
Received May 10, 2021, accepted June 23, 2021, date of publication June 28, 2021, date of current version July 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093210

A Real-Time Bridge Crack Detection
Method Based on an Improved
Inception-Resnet-v2 Structure
JINKANG WANG , XIAOHUI HE, SHAO FAMING ,
GUANLIN LU, HU CONG , AND QUNYAN JIANG
Department of Mechanical Engineering, College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China

Corresponding author: Xiaohui He (gcbhxh@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61671470, and in part by the Key
Research and Development Program of China under Grant 2016YFC0802900

This work did not involve human subjects or animals in its research.

ABSTRACT Bridge crack detection is essential to ensure bridge safety. The introduction of deep learning
technology has made it possible to detect bridge cracks automatically and accurately. In this study, the
Inception-Resnet-v2 algorithm was systematically improved and applied to the real-time detection of bridge
cracks. We propose an end-to-end bridge crack detection model based on a convolutional neural network.
Thismodel combines the advantages of Inception convolution and residual networks, broadening the network
width and alleviating the training problem of the deep network. The calculation speed is improved while
still ensuring accuracy. Multi-scale feature fusion enables the network to extract contextual information of
different scales, which improves the accuracy of crack recognition. The GKA (K-means clustering method
based on a genetic algorithm) realizes the accurate segmentation of the target area, greatly enhances the
clustering effect, and effectively improves the detection speed. In this model, large fracture datasets are used
for training and testing without pre-training. The experimental results show that the performance of this
method was improved in all aspects: accuracy, 99.24%; recall, 99.03%; F-measure, 98.79%; and FPS(Frames
Per Second), 196.

INDEX TERMS Bridge crack detection, inception-resnet-v2, multiscale feature fusion, GKA.

I. INTRODUCTION
With the development of economic construction, China’s
road and bridge industry has undergone rapid progress. Mod-
ern bridge structures are mostly made of concrete. As time
goes by, cracks of different shapes and degrees often form
on these concrete surfaces, as shown in Figure 1. Cracks
seriously affect the health of bridge structures, and can even
endanger the safety of pedestrians [1]. Timely and accurate
detection of crack inception and propagation can effectively
avert catastrophic accidents [2]. Therefore, crack detection
plays an important role in bridge health monitoring and reli-
ability maintenance.

Traditionalmanual inspectionmethods are time-consuming
and laborious, and cannot be widely evaluated. Moreover,
carrying out manual inspections can pose a threat to the
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safety of inspectors, due to traffic hazards. Many trans-
portation departments have created automatic data collection,
detection, and evaluation systems. Classical bridge pavement
disease detection systems [3], such as the GERPHO system in
France [4], Komatsu system in Japan [5], and ZOYON-RTM
intelligent pavement detection system developed in China [6],
have contributed to the automatic detection results for pave-
ment cracks becoming more accurate and reliable. Although
these detection systems have unique advantages in the detec-
tion of their respective objects, most of them are manually
operated and must meet specific detection conditions, such
as particular brightness threshold. These systems can only
identify the existence of cracks; they cannot locate cracks [7].

In recent years, machine learning and computer vision
have been applied to crack detection [8], and promis-
ing results have been achieved. Wang [9] used an algo-
rithm based on mathematical morphology and image fusion
to solve the problem of crack detection in strip steel.

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 93209

https://orcid.org/0000-0001-8866-6744
https://orcid.org/0000-0002-6281-2990
https://orcid.org/0000-0001-5245-2664
https://orcid.org/0000-0001-5944-0121


J. Wang et al.: Real-Time Bridge Crack Detection Method Based on Improved Inception-Resnet-v2 Structure

FIGURE 1. Examples of bridge cracks of different shapes: (a) vertical crack, (b) transverse crack, (c) oblique crack,
(d) crack with noise, and (e) reticulation crack.

Chambon et al. [7] solved the problem of automatic detection
and evaluation of road cracks by using a computer vision
algorithm.

Since Hinton et al. [10] published a paper on deep learning
in the journal Science in 2006, deep learning technology has
been extensively studied, which has provided new methods
for solving the problem of bridge crack detection. In the past
few years, many scholars have applied algorithms of convo-
lution neural networks to crack detection, which has greatly
improved the efficiency and accuracy of crack detection [11].
Wang and Hu [12] proposed application of the neural network
method to pavement crack detection, and used the principal
component analysis (PCA) method to calculate and analyze
the data. This method significantly improved the efficiency
of computer crack identification. Cha et al. [13] proposed a
vision-based crack detection method, which used a convo-
lutional neural network to identify the deep structure with
higher accuracy. Chaiyasarn et al. [14] presented a combined
model of a neural network and a support vector, which sig-
nificantly improved the detection accuracy and recognition
speed of cracks.

In actual road environments, the shape, size, and back-
ground information of bridge cracks are not always ideal.
Additionally, there are many factors that can create challeng-
ing conditions for bridge crack detection using a computer
system, such as uneven illumination, oil pollution, and bad
weather.

Based on the analysis of previous research on crack detec-
tion, our strategy was to identify the features of cracks based
on the improved Inception-Resnet-v2 algorithm [15]. Our
main contributions are as follows.

Using Inception-Resnet-v2 [15] as the backbone network
for crack feature recognition, the accuracy and speed of crack
detection were both improved. To the best of our knowledge,
we introduced Inception-Resnet-v2 into the crack detection
field for the first time.

In order to solve the problem of effective information loss
after deep convolution, a multi-scale feature fusion method
was introduced.We fused the featuremaps of different convo-
lution layers, which greatly improved the feature expression
of small targets.

The K-means clustering algorithm, based on a genetic
algorithm (GKA), was introduced to enhance the clustering
effect, and further improve the crack detection rate.

The rest of our paper is organized as follows.
Section 2 reviews the research methods of published
papers on crack detection using deep learning methods.
Section 3 illustrates the network model and innovations
used in this paper. Section 4 verifies the effectiveness of
our method in improving the comprehensive performance
of crack detection with experimental results. Section 5 sum-
marizes the findings, and determines the direction of future
work.

II. RELATED WORK
Traditional machine learning [16] aims to discover the laws
and patterns contained in a large amount of training data
by learning, and then make predictions for new data. Deep
learning is an important branch of machine learning. Due to
rapid developments in the field of deep learning in the last
ten years, several representative algorithms have been pro-
posed. Because of its ability with regard to feature learning
and feature expression, deep learning has gradually replaced
machine learning algorithms as the mainstreammethod in the
crack detection field [17].

In 2012, Alex Krizhevsky et al. [18] proposed an AlexNet
network model with five convolution layers (convolution +
nonlinear activation + maximum pooling layer) and three
fully connected layers. For the first time, this network solved
the gradient divergence problem by using the Rectified Linear
Unit (ReLU), and proposed the use of the Dropout algorithm
in the fully connected layer to avoid over-fitting. In 2014,
VGGNet [19] emerged, which included network models with
depths ranging from 11 to 19 layers. Among the models,
VGG16 and VGG19 were the most commonly used. All
the model structures adopted five convolution layers, three
full connection layers, and softmax output layers. This type
of model verified that the increase in depth was benefi-
cial to the improvement of detection accuracy. In the same
year, GoogLeNet [20] proposed the Inception structure [21]
based on the idea of the ‘‘Network in Network’’ [22], which
realized the approximate replacement of the optimal local
coefficient structure with dense components. Using a large
number of 1×1 convolution kernels in the Inception structure
greatly reduced the number of parameters, which improved
the training speed and generalization ability of the model.
In addition, two auxiliary classifiers were added to the model
to conduct the gradient forward, which effectively reduced
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FIGURE 2. Crack detection method based on target detection: judging
whether it contains a crack or not and using boundary box to locate the
crack in the image.

the phenomenon of gradient disappearance. Inception-v2 [23]
changed the 5 × 5 convolution kernel into two 3 × 3 convo-
lution kernels. On the premise of ensuring the same effect,
it used convolution integral solution to reduce the parameter
quantity and speed up the calculation. Inception-v3 [24] put
forward the decomposition idea, which divided the n × n
convolution kernel into n × 1 and 1 × n convolution kernels,
deepening the network and increasing the nonlinearity of the
network. In 2015, ResNet [25] introduced the idea of directly
bypassing the input information to the output, and changed
the direct learning target value into learning the residual
value between the input and the output. To some extent, this
skip connection structure solved the problem of informa-
tion loss and consumption, and simplified the difficulty of
the learning target. In 2016, Szegedy C et al. put forward
Inception-v4 and Inception-Resnet-v2 [15], in which the
Inception-Resnet-v2 was more exquisitely designed on the
basis of Inception-v4. Inception-Resnet-v2 utilized residual
connections instead of filter concatenation, which not only
accelerated the training, but also improved the performance.
In the same year, DenseNet [26] established the connection
relationship between different layers, made full use of feature,
and further reduced the problem of gradient disappearance.
Compared with Resnet, the training effect was very good.
In 2017, Chollet F proposed a convolutional neural network
architecture Xception [27] based on the deeply separable
convolution layer, in which the introduction of residual con-
nection mechanism significantly accelerated the convergence
process of Xception and achieved significantly higher accu-
racy.

The method of bridge surface crack detection involves
taking the crack as the target object [28]. According to
the input image, the computer judges whether it contains a
crack or not. If so, the boundary box is used to locate the
crack in the image, as shown in Figure 2. The current main-
stream target detection algorithms can be divided into two
categories: two-stage object detection and one-stage object
detection. In the two-stage detection algorithm, the algo-
rithm is completed in two stages. Firstly, the candidate
regions are extracted, and then the candidate regions are
classified and further accurately located. Examples of this
include Fast R-CNN [29] and Faster R-CNN [30]. How-
ever, the one-stage detection algorithm does not need to

extract the candidate region, as it directly generates the
class probability and position coordinate value of the object.
Compared with the two-stage object detection algorithm,
its detection speed is faster. Examples include SSD [31]
and YOLO [32].

In 2018, Suh and Cha [33] proposed a multi-type crack
detection method based on Faster R-CNN, using ZF-Net [34]
instead of VGGNet in the original structure of Faster R-CNN,
which accelerated the speed of feature extraction. Their
experimental results showed that the improved Faster R-CNN
had better robustness, and can essentially realize the real-time
detection and location of various types of crack. In 2019,
Li et al. [35] introduced amore effective and relatively simple
detection method based on practical applications, which real-
ized real-time detection of six kinds of crack with an average
accuracy as high as 96.3%, by using the improved Faster
R-CNN model. Mandal et al. [36] proposed an automatic
pavement detection and analysis system based on YOLO
v2, but the detection accuracy of this method needed to be
improved. To solve the problem of poor real-time perfor-
mance and low accuracy of crack detection, Nie et al. [37]
proposed a crack detectionmethod based onYOLOv3, which
was improved in terms of multi-scale prediction, the basic
classification network, and the classifier. Its accuracy reached
88%, meeting the requirements of civil infrastructure mon-
itoring. In addition, the YOLO network architecture model
was also applied to the detection of small target cracks in rail-
way tracks. In 2019, Li et al. [38] used the improved YOLO
to effectively improve the detection accuracy and real-time
detection speed of track cracks. However, these methods still
have some problems, such as a slow convergence speed,
excessive training parameters, which makes it difficult to
optimize the model.

III. OVERVIEW OF OUR METHOD
The end-to-end convolutional neural network model pro-
posed in this paper is shown in Figure 3. The network consists
of four modules, including a feature extraction backbone
network based on Inception-Resnet-v2, a multi-scale context
information fusionmodule, a GKA clustering algorithmmod-
ule, and a Dropout module. In the structure shown in Figure 3,
the Inception-Resnet-v2 backbone network extracts the crack
features of the image, the improved Inception structure is
used to increase the network width, and the introduction
of the residual network is used to prevent gradient diver-
gence. The multi-scale context information fusion module
fuses the feature maps after convolution of the Stem mod-
ule, Inception-Resnet-A module, Inception-Resnet-B mod-
ule, and Inception-Resnet-C module, making it easier to
detect small cracks. Its structure will be described in detail
in Section 3.2. In addition, the GKA module can accurately
identify the target area and reduce the computational com-
plexity, improving the network detection rate. The Dropout
module effectively alleviates the occurrence of over-fitting,
and achieves the regularization effect to a certain extent.

VOLUME 9, 2021 93211



J. Wang et al.: Real-Time Bridge Crack Detection Method Based on Improved Inception-Resnet-v2 Structure

FIGURE 3. The four main components of our proposed method: Inception-Resnet-v2 baseline, Context information fusion, features Clustering and
Dropout.

FIGURE 4. Two-layer and three-layer residual network structure.

A. INCEPTION-RESNET-V2 BACKBONE NETWORK
The Inception network structure [21] considers that multiple
convolution kernels of different sizes can enhance the adapt-
ability of the network, and extract more abundant features
of different scales. At the same time, the Inception network
structure can greatly reduce the parameters of the model
by adopting the NIN [22] model, so that the network can
reduce the number of convolution kernels as much as possible
without losingmodel feature representation, thereby reducing
the complexity of the model.

The residual network structure is shown in Figure 4. The
signals of different units and layers can be directly transmitted
to any layer, forward and backward, which accelerates the
network training and parameter optimization. Lu et al. [39]
proposed the Deep Coupled ResNet, which consists of a
backbone network and two branch networks. The backbone
network is used to identify object photos with different res-
olutions, and the two branch networks train high-resolution
images and target images to convert them into coupled images
with specific resolutions.

In the residual convolution network, the number of feature
map of xl may be different from that of, so it is necessary to
use 1 × 1 convolution to upgrade or reduce the dimension.
At this time, the residual operation is expressed as:

F (xl) = w ∗ xl + α (1)

yl = R(F)+ h(xl) (2)

xl+1 = R(yl) (3)

In these equations, xl is the input; w is the weight; α
is the offset; yl is the sum of two branches; R is the Relu
function; F (xl) represents the convolution operation; h(xl) is
a simple transformation for the input; and xl+1 is the final
output of the residual module. Relu is an activation function,
shown as equation (4), which is beneficial to the spread of the
ladder and the prevention of divergence of the ladder, so as to
prevent the ladder from becoming greatly attenuated behind
the multilayer convolution [40].

R(x) = max(0, x) (4)

When x > 0, R(x) = x, and its lead is 1; when
x ≤ 0,R(x) = 0, with a lead of 0. In the forward calculation,
we can input the value x and the threshold of 0, and obtain
the output value. In the backward calculation, the gradient is
1 or 0. That is, the gradient decline is small, or does not occur.
Compared with functions such as Tanh and the Sigmoid , Relu
is simple to calculate, and has a smaller gradient decline,
which is beneficial to deepening networks.

The purpose of introducing a residual network learning
unit was to avoid the problem of the gradient disappear-
ing completely when training the Inception network model.
At the same time, when the performance of the network
model reaches a certain saturation, the residual network layer
can be mapped identically, which makes the training network
faster and easier to converge. Xi represents the input of the
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FIGURE 5. Structure of the Inception-Resnet-v2 backbone network.

ith residual unit, and Xn represents the input of the nth unit,
and F(·) is the residual function. From the following formula
for the learning characteristics from shallow i layer to deep
n layer, we can know that no matter how deep the network
layers are, the gradient will never approach 0.

∂Xn
∂Xi
=
∂Xi+ F(Xi, ωi, αi)

∂Xi
= 1+

∂F(Xn, ωn, αn)
∂Xn

(5)

In our research, three-layer residual network learning units
were used. In the network of three-layer residual network
learning units, 1 × 1 convolution is first used for dimension
reduction, and then 3 × 3 convolution is performed. The
number of network parameters of three-layer residual net-
work units is 17.35 times less than that of two-layer residual
network units.

There are shortcomings in the Inception module and its
improved algorithms. The basic Inception module has a lim-
ited effect towards improving the network performance; its
improved algorithms are so complex that the number of
parameters and calculations can become a burden, and over-
fitting occurs frequently. The network has sufficient width but
insufficient depth. The imbalance between width and depth
leads to a low efficiency of parameter operations.

The ResNet module also has some shortcomings. Although
it deepens the network and improves the classification accu-
racy of the network, the number of parameters and calcula-
tions increases rapidly. It is faster than the Inception module
and its improved algorithms, but while the network structure
is deepened, the width is narrow. The imbalance between
width and depth leads to a diversity of feature extraction that
is worse than that of the Inception module. If the Residual
module is too complex, the training acceleration brought by
the skip connection is weaker than the training deceleration
brought by the sharp increase in parameters and number of
calculations, which leads to training interruption or gradient
explosion.

To some extent, the Inception module and the Residual
module can take advantage of each other to improve the
detection accuracy and reduce the number of calculations.
In view of the above preliminary analysis, a fusion network
called the Inception-Resnet is proposed, which is composed
of the Inception module and the Residual module.

We adopted the Inception-Resnet-v2 as the backbone net-
work of our proposed model. The structure diagrams of
Inception-Resnet-v2 are shown in Figure 5.

B. MULTI-SCALE FEATURE FUSION
In the process of studying deep convolutional neural net-
works, researchers have found that the features extracted by
shallow layers and deep layers are different. The shallow
layers extract primary or intermediate features, such as edges
and textures, while the deep layers extract advanced semantic
features beyond human intuitive understanding. The former
is beneficial to obtaining the target location, while the latter
is beneficial to target detection. This conclusion is not only
applicable to a certain convolutional neural network structure,
but to all deep convolutional neural networks. For a bridge
crack image, there are many small-scale targets in the image,
which account for a few tenths or even a few hundredths
of the whole image. The lack of positioning information
leads to a large deviation in the positioning of small-scale
targets, resulting in a decline in the overall performance of
the detection. Therefore, a good deep convolution neural
network should not only have the ability to distinguish the
target from the surrounding environment, eliminate interfer-
ence, and achieve excellent classification, but also be able to
achieve good positioning to ensure detection accuracy.

Since the introduction of the Inception-Resnet-v2 mod-
ule, the accuracy of detection results has been greatly
improved. However, with the deepening of the network,
we would inevitably lose a lot of effective positioning infor-
mation, which reduced the quality of the detection results
of small-scale targets. Therefore, it was necessary to intro-
duce multi-scale feature fusion information. Our proposed
multi-scale feature fusion structure uses 1×1 convolution ker-
nels with three different sampling rates to obtain multi-scale
feature information. When the sampling rate is close to the
mapping feature, the 3× 3 convolution kernel cannot capture
the local details effectively. Therefore, the 1× 1 convolution
filter is used to extract the details of smaller crack edges on
the bridge surface.

In the Inception-Resnet-v2 structure, we use a combina-
tion of features from the convolution of the Stem module,
Inception-Resnet-A module, Inception-Resnet-B module,
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FIGURE 6. Combination of features from the convolution of the Stem module,
Inception-Resnet-A module, Inception-Resnet-B module, and Inception-Resnet-C module
for multi-scale feature fusion.

and Inception-Resnet-C module for feature fusion, as shown
in Figure 6.

C. THE K-MEANS CLUSTERING ALGORITHM BASED ON
GENETIC ALGORITHMS
With the deepening of network depth, the number of param-
eters becomes huge, so that the network computing capacity
decreases. In order to solve the problem,we proposed to apply
K-means algorithm to the model. K-means clustering algo-
rithm is one of the classical clustering algorithms based on
partition. The algorithm takes Euclidean distance as the cor-
relation measure, and finds the corresponding cluster center
vector for optimal classification, so as to minimize the evalu-
ation index. In K-means clustering algorithm, the smaller the
distance between two data points, the greater the correlation
between the two data points.

The K-means algorithm has been widely popularized and
applied because it is robust, simple to calculate, easy to
understand, and easy to implement. However, it has a high
requirement for the selection of clustering centers and easily
converges to the local optimal solution, thus missing the
global optimal solution. Moreover, the K-means clustering
algorithm uses the Euclidean distance as the criterion of cor-
relation between data points, which may cause distance dis-
tortionwhen theK-means clustering algorithm processes data
points, greatly affecting the clustering results [41]. In view
of this problem, our study improved the K-means clustering
algorithm based on genetic algorithms [42].

Genetic algorithm, originated from biological system, is a
model to simulate the process of biological evolution. This
algorithm permeates and combines with natural genetics and
computer. It can simulate many complex problems only by
using simple bit string coding, and gradually optimize the
coding structure by using simple change rules, so it has a
strong global search ability.

The K-means algorithm has a strong local search ability,
while genetic algorithms have a strong global search ability.
Therefore, we combined them and proposed the GKA. After

each generation performs the genetic operation, the operation
steps of the K-means algorithm are introduced to optimize
each individual in the newborn population, and the optimized
individual enters the next generation of genetic operations.
The specific improvement steps are as follows.

1) CODING
The floating-point codingmethod, based on the cluster center,
is used to encode. Supposing that the cluster center is m-
dimensional, the length of each chromosome is k × m for
k clusters. The chromosomes are {x1, x2, · · ·xk} and xi =
[xi1, xi2, · · ·xim]. The corresponding chromosome represents
the coordinates of the k cluster center.

2) POPULATION INITIALIZATION
k individuals are selected from the sample space, and each
individual represents an initial clustering center. The cluster-
ing centers are coded into a chromosome according to the
basic coding formula. Chromosome initialization is repeated
Psize times to generate the initial population. (Psize is the size
of the population.)

3) FITNESS FUNCTION
After the cluster center is determined, the fitness value of each
population is calculated as follows:

f =
within(k)
between(k)

(6)

4) SELECT OPERATION
The mixed selection operator, combining the rotation gam-
bling and the optimal insurance strategy, is used to calculate
the probability of individual selection based on the fitness
f (xi) (i = 1, 2, . . . ,Psize).

P(xi) =
f (xi)

Psize∑
i=1

f (xj)

(7)
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According to the calculated selection probability, the rota-
tion gambling method is used to select individuals to partici-
pate in crossover and mutation operations, to generate a new
population. The fitness value of each chromosome in the new
population is calculated, and the individual with the highest
fitness recorded in the previous generation is used to replace
the individual with the lowest fitness at present. In this way,
the next generation population emerges.

5) CROSS OPERATION
Arithmetic crossover between two individuals, x1 and x2, is
performed. The new individuals are:

x ′1 = ax1 + (1− a)x2 (8)

x ′2 = ax2 + (1− a)x1 (9)

where a is a constant. According to the probability of inter-
section P(xi), an intersection position j is chosen, and the next
generation of individuals x ′1 and x

′

2 are obtained through the
intersection.

6) MUTATION OPERATION
The variation points in individual coded strings are speci-
fied, and the value range of each gene point [Umin,Umax] is
determined. For each variation point, a random number from
the corresponding gene value range is taken with mutation
probability P(m) to replace the original value. The new gene
is:

xi = Umin + θ (Umax − Umin) (10)

θ is a random number within a (0, 1) circle.
When the same optimal individual fitness value appears

continuously and exceeds a certain threshold, the algorithm
stops running. The algorithm ends, and outputs the final clus-
tering result. The schematic flow diagram of the improved
algorithm is as follows:

IV. EXPERIMENTAL RESULTS
A. DATASET
We used three crack datasets as input samples: the CCIC
dataset [43], SDNET dataset [44], and OCD dataset. The
images in the CCIC dataset have been collected from various
concrete buildings, including 40,000 RGB images with a
resolution of 227× 227 pixels, are divided into negative (non-
crack) and positive(crack) categories. The SDNET dataset
contains more than 56,000 cracked and non-cracked images
of concrete bridge surfaces, walls, and sidewalks, and the
dataset includes cracks ranging from 0.06 to 25 mm in width.
The dataset also includes images with various obstacles,
including shadows, surface roughness, scaling, edges, holes,
and nicks. The images in the OCD dataset were captured
by us, and are of concrete bridge decks and pavements.
Similarly to the above two datasets, the OCD dataset con-
tains 2086 images, which are also divided into cracked and
non-cracked images. These images were taken in the daytime,

TABLE 1. BSCD image samples from the different datasets.

night-time, and in different weather conditions, so the images
in this dataset are closer to the reality of bridge pavements.

Convolutional neural networks extract and learn image
features via convolution operations, using massive datasets.
Classification errors on training sets are minimized by back
propagation to optimize the network parameters together,
before finally realizing crack extraction [45]. Therefore,
the performance of the convolutional neural network is
directly related to the size of the datasets. We randomly
selected 14,000 images from CCIC, 18,000 images from
SDNET, and 2000 images fromOCD to combine into a larger
crack detection dataset [46], called the Bridge Surface Crack
Dataset (BSCD). Image samples from this database, made up
of several different datasets, are shown in Table 1.

In order to investigate the rationality of the BSCD for our
proposed method, each dataset was used to train and validate
the model under the same conditions. Then, the images from
CCIC, SDNET, OCD, and BSCD were tested by the trained
models. To form a control experiment, we selected equal
numbers of samples in all crack images and non-crack images
The performance of each dataset was evaluated in terms of the
accuracy of crack detection. The results are shown in Table 2.

As shown in Table 2, the model trained by each dataset
achieves the best accuracy when testing its own images. The
model trained by CCIC can detect test images in CCIC with
97.91% accuracy. The model trained by SDNET can detect
test images in SDNET with 91.05% accuracy. Accordingly,
OCD has an accuracy of 96.37% for its own trained model.
However, good detection accuracy cannot be achieved when
using a model trained by one dataset to test the images of
another dataset. The model trained by CCIC has an accuracy
rate of 63.16% for SDNET images and 69.15% for OCD
images. The model trained by SDNET has an accuracy rate
of 61.32% for CCIC images and 75.19% for OCD images.
Correspondingly, the model trained by OCD has an accuracy
rate of 59.81% for CCIC images and 71.63% for SDNET
images. These results reflect that the convolutional neural
network can effectively learn a sample domain to detect sam-
ples by itself, but the learned knowledge does not translate to
accurately detecting cracks in other datasets.

The model trained by the BSCD dataset improved the
detection accuracy of CCIC, SDNET, and OCD, as shown
in Table 2. The accuracy of crack detection in CCIC reached
99.92%, which is 2.01% higher than that of CCIC itself. The
accuracy with SDNET (95.17%) was 4.12% higher than that
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TABLE 2. Sample test results with different training datasets.

of SDNET itself. The accuracy of OCD image detection was
improved by 2.32%. These experimental results show that
BSCD datasets can contain the feature knowledge of differ-
ent datasets, and have higher accuracy than other separate
datasets in model training. In order to visually present the
influence of different datasets on crack detection accuracy,
a line chart based on the data is shown in Figure 8. The model
trained by the BSCD dataset is superior to the other datasets
in detection accuracy.

B. EXPERIMENTAL ENVIRONMENT
Our crack detection methods were evaluated using the
Pytorch software. The running platform was a Windows 10
64-bit operating system, Intel R©Core i7 V6CPU@3.7 GHz,
16 GB of memory, and a single GeForce 2080 Ti GPU, with
11 GB of memory.

C. PERFORMANCE EVALUATION INDEX
In this part of the experiment, five evaluation indices [47],
Accuracy,Recall,Precision,FPS and F − measure, were
adopted to comprehensively evaluate the network perfor-
mance. There are four different states of crack test results.
TP is the number of crack samples within the sample; TN is
the number of non-cracked samples that are correctly clas-
sified; FP is the number of samples that are misclassified
without cracks; and FN is the number of samples that are
misclassified with cracks. Table 3 shows a confusion matrix
to illustrate these states more clearly.
Accuracy refers to the proportion of correctly classified

images in all test images, which can reflect the learning
situation of all test images. The calculation method is as
follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)

However, for the false part, the same accuracy may have a
good error estimation effect or a poor error estimation effect.
In other words, for an example that is false, the accuracy is
difficult to measure. For this reason, we introduce Recall and
Precision.
Recall considers the original sample. It indicates how

many positive examples in the samples are correctly detected.

The calculation method is as follows:

Recall =
TP

TP+ FN
(12)

Precision considers the prediction result. It indicates how
many of the samples predicted to be positive are true positive
samples. The calculation method is as follows:

Precision =
TP

TP+ FP
(13)

Recall and Precision reflect the learning situation of pos-
itive samples and negative samples, respectively. They are
sometimes contradictory; that is, when the network has a
poor learning effect on negative samples, most samples will
be classified as positive samples. In this case the Recall
will be high, but the Precision will be very low, and vice
versa. We hoped to comprehensively evaluate the learning
effect of the network on training samples, so we adopted the
index F − measure, which is a combination of Recall and
Precision. It can reflect the learning situation of the network
more comprehensively. The calculation method is as follows:

F − measure =
2Recall × Precision
Recall + Precision

(14)

In this study, the detection speed of the model refers to the
time required for the crack detection process to be completed
for each image. The speed is indicated by FPS, which is the
number of frames detected in one second.

D. MODEL TRAINING
The basic training strategy of the proposed model is shown
in Figure 9. In the training process, both the training set
and the validation set are unlabeled images. We trained the
model on the training set, evaluated the model on the vali-
dation set, and adjusted hyperparameters to make the model
in the best state. After the model was trained, we input the
original images into the trained model to get the prediction
results.

In order to select the best learning rate, we compared the
changes in the training loss of different learning rates (lr) with
the increase in epochs. As shown in Figure 10 below, from the
loss curve, we can see that when the learning rate is 0.001 in
the training process before 50 epochs, the training loss of the
model tends to become stable faster than at the learning rate
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FIGURE 7. Schematic flow diagram of the improved GKA algorithm.

FIGURE 8. Sample test results with different training datasets.

TABLE 3. Confusion matrix of the four detection results.

FIGURE 9. Schematic diagram of the model training strategy.

of 0.0001. After 50 epochs, the learning rate of 0.0001 leads
to the training loss of the model being smaller. Therefore,
combining the respective characteristics of the two different

learning rates, we set the initial learning rate as 0.001. After
the number of epochs reaches 50, the learning rate drops by
10 times and becomes 0.0001.
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FIGURE 10. The curve of training loss with different learning rates.

FIGURE 11. The curve of accuracy with different epochs.

Selection of epoch number: As shown in Figure 10, when
the number of epochs reaches 200, the training loss is basi-
cally stable. Considering the time cost of training, there is
no need to continue training after 200 epochs of training.
In addition, in order to avoid over-fitting, we did not proceed
with higher epochs.

From the training accuracy curve shown in Figure 11,
we can see that, when the epoch is around 200, the accuracy
reaches its maximum. With an increase in epochs, the accu-
racy of detection remains essentially unchanged and enters a
stable state.

In addition, we verified the selection of epoch number by
comparing the outputs of different periods [48], as shown
in Figure 12. When the number of epochs is small, such
as 50 or 100, the model is under-fitted and the detection
performance is poor. There are many tiny cracks that cannot
be detected. With an increasing number of epochs, the per-
formance of the crack detection model improves. When it
reaches 200, we achieve the best training results. Conversely,
the model will be overfitted when the number of epochs
is too high. For example, when the epoch number is 240,
non-crack images are also detected as a crack images, and
a large amount of noise points will appear.

FIGURE 12. The comparison of the ground truth of original image and the
output in different epochs.

FIGURE 13. The Precision and Recall curve of the proposed model.

Through the above quantitative experiments, we deter-
mined the best parameters, and then crack detection could
be carried out according to those parameters. The momen-
tum optimization algorithm was used for training. The initial
learning rate was set to 0.001. When the number of epochs
reached 50, the learning rate dropped to 0.0001, and then
remained unchanged. The momentum parameter was 0.9,
the weight attenuation regular termwas 0.0005, the batch size
was 64, the batchwas divided into 313, the epoch dropout was
set to 0.5, so as to prevent over-fitting.

After the completion of model training, the Precision and
Recall curve could be obtained by saving and analyzing the
training record files in the process ofmodel training, as shown
in Figure 13. From the equation of the F − measure, we can
see that when the Precision value is equal to the Recall value,
the F − measure reaches the maximum value of 98.79%.

E. TEST RESULTS AND ANALYSIS
The test results of the BSCD by network model are shown
in Table 4. AlexNet-32 and AlexNet-256 were AlexNet
trained when the mini-batch was 32 and 256, respectively.
The results show that the training accuracy of the network
was not reduced by using the small batch training method.
It can also be seen that Xception and AlexNet performed
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TABLE 4. Test results of different network verification sets.

FIGURE 14. Crack detection performance analysis of different networks.

worst in crack detection accuracy under the same training
conditions. AlexNet has a simple network structure, few
feature extraction layers, a poor ability to learn complex
features, and the shortest computing time because of its shal-
low network depth. The network depth of Xception is sec-
ond only to DenseNet201, and its detection effect on cracks
was the worst, which shows that the method of decoupling
channel correlation and spatial correlation in the convolu-
tion channel is not conducive to the extraction of crack
features.

This method is not adequete to perform crack detection,
and does not give full play to the potential of the Xcep-
tion network. DenseNet201 performed better than the other
networks, because the number of feature extraction layer of
DenseNet201 is the largest of all the networks. It makes full
use of the feature map output with each network module,
which enhances its ability to learn image features. Inception-
v4 was second, and its performance on the four indices was
better than that of Inception-v3. Therefore, adding convolu-

tions of different sizes to the same layer can improve the
accuracy of crack detection more effectively than simply
deepening the network. At the same time, the large net-
work depth of DenseNet201 and the large network width of
Inception-v3 and Inception-v4 took more time to complete
the test.

We show the test results of the different networks in Fig-
ure 14. From Figure 14, we can see that our proposed net-
work is among the best in the four evaluation indices of
Accuracy,Recall,Recall, and F −measure.

From the FPS values of each network, we developed a
comparison diagram of the average detection time of different
networks for a single image, as shown in Figure 15.

It can be seen that the average time for our network to
detect a single image was the lowest, at only 0.0051 seconds,
which meets the requirements of real-time detection.

Different types of image in the test set were used to test
the network. These images were not touched by the network
during the training process, so the test results would be closer
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FIGURE 15. Comparison diagram of different network detection times.

FIGURE 16. Detection results comparison of various methods on different types of cracks.

to the detection effect of different types of crack in a real
situation.

Figure 16 shows the results of different types of crack
samples detected by AlexNet, Inception-v3, Xception, and
DenseNet201, along with our proposed method. There
are vertical, reticulation, transverse, and crushing cracks.
It can be seen that the detection abilities of Inception-v3,
DenseNet201, and our proposed method are the best, while
the AlexNet and Xception networks had different degrees of
missed detections or false detections. This is consistent with
the Precision index in Table 4. The detection performance of
our method was the best. Our detection result was the closest
to the ground truth.

Figure 17 shows the crack detection results under complex
background conditions. The background types are shadows,
weak light, speckles, road marking lines, and pebbles. This
noise can affect crack detection to a certain extent. As the
results show, the Inception-v3 and DenseNet201 methods
had better detection performance in crack detection with
speckles or road marking lines. However, when the back-
ground noise of crack images included shadows, pebbles,
or weak light, the detection results of these models also
had obvious defects. They showed more false detections
than the other methods. When the noise included shad-
ows or pebbles, these methods mistook most of the noise
for cracks. However, Xception is not very sensitive to a
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FIGURE 17. Detection results comparison with various methods for cracks in complex conditions.

complex background, and some cracks will be missed with
this method. Our proposed method can detect cracks accu-
rately and avoid most noise, such as shadows, speckles, and
pebbles.

V. CONCLUSION AND FUTURE WORK
In this paper, a image classification model for crack
detection was proposed, which makes use of the advan-
tages of the Inception-Resnet-v2 module, multi-scale feature
fusion method, and GKA clustering method. Our method
can achieve 99.24% crack detection accuracy without pre-
training. At the same time, the model can capture the
multi-scale context information of the crack images, improve
computational efficiency, and quickly complete crack detec-
tion on a dataset. In addition, the model can be embedded
into any convolutional network as an effective feature extrac-
tion structure. The research results show that our proposed
method can be used as an effective crack detection method in
bridge pavement crack detection. However, different kinds of
cracks have different impacts on bridge health in the actual
environment. Our method can only detect cracks, but can not
classify them. In future work, the classification of different
kinds of cracks will be the focus of our research. For crack
images with noise and indistinct background and foreground
contrast, we will consider building a deep network to capture
more accurate crack information, so as to avoid misjudgment
and omissions.
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