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ABSTRACT Distributed stream processing frameworks have gained widespread adoption in the last decade
because they abstract away the complexity of parallel processing. One of their key features is built-in
fault tolerance. In this work, we dive deeper into the implementation, performance, and efficiency of this
critical feature for four state-of-the-art frameworks. We include the established Spark Streaming and Flink
frameworks and the more novel Spark Structured Streaming and Kafka Streams frameworks. We test the
behavior under different types of faults and settings: master failure with and without high-availability setups,
driver failures for Spark frameworks, worker failure with or without exactly-once semantics, application and
task failures. We highlight differences in behavior during these failures on several aspects, e.g., whether there
is an outage, downtime, recovery time, data loss, duplicate processing, accuracy, and the cost and behavior of
different message delivery guarantees. Our results highlight the impact of framework design on the speed of
fault recovery and explain how different use cases may benefit from different approaches. Due to their task-
based scheduling approach, the Spark frameworks can recover within 30 seconds and in most cases without
necessitating an application restart. Kafka Streams has only a few seconds of downtime, but is slower at
catching up on delays. Finally, Flink can offer end-to-end exactly-once semantics at a low cost but requires
job restarts for most failures leading to high recovery times of around 50 seconds.

INDEX TERMS Apache spark, structured streaming, apache flink, apache kafka, kafka streams, distributed

computing, stream processing frameworks, fault tolerance, benchmarking, big data.

I. INTRODUCTION

The demand for near real-time processing has been soaring in
the last decade with the rise of the IoT domain and a surge in
time-sensitive use cases such as fraud detection and monitor-
ing. Often, this requires processing large volumes of data for
which a single machine does not suffice or becomes increas-
ingly expensive. Consequently, parallel processing becomes
necessary. Processing in parallel makes many aspects of the
system more complex, e.g., fault tolerance [1], accuracy [2],
managing state [3], time recording [4]. Distributed stream
processing frameworks have become a popular tool to process
large amounts of real-time data because they allow abstrac-
tion of these complex features in a scalable system.

Many benchmarks were developed to study performance
differences between these frameworks, e.g., [5]-[10]. Most of
these benchmarks, however, focus on latency and throughput
metrics. Much less work has been done on studying fault
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tolerance in depth. In this paper, we address this gap in the
literature. We study the fault tolerance characteristics of each
of the frameworks and we run experiments for the different
types of faults that can present themselves. The distributed
architecture of these frameworks implies that several com-
ponents can fail. Both Spark frameworks and Flink use a
master for job scheduling. For these frameworks, we exper-
iment with single master and high-availability (HA) setups
with Zookeeper. Besides a master, Spark also uses a driver
component per application that does task scheduling. We test
driver failures for both Spark frameworks, i.e. Spark Stream-
ing and Structured Streaming. The workers are the second
principal components that can fail. With default framework
configurations, events are processed at least once. Some use
cases require the guarantee that events are processed exactly
once. Therefore, we also experiment with enabling exactly-
once semantics to determine the performance impact.

We selected four frameworks for this comparison.
We include Apache Flink [11] because it has gained wide-
spread adoption in many large companies and is considered
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TABLE 1. Fault tolerance workloads in previous benchmarking work.

Reference Workload Frameworks Operations Metrics
Lopez et al., single worker failure Spark Streaming 1.6.1, end-to-end analytics throughput, recovery time,
2016 [16] Storm 0.9.4, Flink 0.10.2  pipeline message loss
Qian et al., single worker failure Spark Streaming 1.4.0, identity TPF, LPF
2016 [9] Storm 0.9.3
StreamBench, single worker failure Spark Streaming identity, sample, TPF, LPF
2014 [10] 0.9.0-inc, projection, grep, statistics,
Storm 0.9.1-inc wordcount, distinct count
This study master failure (single  Flink 1.11.1, stateful pipeline recovery time, downtime,
and high-availability), Kafka Streams 2.6.0 (peak) latency, throughput,
Spark driver failure, Structured Streaming, memory, CPU
single worker failure Spark Streaming 3.0.0

(exactly-once and
at-least-once), job
failure, task failure

to be one of the front runners in stream processing at the
moment. Secondly, we include both Spark APIs for stream
processing, Spark Streaming, and Structured Streaming.
Apache Spark is a popular distributed analytics framework,
primarily used for its batch processing capabilities. When
Spark Streaming was released, it quickly gained traction
and it became a popular alternative for frameworks such as
Storm [12] and Samza [13], mainly for use cases where a
slightly higher latency is acceptable. In 2016, Apache Spark
announced a more high-level stream processing API called
Structured Streaming, which integrates more tightly with its
batch API. Finally, we include Kafka Streams [14], which
targets processing data residing on Kafka [15] clusters. One
of its most significant advantages is that it does not require
a pre-deployed processing cluster which reduces overhead
from maintenance and idle time. Communication happens via
the Kafka brokers. Kafka Streams is used by companies such
as Zalando and Pinterest and is backed by Confluent.

In general, the contributions of this paper are:

1) Extensive analysis of the fault recovery mechanisms
of four distributed stream processing systems: Flink,
Kafka Streams, Spark Streaming, and Structured
Streaming.

Discussion and experiments on the performance impact
of a master failure with a single master and a high-
availability setup with Zookeeper.

Discussion and experiments on the performance impact
of Spark driver failures for Spark Streaming and Struc-
tured Streaming with at-most-once and at-least-once
semantics.

Discussion and experiments on worker failures for
at-least-once and exactly-once processing semantics.
Discussion and experiments on application, job, stage,
and task failure.

Implementation of three fault tolerance workloads on
top of OSPBench.

The rest of this paper is organized as follows. The next
section gives an overview of related work on this topic.
In Section III, we describe the fault tolerance mechanisms of

2)

3)

4)

5)

6)

93746

the included frameworks. To run our experiments, we imple-
mented three fault tolerance workloads on top of Open
Stream Processing Benchmark (OSPBench) [5]. The details
on how we did this have been described in Section IV.
In Sections V-VII, we discuss three common failure types
and their influence on the performance of the framework.
Master failures with and without high-availability setups are
studied in Section V. In this section, we also experiment
with driver failures for the Spark frameworks. Section VI
covers worker failures under different processing seman-
tics. Failures of applications, jobs, stages, and tasks are
discussed in Section VII. Finally, we form conclusions on
these results in Section VIII and list some limitations in
Section X. Our workload implementations have been merged
into the codebase of OSPBench, which is available at https://
github.com/Klarrio/open-stream-processing-benchmark.

Il. RELATED WORK

The previous work on fault tolerance benchmarking of stream
processing frameworks is scarce, as can be seen in the
overview in Table 1. To start with, previous work only
included worker failures with the default at-least-once seman-
tics. No previous work evaluated master failures with and
without high-availability setups, worker failures for exactly-
once semantics, Spark driver failures, and application, job,
stage and task failures. We include these important other
dimensions of fault recovery in our study.

The first stream processing benchmark to study worker
failure was StreamBench [10] and its extension [9]. They
evaluate Spark Streaming (up to v1.4.0) and Storm (up to
v0.9.3). In both [9] and [10], a worker fails in the middle of the
execution and the node does not come back up. In our worker
failure workload, we let the node fail and come back up after
a few seconds. By doing this, we mimic a modern system
in which failed services are recovered, possibly on a different
node. The processing pipeline used in [9] did no operations on
the ingested data. StreamBench [10] included a larger variety
of processing pipelines to test fault recovery but did not give
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detailed reasoning behind performance differences. In our
work, we use a stateful pipeline because this makes the fault
recovery process heavier and more complex. In [9] and [10],
the impact of the failure was computed by comparing the
latency and throughput of runs with and without node failure.
They call this the latency and throughput penalty factor.
The results of [10] showed that the worker failure did not
have a significant impact on any metric for the incubating
release of Spark Streaming. Storm performed worse: through-
put dropped by one third and latency increased five times.
Qian et al. [9] confirmed these results. Both studies look
at the overall impact for an end-to-end run. We investigate
the influence at a more fine-grained level since we assume
that frameworks will be able to recover and that processing
performance will be comparable before and after recovery.
Therefore, we focus on the evolution of latency, throughput,
and resource utilization throughout the failure and failure
recovery process. Additionally, we determine downtime and
recovery speed since these are very important metrics in
production setups.

The third work which investigated worker failures [16]
evaluated the response of Flink v0.10.2, Storm v0.9.4 and
Spark Streaming v1.6.1 on a single node failure. They tested
an end-to-end threat detection pipeline with a neural net-
work classifier. Lopez et al. [16] induce a node failure after
50 seconds of execution. We wait almost 10 minutes to allow
more state to be built up before the node fails, which makes
fault recovery more demanding. The results of [16] confirm
that the impact of the worker failure is the least for Spark
Streaming. No messages are lost and the time to redistribute
tasks is short. For Flink, the time to redistribute the tasks
took much longer and more messages got lost during the
fault. Storm redistributed tasks faster but suffered more from
message loss. We compare this with our results and we add
Kafka Streams and Structured Streaming. To our knowledge,
the fault tolerance of these frameworks has not yet been
benchmarked.

To conclude, our work is the first to incorporate a broad
range of possible failures: (1) master failure for a setup with
a single master and for a high-availability setup, (2) Spark
driver failures with at-most-once and at-least-once semantics,
(3) single worker failure with exactly-once and at-least-once
processing guarantees, (4) job and task failures. We test these
failures for each of the four frameworks on a stateful pipeline.
Finally, we look at a broad range of metrics such as downtime
and peak latency. We use these metrics to do a fine-grained
analysis of the consecutive stages of the recovery process:
failure, restart, rebalancing, etc.

Ill. FAULT RECOVERY MECHANISMS

When processing unbounded streams, jobs are intended to
keep running endlessly. This means they will inevitably
be confronted with machine failures, maintenance, and
other interruptions. Distributed computing clusters are com-
posed of several components: master, worker, application,
job, stage, task, etc. Each of these components can fail.
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Frameworks handle these failures in different ways. Some-
times it suffices to reschedule some tasks, while other times
the job needs to be restarted. Therefore, the effects on pro-
cessing are not the same for all frameworks.

Recovering an interrupted processing job is complex. The
system needs to restart the job from a set of offsets that
correspond to a globally consistent state [3] while preventing
data duplication and guaranteeing correctness. This is a heavy
operation for which sufficient resources need to be available.
In Section III-B, we elaborate on the complexity of this
and explain the fault recovery prerequisites and mechanisms
of stream processing systems. Without these mechanisms,
data might get lost, or SLAs are broken. In Section III-C,
we discuss how these frameworks can recover from master
failures. Unlike the workers, the master is a single point of
failure. The master does not do any processing but has a
managing role. To recover from master failures, the cluster
needs to be high-available. The fault recovery mechanisms of
the frameworks included in this paper have been thoroughly
explained in previous research. Therefore, we do not give
an in-depth explanation but guide the reader to the relevant
resources.

A. MESSAGE DELIVERY GUARANTEES

An important term when talking about fault tolerance is
message delivery guarantees or processing semantics. There
are three main message delivery guarantees. At-most-once
processing means that messages might get lost in case of a
failure. This happens when no fault recovery mechanism is in
place. When a worker fails, another one comes back up and
starts processing newly incoming data, skipping older events
that were not processed yet. At-least-once message delivery
means that messages might get processed twice in case of a
failure. In this case, processing starts from the last available
stored state or checkpoint. Events that had been processed
after the checkpoint might get processed twice. Exactly-once
processing is the ideal scenario in which events are processed
exactly one time, meaning messages never get lost or pro-
cessed twice. Most stream processing frameworks rephrase
this and guarantee that each incoming event affects the final
results exactly once and is committed at the sinks exactly
once. To reach this guarantee, thorough fault recovery mech-
anisms need to be in place. Even then, it is still not possible
to hold this guarantee in scenarios such as pipelines with side
effects [17], as we explain later. For some use cases, exactly-
once semantics are very important, e.g. fraud detection in the
financial industry. However, losing messages is not equally
detrimental for all use cases, e.g. IT monitoring system that
loses a few CPU metrics. The frameworks included in this
research allow choosing the appropriate processing semantics
for each use case.

B. RECOVERY OF PROCESSING JOBS

Imagine a processing job that computes a running average on
an incoming stream. Recovering such a processing job brings
up some difficulties. These difficulties are mainly related to
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the consistency of the state of the job. Stream processing
jobs keep two types of state: intermediate results and offset
metadata [18].

1) RESTORING INTERMEDIATE RESULTS

The first type of state is intermediate results. In the example
of the processing job that computes moving averages, this is
a list of previous values over which the average is computed.
If this information is lost due to a job restart or failure,
the results after the restart will not be correct. To guarantee
correctness, the processing job needs to take periodic backups
of this state so it can rebuild it after a failure [19]. Since
the state is constantly written to and distributed over several
machines, it is difficult to determine the global, consistent
state of the system [3]. There are some different techniques
to do this.

The most common technique is to back up state via peri-
odic checkpointing [3], [20]. In essence, this means storing
a copy of the state on a reliable, durable filesystem such
as HDFS or S3. This generates an overhead that can be
reduced by doing incremental checkpoints [20]. This tech-
nique avoids writing state that did not modify between con-
secutive checkpoints, leading to much smaller checkpoints.
Another technique to reduce the overhead is by checkpointing
asynchronously. This means that a separate thread is spun up
to do the checkpointing and the main processing threads are
not stopped.

Apache Flink uses checkpointing for recovering state and
job metadata [11], [21]. It uses a mechanism called Asyn-
chronous Barrier Snapshotting (ABS) [22] to guarantee con-
sistent checkpoints. This mechanism is based on the Chandy
Lamport algorithm [3] and punctuation [23]. This is used by
many other event-driven frameworks [24], [25]. It provides a
way of taking snapshots with low impact on performance and
a low space cost. In short, this mechanism injects checkpoint
barriers in the input stream. When an operator has received
a barrier for each input channel, it triggers a checkpoint.
Flink provides asynchronous checkpoints for the filesystem
backend, which we also use in our experiments. Incremen-
tal checkpointing is, at this moment, only available for the
RocksDB backend.

Spark Streaming and Structured Streaming use check-
pointing and write-ahead-logs (WAL) to provide fault tol-
erance [26]-[29]. Both are micro-batch frameworks which
simplifies their fault recovery mechanism [16]. They use a
blocking operator model in which an operator has to produce
its complete result before a downstream operator can start
processing it. This leads to a simplified fault tolerance model
since tasks only read intermediate results from upstream
operators when they are complete. Spark Streaming jobs
take a snapshot every 5-10 sliding intervals, while Structured
Streaming checkpoints after every batch. Checkpointing in
Spark Streaming and Structured Streaming is not incremen-
tal, nor asynchronous.

Kafka Streams takes a different approach for fault recov-
ery and makes use of its close integration with Kafka as
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a messaging layer to backup state [14], [30]. In-memory state
stores are backed by a replicated changelog topic on Kafka
which tracks state updates. Each task that accesses the store
keeps a changelog. If a task fails, it is automatically restarted
on one of the remaining instances and the state stores will be
restored by replaying its changelog.

2) RESTORING OFFSETS

The second type of state describes which events were suc-
cessfully processed so far. If the job was in the middle of
processing when the failure happened, some records were
already successfully emitted at the sinks while others were
not. Therefore, there needs to be a mechanism in place to
keep track of which records were emitted and which ones
were not. This can be seen as job metadata. When this is
not tracked precisely, the job will restart processing from a
point in the stream which is either too late or too early. When
it starts processing from a point that is too late, data is lost
(at-most-once semantics). In the other case, data is processed
and emitted twice, leading to duplicate output (at-least-once
semantics). Flink and the Spark frameworks include the job
metadata in the checkpoint. This means that the mechanisms
described in the previous section store the intermediate results
together with the position in the input streams.

The need to track progress and start processing from an
earlier point in the stream, places some extra requirements
on the pipeline. These requirements count for most frame-
works [24]-[26], [31], [32]. First of all, the source needs to
be replayable. After arestart, the events that were not success-
fully processed are replayed and reprocessed. This means the
source also needs to be deterministic [33]. A deterministic
source returns the same data in the same order as before the
failure. Secondly, the source needs to be persistent which
means that older data is still available for replay. A popular
source of streaming data is Kafka [15]. It makes data available
as topics that consist of several partitions. The records in
a partition are in a deterministic, static order [34] and are
retained for a fixed period of time, which can go up to days.
We use Kafka as data source because of its popularity and
because it is areplayable, persistent, and deterministic source.

Besides the sources, processing also needs to be determin-
istic. This is not evident. For example, if a pipeline queries
an external database for side input, the database records
may have changed during the failure. Another example is a
pipeline that uses processing time windows. At restart, this
pipeline will take in all the data that was produced during the
downtime, leading to a larger number of events in the window
bucket and different results compared to normal operations.
Therefore, the processing logic on the window bucket needs
to be robust to this.

Finally, there are also some prerequisites for the sinks.
If a failure occurs, the system cannot rely on downstream
systems to roll back [35]. The outside world needs to perceive
consistent behavior of the system despite any failures. This
is called the output commit problem [20]. There are two
possible approaches here [36]. One option is to have an
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idempotent sink operation. This means the sink would be able
to handle duplicate data, e.g. overwriting data in a database,
overwriting a file with identical data.

Another option is to implement transactional and atomic
writes in the sink, implying that they either complete
entirely or roll back. Flink implements this [18], [31] via the
Two-Phase Commit Protocol [37]. This protocol coordinates
rollbacks and commits in the sinks and works in two phases.
In the pre-commit phase, the checkpoint is started and the
barrier passes through all the operators and triggers snap-
shots. In the commit phase, the checkpoint has succeeded and
the job manager communicates this to all operators. When
a failure happens, uncommitted data can end up on Kafka.
During the reprocessing, this data is sent to Kafka again
and now committed correctly. To avoid reading duplicate
messages in downstream systems, the isolation level of their
Kafka consumers needs to be set to only read committed data.

Kafka Streams does three steps atomically to guaran-
tee exactly-once processing: (1) committing offsets of the
source topics, (2) tracking state updates on highly-available
changelog topics and (3) acknowledging records at the
sinks [38].

Spark Streaming or Structured Streaming use write-ahead-
logs to enable at-least-once (and exactly-once) semantics.
The WAL is a concept from database design and is a JSON
append-only log that supports durable, atomic writes. It can
be used to replay data for recovery or rollbacks [26]. It offers
a reliable log of data that has been successfully written to
output sinks. We store the WAL on HDEFS together with the
checkpoints. The end-to-end processing guarantee of a Spark
Streaming or Structured Streaming application depends on
the semantics of the sources and the sinks of the application.
In our pipeline, we use a Kafka sink for Structured Streaming
and a foreachRDD sink for Spark Streaming. Both of these
sinks only provide at-least-once semantics at the time of this
writing. Currently, none of the stream processing APIs of
Spark offers writing to Kafka with out-of-the-box exactly-
once guarantees. To reach exactly-once semantics, the user
needs to do a custom implementation of transactional updates
to Kafka. We leave this out of the scope of this paper because
the goal of this paper is to test the built-in features of the
frameworks. As far as we are aware, the only sink which
currently offers built-in exactly-once semantics is the file sink
of Structured Streaming because it is idempotent.

C. RECOVERY FROM MASTER FAILURE

The master of the cluster has different responsibilities in
different frameworks. In Flink [11], the master is the job
manager which coordinates execution, schedules tasks, trig-
gers checkpoints, coordinates worker failures, etc. A Spark
cluster works differently. A standalone cluster exists of a
master and several workers. An application running on a
cluster exists of a driver and several executors. The executors
run on the workers and the driver runs either on one of the
workers or separately. The driver is the main entry point of the
application. It houses the SparkContext and schedules tasks
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on the executors that were assigned to it. The master of the
cluster does tasks such as monitoring the health of the workers
and tracking the jobs that are running on it [36]. Kafka
Streams does not use a master-slave architecture and runs as
separate instances which are identified as one application by
the Kafka brokers.

Because of these differences, the effect of a master fail-
ure also differs across frameworks, e.g. inability to schedule
new jobs, job restart, etc. We elaborate further on this in
the Results Section. Because a master has a different set
of responsibilities than the workers, other fault-tolerance
schemes need to be in place. A single master is a single
point of failure. Setups that tolerate master failures are high-
availability setups. Several high-availability setups have been
proposed [33]. Currently, the most popular approach for stan-
dalone clusters is having multiple masters running concur-
rently, where one is the leader and the other is in standby.
In this setup, Zookeeper [39] is used for coordination. The
job metadata are kept partly in Zookeeper and partly in a
reliable filesystem, e.g. HDFS, S3. When a failure happens,
Zookeeper notices the failure and elects the other master as
the new leader. Some frameworks require a job restart after
this to ensure the consistency of state. Whether or not this is
required, depends on the framework. If it is required, this will
be handled as described in the previous section, i.e. based on
the latest checkpoint. In this work, we evaluate both setups:
single master and high availability with Zookeeper.

IV. BENCHMARK DESIGN

As said earlier, several benchmark suites have implemented
latency and throughput experiments. However, there is no sin-
gle benchmark suite that covers all key aspects of stream pro-
cessing and has recent implementations of varying pipelines
in several frameworks. To repeatedly benchmark newer
releases on several features and keep results comparable,
we would need to work towards this goal. Therefore, we pre-
fer extending an existing benchmark suite, with extensive
fault tolerance workloads, over implementing a new suite
from scratch. For this purpose, we extend OSPBench [5]
with three fault tolerance workloads. OSPBench is an open-
source stream processing benchmark that includes extensive
latency and throughput workloads for pipelines of varying
complexity and under varying data characteristics. It offers
recent implementations of pipelines in four state-of-the-
art frameworks and includes an ecosystem for collecting
and analyzing performance metrics. One of the limitations
of OSPBench was the lack of fault tolerance workloads.
OSPBench only looked at the key performance metrics
(i.e. latency and throughput) in optimal conditions. Nonethe-
less, it does include a workload to test the peak throughput
during an input data burst. This is closely related to the time it
takes to catch up on processing delays after failure. However,
this does not take into account the fault recovery mechanism,
task rescheduling, state restoring, and rebalancing operations
that take place during a failure. Therefore, the ability to
catch up quickly is only a small portion of the end-to-end

93749



IEEE Access

G. van Dongen, D. Van den Poel: Performance Analysis of Fault Recovery in Stream Processing Frameworks

performance on fault recovery. As such, OSPBench requires
dedicated fault recovery workloads. This study is focused on
investigating the behavior under several kinds of fault sce-
narios. The three workloads, we implemented, were merged
into the codebase of OSPBench, which now offers a one-stop
benchmark suite for latency, throughput, and fault tolerance
testing. The features of OSPBench that we use are its pro-
cessing pipeline implementations, infrastructure and automa-
tion scripts, and metrics collection system. These are shortly
described throughout this section. Finally, we also discuss
the chosen framework configurations for the fault tolerance
workloads.

A. PROCESSING PIPELINE

We use a processing pipeline that analyzes NDW traffic
data [40] of the Netherlands, as shown in Figure 1. The
job ingests two streams: one containing speed measurements
and the other containing vehicle counts at a configurable
number of measurement locations. The total input throughput
is 18 000 events per second. The incoming data is in JSON
format and subsequently parsed into Scala case classes. Both
streams are then joined together at one-second intervals.
At this point, the joined stream contains events for every lane
of every measurement location. Next, we join all the different
lanes of a similar measurement location and compute the
average speed and total count.

Kafka Stream processing framework
| Flow |'"E| Ingest I:":‘l Parse i Tqubling
[speed frp ingest | Parse } Window

' |

Kafka || Stats

FIGURE 1. Processing pipeline adapted from [5] and [41].

Resuming a failed pipeline mainly involves rescheduling
failed tasks and operators, restoring state, rebalancing parti-
tions over worker threads, and catching up on the processing
lag. In our experiments, we use a stateful pipeline because
restoring state is one of the heaviest parts of fault recovery.
The larger the state, the heavier it is to reload it into the
workers. The size of the state is the most important deter-
minant here. The type of operation which keeps the state
(e.g. tumbling window, sliding window) is not relevant for
recovery. Besides that, the other aspects of fault recovery
also have no clear relation to the exact operators in the
pipeline. The fault recovery mechanism of the framework
influences the rebalancing of partitions and rescheduling of
tasks. Additionally, previous work [5] tested the speed of
catching up on a delay for several pipeline complexities. For
all the pipelines, they found similar rankings and differences
between the frameworks. Therefore, we believe the results of
our workloads on one stateful pipeline will be representative
of other pipelines.
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B. INFRASTRUCTURE

In the design of the underlying infrastructure of our bench-
mark runs, we mimic modern real-world deployments by
running on the cloud and using popular state-of-the-art tech-
nologies. We run our experiments in the cloud on AWS
EC2 instances to make the benchmark reproducible. The
EC2 instances have 16 vCPUs, 64 GiB memory, and a net-
work bandwidth of up to 25 Gbps. Each instance has an EBS
volume of 500 GB with a bandwidth of up to 4750 Mbps.
We ensured the network bandwidth is sufficient for our pro-
cessing job. On top of these instances, we set up a DC/OS
cluster [42] which serves as an abstraction layer on the under-
lying machines. Moreover, DC/OS allows easy deployment
of Docker [43] container services. All the components of this
benchmark run as a Docker container on top of DC/OS.

To run the benchmark, we need several other services.
We set up a Kafka [34] cluster to serve as a message broker
between data producers and data consumers. For the collec-
tion of metrics, we set up a cAdvisor [44] instance on every
node and a JMX exporter to scrape JVM-related metrics from
the running containers. We backup the state of the processing
jobs on an HDFS [45] cluster. During a benchmark run,
we deploy a framework cluster when required (for Flink,
Spark Streaming, and Spark Structured Streaming). Finally,
we also have a component that generates a data stream and
publishes it on Kafka. The generated stream is read by the
processing job which runs on the cluster and results are
published back to Kafka.

C. METRICS

In this section, we describe the metrics that we use to discuss
the fault recovery capabilities of the frameworks. We also
cover how we collect and compute them.

1) LATENCY

The first metric is latency. Latency is the time required to
generate an output message from an input message. In this
study, we use latency as an indicator of delays in processing.
We compute latency by subtracting the Kafka message times-
tamps of the input and output events. When multiple events
are required to do a computation, we count latency starting
from the last input event. Since the clocks of the different
machines of the Kafka brokers are not synchronized, we need
to make sure that input and output events end up on the same
brokers, as per [41]. We do this by using the same partitioning
key for the input and output.

2) THROUGHPUT

The second metric is throughput. Throughput is the process-
ing rate of the framework in messages per second. We discuss
two types of throughput in this work. Input throughput is the
number of events per second entering the framework at the
sources of the pipeline. Output throughput is the number of
events per second emitted from the processing job at its sink.
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3) CPU UTILIZATION

We include CPU utilization because it indicates the load on
the framework and whether the framework is making efficient
use of its allocated resources. We use cAdvisor to collect CPU
metrics of each running container [44].

4) MEMORY UTILIZATION

The second resource metric we monitor is memory utiliza-
tion. Memory utilization is subject to the configuration set-
tings of the framework. Memory pressure can induce heavy
GC cycles which put load on the CPUs. Workers fail when
GC cycles become ineffective and memory grows out of
bound. We use memory utilization to check whether it is not
monotonously rising and to check whether garbage collection
has the desired effect. We use JMX to collect metrics on the
heap and off-heap memory utilization. Memory utilization is
not a direct indicator of speedy recovery. Therefore, we do
not include memory metrics in our visualizations but report
on them when informative.

D. FRAMEWORKS

We include four frameworks in this comparison. To get reli-
able, generalizable results, it is paramount to use the right
configuration settings for each job and workload, as has been
highlighted by previous work [5], [9], [46]. Tuning the param-
eters ensures that we are comparing the optimal performance
of the frameworks. We do not want to test how well the
default parameters are set but how well the framework can
perform on a certain feature. Therefore, we tuned the most
important parameters through extensive experimentation and
based on expert advice. Most of these parameter settings are
recommended by the framework documentation or follow
standard practices, as will be explained.

In Table 2, we list the cluster-related configuration param-
eter settings. Many of these are equal for all frameworks, such
as instance counts, CPU, memory, and disk allocation. We set
the parallelism of all frameworks equal to the number of cores
in the cluster. This refers to the setting for the number of task
slots for Flink and the number of threads for Kafka Streams.

In Table 3, we list the configuration parameters that are
related to the processing job itself. Some of these were,
again, equal for every framework. An example of this is the
setting for event time processing. Stream processing jobs
are frequently confronted with delayed data. For example,
when processing sensor data, one sensor can be temporarily
offline. When it comes back up, it uploads its backlog in bulk.
Another example is where one data generator incurs higher
network delays than another. A stream processing job needs
to be robust against these types of scenarios and needs to still
be able to generate accurate results. To do this, a job needs
to be able to base its processing on the timestamp at which
an event was generated instead of the timestamp at which it
entered the framework. The mechanism which allows doing
this is called event time processing [2]. Since most use cases
require correctness in the case of late data, we enable event
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TABLE 2. Cluster configuration parameters.

[ Parameter

a. Apache Flink
JobManager count, CPU, memory, disk
TaskManager count, CPU, memory, disk

Setting

1,2 CPU, 8 GB, 20 GB
5,4 CPU, 20 GB, 20 GB

JobManager Flink memory 7GB
TaskManager Flink size 18 GB
Memory managed fraction 0.05
Number of task slots 4
Default parallelism 20

b. Apache Kafka Streams
Instances count, CPU, memory, disk 5,4 CPU, 20 GB, 20 GB

Java heap 14 GB
Streams thread count 4
Kafka parallelism 20

c. Spark Streaming and Structured Streaming
Master count, CPU, memory, disk 1,2 CPU, 8 GB, 20 GB
Worker count, CPU, memory, disk 5,4 CPU, 20 GB, 20 GB
Driver cores, heap 2,6 GB
Executor count, cores, heap 5, 4 cores, 17 GB
Default parallelism 20
SQL shuffle partitions 20

time processing where possible. The only exception is Spark
Streaming, which only offers processing time semantics.

For the frameworks which allow event time processing,
the tolerance interval for late data is set to 50 ms. We chose
this number because it is an approximation of the maximum
time difference between the Kafka brokers. In our setup,
we are sure that data is generated in order. The only disorder-
ing that can happen is due to having several Kafka brokers
on different machines. Kafka only guarantees order within
partitions and not across partitions. The allowed lateness
of 50 ms refers to the out-of-orderness bound for Flink and the
watermark setting of Structured Streaming. We increase the
grace period of Kafka Streams to 30 seconds since it prevents
wrongly discarding events when some partitions are pro-
cessed faster than others and it has no negative influence on
the latency. We run all workloads with default at-least-once
processing semantics. Additionally, we also experiment with
at-most-once semantics for the Spark driver failure workload
and exactly-once semantics for the worker failure workload.

Finally, we use G1GC as the garbage collector for all
frameworks since this is often recommended for Spark and
Kafka Streams [15], [47] and is the default for Flink. We ran
some tests with different GC algorithms and found best per-
formance with G1GC for our pipeline.

1) APACHE FLINK

Apache Flink [11] is an open-source stream processing
framework that positions itself as a fast, in-memory, scalable,
distributed processing system for unbounded and bounded
data. Since its first release in 2014, it has gained widespread
adoption by companies such as Alibaba, AWS, Uber and
Zalando.
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TABLE 3. Job configuration parameters.

a. Apache Flink (v1.11.1)

Parameter Value Default
Time characteristic event time processing time
Watermark interval 50 ms /
Out-of-orderness bound 50 ms /
State backend FileSystem InMemory
Checkpoint interval 10s none
Object reuse enabled disabled

Exactly-once semantics
Producer semantic

exactly-once

at-least-once

Enable idempotence true false
Isolation level committed uncommitted
Transaction timeout 1h 15min
b. Apache Kafka Streams (v2.6.0)
Parameter Value Default
Commit interval Is 30s
Grace period 30s 0 ms
Producer compression 1z4 none
Producer batch size 200 KB 16 KB
Max task idle 5 min 0
Topology optimization optimize none
Window changelog retention 10 min 1 day
Garbage collector G1GC Parallel GC

Processing guarantee

exactly-once

at-least-once

c. Spark Streaming and Structured Streaming (v3.0.0)

Parameter Value Default
Serializer Kryo Java
Write ahead log enable disable
Garbage collector G1GC Parallel GC
Initiating heap occupancy 35% 45%
Paralle]l GC threads 4 /
Concurrent GC threads 2 /
MaxGCPauseMillis 200 200
Micro-batch interval (sp.) 1s /
Trigger interval (str.) 0 /
Max offsets per trigger (str.) | 20 * throughput /
Block interval 50 ms 200 ms
Locality wait 100 ms 3000 ms
Min. batches to retain 2 100
Watermark (str.) 50 ms /
Watermark policy (str.) max min

((str.) refers to Structured Streaming; (sp.) refers to Spark Streaming)

When a stateful processing pipeline is used, Flink requires
a state backend to be able to store state. There are three state
backend implementations available in Flink: memory back-
end, filesystem backend, and RocksDB backend. As stated in
the Flink documentation [11], the memory backend is encour-
aged for local development and debugging. The filesystem
backend should be used for high-availability setups with a
large state which fits on the task manager heap. And finally,
the RocksDB backend should be used for high-availability
setups where the state is too large to fit on the heap. Since
our job requires a high-availability setup and the state is small
enough to fit on the heap, we use the filesystem backend with
HDFS for persistent storage.

For stateful pipelines, Flink requires setting a checkpoint
interval [11]. Setting this interval leads to a trade-off. Check-
pointing is, on the one hand, a CPU-heavy operation so
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a lower interval takes away more resources from the main
computation pipeline. A higher interval, on the other hand,
leads to longer recovery times since Flink restarts jobs from
the latest successful checkpoint in case of a failure. We set our
checkpoint interval to 10 seconds because this is low enough
for a speedy recovery and high enough to not become the
bottleneck of our pipeline. This is also the default checkpoint
interval of Spark Streaming.

The filesystem backend is heap-based. This means that
the task managers need to have enough heap memory to
store the entire state. To this end, the Flink documentation
recommends setting the managed memory fraction to a very
low value because it makes sure that the maximal amount of
memory is allocated to heap space.

We enable object reuse because this improves perfor-
mance, as discussed in [11]. Flink does not use this by default
because it can cause issues when the user code is not adapted
for this behavior.

To enable exactly-once semantics, some settings need to be
adapted as explained in the Flink documentation [11]. First of
all, we enable the Two-Phase Commit Protocol [18] by set-
ting exactly-once semantics for the Kafka sink. Additionally,
we set the transaction timeout of the Kafka brokers to 1 hour
to deal with longer outages. To avoid reading duplicates in
case of a failure, we set the isolation level of the Kafka
consumer in the output consumer to only read committed
messages.

2) APACHE KAFKA: KAFKA STREAMS

Kafka [15] is a distributed message broker that serves as a
reliable, scalable, robust intermediary between data produc-
ers and data consumers [34]. Kafka Streams [14] is a library
that allows data transformations on top of data residing in a
Kafka cluster. Katka Streams applications do not require a
separate processing cluster but run as individual threads that
rely on Kafka for parallelism and fault tolerance.

We set the commit interval to one second because this is
the slide interval of the windowing operations. This triggers
output of the aggregation step every second, as we do for the
other frameworks.

During startup or restarts of a container, some threads
process faster than others. We noticed that events got dis-
carded when processing did not progress equally fast on
all partitions. Event time progressed together with the fast-
moving partitions. This caused events to be discarded on the
slower partitions. To mitigate this, we use a higher grace
period of 30 seconds. With this setting, Kafka Streams will
tolerate late data of up to 30 seconds. This does not impact
the latency because Kafka Streams sends an update from
aggregation operations at every commit interval and does not
wait for the end of the grace period to emit results. This
mechanism is called the Dual Streaming Model of Kafka
Streams [30]. Additionally, we increased the maximum time
tasks are allowed to wait idly for data to arrive on all parti-
tions. This further reduced the incorrect discarding of data.
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For most of the other settings in Table 3, we follow the tun-
ing recommendations of the Kafka Streams developers [48].
We increase the producer batch size to 200 KB. This leads
to larger batches which reduces the number of requests and
therefore, the load on the producers and brokers [48]. We use
1z4 compression to reduce the size of messages, as recom-
mended in [48].

To ensure that threads clean up state promptly, we set the
general window changelog retention time to ten minutes and
additionally, define shorter retention times for all individ-
ual windowing operations. Without these settings, the job
becomes unsustainable after 20 minutes when it starts clean-
ing state. Finally, when desired, we enable exactly-once
semantics by setting this as the processing guarantee of the
pipeline.

3) APACHE SPARK: SPARK STREAMING AND

STRUCTURED STREAMING

Apache Spark is an open-source unified analytics engine that
targets large-scale data processing use cases and is actively
developed by Databricks and the open-source community.
It currently includes two streaming APIs: the older Spark
Streaming [36] API and the more recent Structured Streaming
API [49]. Spark Streaming is based on the DStream and
RDD API [27], whereas Structured Streaming is more high-
level and is built on the Spark SQL engine, which does a
lot of optimizations under the hood. Structured Streaming is
more closely integrated with the batch API. Users can switch
from batch to streaming implementations with minimal code
changes.

We run all applications in client mode, meaning that we run
the driver in a separate container that connects to the Spark
master to request resources and run the application. We set
the supervise flag when submitting applications to ensure
application restarts in the case of failures.

As recommended in the documentation [36], we use Kryo
serialization since it is faster than the default Java serializer.
Kryo serialization is not the default since it requires manual
registration of the classes used throughout the pipeline. In our
codebase, we do this registration for both Spark Streaming
and Structured Streaming.

We tune the most important garbage collection parameters,
based on [47]. We adapt the parallel and concurrent GC
threads of G1GC based on the number of cores per JVM.
We set the parallel GC threads equal to the total number
of cores and we set the concurrent GC threads equal to
50% of the cores. Furthermore, we reduce the initiating heap
occupancy to 35% to trigger more frequent but less heavy
garbage collection cycles.

Spark Streaming uses a fixed micro-batch interval at which
batches of data are collected and processed. We set the batch
interval to one second which is equal to the slide interval of
the aggregation step. This is a logical choice since we want to
compute aggregates per second in our use case. As said, Spark
starts processing a batch when the batch interval times out.
To benefit from parallel processing, the data is split up into
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partitions while it is arriving. This is done based on the block
interval. We set the block interval equal to the batch interval
divided by the desired parallelism to get the right amount of
partitions in each interval. For Structured Streaming, we set
the trigger of our sink operation to zero, meaning process-
ing as fast as possible. This setting leads to dynamically
sized batches based on the processing time of the previous
batch. Dynamically sized batches can lead to advantages in
the case of changing processing loads [50], which we will
be confronted with during restarts. With dynamic batch sizes,
the framework can increase the batch size to be able to sustain
peaks in throughput and can lower the batch size to reach
lower latencies at times where throughput is lower.

By default, Structured Streaming uses the minimum times-
tamp across all partitions as the event time of a batch. The
event time of the system is updated after the processing has
finished. This means that the event time of some events in
the batch has not yet passed the watermark. These events
are buffered until the next trigger before they are outputted.
Because of this, chained stateful operations cause high laten-
cies. To speed up the generation of output, we use the max-
imum timestamp of the batch as the event time. This avoids
buffering events longer than one interval at each stage. We do
this by setting the watermark policy to take the maximum
instead of the minimum event time as the global watermark.
This watermark policy makes sure that the watermark follows
the fastest input stream and that data from the slower stream
is dropped aggressively. We did not experience message loss
since both streams are well synchronized and this allows for
a much lower latency.

During a restart, a processing backlog builds up.
We noticed that when the job came back up, the first batches
were so large that they tended to overflow the memory of
the executors. To avoid this, we set the maximum offsets
per trigger to the equivalent of 20 seconds of data. By doing
this, we regulate the amount of data that is ingested in the
initial batches. We decrease the minimum number of batches
to retain to reduce the memory footprint.

Spark includes a mechanism to preserve data locality when
scheduling jobs. This means that Spark tries to schedule tasks
as close to their data as possible. First, it will try to schedule
it in the same JVM, then on another executor on the same
node, and then on the same rack. The configuration setting
spark.locality.wait sets the amount of time Spark waits for
a core to free up before it tries to schedule the task on the
second-best locality level. The default locality wait time is
3 seconds, which is reasonable for batch executions but not
for streaming jobs since tasks take much less than 3 seconds.
When we put the locality wait on 100 ms, tasks are distributed
more equally and latencies are reduced. Reducing this setting
is standard practice for streaming jobs in both Spark Stream-
ing and Structured Streaming.

Structured Streaming generates a high load on HDFS due
to checkpointing. For stateful operations, Structured Stream-
ing checkpoints at each batch interval (mostly between one
and three seconds). This is much more frequent than the other
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frameworks. For example, Spark Streaming checkpoints at
an interval that is a multiple of the batch interval, at least
10 seconds and typically 5-10 times the sliding interval of the
stateful operation. Because Structured Streaming checkpoints
more frequently, we had to increase the HDFS cluster to
handle the load.

V. MASTER FAILURE

In the following sections, we describe the three main types
of failures that can happen in master-slave architectures.
First, we describe behavior in the case of master failures and
Spark driver failures. The next section covers worker failures
and Section VII discusses other failures such as application,
job, and stage failures. An overview of the mechanisms and
performance of the different frameworks has been given
in Table 4.

TABLE 4. Failure recovery mechanism and performance. When a feature
is not available or not applicable for the framework, we denote this
by N.A.

Flink Kafka Spark Struct.
Fault Recovery Mechanism
Checkpointing yes no yes yes
State store HDFS Kafka HDFS HDEFS
Write-ahead-logs no no yes yes
Transactional yes yes no no
Kafka sink
Master failure
Single Master app N.A. app app
killed killed killed
HA (Zookeeper) restart N.A. no impact no impact
Driver failure N.A. N.A. restart + restart +
(at-most-once) data loss data loss
Driver failure N.A. N.A. restart + restart +

(at-least-once) no data loss | no data loss

Worker failure

Job recovery OK OK OK OK
Job restart yes no no no
Downtime 50s 2s 6s 4s

Recovery time 53s 21s 30s 20s
Peak p99 latency 53s 19s 8.5s 10.5s

Stability after good good good good

failure
Cost exactly-once no large N.A. N.A.
Duplicate output yes no no no
Application failure
Restarts yes no, via supervise supervise
Marathon

In the context of master failures, we experiment with a sin-
gle master setup and a high-availability setup with Zookeeper.
We discuss the results for Flink, Spark Streaming, and Spark
Structured Streaming since these frameworks make use of a
master-slave architecture and therefore, have a master which
can fail. Kafka Streams does not have a master component
and therefore, is not included in this section.

A. SINGLE MASTER SETUP
When the job manager of Flink gets killed, the task man-
ager’s report that heartbeats are timing out and that they lost
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their leader. When this happens, the running applications fail
and no new applications can be submitted anymore. When
Marathon has rescheduled the job manager and the task
managers have joined the cluster again, the job still does not
recover. By default, the job state is not stored anywhere and
the new job manager does not know which jobs were running.

We see similar behavior when the Spark master crashes: no
new applications can be scheduled and the application fails
after numerous timeouts in its communication to the master.

B. HIGH-AVAILABILITY WITH ZOOKEEPER

In a second experiment, we enable high-availability with
Zookeeper [39] as a coordination mechanism that stores the
location of the latest checkpoint and does leader election.
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FIGURE 2. Master failure workload with high available master setup with
Zookeeper for flink, Spark streaming and spark structured streaming.
Kafka streams is not included since it does not use a master-slave
architecture and therefore, does not have a master component.

In a high-availability setup, Flink stores its dataflow graphs
on HDFS. We tried two approaches for high availability.
In the first one, we had a standby master running during the
job. In the second one, we relied on Marathon to bring the job
manager back up after the failure. We noticed similar perfor-
mance for both approaches. When we rerun the workload and
let the master fail after 10 minutes, we see that the job fails but
comes back up when the new job manager has been elected as
leader. As we described in Section III-C, the job is restarted to
maintain state consistency. When a Flink job restarts, it starts
processing from the latest successful checkpoint. Because the
job fails, there is a performance impact. We notice a gap
of four seconds in the output. After that, it takes 2 seconds
to finish processing the backlog and before all metrics are
back to normal levels. In total, the impact was noticeable for
6 seconds. When we use at-least-once processing, we see
duplicate output for the messages between the last check-
point and the failure. The impact described here is visible
in Figure 2. The input throughput chart of Flink shows that
events that were published right before master failure were
ingested two times in the framework. This line does not show
the number of events that were published in a certain second
but shows the number of events of that specific second that
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were processed. Therefore, this bump indicates that these
events were processed twice, as is expected with at-least-
once processing semantics. We see a large increase in latency
due to the outage of 4 seconds and the reprocessing of the
old events that were published since the last checkpoint.
In Section VI, we describe the implications of job restarts in
more detail.

When the Spark master fails in a high-availability setup,
a new one is started while the application keeps running
without interruptions. This is possible since the driver of the
application does not run within the master container but runs
as a separate container or on one of the workers and therefore,
keeps running. Due to this approach, there is no impact on any
of the performance metrics of the job: latency, throughput,
resource utilization, etc. Making use of a standby master has
the same effect. As can be seen in Figure 2, the fail-over did
not impact the performance metrics of the processing jobs of
Spark and Structured Streaming.

When we compare failure-free runs with and without a
high-availability setup, we saw no noticeable performance
impact on the processing job from using a high-availability
setup. The reason for this is that processing happens on the
workers and not on the master. Running in a high-availability
setup mainly creates extra work for the master. It does not
significantly influence the key metrics of the processing job
that is running on the workers, such as latency and resource
utilization. Moreover, the CPU utilization of the master is
very low for both setups and shows no significant difference.
So also for the masters themselves, the overhead is limited.
This can be explained by the fact that storing job metadata on
Zookeeper is not a heavy operation.

Finally, it is important to note that running a master in
standby leads to a larger resource allocation to the cluster and,
therefore, a higher resource cost. In our setup, we allocate
2 CPUs and 8 GB of memory to the master. On the contrary,
if we use Marathon to reschedule the master, only one master
is running at all times and there is no additional cost for
high-availability.

C. SPARK DRIVER FAILURE

As described in the previous section, both Spark Streaming
and Structured Streaming applications have a driver to do
task scheduling. The driver houses the Spark Context through
which it connects to the Spark cluster [36]. It can be seen as
the master of the Spark application and is, therefore, an essen-
tial component. Because of this, we also experiment with
driver failures. This experiment can only be done for the two
Spark frameworks since the other frameworks do not have a
separate driver component. The results have been visualized
in Figure 3.

The driver can either run on the workers or run in client
mode as a separate container. We use client mode. When the
driver is killed, it comes back up automatically because the
container gets rescheduled by Marathon. If the driver would
run on one of the workers, we can enable automatic restarts
by submitting the application with the supervise flag.
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FIGURE 3. Driver failure workload for spark streaming and spark
structured streaming. Without WAL and proper checkpointing enabled,
we get at-most-once semantics. With WAL and proper checkpointing
enabled, we get at-least-once semantics.

We run the driver failure workload two times. The first time
we do not enable write-ahead-logs and proper checkpoint-
ing, leading to at-most-once semantics. The second time,
we enable write-ahead-logs and proper checkpointing, lead-
ing to at-least-once semantics. Write-ahead-logs ensure that
there is no data loss in the case of driver failures. Check-
points ensure that intermediate state and Kafka offsets are
backed up.

In Figure 3, the results for both frameworks and semantics
are visualized. When the driver goes down, the application
and its executors are killed. Therefore, we see a gap in
the output throughput during this restart period. When the
driver and the application come back up, new executors are
assigned. Subsequently, the state is restored from the latest
successful checkpoint. Figure 3 shows a gap in input through-
put for applications with at-most-once semantics. The input
throughput chart shows the number of input events of a spe-
cific second that were processed by the framework. Ideally,
this should be a flat line because the data stream generator
generates the same number of events for each second. If there
is an increase or a drop in the input throughput, this indicates
that the framework either skipped events (data loss) or pro-
cessed events twice (duplicate processing). Therefore, the gap
in input throughput for the runs with at-most-once semantics
indicates data loss. The number of lost events depends on the
duration of the outage and the throughput. Longer outages
and higher throughput lead to more lost events. In the case of
a stateful pipeline, these lost events also lead to an incomplete
state and, thereby, incorrect results. How long this persists,
depends on the type of operations that are done. For example,
when windows are used, the state will be incomplete or incor-
rect up to the longest window duration. In our pipeline,
the window duration is only a few seconds so results also
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only remain incorrect for a few seconds after the restart. For
Spark Streaming, the downtime was 18 seconds which equals
370 000 lost input events. The first three seconds after the
restart, executors are starting up and a portion of the events are
still skipped. In total, approximately 400 000 events were lost
and five seconds of processing was based on an inconsistent
state. To extrapolate these results to other pipelines, the reader
should take into account the input throughput and pipeline
characteristics.

For at-least-once semantics, we see that there are no gaps
in the input throughput. All data of every second was pro-
cessed. For Spark Streaming, we see an increase in the input
throughput around the restart. This is caused by the events that
got processed twice due to the at-least-once semantics. For
Structured Streaming, we do not see this increase. However,
this does not mean that Structured Streaming offers exactly-
once semantics. Whether or not there is duplicate process-
ing, depends on the exact moment of the failure. The driver
may fail while the application is publishing the results of
a batch. In this case, the results that were published were
not committed yet and will be reprocessed. In the run visu-
alized in Figure 3, the failure happened before Structured
Streaming started publishing the output of the batch and
therefore no duplicate output was published. Additionally,
the number of reprocessed events depends on the recency
of the latest checkpoint and the throughput. When a recent
checkpoint is available, less data needs to be reprocessed.
The correctness of these duplicate events depends largely
on the prerequisites which we described in Section III. One
of these is the determinism of the processing pipeline. For
example, when the pipeline makes use of processing time
windows, all events ingested at startup end up in the same
window bucket. This leads to different outputs as without a
failure. Of course, this is the expected behavior of processing
windows. The pipeline needs to be robust against this. We use
processing time windows for Spark Streaming because it does
not support event time processing. We mitigate this in our
implementation by including a truncated timestamp in the key
of the grouping operations. In our experiment, one second of
data was reprocessed, i.e. approximately 21 000 input events.
It is important to note that even if the reprocessed events lead
to identical output, downstream systems still need to be able
to handle this correctly.

D. CONCLUSION

We can conclude that high-availability setups are crucial to
ensure the continuation and restart of processing applications
in both Flink and Spark. With a high-availability setup, Flink
still requires a job restart when the master fails to ensure
the consistency of state. Spark Streaming and Structured
Streaming do not notice any impact of a master failures.
Driver failures, on the contrary, do lead to job restarts and
significant downtime in Spark applications. With the appro-
priate fault tolerance mechanisms, data loss can be prevented
but duplicate processing may still occur.
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VI. WORKER FAILURE

In the worker failure workload, we make one worker node
fail deliberately by killing it in the middle of the execution.
The worker node comes back up immediately. We monitor
the behavior of the framework during the recovery process.
We compare the performance of at-least-once and exactly-
once semantics, as shown in Figure 4. The grey zone shows
the recovery period. In the first few seconds of the grey zone,
the Docker container of the new worker restarts and joins the
cluster. For the rest of the period, the job recovers. Three
metrics are shown: (1) median and p99 latency, (2) input and
output throughput, and (3) CPU utilization of each worker.
The input throughput is 3.16 times higher than the output
throughput since the pipeline contains a join and aggregation
step. The CPU utilization of the worker that fails and restarts,
is marked in black. In the following, we discuss some differ-
ent aspects of fault recovery, as reported in Table 4. First of
all, we discuss whether or not the job was able to recover.
Secondly, we measure the length of the outage or downtime
as the gap in output throughput. After the downtime, the job
needs to catch up on the delay before latencies can return
to normal levels. We define the recovery time as the sum of
the downtime and the catch-up period. We report the peak
p99 latency that we encounter during the recovery process.
When the job has fully recovered, we evaluate the stability of
the job. Finally, we compare the accuracy, performance and
cost of exactly-once and at-least-once semantics.

A. DOWNTIME AND RECOVERY TIME

When the cluster manager notices that a worker has failed
and a new one has joined, it needs to redistribute tasks across
the workers. The time it takes for the new worker to join the
cluster and go through the redistribution phase is visible by
the downtime and highly inflated latencies.

Flink has the longest downtime. For both processing
semantics, no output is generated for around 50 seconds.
Flink does fault recovery based on checkpoints. When a
task or task manager fails, the job is canceled completely.
It gets rescheduled as soon as there are enough task slots
available, so when the task manager is back up. When the
job is rescheduled, it needs to rebuild the state from the last
successful checkpoint and start processing data from thereon.
In our workload, the checkpoint interval is 10 seconds so the
maximum timespan of data that needs to be reprocessed is
10 seconds of data plus the downtime of the task manager and
the processing job. Once the job is running again, it takes only
eight seconds for Flink to rebuild the state and go through the
entire backlog of 45 seconds. The first seconds of processing
reach a maximum throughput of 164 000 output events in one
second, equivalent to an input of 520 000 events per second.

The Spark frameworks implement fault recovery from a
worker failure differently. Once the master and driver notice
that a worker went down, it reschedules the tasks that were
running on that worker on one of the other workers. This is
visible in Figure 4 as the throughput stays almost unchanged
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FIGURE 4. Performance metrics for workload with failure of worker-1. The grey zone denotes the recovery period.

for both frameworks during the restart (grey zone). We see
slightly increased latency during this restart period (grey
zone) since tasks had to be rescheduled and therefore took
longer. When the grey zone ends and the worker has restarted,
we see a larger latency increase and a gap in throughput of
a few seconds. This is the phase where the job is scaling
up again and the new executor is added to the job. After a
downtime of 4 seconds, it takes 16 seconds for the latency of
Structured Streaming to return to a normal state.

The fourth framework, Kafka Streams, takes yet another
approach to recover from worker failures. A Kafka Streams
application runs with several instances that do not communi-
cate with each other. All communication goes via the Kafka
brokers. Scaling of Kafka Streams applications can be done
by adding or removing instances. Hence, a failing instance
is the same as downscaling. Every instance has several pro-
cessing threads running that get partitions of the input topics
assigned to them. When one instance falls out, the cluster
rebalances and reassigns partitions to the remaining threads.
In earlier versions, Kafka Streams stopped processing during
a rebalancing operation and reassigned partitions in a round-
robin fashion. Of course, this leads to long processing pauses
and unnecessary migration of partitions. In fact, only the
partitions of the failed worker have to be reassigned and
migrated, not all partitions. Since version 2.4, Kafka Streams
implements a different approach called the incremental coop-
erative rebalancing protocol [51]. The newer protocol imple-
ments a smarter way of incrementally moving partitions to
other workers and is better at handling temporary imbalances.
To find the new partition assignment, it uses a cooperative
sticky assignor. This partition assignor attempts to remove the
least amount of partitions, i.e. sticky, to reach a new balance.
Instead of stopping the processing of all partitions, this

VOLUME 9, 2021

protocol just halts processing for the partitions that need to
change ownership. This is done by doing two rebalancing
operations right after each other, as is reflected in the latency
pattern in Figure 4. In the first rebalancing operation, only
the partitions that need to move ownership are revoked.
In the second rebalance, the revoked partitions are assigned
to new owners. During these two rebalancing operations,
processing for the other partitions continues. This is why the
figures show a decrease in throughput during the failure but
no drop to zero. To avoid multiple subsequent rebalancing
operations in the case of restarts or when multiple instances
are added or removed, Kafka Streams allows short periods of
imbalance. During the restart (beginning of the grey zone),
we see a drop in throughput, although latency stays fairly con-
stant. After the worker comes back up, the system starts rebal-
ancing and we see a steep increase in latency coming from
the newly assigned partitions that accumulated a processing
backlog. The latency chart shows the latency of the events
that were outputted in that second. Therefore, the latency is
so low in the first seconds of the grey zone because it only
shows the events from the partitions that were still processed.
The data from the halted partitions are represented in the peak
in latency after the rebalancing operation.

B. PEAK p99 LATENCY

The peak p99 latency depends on the design of the frame-
work. The latency of Flink climbs up to 53 seconds for the
first seconds after the job comes back up. This number is
equal to the downtime and recovery time because all process-
ing was halted. The downtime of Kafka Streams (2s) is much
lower than its peak p99 latency (19s). This can be explained
by the fact that the partitions that were assigned to the failed
worker are the only ones that were not processed anymore.
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For those, the peak latency is a time estimate of the entire
rebalancing operation. The Spark frameworks have the lowest
latency peak since the downtime is quite short and the frame-
work catches up with the delay in a few subsequent batches.
Processing happens equally fast on all partitions at all times,
as can be seen from the similar median and p99 latency. This
is clearly different behavior than for Kafka Streams, where
the median is much lower than the p99 latency. Structured
Streaming has a peak p99 latency of 10.5 seconds and the
downtime lasted 4 seconds. The p99 peak latency of Spark
Streaming is slightly lower, at 8.5 seconds shortly after a
gap in the output of 6 seconds. Without a failure, the latency
and batch interval of Spark Streaming are much lower than
that of Structured Streaming [5]. Hence, the relative latency
increase is much larger for Spark Streaming than for Struc-
tured Streaming. Structured Streaming can make use of its
dynamic micro-batches to catch up with the delay faster and
more efficiently, as confirmed by [5].

As can be seen, the influence of the design decisions on the
peak latency during recovery is large and can be an important
aspect to keep in mind for jobs with tight latency SLAs.
The latency of event-driven systems strongly depends on the
manner of fault recovery. And due to the ease of rescheduling
tasks, a micro-batch approach leads to a lower latency cost
throughout recovery. Despite that, we need to keep in mind
that the latency of micro-batch frameworks is much higher
during failure-free execution for most pipelines [5].

C. JOB STABILITY AFTER RECOVERY

When we compare performance before and after failure,
we see stable performance for all frameworks. All frame-
works can recover and redistribute work to the new worker,
as can be seen from the similar CPU utilization across all
workers. When we look at throughput, we see that Flink has
a very stable output throughput. When it starts processing
again we see a few seconds of elevated throughput, after
that the output throughput does not fluctuate anymore and is
extremely stable. For the other frameworks, the stabilization
takes longer. Structured Streaming has a bursty throughput
pattern due to its dynamic batch interval. If the batch interval
takes longer than a second, multiple batches may be sent
out at once because the watermark has passed event time
for both batches, leading to a peak for the second in which
that happens. The peaks mostly contain double the number of
events of the normal output throughput since it is the output of
two batches. We see this behavior before and after the failure.

D. MESSAGE DELIVERY GUARANTEES: IMPLICATIONS

ON ACCURACY, PERFORMANCE, AND COST

Every processing semantic uses different fault tolerance
mechanisms within the framework. In this section, we have
a look at the impact on accuracy, performance, and cost of
this. For the performance impact, we mainly look at latency
and CPU utilization. We do not measure the impact on peak
throughput but assume that the influence on latency and CPU
utilization can serve as a proxy for this.
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As we elaborated earlier, Flink and Kafka Streams use
different implementations to provide exactly-once semantics.
Flink was the only framework that had duplicate output in
case of a worker failure. The reason for this is that the job got
canceled and had to start processing from the last checkpoint,
while the other frameworks were able to continue processing
and only processed each data point once. In our experiment
with at-least-once processing for Flink, two seconds of data
right before the failure got processed twice. The number
of duplicate messages depends on the exact moment of the
failure. The longer the time between the latest checkpoint
and the moment of failure, the more messages are duplicated.
In our experiment, we process an input throughput of around
20K messages per second. This means that if the job would
fail five seconds after a successful checkpoint, five seconds
of data would have to be reprocessed. This would lead to
100K events being processed twice and to approximately 31K
duplicate output records on Kafka. Besides data duplication,
this redundant processing also slows down recovery. There-
fore, the checkpoint interval needs to be carefully tuned to
avoid an excessive checkpointing overhead but guarantee a
speedy recovery.

For Flink, two important settings need to be adapted to get
exactly-once semantics. It has to be set as the semantic of
the Kafka sink. Besides that, the Kafka consumer that reads
the outputs of this sink should have its isolation level set to
read_committed. Hence, to provide exactly-once semantics
with its Kafka sink, Flink uses Kafka features and depends on
the correct configuration of downstream processing systems.
This is not optimal because uncommitted events can end up
on Kafka during a failure. These events are published again
during the recovery and are now committed successfully.
When the downstream system is not set correctly, the uncom-
mitted and committed events are processed, leading to dupli-
cates. Finally, enabling exactly-once semantics had no real
impact on latency and CPU utilization.

Kafka Streams is also able to deliver correct output for
both cases. We see, however, a large impact of enabling
exactly-once semantics. Average CPU utilization increases
by 10 percent from 20 percent to 30 percent. There is an
increase in latency from 730 ms to 2400 ms. Finally, recovery
takes ten seconds longer with exactly-once semantics.

The current Kafka sink implementation of Spark Stream-
ing and Structured Streaming does not offer exactly-once
semantics. For worker failures, the Spark job also does not
restart, so we have correct and unaffected behavior. Spark
jobs only restart in the case of driver failures. We refer back to
Section V-C on driver failures for the behavior of job restarts
with at-most-once and at-least-once semantics.

As we mentioned earlier, the preferred message delivery
guarantee depends on the use case. Losing a few data points
is not equally detrimental for all use cases. However, for most
use cases, it will be preferable not to lose any data. For the
systems that only offer at-least-once processing, this means
that downstream systems will need to be robust against
duplicates. Additionally, these frameworks have some
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prerequisites to ensure correctness (see Section III-B).
In short, the sink either needs to be idempotent or implement
atomic transactions. Furthermore, processing needs to be
deterministic. Flink and Kafka Streams offer exactly-once
semantics. Nonetheless, the same correctness prerequisites
count here and there is a dependency on downstream systems.

E. CONCLUSION

When confronted with worker failures, both Spark systems
have an advantage since they can easily reschedule tasks,
leading to low downtime, low recovery times, and lower peak
latencies. The dynamic micro-batch approach of Structured
Streaming speeds up recovery even further. Event-driven sys-
tems halt processing of at least part of the partitions and there-
fore, show higher peak latencies. Flink restarts the entire job
from the latest checkpoint to guarantee consistency, causing
long downtime and recovery time. Additionally, Flink relies
on the settings of downstream processing systems to prevent
duplicate output. Kafka Streams recovers faster because it
continues processing the partitions of the healthy instances
and therefore, has less of a delay. However, we see a large per-
formance hit when enabling exactly-once semantics. Table 4
gives a concise overview of these results.

VII. APPLICATION, JOB, STAGE, AND TASK FAILURES

It is also possible that the streaming application itself fails.
Applications can fail for numerous reasons: invalid pipeline
definitions, configuration issues, memory leaks, etc. Since
application failures can be triggered by a broad range of
issues, we do not include a generic experiment for this type
of failure. When a Spark application fails, it is automatically
rescheduled if the supervise flag is passed in the submit
command. Flink also automatically restarts the application
when this is possible. For Kafka Streams, whether or not
an instance restarts depends on the underlying scheduling
infrastructure that was used. In our setup, we use Marathon
on Mesos to reschedule exited containers.

Issues can lead to different types of failures for differ-
ent frameworks. An example of this is uncaught exceptions
within the application, e.g. due to data quality issues. As an
experiment, we inserted some corrupted data in the stream
and monitored the effect.

Spark and Structured are micro-batch frameworks. Each
micro-batch is processed in a micro-batch job consisting
of stages and each stage consists of multiple tasks. The
stages represent the different nodes of the JobGraph, while
the tasks represent the partitions that are processed. When
corrupted data is ingested in Spark, the ingestion task fails,
causing that stage and therefore that micro-batch job to fail
as well. The application, i.e. driver and executors, keeps
running. The micro-batch job will be retried up to 4 times
by default (as set by the parameter spark.task.maxFailures).
When the task fails four times, the application will give up
on the micro-batch job and continue with the following one.
When we ingest the same corrupted data in Flink, we get
very different default behavior. The entire application gets
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canceled and is restarted because the ingest stage fails. We use
the default fixed-delay restart strategy with maximum restart
attempts. This means that Flink will attempt to restart the job
a specified number of times and will wait a fixed amount of
time in between restarts [11]. Since the job cannot get past the
faulty events, the job never continues processing. For Kafka
Streams, ingesting corrupted data caused an exception in the
stream thread coming from the LogAndFailExceptionHan-
dler. Even though the processing thread died, the containers
did not shut down. The developers of Kafka Streams have
been improving this behavior in recent versions. Now, when
one or multiple threads fail, users can initiate an application
shutdown or replace the failed thread.

We can conclude by saying that it is evident that error
handling should be part of the application design and imple-
mentation and should be adapted to the use case. Users should
be aware of the behavior of the framework under different
types of faults.

VIil. DISCUSSION

The results of the fault recovery experiments have been
summarized in Table 4. We noticed large differences in the
way component faults are handled. Most of these differences
lead back to the characteristics of the framework and mainly
whether it is micro-batch or event-driven and whether it uses
a master-slave architecture or not.

Both Spark frameworks are quite resilient against faults
due to their task-based scheduling approach. When tasks fail,
for a variety of possible reasons, they are retried on other
executors and the job can continue processing. This behavior
is apparent in both Spark Streaming and Structured Stream-
ing jobs for worker failures and task failures. Compared
to the other frameworks, Spark Streaming and Structured
Streaming recover fast and have low peak latencies during
recovery. In the case of master failures, Spark requires a high-
availability setup to continue processing without any impact.
Driver failures are the only scenario in which the application
gets killed (besides single master failure). Even though Spark
Streaming and Structured Streaming are resilient against
component faults, exactly-once semantics are not guaranteed
for most sinks. For use cases for which this is required, this
would require a custom implementation which is error-prone
and more complex.

Other frameworks such as Flink take a more careful
approach and restart the entire job from the last successful
checkpoint in case of a failure, e.g. master failure, worker fail-
ure, and task failure. This leads to longer outages, but correct
results, albeit with dependencies on downstream systems for
exactly-once semantics.

Due to the architecture of Kafka Streams, instances work
more independently, which makes it resilient to worker fail-
ures because processing can continue for the unaffected
partitions. Due to this, Kafka Streams experiences almost
no downtime. It only accumulates a processing backlog for
the partitions that were halted and can, therefore, catch up
fast. However, the exactly-once processing mechanism of
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Kafka Streams causes more performance degradation than
that of Flink.

A. LESSONS AND BEST PRACTICES

When choosing a framework for a specific use case, fault
tolerance may be one of the decision criteria. Many use cases
have SLAs on the allowed downtime and peak latencies. The
user should define his objectives for recovery time and data
loss or duplication and determine the best fitting framework
based on the results listed in Table 4.

When it is most important that recovery happens fast and
that peak latencies remain low and when duplicates can be
tolerated, Spark Streaming and Structured Streaming are the
most stable and only have significant downtime in the case of
driver failures. Although, it needs to be kept in mind that their
latencies are higher during fault-free processing than those of
event-driven frameworks. It should be evaluated whether they
are still low enough for the use case at hand. Also, the Spark
frameworks do not support exactly-once semantics so any
downstream systems need to be able to handle duplicate data.

When minimal downtime or only partial downtime is
a requirement, Kafka Streams performs best. Furthermore,
it has no master or driver components so it can only suffer
from worker failures, to which it is resilient. Previous work
showed that the latency and throughput of Katka Streams is
often worse than that of other frameworks [5]. The exactly-
once semantics of Kafka Streams degrade performance even
further, so if this is required, Flink may be the preferred
option. Furthermore, Kafka Streams makes use of Katka for
fault tolerance so can only be used when a Kafka cluster is
available.

For some use cases, data loss or duplicate processing is
detrimental. These types of use cases, which require exactly-
once semantics and correctness under all types of faults,
benefit most from using Flink. It has higher recovery times
because of job restarts but it also has a much better latency-
throughput trade-off during failure-free execution, as shown
by numerous previous studies. The Flink framework is well
adapted to use cases with a large state because they offer
advanced state management options, e.g. asynchronous and
incremental checkpoints with RocksDB. Additionally, many
checkpointing parameters can be tuned such as the check-
point interval and the minimum time in between checkpoints.

In short, the fault recovery mechanism of Spark is stable,
fast, and resilient but may output duplicates. The mechanism
of Flink is correct, tunable, and careful but slow. Kafka
Streams has the lowest downtime and is very resilient against
failures but often has worse general performance.

Once a framework has been selected, the implementation
should follow some best practices to fully benefit from the
fault tolerance capability. First of all, production workloads
should use a high-availability setup. Otherwise, the master is
a single point of failure. Single master failures make jobs fail
permanently.

Secondly, to get accurate results, some additional prereq-
uisites need to be fulfilled. We described these prerequisites
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throughout Section III. For example, the pipeline needs to
be deterministic. We described, throughout this work, how
determinism cannot be guaranteed by default for certain oper-
ations, such as processing time windows and retrieving side
inputs from external APIs or databases.

Some frameworks offer exactly-once semantics. However,
these have some additional limitations. They only guarantee
that each incoming event affects the final results exactly once
and is committed at the sinks exactly once. They do not apply
to the execution of user code within functions, known as side
outputs. For example, when the user writes to a database in the
user code, this may be executed twice when confronted with
a failure. Therefore, these operations should be idempotent.
Also, sinks need to be idempotent or implement transactions.

B. FUTURE RESEARCH DIRECTIONS

The developer and academic communities actively research
how to improve the fault tolerance of these stream processing
systems. There are numerous publications in this field on
various subjects. In this section, we briefly give an overview
of some of these efforts. For more extensive surveys on fault
tolerance and high-availability in stream processing, we refer
to the following surveys: [20], [52]-[55]. Before we begin this
review, we want to stress that frameworks that are actively
improved, provide the best guarantees for continued future
adoption and support. It should, therefore, be taken into
account when choosing a stream processing framework for
a use case.

1) FAULT TOLERANCE

One topic with room for improvement is exactly-once seman-
tics and output commit protocols (Section III). Flink uses the
Two-Phase Commit Protocol to commit transactions when
writing to Kafka. The Two-Phase Commit Protocol has some
disadvantages such as that it requires two steps to complete.
Some academic efforts study approaches to make transaction
commits more performant and less heavy, e.g., [56], [57].
The Structured Streaming community has acknowledged the
need for exactly-once processing semantics in its Kafka sink.
However, as far as we know, there is no concrete progress on
this topic.

Our results showed that Flink often had a slow recovery
because of job restarts. The community is working on fea-
tures called reactive mode [58], declarative resource manage-
ment [59] and an adaptive scheduler [60]. With these features,
Flink would be able to react to newly available resources and
a job would be able to run when not all required task slots
are available. Currently, this is not allowed. This would also
make it possible to do local failover in which only a part of
the topology is restarted when a failure happens. Currently,
Flink only supports global failover in case of a failure.
These features are planned for version 1.13 and can mean big
steps forward for Flink as a framework.

In this work, we mentioned the importance of determinism
for fault tolerance. Some studies are conducted on fault tol-
erance for non-deterministic pipelines. An interesting work
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is Clonos [61] which is implemented on top of Flink and
uses checkpointing, causal logging, and standby operators to
enable exactly-once consistent local recovery with support
for non-deterministic computations.

Another research area uses predictions to improve fault
tolerance. For example, Huang and Lee [62] present a system
that uses approximate fault tolerance. It tries to estimate the
errors upon failures and adaptively triggers state backups
when the error goes beyond a user-defined threshold. Another
example is the prediction of failures to enable proactive pre-
ventive failure management [63], [64].

In our experiments, the input stream had a stable data rate.
However, this is not the case for all use cases. There have been
some studies on combining mechanisms for fault tolerance
and elasticity by dynamically scaling resources according to
the runtime workload fluctuations [65]-[67]. Resources are
scaled by either activating redundant replicas or by acquiring
new resources during high-load periods.

As can be noticed from our experiments, the fault tolerance
of a processing job is largely dependent on the management
and backup of state. Most frameworks use checkpointing.
This becomes heavy in pipelines with a large state. The
development communities of stream processing frameworks
still actively investigate how to make checkpointing lighter
and more efficient. Recent releases of Flink included some
new features regarding checkpointing. Flink now supports
unaligned checkpoints [52], [68]. Flink uses markers to mark
the frontiers of a checkpoint epoch and uses an alignment
phase to synchronize markers from different input chan-
nels. During this alignment phase, the faster channels are
temporarily blocked, slowing down the processing speed.
Unaligned checkpointing is a non-blocking alternative that
allows records to overtake an epoch frontier. Another recent
addition is concurrent checkpointing which allows multiple
checkpointing operations to be in progress at the same time.
For lengthy checkpointing operations, this reduces the time
between checkpoints and, thereby, makes incremental check-
points smaller and fault recovery lighter.

As we mentioned in the previous section, the Spark frame-
works are not a good fit for latency-sensitive use cases. The
Spark community is working on a Continuous Processing
API for Structured Streaming [69]. This API offers low-
latency event-driven processing on top of Spark. Currently,
the API is still experimental and supports limited operations.
This API also bases itself on the Chandy-Lamport algo-
rithm [3] for checkpointing, similar to Flink and many other
event-driven frameworks [24], [25]. These developments may
make Structured Streaming a competitor for Flink on latency-
sensitive use cases.

Improving checkpointing is also a topic in academic
research. Some of this work is centered around optimizing the
checkpoint interval [70], [71]. As we described in our results,
the checkpoint interval offers a trade-off between recovery
speed and checkpointing overhead. Some new checkpointing
methods have been proposed. To et al. [54] give a thorough
review of research on several checkpointing methods such as

VOLUME 9, 2021

correlated checkpoints, independent checkpoints, and incre-
mental checkpoints.

Additionally, some academic work investigates alternative
mechanisms for state management in general, e.g. replicating
state on workers [72]. We refer to [54] for an extensive
overview on the topic of state management and checkpointing
in streaming systems.

2) HIGH-AVAILABILITY SCHEMES

A second active area of research is centered around high-
availability schemes. At the moment, most popular stream
processing frameworks make use of a passive replication
approach. However, there are some other schemes: e.g.
active replication [73], [74] and hybrid active-passive repli-
cation [75]-[78]. An interesting work on this topic is [79],
in which several resilience strategies are compared and eval-
uated. They model the cost of different strategies through a
series of experiments. A thorough overview of research on
high-availability setups in stream processing has been given
in [33] and [52].

Finally, from the four frameworks we compared here, Flink
is the most active when it comes to releasing new fault
tolerance features. It is also used most often in academic
research to try out new fault-tolerance mechanisms, e.g. [61].
However, the stream processing field is still very dynamic.
New frameworks such as Structured Streaming Continuous
Processing API and Hazelcast Jet [25] are actively developed
and may change the focus of the field.

IX. CONCLUSION

Fault tolerance of stream processing jobs is of utmost impor-
tance in production deployments but has been overlooked
in benchmarking literature. In this work, we contribute a
broader framework of what should be included when bench-
marking this feature. We conduct tests on the behavior dur-
ing several types of failures and with several setups and
configurations. To do a range of experiments, we imple-
mented three fault-tolerance workloads on top of OSPBench.
Our workload implementations have been incorporated in
the OSPBench codebase at https://github.com/Klarrio/open-
stream-processing-benchmark. Based on these workloads,
we conduct an extensive analysis of four popular distributed
stream processing frameworks: Flink, Kafka Streams, Spark
Streaming, and Structured Streaming. We identified guide-
lines of how these results influence the selection of a frame-
work for a use case and we listed some lessons and best
practices. Finally, we also describe some current and future
research directions to improve fault tolerance in stream pro-
cessing frameworks.

X. LIMITATIONS AND FURTHER RESEARCH

Some further research can be done on the other high-
availability schemes that make use of cluster managers such
as YARN, Mesos, and Kubernetes. Also, as recovery becomes
heavier when the state is large, the influence of state sizes
on fault recovery can be investigated. In our fault recovery
workload, the state was fairly small, under 20 MB.
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