WITH FREQUENCY VARIATION
To evaluate the performance of the proposed OSPDO-FLL
under the severe condition, a test case where the harmonic
swells, sags and frequency variation occur simultaneously
was carried out. In this test case, the sampling frequency is
selected as 12800Hz. And γ is the same with the simula-
tion case. Normally, the system is balanced, hence the −5,
+7, −11 harmonics are considered. Moreover, in case of
the grid fault condition, the unbalanced fundamental com-
ponent (−1 order) and voltage drop of fundamental positive
sequence component will appear, therefore, −1 order com-
ponent and the voltage drop on+1 order component are con-
sidered in the test case. The harmonics sequence components
are shown in Table 1. Meanwhile, the frequency experiences
5 Hz sudden decrease (from 55 Hz to 50 Hz).

FIGURE 13 shows the input voltage, observed sequence
components and estimated frequency. As shown in
FIGURE 13, it can be found that all the sequence compo-
nents are observed successfully with good dynamic perfor-
mance as well as the frequency. In such a severe condition,
the frequency estimation only takes about 22ms and performs
good transient response. The fast response is useful for the
grid-tied inverter control where the fast transient response is
often required to deal with the grid variations.
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TABLE 3. Computation complexity and time comparison of different
algorithms for positive and negative sequence fundamental component
observation.

F. COMPUTATIONAL BURDEN
In the digital control system of a power converter, the com-
putational resource is critical for the implementation of digi-
tal control. Hence, the computation complexity and burden
are investigated to value the superiority of the proposed
OSPDO-FLL. The computation complexity of SOGI [9], [10]
and AVF [7] highly depends on the discretization method,
while the proposed OSPDO-FLL does not have this issue.
In order to get a straightforward sight on the computa-
tion complexity and burden differences, the conventional
SOGI-TOI, AVF-TUSTIN, the algorithm in [13] and the
proposed OSPDO are compared in Table 3. The results listed
in Table 3 are consumed for positive and negative sequence
fundamental components observation. It can be observed
from Table 3 that not only the proposed OSPDO is simple to
implement but it also consumes the least computational bur-
den and resource of DSP. All the harmonics were estimated
in 5.41 µs and the whole OSPDO-FLL took 6.29 µs (for the
test case in).

VI. CONCLUSION
This paper established a one-step-prediction discrete observer
(OSPDO) which is appropriate for the observation of har-
monic sequence components for three-phase systems, espe-
cially for the application of low sampling frequency. Based
on the OSPDO, the frequency error is analyzed and then
a discrete frequency-locked-loop (OSPDO-FLL) is designed
and analyzed.

The algorithm is designed in discrete domain so that the
performance degradation and estimation error introduced by
the discretization process can be avoided. Moreover, the pro-
posed OSPDO-FLL demonstrates an excellent steady and
dynamic performance, such as the high estimating preci-
sion for frequency and fast dynamic response. Furthermore,
the proposed state space analysis method also reveals that
the proposed algorithm has strong robustness to sampling
frequency, which means the algorithm is more suitable to
estimate high order harmonics and apply to aircraft power
system compared to existed algorithms. Because it can be
implemented with a relatively low sampling frequency but
without deteriorating the performance.
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