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ABSTRACT Industrial and building sectors demand efficient smart energy strategies, techniques of opti-
mization, and efficient management for reducing global energy consumption due to the increasing world
population. Nowadays, various artificial intelligence (AI) based methods are utilized to perform optimal
energy forecasting, different simulation tools, and engineering methods to predict future demand based on
historical data. Nevertheless, nonlinear energy demand modeling is still unfledged for a better solution to
handle short-term and long-term dependencies and avoid static nature because it is purely on historical data-
driven. In this paper, we propose an ensemble deep learning-based approach to predict and forecast energy
demand and consumption by using chronological dependencies. Our system initially processes the data,
cleaning, normalization, and transformation to ensure the model performance. Furthermore, the preprocess
data is fed to proposed ensemble model to extract hybrid discriminative features by using convolution neural
network (CNN), stacked, and bi-directional long-short term memory (LSTM) architectures. We trained our
proposed system on the historical data to forecast the energy demand and consumption with a different time
interval. In the proposed technique, we utilized the concept of active learning based on moving windows to
ensure and improve the prediction performance of the system. The proposed system could be applicable
to employ energy consumption in industrial and building sectors to demonstrate their significance and
effectiveness. We evaluated the proposed system by using benchmark, residential UCI, and local Korean
commercial building datasets. We conducted different extensive experimentation to show the error rate and
used various kinds of evaluation matrices, which indicate the lower error rate of the proposed system.

INDEX TERMS Energy analysis, electricity demand forecast, convolution neural network, deep learning,
LSTM network, smart sensor system.

I. INTRODUCTION
Population growth, advancement in technologies, and socioe-
conomics is a greater extent, which risen a demand from
the past few decades for the consumption of energy and
material. Nowadays, throughout the world, the level of energy
consumption has been increasing due to the vast level of pop-
ulation growth. The electricity demand has increased seven
percent each year [1], which illustrates the detailed statis-
tical analysis. The increase in demand requires a sufficient
amount of energy to fulfill demands and satisfy the customer
while keeping care of the industry. The utility corporations
are responsible for improving their services continuously by
facilitating better plans to maintain better energy consump-
tion. In this domain, there are various methods to statistically
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and traditionally analyze and characterize energy patterns to
forecast consumption and demand [2]. The recent existence
techniques are broadly categorized into two main chunks [3]
such as artificial intelligence and convolution neural network
(CNN) methods. These convoluted methods use regression
and stochastic time-series-based techniques to predict energy
consumption. The stochastic methods are used for time-series
data to extend the series patterns in future prediction [4].
These techniques are widely used in existing methods for
linear problem solving with better and efficient outcomes.
Various machine learning (ML) techniques such as a deci-
sion tree, the Bayesian, ensemble, and neural networks have
become very popular with emergence of artificial intelli-
gence (AI) [5], [6].

We were inspired by the performance of AI, which has
mainly three components such as learning, validation, and
testing, and researchers have utilized it in various methods
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due to their capturing ability in non-linear data [6], [7]. In the
learning phase, we train the AI system and then validate to
ensure their performance in the validation phase and generate
the mapping or coordination among the input and output
variables. After, in the testing phase, we utilized a developed
or trained model for energy forecasting and demand. In this
technological area, some researchers were motivated by the
intention toward machine learning methods such as support
vector machine due to their strong theoretical background
in empirical forecasting models [8]. Hence, each approach
e.g. traditional and non-traditional (machine learning and
artificial intelligence) have their own advantages and dis-
advantages. However, nowadays AI-based methods are the
most popular due to their high-performance outcomes and
reliability [9]. These AI-based methods such as CNN, recur-
rent neural network (RNN), multi-layer perceptron (MLP),
and ensemble methods have been vastly used for time-series
and energy forecasting problems [10]. The MLP network
provides good outcomes and shows better capability as com-
pared to traditional methods but it is not capable of his-
torical dependencies and long-term sequence handling in
time-series data. Due to these issues, the attention of the
research community has diverted to CNN and RNN meth-
ods. However, these methods also failed due to long-term
consequences and vanishing gradient problems [11]. Further-
more, recently there have been many techniques which were
proposed by researchers to handle, predict, and model the
long and short-term dependency for energy forecasting and
demand at household level and region-wise [12], [13].

Due to the above-mentioned issues and facts, we propose
a novel and universal framework to handle short-term energy
forecasting by using an ensemble deep learning approach to
overcome the above issues. Our system is capable of solv-
ing the described problems in the existing methods such as
dependency handling, real-time forecasting, modeling energy
demands at a different level [14].We propose a hybrid ensem-
ble deep learning model, which can easily handle and model
the energy consumption as well as forecasting demands to
upturn the future strategies, planning, and performance. The
main key-points and contribution of the proposed system as
follow:
• Pre-processing: Pre-processing is a basic step to refine
the data for accurate prediction, remove the outliers,
noises, and normalize with a pre-processing technique,
which ensure the model performance for better energy
forecasting.

• Proposed Model: Energy modeling, consumption, and
prediction are challenging problems due to their nature
and non-linearity. Simple machine learning techniques
have been failed due to limitations of handling non-
linearity. In this regard, we propose a hybrid deep learn-
ing approach to extract high-level spatial cues by CNN
layers and handle the non-linear complex behavior,
long-term dependencies, and sequences power patterns
by stacked and bi-directional LSTM networks. Stacked
LSTM computes features by using forward strategies

and BiLSTM computes and learns features by a forward
and backward stream, and combines all interpretation to
generate the output for energy forecasting. In addition,
the propose model gives better outcomes with recent
observations, which means the model supports active
learning and can be adopted for better forecasting in
industrial applications.

• Model Evaluation:Weconducted extensive experimen-
tation using 10-fold and hold-out cross-validation tech-
niques to illustrate the significance and effectiveness
of the propose energy forecasting system over existent
baseline methods. Our model achieved better results
than state-of-the-art techniques with reduced error rates
using mean square error (MSE), mean absolute error
(MAE), rootmean square error (RMSE), andmean abso-
lute percentage error (MAPE) evaluation matrices. Due
to this high performance, our model could be applicable
to employ for energy consumption and prediction in
industrial and building sectors.

The rest of the article is divided into sub-sections: Section 2
describes and illustrates the recent literature of the energy
domain and Section 3 represents the proposed methodology
and its main components in detail. Section 4 relates to the dis-
cussion, results, and experimentations to show the proposed
model prediction performance. Finally, section 5 concludes
the study and represents the possible future directions.

II. LITERATURE REVIEW
Energy analysis is the more emerging and significant area
of research and development from the last few year, due to
country-level impact on the socioeconomic. Various research
analytics and studies performed well on consumer dissection,
contour depiction, patterns, prediction, and petition by the
real-world sensor recorded forecast data [13], [15]. Many
researchers developed different techniques in this domain
to analyze the concept of smart metering for residential
buildings. Nevertheless, in this study, we focus on long-term
prediction, consumption, characterization, and active learn-
ing system for energy forecasting. In the past era, there are
many tools developed for simulation to accurately predict
energy utilization, which are broadly classified into three
categories, engineering [16], artificial intelligence [17], and
hybrid [9] methods. The dynamic relationship among vari-
ables discussed in the engineering methods based on spe-
cific internal logic and equations [16], which are also called
white-box methods. The authors introduced a method in [18]
to estimate the demand patterns of the building based on space
heating and appliances category by utilizing various factors.
Similarly, [19] developed a technique to simplify the physical
characteristics of the system by using frequency features
analysis. These methods worked well for energy forecasting
and demand but their huge cost computation and time com-
plexity make it problematic to generalize these techniques for
real-time energy forecast applications [7].

Statistical machine learning methods implement a straight-
forward linear regression model [20] for modeling the pattern
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among predictors to deal with internal gains and solar
gains [21], [22]. Similarly, [22] proposed a linear regression
method to analyze the energy consumption by using condi-
tional demand analysis. The approach shows good outcomes
in the prediction analysis, but the flexibility is so poor due to
the required large input for modeling with this limitation its
flop and unsuitable for further development. Braun et al. [23]
and Rezaei et al. [24] developed a forecasting model for
the supermarket by using humidity, temperature, and relative
humidity climate variables. In this method, the model gener-
ates among these variables and energy demand and predicts
the variation in the future forecast for different variables such
as fuels, consumption, etc. Guo et al. [25] proposed amachine
learning method for a non-linear relationship among energy
demand and other factors to forecast the energy petition. Sim-
ilarly, Abedinia et al. [26] developed a hybrid approach by
utilizing genetic algorithms by utilizing intersection theory
and select features by maximum relevancy and minimum
redundancy. The selected features were utilized to predict
the load and estimate the price of the energy system but the
model didn’t predict the statistics of the system smoothly
due to the non-linearity of the data [27]. Most researcher
have utilized the hybrids model industrial applications in
different fields and domains such as [28] for faults diagnosis
and data transmitting in robotics and healthcare monitoring
system [29], [30].

In this current era, various AI methods covered both arti-
ficial neural network (ANN) [31], and genetic algorithm
because it is the dominant source for building an intelligent
system to extract hidden cues from data and show their impor-
tance and effectiveness [32], [33]. In [34] the authors devel-
oped an ANNmodel for energy forecasting using multi-layer
perceptron (MLP) technique with different factors and the
results were encouraging than the simple ML technique.
Likewise, Kialashaki and Reisel [35] proposed a multi-linear
regression model using the ANN approach and predicted the
energy demand for industrial sections, which proved better
outcomes in input-output mapping. In [36] the authors intro-
duced a hybrid approach using radial neural network and
stochastic for short-term energy forecasting and compared
the results of this system with MLP to validate the system.
Furthermore, [37] elaborated and extended this approachwith
daily resident activities predictions and performed a compar-
ative analysis with ML techniques, which show the capability
of ANN for solving short-term energy forecasting problem.

Nowadays, deep learning (DL) is a dominant source for
collecting discriminative features and providing a convenient
outcome due to its deep architectures. He [38] proposed a
deep-net strategy to predict and forecast the short-term energy
load using CNN architecture. Similarly, the authors presented
an RNN based deep learning approach [39] to forecast the
short-term energy load with regional and household level
aggregations. The RNN approach shows better outcomes than
the shallow neural network. Furthermore, Rahman et al. [40]
developed an RNN based model for a residential and
commercial building to forecast the energy demand and

compared it with the ANNmodel to show their effectiveness.
Hence, researchers have focused on the sequential model
and [41], [42] proposed the energy forecasting systems by
utilizing LSTM and GRU networks. The outcomes of these
models were better than RNN and other sequential models
in time-series and forecasting problems. In [43] the authors
presented an ensemble model with Monte-Carlo dropout and
improved the generalization capability of the system in fore-
casting. Similarly, Kong et al. [44] proposed a deep-net model
to estimate the short-term energy load and demands by using
different independent variables. The hybrid approach was
applied and identified the energy-saving amount for building
by using neural networks and genetic algorithms [45] to
minimize the MASE score for real-time energy demands.
In [46] the authors proposed a system by using adoptive fuzzy
inference, which combined the back-propagation with the
least square error method and predicted the energy demand
for Canada. Similarly, Duan et al. [47] developed a hybrid
approach to forecast the building load by utilizing the max-
relevance min-redundancy feature with an optimizing SVM
classifier. The authors used a swarm algorithm for optimiza-
tion and produced outperformed results to show the system
significance and effectiveness for the energy building loads
forecasting.

III. PROPOSED METHODOLOGY
The main framework including components and method-
ology of the proposed short-term energy forecasting using
ensemble deep learning approach is explained in this section.
The visual multi-level architecture representation of the sys-
tem is shown in Figure 1. Our proposed system requires his-
toric power consumption data to forecast the power demands
for future, daily, monthly, and with different time intervals
(depending on user specification). An efficient and refined
energy forecasting system is important in the residential
building to manage energy utilization professionally and save
extra energy power. The accurate forecasting of energy is
a challenging task due to noises, missing info, and weather
circumstances, which yield debauched forecasting. Initially,
the pre-processing module refines the input data and removes
noises, biases, and fills the missing holes throughout data,
then normalizes the data to ensure the model prediction.
Subsequently, the refined data is split into training, validation,
and testing fold to efficiently train and evaluate the sys-
tem. Our proposed hybrid ensemble deep learning approach
extract high-level spatial cues by CNN layers and handle the
non-linear complex behavior, long-term dependencies, and
sequences power patterns analyzed and extract spatiotempo-
ral features by stacked and bi-directional LSTM networks.
Stacked LSTM network computes features by using forward
strategies and BiLSTM network compute and learns sequen-
tial features from a forward and backward stream to check
the dependencies from both side and then recognized accord-
ingly. After extracting all spatial and spatiotemporal cues
are concatenate and combines the interpretation to generate
the output for energy forecasting. Furthermore, the train-
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FIGURE 1. Proposed energy forecast system architecture with related comments and modules such as data acquisition, model training, model
optimization parameters, and trained model evaluations with detailed input and output.

ing data pass from the proposed ensemble system to model
and forecast the energy demands by using CNN, stacked,
and bi-directional LSTM networks. The moving window-
based strategy is used in feature mapping to actively forecast
the current demand and consider real-time observation. The
suggested system is implemented to forecast and estimate
the power consumption and demand for residential buildings
as well as the obtained outcomes compared with existing
baseline state-of-the-art regression models.

A. DATA PRE-PROCESSING
The collected UCI energy dataset has various discrepan-
cies [48] for example, missing values, incomplete data,
noises, and raw format due to real-time susceptibility. These
errors and discrepancies in the un-process data produce con-
fusion and might be an indication of poor data analysis.
Hence, the pre-processing step toward data refining is very
important for real-world datasets that ensure the performance
and reliability of the system to discover knowledge from
the real-world data. Usually, the data pre-processing step
includes basic sub-step or phases to apply on raw data for
refining, which are the following:
• Cleaning of data: In this phase, the system refines the
data by filling missing values, removing noises, detect-
ing outliers, and determining discrepancies inside the
raw data [5]. This data analysis phase ensures the model
prediction performance due to utilizing the most refine
data.

• Transformation of data: In this phase, the system uti-
lizes different techniques for data integration, for exam-
ple, it integrates multiple files into a single format [5] as
well as scaling the data attributes by following specific
properties.

• Reduction of data: In this phase, the system removes
the redundancy from the data and captures the properties

as well as provides the reduced representation of refining
data either by reducing attributes or by sampling.

• Discretization of data: In this phase, the system utilizes
the binning technique to reduce the values of a variable
by splitting the attribute range into intervals. Discretiza-
tion follows the hierarchies’ concept to refine data and
make it suitable for the specific task [5].

Mostly these phases are used in the pre-processing
step to refine and analyze data for efficient and accurate
prediction.

Therefore, various sub-phases can be used efficiently
depending upon the data formatting, approach, and require-
ment of input for the proposed model.

B. SEQUENCE LEARNING
Sequence learning, recurrent neural networks (RNNs) is one
of the dominant sources to find out temporal correlations and
performswell to decide the present state-based historical cues
in time-series prediction/data [49]. The RNNs units consist
of hidden state cells, which contribute to future events by
using temporal cues with high outcomes as compared to
traditional techniques [50]. RNN is capable of short-term
dependencies and stores a lot of info regarding previous cues
but the RNNs are not able to model the long-term dependen-
cies, which create complications in training called vanishing
gradient [11]. Due to this problem, the RNNs are unable to
compute long-term sequences, and result in the researchers
developing long-short term memory (LSTM) in 1997 [51].
LSTM is a variant of RNNs that overcome the limitations of
RNNs by replacing the hidden layers of RNNs with mem-
ory cells to model the long-term dependencies. LSTM has
different gates such as input, output, and forget gate along
with activation function to model and learn the behavior of
time-based relations. The working phenomena of the LSTM
network is defined mathematically in Equations (1-5) [52]

VOLUME 9, 2021 94265



Mustaqeem et al.: Short-Term Energy Forecasting Framework Using Ensemble DL Approach

FIGURE 2. Internal structure and mechanism of LSTM cell.

and visually show the internal mechanism in Figure 2.

it = σ (wxixt + whiht−1 + wcict−1 + bi) (1)

ft = σ (wxf xt + whf ht−1 + wcf ct−1 + bf ) (2)

ct = ftct−1 + it tanh(wxcxt + whcht−1 + bc) (3)

ot = σ (wxoxt + whoht−1 + wcoct + bo) (4)

ht = ot tanh(ct ) (5)

In the above equations the sigmoid function is represented
by σ gates, and the memory cell is illustrated by i, f, c, and
o, respectively. The weight matrices of a memory cell to gate
unit is represented diagonally bywxi,f,c,o respectively in order
to catch the temporal cues. In this regard, we utilized two
variants of LSTM in this study to investigate and forecast the
energy consumption and future demands, which are further
explained in the upcoming sections.

C. STACKED LSTM
Stacked LSTM networks follow the stack architecture by
placing the multiple LSTM layers consecutively like mul-
tilayers fully connected structure as shown in Figure 3.
Stacking multiple LSTM layers increases the depth of the
model and leads to greater model complexity [15]. In the
stacked network the earlier layer outputs should be sequential
and must be used as input for the upcoming layer. One of
the big pros of a stacked LSTM network is to provide the
output for each time-stamp, not a single output for all time-
stamps [9]. The mathematical representation of the stacked
LSTM network is represented in Equations (6-11) to model
the Lth layer as listed below.

fLt = σ (w
L
fhh

L
t−1+w

L
fxh

L−1
t + bLf ) (6)

iLt = σ (w
L
ihh

L
t−1+w

L
ixh

L−1
t + bLi ) (7)

ςLt = σ (w
L
ςhh

L
t−1+w

L
ςxh

L−1
t + bLς ) (8)

cLt = fLt .c
L
t−1+i

L
t .ς

L
t (9)

oLt = σ (w
L
ohh

L
t−1+w

L
oxh

L
t−1 + bLo ) (10)

hLt = oLt .tanh(c
L
t ) (11)

The above equations show the connection between layers
in a stacked network where the output of the L-1th layer

is hL−1t that holds an input for the next Lth layer. In the stacked
network the interconnection among input-output shows only
the relation between two consecutive layers.

D. BI-DIRECTIONAL LSTM
Simple LSTM networks process the information in a single
direction as usual and pay no attention to future handled
substantial. To overcome the limitation of traditional LSTM
Graves and Schmidhuber [53] introduced the bi-directional
LSTM network in 2005. The basic concept of bi-directional
LSTM is to split the standard LSTM into two states, forward
and backward as illustrated in Figure 3. The forward state
output is not utilized as an input for the backward state
and vice-versa. The connections of forward layers follow the
similar phenomena of stacked LSTM, which is explained in
the previous section. The backward layer’s hidden sequences
of bi-directional LSTMs are iteratively computed from
time t = 1 to time T. The layers of the bi-directional LSTM
network can be expressed mathematically at time t [54]–[56],
which is shown in Equations (12-18).

f←L
t = σ (wL←fh

hLt+1 + w
L
←fx

hL−1t + bL←f
) (12)

i←L
t = σ (wL←ih

hLt+1 + w
L
←ix

hL+1t + bL←i
) (13)

ς←L
t = σ (wL←ςh

hLt+1 + w
L
←ςx

hL+1t + bL←ς
) (14)

c←L
t = f←L

t .c←L
t+1 + i

←L
t .ς←L

t (15)

o←L
t = σ (wL←oh

hLt+1 + w
L
←ox

hL−1t + bL←o
) (16)

h←L
t = o←L

t .tanh(c←L
t ) (17)

The bi-directional LSTM network provides a cumulative
output of forward and backward layer such as h←L

t and h→L
t

respectively. So the Equation 18 represents it accordingly.

yt = w→hyh→t + w→hyh←t + by (18)

The bi-directional LSTM network trains the model and
upgrades the weights by utilizing a forward and backward
pass. In the forward pass, the model runs all inputs by using
time 1≤ t≤T to find the predicted outcomes: the time t= 1 to
T accomplish forward pass for forward state and time t = T
to 1 accomplish backward pass for output neurons. Therefore,
the backward pass finds the derivative, which is utilized in the
forward pass, and upgrades the weights accordingly [57]. The
visual representation of the stacked and bi-directional LSTM
network is illustrated in Figure 3.’’

IV. EXPERIMENTAL EVALUATIONS AND DISCUSSION
In this section of the article, we provide a detailed discussion
of the conducted experimentations and evaluate the perfor-
mance of the proposed system to show the robustness and
effectiveness of the system over state-of-the-art methods.
We utilized two standard datasets called IHPC [58], and local
Korean power/energy consumption. We conducted extensive
experimentation using power consumption data to check the
model prediction performance for industrial applications and,
as a result, we obtained a good outcome. Based on reported
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TABLE 1. The detailed description and remarks of each attribute of the household power consumption dataset.

FIGURE 3. Structures of stacked and bi-directional LSTM network.

performance, our system is applicable for industrial applica-
tions. The detail about datasets is illustrated in the upcoming
next section.

A. INDIVIDUAL HOUSEHOLD POWER
CONSUMPTION (IHPC) AND LOCAL KOREAN DATASET
Individual household power consumption is a UCI machine
learning repository dataset that is publically available by
using free licensing, which contains four-year data of elec-
tric power consumption [58]. The dataset contains minute
information of consuming power of a four-year period, which
consists of more than twomillion instances on the record. The
dataset has some attributes and their measurement units to
show the active and re-active energy. The active power shows
the sub-metering active consumed energy of each minute
in watts. The collection and quantity measurement of the
consumed energy is performed by installed sensors. We train
our system by using this dataset and test the proposed system
for two hours to predict the next two hours prediction of
power consumption. The detailed description of the IHPC
dataset and its attributes is described in Table 1 with some
useful hints and remarks.

Additionally, we evaluated our system by a local
Korean dataset, which is most similar to the UCI dataset.
The UCI data is recorded from residential buildings while
the Korean data is recorded from commercial buildings.
Furthermore, the UCI data have three sub-meters and each
sub-meter used individual consumption sensors while the
Korean dataset has only one consumption sensor to measure
the power consumption. Thus, the UCI dataset has single-
minute information and the Korean dataset has fifteen-minute
information in a single value. The rest of the attributes and
purpose of both datasets is the same. So we evaluated the
proposed system by this data as well. We utilize different
evaluation metrics to evaluate the system performance, which
is explained in the coming section.

B. EVALUATION METRICS
We utilized various assessment metrics such as mean square
error (MSE), root means square error (RMSE), mean average
percentage error (MAPE) and mean absolute error (MAE) to
evaluate the performance of the proposed system. A math-
ematical representation of all these assessment metrics is
expressed in Equation (19-22). The MAE metric reports the
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FIGURE 4. The model training and validation losses, (a) represent the UCI residential building dataset and (b) represents the
Korean commercial building dataset.

difference of the predicted variables in percentage and varia-
tion among predicted and testing variables are represented by
RMSE. The testing and predicted variables average square
value is represented by MSE and the prediction accuracy in
percentage is illustrated by MAPE.

MSE =
1
n

∑n

1
(y− ŷ)2 (19)

MAE =
1
n

∑n

1

∣∣y− ŷ∣∣ (20)

RMSE =

√
1
n

∑n

1
(y− ŷ) (21)

MAPE =
100
n

∑n

t−1

∣∣∣∣At − FtAt

∣∣∣∣ (22)

We train our proposed model by using both UCI and
Korean data and testing as well. We split the data in 75:25 %
ratio for model training and testing. Our model utilized 75 %
of data during training and the remaining 25 % is used for
testing. The model training and validation loss is mentioned
in Figure 4 for both datasets. We conducted an ablation study
to select the best model architecture for the specified task
and the numerical results of the conducted experiments are
reported in Table 2. All these are standard equations and
are frequently used for the measurement of time-series and
forecasting problems, which analyze the errors among actual
and predicted values as well as show the model robustness
and effectiveness over provided data for the specific task.

C. MODEL PERFORMANCE EVALUATIONS
We conducted extensive experimentations on both UCI and
local Korean power consumption datasets to validate and
evaluate the proposed model’s robustness and effectiveness
for a real-world problem. During the model testing, we val-
idated the system for hourly as well as for daily data and
obtained the prediction results for each that show the actual
and predicted energy forecasting and consumptions. The
visual results of the proposed system over hourly and daily
energy consumption and their predictions for hours and day

TABLE 2. Ablation study for best model selection based on the prediction
performance using suggested dataset.

are illustrated inFigure 5. The results of the proposedmethod
are closely related to the actual consumed energy level as
well as the other native characteristics of energy. Hence,
it shows better results than the other approaches as reported
in Table 2. The proposed model can effectively and eas-
ily handle the irregular tendencies of energy consumption.
Hence, the time-series data has more complex patterns. Our
proposed model handles them well and moderates the error at
each interval compared to other model structures as discussed
in Table 2.

D. DISCUSSION AND COMPARATIVE ANALYSIS
The comparative analysis and discussion of the proposed sys-
tem are illustrated in this section over suggested datasets with
state-of-the-art baseline models using similar of input data.
The obtained results of the proposed system are compared
with deep learning as well as machine learning techniques
using daily and hourly data, which are reported in Table 3.
We tested our system on hourly energy date and the pre-
dicted result of the proposed system is reported in Table 3
and the daily data results of the system are mentioned in
Figure 6 with SOTA baseline methods. Our proposed model
secured better results as compared to other recent methods
and recorded the reduced error rate of MSE, MAE, RMSE,
andMAPEmetrics.We utilized the same evaluationmatrices,
which are used frequently in contrast to the measurement
of energy forecasting. The final outcomes of the baseline
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FIGURE 5. The visual representation of average daily and hourly electricity forecasting and consumption outcomes over benchmark
UCI residential (Fig, a, b) and local commercial (Fig, c, d) building datasets.

TABLE 3. Statistical comparison of the proposed model with SOTA
baseline models using household power consumption dataset using deep
learning and machine learning methods.

FIGURE 6. The comparison of the proposed system with SOTA baseline
methods using daily energy prediction outcomes with reduced error rate
using MSE, MAE, and RMSE metrics.

methods and the proposed technique are mentioned and sum-
marized in Table 3 and Figure 6.
Where Table 3 denoted the error rate of the SOTA baseline

methods using standard evaluation matrices and the hyphens
(-) representing the missing values, which means the authors
didn’t use that metric. As far as we know deep learning is

a dominant source nowadays due to achieving high perfor-
mance in many fields. Hence, in this domain, deep learning
achieved good outcomes as well, which is shown in the above
table. Recent deep learning approaches achieved better results
but they are missing some important information in during
modeling the energy patterns due to these missing cues that
model performance is a bit low. During the literature study
we assume this limitation and designed an ensemble model
to cover all aspect and easily model the energy pattern and
recognize spatial and spatiotemporal cues as well. So cause
of the ensemble framework designing is the inspiration of
the performance of deep learning in the forecasting of time-
series problems, that why’s we propose an ensemble deep
learning approach and secure good results as compared to
other baseline methods. The performance of the proposed
system over daily prediction consumption is illustrated in
below Figure 6.

V. CONCLUSION AND FUTURE DIRECTION
Electricity/power demand and forecasting in an accurate and
reliable way are of great significance but, unfortunately,
it has gained smaller interest as compared to other domains.
However, researchers have done some significant improve-
ments in the recent few years and developed robust, accu-
rate, and efficient forecast models using AI and DL. These
methods, AI and DL performed well and effectively han-
dle the non-linear problems in time-series data due to their
characteristics and importance. In this paper, we propose
an ensemble deep learning-based approach to predict and
forecast energy demand and consumption by using chrono-
logical dependencies. Our system initially processes the
data, cleaning, normalization, and transformation to ensure
model performance. Furthermore, the preprocessed data is
fed into an ensemble model to extract hybrid discriminative
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features by using CNN, stacked, and bi-directional LSTM
architectures. We evaluated the proposed system by using a
benchmark, UCI residential, and local Korean commercial
building datasets and compared the achieved results with
SOTA methods, which are shown in Table 3.
Aimed at future exertion, numerous non-linear exoge-

nous structures of data for example weather/climate circum-
stances or changes, monetary attributes, and variables can be
explored for the inclination investigation of power feasting
patterns. Additionally, several optimization methods can be
considered and designed to increase the forecast precision of
the suggested system.
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