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ABSTRACT A hybrid energy system (HES) is a perfect option for supplying electric energy to remote areas.
A HES normally uses renewable energy sources such as wind and PV. Owing to the intermittent nature of
these sources, HES should have batteries and/or conventional energy sources. HES proposed in this study
is having wind, PV, batteries, and diesel generators. The design and operation of HES are considerably
improved with the use of smart grid concepts. This study introduced a fuzzy logic controller to implement a
new demand response strategy (DRS) where the electricity tariff is determined based on the state of charge of
the battery, the charging/discharging power from the battery, and the previous response from the customers.
A modified cuckoo search (MCS) optimization algorithm is introduced for sizing HES components for the
lowest cost of energy (CoE) and loss of load probability (LOLP). A multiobjective function consisting of
the CoE and LOLP is used to get the optimal design of HES. The MCS reduces the number of times that the
optimization algorithm executes the objective function. The continuous reduction of the swarm size proposed
in this paper enhances the exploration in the beginning and enhances exploitation at the final stage. The
MCS is compared with 10 state-of-the-art optimization algorithms. The results from using MCS reduced the
convergence time to 25-63% of the time needed by other optimization algorithms and the DRS introduced
in this study reduced the CoE by 34% compared with the flat-rate pricing.

INDEX TERMS Smart grid, hybrid energy system, fuzzy logic controller, sizing, demand response.

I. INTRODUCTION
Renewable energy sources (RES) are becoming the best
option for the electricity supply of remote areas, distributed
generation, as well as central power stations. The share of
the worldwide generated energy from RES is about 20% [1]
and it may share 50% by the end of the 21st century [2].
The intermittent nature of RES introduces reliability chal-
lenge issues to its use in the power systems. The use of
batteries and diesel generators improved the performance of
RES, especially in abnormal operating conditions. Different
methodologies have been introduced to schedule the charg-
ing/discharging of the battery system [1], [3]. The main
challenge of batteries and diesel generators is the high initial
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and operating costs. For this reason, it is very important to
reduce their sizes without inferior the reliability of the hybrid
energy systems (HES). Modern smart grid technologies rem-
edy the problems associated with the intermittent nature of
these resources by using a demand response strategy (DRS)
in which the customers can participate in the stability of
HES. One of the best DRS is real-time pricing (RTP) which
dynamically changes the electricity tariff based on the sta-
bility of HES. Before the recent communication revolution,
the DRS was used with large loads in which the power elas-
ticity was from −0.2 to −0.7 [3]. Another study introduced
in 1999 for 40 Swiss cities estimated the price elasticity of
residential load is −0.3 [4]. Another strategy estimated the
price elasticity is −0.25, −0.35, and −0.38 for residential,
commercial, and industrial customers, respectively. With the
emerging smart grids, modern communication systems, and
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smart home applications in the modern power system, the use
of active DR is becoming more feasible than before. These
facilities enhance the dynamic and elasticity of the power
system where the customers can receive easily the tariff
on their cellular phones hourly or even part of an hour to
adjust their loads based on the level of the tariff. For large
micro-grid or power systems, the tariff is controlled based
on the voltage/frequency control [5], where it can measure
the stability of the power system. Meanwhile, for off-grid
HES as the case introduced in this study, the tariff will be
dynamically changed based on the state of charge (SoC) and
charging/discharging power from the batteries [6].

Most of HES are using wind turbines (WTs) and PV array
which need batteries and/or diesel generators to increase
their stabilities during abnormal conditions. These systems
sometimes used other components with the system such as
fuel cells and hydrogen storage systems [7], and sometimes
they used hydraulic generator systems with water tanks [8].
Also, HES sometimes works on-grid [9] or off-grid [7], [8].
The sizing of HES components has been introduced in lit-
erature without a DRS [2], [7], [10], [11] which increases
the size and the cost of energy (CoE) of HES. Taking the
DRS into consideration in the sizing of HES reduces the
CoE and the size of its components. Most of the studies used
the DRS in the operation only and overlooked its use in the
sizing of HES [12]–[14], meanwhile few studies considered
the DRS in the sizing stage of the system [6], [15]. Some
of these studies used the DRS to determine the size of the
batteries that should be connected with the existing system
to improve its reliability and reduce the CoE [15]. Another
study solved the sizing problem by dividing the load into
high and low priority parts [16]. A recent study introduced
a DRS based on a predefined formula to represent the rela-
tionship between the change in tariff with the battery SoC
and charging/discharging power [6]. This study [6] showed
an effective control to the load and substantial CoE reduction
without a flexible accumulation of change in the load to be
correlated with RES generation which will be solved in this
study using FLC as a DRS. The FLC has been used to control
the charging/discharging of residential energy systems using
PV energy systems interconnected with electric utility in
[13], [15], [17]. An operation of HES is introduced using
FLC for optimal dispatch in [18], [19] where RES and SoC of
the battery are introduced to FLC as an input and the output
was the power dispatch for HES. The use of FLC with the
grey wolf optimization (GWO) was introduced in [15] to
optimally size the energy storage system by taking the energy
management strategy into considerations. In this study [15],
FLC is used to set the power output of the batteries, whereas,
the energy management strategy is conducted based on the
GWO which is used to build an adequate knowledge base for
FLC [15].

Market available software such as HOMER, RETScreen,
HYBRID2, HYBRIDS, HOGA, TRNSYS, HYDRO,
etc. [20], have been introduced for sizing and planning
of HES, but the main problem with these programs are,

they are inflexible for considering the modern smart grid
strategies such as the DRS, or custom battery charging
strategies, etc. [1]. For this reason, it is better to introduce
flexible software to handle the planning of HES taking the
smart grid concepts and other custom controllers into con-
siderations which have been introduced effectively in this
study.

Different optimization algorithms have been introduced
to optimally solve the sizing problem of HES. Some of
these studies introduced an iterative technique [10], or linear
programming technique [21], to search for the lowest CoE
from HES. The main shortcoming of these techniques is their
inaccurate results where if there is a need for an accurate
solution for the sizing problem the convergence time will be
extraordinarily high and may be infeasible [22]. The modern
soft-computing (SC) algorithms made the determining of an
accurate optimal solution with reasonable convergence time
is feasible and became much easier than before. Many SC
algorithms have been used for solving the planning problem
of HES such as genetic algorithm (GA) [14], particle swarm
optimization (PSO) [23], biogeography-based optimisation
(BBO) [1], artificial bee colony (ABC) [24], cuckoo search
(CS) [25], bacterial foraging algorithm (BFA) [26], grasshop-
per optimization algorithm (GOA) [26], crow search algo-
rithm (CSA) [8], firefly algorithm (FFA) [27], social mimic
optimization (SMO) [6], grey wolf optimization (GWO) [15],
and jellyfish search (JS) [28]. Some other researchers used
two different SC optimization algorithms to gain the explo-
ration performance of one SC algorithm at the beginning of
the optimization and gain the exploitation performance of
the other technique at the end of the optimization [1], [29].
A detailed revision of the SC algorithms used in the sizing
of HES is shown in [21], [30], [31]. All these algorithms
should send the values of each particle to execute the power
dispatch with DRS using FLC 8760 times and then per-
form the cost analysis for the number of searching agents
in each iteration which for sure takes a long time. This
convergence time can be reduced by reducing the swarm
size or by reducing the number of iterations at the expense
of the accuracy of the results. The swarm size reduction
decreases exploration performance, and a reduced number
of iteration reduced exploitation performance which can lead
to premature convergence. For this reason, it is required to
reduce the convergence time without affecting the accuracy
of the results and have the balance between the exploration
and exploitation of the convergence which is introduced in
this study. This improvement is done in this study by using
a high number of swarm sizes with CS at the beginning
of optimization to enhance the exploration and reduce the
swarm size gradually with iteration progress to enhance the
exploitation. This modified CS (MCS) algorithm introduced
in this study reduced the convergence time substantially and
improved the output results in terms of CoE and reliability
of HES. The performance of the new proposed MCS is com-
pared with 10 benchmark optimization algorithms to evaluate
its performance. The results from this study showed that the

93630 VOLUME 9, 2021



A. M. Eltamaly, M. A. Alotaibi: Novel Fuzzy-Swarm Optimization for Sizing of HES Applying Smart Grid Concepts

MCS captured the optimal solution substantially faster than
the other optimization algorithms under study.

In addition to the modification introduced in this study to
reduce the convergence time by MCS, a novel smart DRS is
introduced in this study using FLC to solve the sizing problem
based on smart grid concepts. The proposed DRS is dynam-
ically changing the tariff to urge customers to adapt their
loads to share the responsibility of HES stability between
customers and HES operators. The benefit of using FLC as
a DRS over the predefined methodology introduced in [6]
is its independence on the knowing the exact mathematical
model and the elasticity of the load from time to time. Where,
the elasticity of the load is not a constant value but varies
based on many factors like the time of use, the weather
conditions, and the value of the required power control from
the customers. The SoC, charging/discharging power, and the
ratio between the current DR and the required change in
power are used as inputs to FLC. The output from FLC is
the change in tariff. The DR from the customers depends on
the elasticity of the load which has a great effect on the size
of RES components. The main contributions of this paper are
summarized in the following points:
• Introducing a new DRS using an FLC to continually
adapt the electricity tariff to ensure the stability of HES
and reduces the CoE and the LOLP.

• Introducing MCS algorithm with gradually reducing the
swarm size which substantially reduces the convergence
time and the failure rate.

• Introducing the risk analysis that shows the effect of the
change in data on the cost and reliability of HES.

The rest of the paper is designed to show the modeling of
HES components is shown in section 2, the proposed DRS
is introduced in section 3, the power dispatch of HES is
introduced in section 4, the cost analysis of HES is introduced
in section 5, the details of the computer program used for
sizing problem is shown in section 6, the simulation results
are shown in section 7, the conclusions obtained from this
study are shown in section 8.

II. HYBRID ENERGY SYSTEM AVERAGE MODELING
As has been discussed in the introduction, HES has RES
mainly from WTs and PV energy systems. Owing to the
intermittent nature of these RES, there is a need for energy
storage devices batteries, and/or diesel generators to be used
as a backup for RES. The proposed HES is shown in Fig. 1 is
having all these components. The PV system should be
connected with the DC-bus through a DC/DC converter to
control its terminal voltage to be at the voltage of the max-
imum power [32]. The WTs sometimes generate variable
frequency which needs power electronics modifier and some-
times it generates synchronized power as the one used in
this study which can be connected directly to the AC-bus
as shown in Fig. 1. The batteries need a battery charger to
control the operation of the battery for minimum cost and
longest lifetime. The DC-bus should be connected to the
AC-bus through an inverter to convert the DC power to AC.

FIGURE 1. The configuration of HES.

The models of these components are introduced in the fol-
lowing subsections:

A. WIND ENERGY SYSTEM AVERAGE MODEL
The wind speeds are normally collected at the height of the
measurement devices which may not the same as the height
of the WT and for this reason, the wind speed should be eval-
uated at the hub height of the WT. The relation between the
wind speed at the hub height of the WT to the measurement
height is shown in Eqn. (1). [33].

u(h) = u(hg) ∗
(
h
hg

)1/7

(1)

where, u is the wind speed m/s, h is the hub height of the WT,
hg is the height of the anemometer.
The generated power from the WT depends on the wind

speed and the performance parameters of the WT. The gener-
ated power from the WT is shown in Eqn. (2) [33].

PW (u) =


0 u ≤ UC &u ≥ UF

PR ∗
uK−UK

C
UK
R −U

K
C
, UC ≤ u ≤ UR

PR UR ≤ u ≤ UF

 (2)

where, UC , UR, and UF are the WT cut-in, rated, and cutoff
wind speeds, respectively, and K is the Weibull shape param-
eter of the site.

B. PV ENERGY SYSTEM MODEL
The generated power from the PV system is depending on the
radiation falling on it and its terminal voltage. The maximum
power point tracker (MPPT) should be used to ensure the PV
array extracts the maximum available power [34]. The solar
irradiances are always collected on the horizontal surface and
for this reason, should be modified to the best tilt angle as
introduced in [35]. The generated power from the PV array
are depending on the solar irradiance, the efficiency and
area of the PV array as shown in Eqn. (3) [35]. The value
of the efficiency of the PV array is depending on the solar
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irradiance and the temperature of the PV array as shown in
Eqn. (4). The temperature of the PV array, Tc(t) is a function
in the temperature of the environment around it, Ta(t), and
the current solar irradiance as shown in Eqn. (5).

PPV (t) = Ht (t) .PVA . ηc (t) . ηDC (3)

where, Ht is the solar radiation on an optimally tilted angle,
PVA is the total area of PV array, ηDC is the efficiency of
the DC/DC converter connected to the terminal of PV array,
and ηc(t) is the hourly efficiency of PV array which can be
obtained by the following equation [33]:

ηc (t) = ηcr [1− βt × (Tc (t)− Tcr )] (4)

where, βt is the temperature coefficient and its value used in
this study is 0.005 per ◦C [36], Tcr and ηcr are the solar cell
temperature and efficiency, respectively.

Tc (t) = Ta (t)+ 3Ht (t) (5)

C. BATTERY STORAGE MODEL
The batteries are used to give a fast balance between the
generation and the load requirements where the batteries
are charged with the surplus power and discharged with the
deficit power. The battery should work between the high-
est and lowest recommended SoC, SOCmax, and SOCmin as
shown in Eqn. (6).

SoCmin < SoC(t) < SoCmax (6)

where, SoCmin
=

Emin
B

Emax
B

, SoCmax E
max
B
Emax
B

, SoC (t) = EB(t)
Emax
B

, Emin
B ,

and Emax
B are the minimum and maximum stored energy in

the batteries, respectively. The rated energy of the batteries,
ERB is usually used as a maximum allowable energy stored in
the battery, ERB = Emax

B .
The depth of discharge (DoD) of the batteries is the differ-

ence between the SoCmax and SoCmin as shown in Eqn. (7).
The usable energy from the batteries, EBU in terms of DoD is
shown in Eqn. (8).

DoD = SoCmax
− SoCmin (7)

EBU = oD .ERB (8)

The batteries are having a maximum allowable charg-
ing/discharging power, PRB which mainly depends on the type
of battery. In most of the Lithium-ion batteries, this value is
equal to ERB/2 which will be used in this study. The hourly
battery power, PB(t) is the difference between the charging
and discharging power and can be obtained as shown in
Eqn. (9). The sign of PB(t) is positive when the generation
from HES is greater than the load requirement (the battery is
charging) and vice versa.

PB (t) = PBC (t)− PBD (t) (9)

where, PBC (t) and PBD (t) are the charging and discharging
power from the battery at the DC-bus.

The batteries are losing energy every hour in case they are
charging, discharging, or in case of storing conditions which

is called self-discharging. The formula showing the SoC of
the batteries is shown in Eqn. (10) [37].

SoC (t + 1) = SoC (t)
(
1−

σ

24

)
+
PBC (t) . ηBC

ERB
−

PBD (t)

ERB . ηBD
(10)

where, σ is the self-discharge rate (SDR) which depends on
the type, state of health (SoH), operating temperature, and
SoC of the battery. This value is used in many studies as 0.2%
per day [38], ηBC and ηBD are the charging and discharging
efficiencies of the batteries, respectively.

Lithium-ion batteries work until their SoH becomes equal
to 80% and it is an indication for the end of its life [17]. The
aging batteries reduce the efficiency of the batteries which
can be translated as a cost increase due to aging as shown
in (11) [17]. This extra cost has been taken into consideration
in the cost analysis section to represent the aging effects of
the battery.

AgingCost =
CB
DoD

(1− SoH) (11)

where, CB is the total cost of the batteries.

D. DIESEL GENERATOR MODEL
The proposed HES is using a diesel generator to supply the
load when the generated power from RES and the batteries
are inadequate to satisfy the load’s need. The diesel generator
is using diesel fuel to generate mechanical power to drive
a synchronous generator. The diesel generator should pro-
vide at least a certain percentage of its rated power called
the minimum load ratio, Pmin

dsr which has been used here in
this study equal to 30% of its rated power [22]. The fuel
consumption of the diesel generator, FD(l/h) can be obtained
from Eqn.(12) [22].

FD (t) = BdsPdsr + Ads Pds (t) (12)

where Pdsr is the rated power of the diesel generator and
Pds(t) is the generated power at time t , Bds, and Ads are the
fuel consumption coefficients of the diesel generator. The
values of Bds, and Ads are chosen to be 0.08415 and 0.246,
respectively [22], [39].

The efficiency of the diesel generator, ηds (kWh/l) is func-
tion in its output power which can be obtained from (13) [40].

ηds (t) =
Pds (t)

FD (t) .LHV
∗ 100 (13)

where, LHV is the lower heat value of diesel fuel and its value
is taken 11.55 kWh/l [40].

III. HYBRID ENERGY SYSTEM REAL-TIME MODELING
The real-time modeling of the HES is used to validate its
normal operation in real-time instead of the average model
is shown in section II. This model is proposed to be imple-
mented on the Simulink. A brief discerption of this model is
shown in this section. The overall model of the HES in the
Simulink environment is shown in Fig. 2. The same logic of
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FIGURE 2. The real-time modeling of HES in Simulink.

power flow used in the average model is used here in the real-
time model. A detailed discerption of different parts of this
model is shown in [41].

The brief discerption of some models of different com-
ponents in the real-time model is shown in the following
subsections:

A. PV ENERGY MODEL
The PV arrays including the model of the PV modules and
number of series and parallel numbers of modules, the boost
converter to control the terminal voltage of the PV array, and
the maximum power point tracker (MPPT) to allow the PV
array to work at the maximum power point (MPP) at different
irradiances and temperatures.

Different types of MPPT have been introduced in the lit-
erature [42]–[44]. The conventional MPPT algorithms like
hill climbing and incremental conductance can track theMPP
effectively in case of uniform distributed irradiances, mean-
while, it fails to capture the global peak in case of partial
shading condition. Most of the soft computing techniques
have the ability to overcome this obstacle on the expenses of
convergence time. A modern optimization algorithm called
musical chairs algorithm (MCA) is introduced lately which
has the ability to capture the global peak in uniform irradi-
ance and partial shading condition and it has been used in
this model [42]. The idea of this proposed technique is to
use a high number of search agents at the beginning of the
optimization and reduces this number gradually to enhance
the exploration and exploitation performance at the start and
the end of the optimization steps, respectively. A detailed
discerption of the MCA is introduced in [42].

B. WIND ENERGY SYSTEM REAL-TIME MODELING
The real-time model of the wind turbine is shown in Fig. 4.
The detailed model of this wind turbine is shown in [41]. The
proposed model is designed to force the WT at its maximum

FIGURE 3. The real-time model of the PV system.

FIGURE 4. The real-time model of the wind energy system.

power point in the range of speeds below the rated speed by
controlling the blades pitch angles and it forced to work at
a constant power range in speeds less than the cutoff wind
speeds as has been introduced in average model in Eqn. (2).
Based on this control system, the model gets the current wind
speed and calculates the optimal torque and rotor speed, and
forces the generator to work at these values [45].

C. THE REST OF THE REAL-TIME MODEL COMPONENTS
Different components are modeled in the real-time model of
the HES such as the battery which has been taken exactly as
the one provided in the Simulink and the battery charger as
shown in Fig. 5 [41]. The models and detailed discerptions of
the DRS and the PDU are shown in the following sections.

FIGURE 5. The real-time model of the battery charger.

IV. ELECTRICITY TARIFF PROGRAMS
The tariff of electricity should permit the highest benefits for
the customers and investors without affecting the stability
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of HES. The tariff design can encourage the customer to
participate in the stability and economics of HES. Different
types of tariff programs have been issued and most of these
programs are falling within the categories introduced in the
following subsection.

A. ELECTRICITY TARIFF CATEGORIES
The following points are showing the most tariff categories
used:

1) FLAT RATE PRICING (FRP)
This tariff is using a fixed tariff all the time without taking
into consideration the stability of the power system. The tariff
depends on many economic and political situations of the
place that are using this type of tariff [46]. This tariff may
be different from one customer to another based on their
monthly energy usewhich is sometimes called inclining block
rate (IBR) [6]. So, the FRP is counted as an energy-based
tariff. This tariff is very classic and it does not share the
responsibility of the stability between the customers and the
electricity providers.

2) CRITICAL PEAK PRICING (CPP)
This tariff program is using a flat tariff during the year except
for few hours on few days of the year. In these periods,
the tariff will be increased to force customers to reduce their
demand during critical peak conditions. Sometimes, the cus-
tomers positively respond to these events can get benefits and
other not participant may get penalties. This tariff may be
previously defined to the customers or it may be based on
a call to the customer at a convenient time. This tariff may
reduce the risk associated with peak periods but it will not
participate in the dynamic reduction of electricity generation.

3) TIME OF USE TARIFF (ToU)
In this type of tariff the electricity suppliers provide the
customer with the detailed price of electricity at the time of
contract. The plan of the ToU tariff may be daily, weekly,
monthly, or seasonally [6]. The energy providers issued the
ToU tariff based on comprehensive studies on the load char-
acteristics and the environmental conditions in the area. This
type of tariff can be classified as power and energy-based
tariff. Customers are preferring this type of tariff because they
can adapt their activities based on this well-known tariff. The
customers participate indirectly in the stability of the power
system but it will not help in case of abnormal conditions
occurred to the power system.

4) REAL-TIME PRICING (RTP)
This tariff is sometimes called the ‘‘dynamic tariff’’ in which
the customers receive an announcement for the tariff one hour
before where the concepts of the smart grid can be applied to
monitoring the stability of the system. The SoC of the bat-
teries can be used for the same purpose. RTP can effectively
utilize the dynamic change in the generation from RES and
reshape the loads to have a higher correlation between the

generation from RES and load which can reduce the cost of
the generation and enhance the stability of the system.

B. THE NEW PROPOSED DEMAND RESPONSE STRATEGY
To encourage the customers to participate in the stability of
HES, a new DRS is introduced in this study. This new DRS is
using the RTP for the sizing of HES. The design of the DRS
is continuously changing the tariff based on the SoC of the
battery, the charging/discharge power to/from the batteries,
and the previous response from the customers to maintain
the stability of HES for all operating conditions. The novel
DRS will be used in the sizing stage of HES to choose the
optimal size for the lowest CoE and highest reliability. This
DRS is implemented using an FLC to always adjust the load
to be correlated with the available generation from RES. The
logic of this novel DRS is done by using FLC to determine an
hourly update for the tariff based on the stability situation of
HES to urge customers to adapt their loads. Where, the tariff
should be increased with low SoC, high discharge power, and
low customer response compared with the required response
and vice versa. In case the battery SoC is high and RES
generation is higher than the load, FLC will reduce the tariff
to encourage customers to increase their loads and it will
keep reducing the tariff until the load is equal to the available
generation for RES.On the other way, FLCwill incrementally
increase the tariff when the generation fromRES is lower than
the load until the load is equal to the available generation
from RES. The level of changing the tariff is also based on
the current SoC where the stability of HES is substantially
affected by the SoC of the battery. This action should be
continued to ensure the loads are equal to the generation from
RES which can increase the stability and reduce the cost of
HES. The DR from the customers is depending on the price
elasticity of demand (PED) factor of the load. The PED is
defined as the relation between the change in power to the
change in tariff as shown in Eqn. (14). The new tariff after
adding the tariff increment is shown in Eqn. (15).

PED =
1PL (t) /PLA
1ρ (t) /ρ0

(14)

ρ (t + 1) = ρ (t)+1ρ (t) (15)

where, ρ (t) and ρ (t + 1) are the tariff at the current and
next hour, respectively, 1ρ is the change in tariff, ρ0 is the
basic tariff, 1PL is the change in load power, PLA is the
average power of the original load which can be determined
from Eqn. (16).

PLA =
1

8760

8760∑
t=1

PLO (t) (16)

where, PLO is the original load power before applying the
DRS.

The PED is normally having a negative value to represent
human performance when the price of a certain commodity is
increased its consumption and vice versa until the equilibrium
is achieved. This logic is the same logic used in DR to control
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FIGURE 6. The relation between the change in price and the change in
load For PED = −0.5, −1.0. −2.0.

FIGURE 7. The block diagram of the demand response strategy with FLC.

the loads where the customers intend to reduce their loads
when the tariff increased and vice versa. The value of PED
between 0 to−1 is called inelastic loads, meanwhile, thePED
between −2 to −1 is called elastic loads. When the value of
PED = −1 the load is called unify load as shown in Fig. 6.
The proposed DRS strategy using FLC is shown in Fig. 7,

where the case of the generated power from RES is lower
than the load power, the deficit power will be supplied from
the batteries and if it cannot feed the load the diesel generator
will be used to feed this deficit power. In this case, the SoC
of the batteries will keep reducing and the customers did not
cooperate with the current situation the diesel engine which
has a higher cost than RES will start and it may cause loss
of load occurrence in case the deficit power is higher than
the size of diesel generator. So, in this case, it is important
to increase the tariff to urge customers to reduce/increase
their loads to participate in the stability of HES. Alternatively,
if the generation from RES is higher than the load power the
surplus power will go to charge the battery system and if it is
full, the extra power should be extracted by dummy load to
maintain the stability of HES. In this case, the tariff should
be reduced to encourage the customers to use the surplus
energy generated from RES. So, the SoC of the battery, its
power, PB, the operation of the diesel generator, and the
previous change in tariff are giving a complete picture for
the situation of HES. For this reason, three variables are used
as inputs to FLC which are the SoC of the battery, its power
charging/discharging ratio, PB (t) /PRB and the current change
in tariff ratio, 1ρ (t) /ρ0 as shown in Fig. 8. The output
from FLC is the new increment in tariff ratio,1ρ (t + 1) /ρ0.

FIGURE 8. The structure of FLC.

The new increment in tariff factor,1ρ (t) /ρ0 will be used in
the price elasticity of demand (PED) factor to determine the
increment change factor in power based on the customers’
response as shown in Eqn. (15). After determining the change
in power, 1PL (t) from Eqn. (15) it will be added to the
previous load power to determine the new value of load power
as shown in Eqn. (17). The new value of load power will
be entered to the power dispatch unit. Some studies add
restrictions on the difference between the original demand
load power, PLO and the modified load power, PL by ±50%
as introduced in [12], [9].

PL (t + 1) = PL (t)+1PL (t + 1) (17)

The fuzzy membership functions of the input and output
variables are shown in Fig. 8. As clear from this figure that
each variable has five membership functions where the SoC
is having 5 five linguistic variables VL, L, M , H , and VH
which stand for Very Low, Low, Middle, High, and Very
High, respectively. The operating range of the SoC of the
battery should be set between SoCmin, and SoCmax . The other
two inputs as well as the output variable from FLC are having
5 five linguistic variables NB, N , Z , P, and PB which stand
for Negative Big, Negative, Zero, Positive, and Positive Big,
respectively. The surface functions that can represent the
logic used in the rules of the FLC are shown in Fig. 10,
Fig. 11, and Fig. 12.

The relation between the three inputs and the output is
implemented using 125 (53) fuzzy rules. Fig. 9 shows a
sample of the last rules of the input and output variable for
random values of inputs.

V. POWER DISPATCH UNIT
The power dispatch unit (PDU) is responsible for the control
of power flow between all components of HES based on its
operating conditions. The power dispatch unit of HES is done
based on the flowchart shown in Fig. 13 and shown in details
in the steps shown in the following subsection:

A. PROPOSED DISPATCH UNIT STEPS
Step-1: Read the number ofWTs, the PV array area, the bat-

teries’ size, the diesel generator size, and their other
specifications. The PDU reads also the hourly wind
speed, the solar radiation, the hourly load power,
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FIGURE 9. The list of the last fuzzy rules on the membership functions of
the input and output variables.

FIGURE 10. The relation between the SOC, previous change in tariff and
the current change in tariff.

and set the initial increment in tariff and load power
to zero.

Step-2: Determine the generated power from the WTs and
PV arrays from Eqns. (2), and (3), respectively.
and determine the generated power as shown in
Eqn. (18).

PG(t) = PW (t)+ PPV (t) . ηinv. (18)

Step-3: Determine the new value of the load power, PL (t)
by adding the change of power, 1PL (t + 1) to the
current load PL (t) as shown in Eqn. (17).

FIGURE 11. The relation between the SOC, battery power, and the current
change in tariff.

FIGURE 12. The relation between the previous change in tariff, battery
power, and the current change in tariff.

Step-4: Check if PG (t) > PL (t), go to step-5, otherwise
go to step-10.

Step-5: Check if the batteries still able to charge the load
(EB(t) < Emax

B ), then go to step-6, otherwise go to
step 9.

Step-6: Check if the battery can get the whole surplus
power PG(t)−PL (t)

ηinv . ηBC . ηBDC
> Emax

B − EB (t), then go to
step-7, otherwise go to step-8.

Step-7: Determine the battery charging power, PBC (t) can
be obtained from Eqn. (19) and the extra power will
go to the dummy load as shown in Eqn. (20) then
go to step-14.

PBC (t) =
(
Emax
B − EB (t)

)
/ηBC (19)

Pdum (t) = PG (t)− PL (t)−
PBC (t)
ηinv

(20)

Step-8: The battery can extract the whole surplus power
and the battery charging power will be obtained
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FIGURE 13. The flowchart of the power dispatch unit of HES.

from (21), then go to step-20.

PBC (t) = PG (t)− PL (t) . ηinv (21)

Step 9: As has been checked in step-5 and it is found that
the battery is full, then send the surplus power to a
dummy load, Pdum (t) = PG (t)− PL (t) and go to
step-20.

Step-10: As has been checked in step-4, the generated power
is less than the load power, PG (t) < PL (t) which
means that there is a deficit power and it should
be covered by the battery or the diesel generator
in case the battery cannot give the load with its
need. Check if EB(t) > Emin

B , then go to step-11,
otherwise go to step-13.

Step-11: Check if the battery can cover the deficit power,
PL (t)−PG(t)
ηinv . ηBD . ηBDC

< EB (t) − Emin
B , then go to step-12,

otherwise go to step-13.
Step-12: Determine the discharging power from the battery,

PBD (t) =
PL (t)−PG(t)
ηinv . ηBDC

and go to step-20.

Step-13: Check if the diesel generator can feed the deficit
power, Pdsr > PL (t) − PG (t), then go to step-14,
otherwise go to step-18.

Step-14: Check if the minimum diesel power is greater than
the deficit power, Pmin

dsr > PL (t) − PG (t) then got
step-15, otherwise go to step 17.

Step-15: Set the diesel power to its minimum Pds (t) = Pmin
dsr

and send this result to step-18 & step-21.

Step-16: The extra power generated from the minimum
diesel power should be sent to the battery using
Eqn. (22), then go to step-19.

PBC (t) =
Pmin
dsr − (PG (t)− PL (t))

ηinv . ηBDC
(22)

Step-17: If the deficit power is between the limits of the
diesel generator as stated in step-13 and step-14,
the diesel power can be equated to the deficit power,
Pds (t) = PL (t)− PG (t), then go to step-19.

Step-18: If the deficit power is greater than the diesel max-
imum power, then set the diesel power to its rated
value Pds (t) = Pdsr and increase the LOLP by one.

Step-19: Accumulate the diesel power Pds (t) to the energy
from the diesel power Eds, Eds = Eds + Pds (t).

Step-20: The battery energy changePB (t) can be determined
from Eqn. (23) and the dummy accumulated energy
can be determined from Eqn. (24). Send these val-
ues to step-21 and step-23.

PB (t) = PBC (t) ηBC − PBD (t) /ηBD (23)

Edum = Edum + Pdum (t) (24)

Step-21: determine the current stored energy in the battery
as shown in Eqn. (25) taking the self-discharge rate
(σ ) and charging/discharging power of the battery
obtained from Eqn. (25).

EB (t) = (1− σ ) .EB (t − 1))+ PB (t) (25)

Step-22: Determine the SoC of the battery by dividing the
current stored energy over the rated energy as
shown in Eqn. (26) and send this result to FLC in
step-23.

SoC (t) = EB (t) /ERB (26)

Step-23: Send the SoC obtained from step-22, the bat-
tery charging/discharging power ratio PB (t) /PBR
obtained from step-20, and the previous change in
tariff1ρ (t) /ρ0 to FLC shown in Fig. 8 and collect
the new change in tariff ratio, 1ρ (t + 1) /ρ0.

Step-24: Determine the new value of tariff as shown in Eqn.
(27) and the new change in power from Eqn. (28),
Check if t <8760, go to step-1, otherwise go to
step-25.

ρ (t+1) = ρ (t) . (1+1ρ(t+1)/100) (27)

1PL (t + 1) = PED . 1ρ(t + 1) .PLA (28)

Step-25: Send the total generated energy from Eqn. (29),
LOLP, Eds to the cost estimation unit.

ET =
8760∑
t=1

PL (t) (29)
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B. ASSESSMENT FACTORS
Many useful factors can be extracted from the PDU which
can assess the performance of HES under different operating
conditions. These factors are used to evaluate the reliability,
economic, and environmental performance of HES. Some of
these factors are shown in the following points and some
other factors are shown in literatures [6], [13], [23], [26],
[47]–[53]:

C. RENEWABLE ENERGY FRACTION (REF)
This factor is representing the ratio of the generated energy
from RES to the total energy supplied to the load that can be
obtained from Eqn. (30) [47]–[49]. The greater the value of
REF the greener HES. This factor is also called sometimes the
renewable fraction [50]. To know the fraction used in the gen-
eration of wind and PV compared with the total generation
from RES, two other fractions called fractions wind energy
fraction (WEF) and PV energy fraction (PVEF) as shown in
Eqns. (31) and (32), respectively.

REF = 1−
8760∑
t=1

Pds (t)/
8760∑
t=1

PL (t) (30)

WEF =
8760∑
t=1

PW (t)/
8760∑
t=1

PL (t) (31)

PVEF =
8760∑
t=1

PPV (t)/
8760∑
t=1

PL (t) (32)

1) CURTAILMENT LOSSES cl
Owing to the curtailment of the load some of the energy gets
lost in the dummy load. The ratio of the lost energy in the
dummy loads to the total demand load energy during the day
is called the curtailment losses l which can be determined
from (33) [48].

cl =
8760∑
t=1

Pdum (t)/
8760∑
t=1

PL (t) (33)

2) POWER REDUCTION RATIO KPR
This factor is used tomeasure the ratio between the peak value
of new load after using the DRS and the peak of the original
load which can be obtained from Eqn. (34). The smaller the
KPR the effectiveness of the DRS [13].

KPR = max (PL (1 : 8760)) /max (PLO (1 : 8760)) (34)

3) PEAK TO AVERAGE POWER RATIO (PAR)
This ratio is used to measure the relationship between the
peak to average power as shown in Eqn. (35), where its
minimum value is 1 and the load is ideal when PAR near
to 1.0 [26].

PAR =
max (PL)
mean (PL)

(35)

4) SUFFICIENT RATIO (SR)
This factor is used tomeasure the sufficient of customers from
energy when they adapt their loads based on the DRS. This
factor is defined as the ratio of the adapted energy from the
load to the original energy required by the load as shown in
Eqn. (36). The value of SR was lower than 1 means that the
customers are not satisfied with the energy due to the high
tariff and they are satisfied when the value of the SR is equal
to or greater than 1.

SR =
8760∑
t=1

PL (t)/
8760∑
t=1

PLo (t) (36)

5) LOSS OF LOAD PROBABILITIES (LOLP)
This factor is used to measure the times that HES failed to
satisfy the load’s needs to the total number of hours per year
(8760) as shown in Eqn. (37) [51], [52].

LOLP =

8760∑
i=1

toutage(i)

8760
(37)

where, toutage is representing the hour that HES failed to
satisfy needs and its value is 1 or 0, where 1 is representing
HES that failed to feed the load and 0 when HES satisfied the
load needs.

6) LOSS OF ENERGY EXPECTED (LOEE)
LOEE is defining the ratio of the energy that HES failed to
feed the load to the total energy of the load as shown in
Eqn. (38) [6], [23], [53].

LOEE =

8760∑
i=1

Pde(i)

8760∑
i=1

PL(i)

(38)

where, Pde(t) is the amount of energy that HES failed to feed
the load with.

VI. ECONOMIC ANALYSIS OF THE HYBRID
ENERGY SYSTEMS
The cost of the generated energy from HES is the key issue to
predict its feasibility. Different cost determination strategies
have been introduced in the literature to optimally size HES
based on it [6], [35]. The import cost factors are shown in the
following points:

A. NET PRESENT VALUE (NPV)
The NPV is a factor used to measure the feasibility of
installing HES. This factor is representing the difference
between the total income during the lifetime of HES and the
total cost of HES through its lifetime discounted at the start of
the project and can be obtained as shown in Eqn. (39). This
factor is used to represent the current value of the project,
the negative value of the NPV means this project should be
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rejected and the acceptance of the project based on howmuch
its positive value.

NPV = PVI − PVC (39)

where, PVI is the present value of expected income, PVC is
the present value of invested cash or costs. The PVI is the
present value of the total income during the lifetime of the
project including the income from selling salvage compo-
nents during replacement and at the end of the project. The
PVI ofHES is shown in (40). This value of salvage of different
components is shown in (41).

PVI = ρ
T∑
τ=1

ET ∗ (1− SDR)τ

(1+ r)τ
+ PSV (40)

where, ρ is the electricity tariff, ET is the yearly energy, SDR
is the system degradation rate, PSV is the present value of
salvage of components.

PSV =
n∑
i=1

Nrep+1∑
j=1

SV (i)

(1+ r)T∗j/(Nrep+1)
(41)

where, n is the number of components that will be replaced
during the lifetime of the project, Nrep is the number of
replacements over the system life period T which can be
obtained from Eqn. (42). As an example, if the project life-
time, T is 20 years, and the component i lifetime, LT(i) is
6 years, then based on equation (42) the components will be
replaced 3 times at year 6, 12, and, 18 which means that there
are three salvage prices in the middle of the project and one
at the end.

Nrep = INT (T/LT (i)− 0.01) (42)

The PVC is the present value of the total cost of HES and
any cash spent during the lifetime of the project. Moreover,
the PVC is including any fixed or variable operating and
maintenance cost of the whole system (OMC) as shown in
Eqn. (43).

PVC = CC + PRC + POMC (43)

whereCC is the capital cost of the whole system including the
installation cost,PRC is the present value of replacement cost,
and POMC is the present value of operation and maintenance
costs.

The CC of HES systems including the price of all parts of
the system, the installation cost, etc. which can be calculated
as shown in Eqn. (44).

CC = WEp+ PVp+ BAp+ DGp+ SGp (44)

where, WEp is the price of wind energy system including
installation and other components needed for wind energy
system, PVp is the total price of PV energy system including
the installation, civil work, etc. BAp is the total price of the
battery system and battery charger. DGp is the total price
of the diesel generator. SGp is the total price required for

smart grid which has been used as 5% of the cost of the other
components [6].

The present value of replacement cost, PRC of all the
components of HES should be calculated fromEqn. (45) [37].
As an example, if the total lifetime of the project is 20, and
the component, i has 6 years’ lifetime, then we have Nrep =3,
then we have 3 replacements at year 6, 12, and 18 that can be
obtained from using Eqn. (45).

PRC =
n∑
i=1

Nrep∑
j=1

(
RC(i)

(1+ r)T∗j/(Nrep+1)

)
(45)

where, RC is the current replacement cost of the components
that will be replaced during the project lifetime, Nrep is rep-
resenting the times that the component is replaced during the
lifetime of the project, T , i is the order of the components,
n is the total number of components that will be replaced.
The present value of OMC of all components in HES can

be determined from (46) [6]:

POMC =
n∑
i=1

T∑
t=1

OMC(i)
(1+ r)t

(46)

B. THE LEVELIZED COST OF ENERGY (LCOE)
The LCOE is the most important economic factor that can
determine the breakeven of the energy generated from HES.
The LCOE is simply a ratio between the total present cost
of HES through its life to the discounted generated energy
as shown in Eqn. (47). Many studies were introduced to
determine the LCOE of HES [6], [35].

LCOE =
TPV ∗ CRF

ET
(47)

where, CRF is the capital recovery factor which is shown
in (48) [6], TPV is the total cost spent through the lifetime
of the project which can be obtained from subtracting the
discounted salvage cost from the PVC using Eqns. (43) and
(41) as shown in Eqn. (49).

CRF =
r (1+ r)t

(1+ r)t − 1
(48)

TPV = PVC − PSV (49)

VII. OPTIMIZATION ALGORITHMS
The need for an optimization algorithm is to determine the
optimal sizing of the components of HES for minimum cost
and highest reliability. For this reason, the optimization algo-
rithm is using a multiobjective optimization function. The
objective function that is intended to be minimized is shown
in Eqn. (50). This objective function is using the LCOE and
LOLP to mutually reduce the cost and loss of load expected
from the system. To give the cost a different weight than
reliability, the LCOE is multiplied by a weight value, M .
This factor is determined based on giving the LCOE the
highest value without exceeding the LOLP than a predefined
tolerance. Many studies are introduced in the literature to
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TABLE 1. The control parameters of the benchmark optimization
algorithms used in this study.

determine the best value of M for balance between the cost
and reliability [1], [6].

F = M ∗ LCOE + LOLE (50)

where, F is the objective function, LCOE is the Levelized
CoE, andM is the weight value to give the LOLP the required
weight compared with LCOE.
The optimization algorithm should have fast and reliable

convergence to efficiently capture the optimal solution within
the lowest time. The time is a very important issue because
each time the optimization algorithm executes the objective
function the PDU including the DRS and cost analysis will
be performed for a complete year (8760 h) which takes a
substantial calculating time. The confidence of the results
obtained from the optimization algorithm should be high
enough to capture the global minimum condition and avoids
getting trapped in one of the local peaks. For this reason,
10 optimization algorithms have been selected to perform
the sizing of HES where their control parameters are shown
in Table 1. Due to the long convergence time, it is very
important to reduce it by reducing the number of executing
the objective function without affecting the accuracy of the
obtained results. This can be achieved by reducing the swarm
size and/or the iteration number. The reduction of swarm size
will reduce the exploration performance and the reduction of
the iteration number will reduce the exploitation performance
of the optimization algorithm. So, it is important to look
for a solution that can reduce them without affecting the
exploration and exploitation of the optimization algorithms.
For this purpose,MCS is introduced in this study to reduce the
convergence time and to reduce the failure rate comparedwith
well-known optimization algorithms shown in Table 1. The
idea behind using the MCS is to remove the worst (highest
fitness value) particle and reduce swarm size by one in each
iteration. The detailed description of the MCA is shown in
the following subsection. This modification reduced the time
spent in the optimization compared with 10 swarm optimiza-
tion algorithms used here in this study for comparison.

A. THE MODIFIED CUCKOO SEARCH STRATEGY
The selection of the CS algorithm to look for further modifi-
cation is because it is found the fastest optimization algorithm

among other state-of-the-art strategies used in this study. The
CS algorithm is inspired by the parasitic behavior of the
reproduction process of the cuckoo bird in nature. The cuckoo
bird is always searching for a suitable nest for another bird to
lay his egg inside it. In the case of the host bird has the oppor-
tunity to configure this trick it will try to select the different
egg and through it out from the nest or it may abandon the nest
completely. This algorithm was first introduced in 2009 by
Yang, X. S., and S. Deb [54]. The CS algorithm is imitating
the random nature of the searching of the cuckoo bird where
it uses Lévy’s flight in the searching strategy to allow the
algorithm to escape from local optima and enhance the global
search opportunity. The original CS algorithm uses a random
position for the nests (swarm) within the allowable values of
each variable and determines the fitness value for each nest.
Based on the values of the fitness values of searching agents
the new generation modifies the positions of the particles by
adding a search step to the previous position of the nests.
After getting the fitness value of the initial position of nests
the new generation will check the value of each nest with a
random nest and if the new value is greater than the current
nest then it replaces the new nest with the better nest. If the
random nest is not better than the current nest, then replace
the nest position by adding the new increment as shown
in Eqn. (51).

dki+1 = dki + α.
|u|
v1/β

.
(
dbest − dki

)
(51)

where, i is the generation number (i =, 1, 2, . . . . . . it), k is
the order of searching agent in the swarm (k = 1, 2, . . . .SS),
SS is the swarm-size, α is the step size which can be deter-
mined based on the problems and it is recommended in many
research to be α= 1 [54], γ and v arematrices having uniform
distribution and their values can be determined as shown in
Eqn (52).

γ ≈ N
(
0, σ 2

u

)
and v ≈ N

(
0, σ 2

v

)
(52)

where, the variance of γ and v can be obtained from (53)

σγ =
0(1+ β). sin (π.β/2)

0
(
1+β
2

)
.β. 2

(
β−1
2

) and σv = 1 (53)

The MCS strategy introduced in this study is performed by
reducing the swarm size by one in every generation (iteration)
by abandoning the worst nest. The logic behind the proposed
MCS algorithm is shown in the flowchart shown in Fig. 14.
The use of a high number of swarm size in initialization will
enhance the exploration in the beginning and with reducing
the swarm size by one in each generation it will enhance the
exploitation which makes this MCS algorithm is very fast
and reliable compared with the other benchmark optimization
algorithms. The continuous reduction in swarm size can be
stopped to any number greater than or equal to 2 as shown
in Fig. 14.
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FIGURE 14. The modified cuckoo search algorithm for sizing of HES.

B. STOPPING STRATEGY
To reduce the convergence time spent to get the optimal
solution a stopping strategy should be used. Many stopping
strategies have been used in the literature [55], [56]. The
stopping strategy used in this study is done by stopping the
optimization in case the difference between themaximum and
minimum values is lower than predefined tolerance as shown
in Eqn. (54). In this strategy, the value of the predefined
tolerance ε is used equally to 10−5.

if max (F(i))−min (F(i)) ≤ ε, then is = i, break (54)

where, is is the total number of iteration that the algorithm
used to achieve the accuracy shown in Eqn. (54)

The number of executing the objective function is a cru-
cial issue because the time of optimization is mainly due to
getting the fitness value from the objective function wherein
each time the PDU including the DRS must be executed
8760 times and the cost estimation unit also should be per-
formed too. The number of executing the objective function,
NSS in all optimization algorithms under study except MCS
is equal to the number of iterations times the swarm size.
The number of executing the objective function in MCS is

shown in Eqn. (55).

NSS =



is∑
i=1

SS − (i− 1) is < SS

SS−1∑
i=1

(SS − (i− 1))+ 2 . (is − (SS − 1)) is ≥ SS

(55)

VIII. THE SIMULATION RESULTS
The proposed strategy and its computer program are applied
to determine the optimal size for a remote site near Tabouk
city in the North East of Saudi Arabia. The block diagram of
the proposed software is shown in Fig. 15. The site load is
selected as the load shown for a remote area near to this site
and very near to the centre of the load and for this reason the
transmission losses is neglected.

FIGURE 15. The block diagram of the new HES sizing software.

A. INPUT DATA
The input data for the proposed sizing software are listed in
the following points:
• The hourly wind speed for a complete year (8760 h) at
this site are shown in Fig. 16 (a). This wind speed is
measured at 10 m elevation which should be updated to
the hub height of the WTs (30m) using Eqn. (1).

• The hourly solar irradiance for a complete year (8760 h)
for this site is shown in Fig. 16 (b) should be modified
to be equal to the radiation falling on the monthly best
tilt angle.

• The hourly expected load power is shown in Fig. 16 (c).
• The WTs data for selected WT called AE-Italia [57] as
shown in Table. 2.

• The specifications of one of the market-available PV
modules are shown in Table 3.

• The specifications of market-available battery storage
are shown in Table 4.
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FIGURE 16. Input data (a) Wind Speed, (b) Solar Irradiance, and (c) Load
power.

TABLE 2. WT parameters.

• The specifications of the diesel generator that may be
used in this site as shown in Table 5

• The specifications of the inverter, DC/DC converter for
MPPT, and battery charger as shown in Table 6

The maximum power output and input of the bat-
tery inverter related to the usable capacity is limited to
0.5 kW/kWh.

B. OUTPUT RESULTS OF THE AVERAGE MODEL
Many useful results can be extracted from this computer pro-
gram. Themain results are the optimal size of components for

TABLE 3. The PV specification parameters.

TABLE 4. The battery specification parameters.

TABLE 5. The Diesel generator specification parameters.

TABLE 6. The inverter specifications parameters.

the lowest cost, highest reliability, and the effect of different
operating conditions on the change in this size. Some of the
useful results that can be extracted from this novel program
are listed in the following points:
• The hourly SoC, hourly diesel generator power, dummy
load power, hourly tariff, and hourly load after applica-
tion of the DRS, etc.,

• The monthly, yearly generated energy,
• The renewable generated energy ratio, and
• The convergence performance of optimization
algorithms.

Three different simulation studies are introduced in this
study and shown in the following subsections:

1) SELECTING THE BEST OPTIMIZATION ALGORITHM
The proposed MCS algorithm introduced in this study to
improve the convergence speed of the optimization where the
conversion time is an important issue due to the long-time
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TABLE 7. The convergence performance of different optimization
algorithms under study.

consumed to execute the objective function. For this rea-
son, it is required to reduce the times that the optimization
algorithms called the objective function to determine the
fitness value which is achieved by using MCS. This novel
strategy reduced the swarm size by one in each generation
by removing the worst agent to improve exploration at the
beginning of optimization and the exploitation at the end.
This proposed strategy has been compared with 10 bench-
mark optimization algorithms shown in Table 1. A fair eval-
uation of all the operating conditions for the 11 optimization
algorithms should be the same. Where the swarm size for
all is started with 25 particles and they will stay the same
for the 10 benchmark optimization algorithms, meanwhile,
it will be reduced by one in every generation for the MCS.
The weight parameter, M is used in the objective function in
Eqn. (50) is set to 1.0. The PED is chosen in this study to
be equal to −1. The optimization study was implemented on
Matlab code using a computer having an i7 processor with
3.6 GHz frequency, and 20 MB cash. The results from all
optimization algorithms are shown in Table 7. It is clear from
this table that the fastest benchmark optimization algorithms
were the traditional BA and CS with 13 iterations before the
optimizations get their optimal solution which means that
they called the objective function, NSS 13∗25 = 325 times
with about 4 hours to perform this optimization. Meanwhile,
the slowest one was the GAO, where it takes 32 iterations
to get the optimal conditions which means that the GAO
called the objective function 32∗25= 800 times which needs
more than 10 hours to perform one run of this optimization.
This shows the importance of reducing the optimization time
which can be achieved using the new proposed MCS algo-
rithm. The MCS spent 10 iterations to get the optimal size
of HES which means that it called the objective function
205 times based on Eqn. (55) with 2.5 h convergence time.
The convergence progress of the 11 optimization algorithms
used in this study is shown in Fig. 17. The results obtained
from Table 7 and Fig. 17 showed that the MCS is taking
from 25% to 63% of the time used for the benchmark opti-
mization algorithms. This figure showed that the MCS is
converged very fast after executing the objective function
with 200 times, meanwhile, some other techniques like GOA

FIGURE 17. The variation of the minimum value of the minimum fitness
values along with the number of executing the PDU.

executed the objective function 800 times to get the optimal
solution. Moreover, the MCS is having the minimum value
of fitness value, LCOE, and LOLP compared with other
benchmark optimization algorithms shown in Table 7. These
results showed that MCS is superior compared with the other
optimization algorithms used in this study. For this reason,
MCS is the only optimization algorithm that will be used
in the next simulation studies. The objective function shown
in Table 7 is dimensionless because it comprises the cost
and the LOLE as shown in Eqn. (50). The percent of the
time consumed by MCS with respect to other optimization
technique is determined by dividing the time consumed by
the MCS to the time consumed by the other optimization
algorithm as an example, the time consumed by the MCS
compared to the time consumed by the JS is 2:33/6:22=40%.

2) SELECTING THE BEST VALUE OF WEIGHT
The previous study showed superior performance of MCS
compared with the other optimization algorithms and for
this reason, it will be used in this study. The PED used in
this study is set to −1. Variable values of weight M and
the relation between the optimal fitness value, LCOE, and
LOLP are drawn as shown in Fig. 18. It is clear from this
figure that increasing the value of M is reducing the LCOE
and increasing the LOLP until the value of M has a value
around 6, after that the LCOEwill be saturated meanwhile the
value of LOLP keeps increasing. So, it is not recommended to
use the value ofM greater than 6 because there is no reduction
in cost meanwhile the LOLP will be increased. The value of
M can be chosen based on the desired LOLP, which means
that if it must have LOLP less than 1%, then we should choose
M = 1.0 or lower where the cost will be $0.06664/kWh.
Meanwhile, if it is acceptable to have LOLP = 5%,M = 2.0
can be chosen, and the LCOE = 0.058 $/kWh. This means
that, the cost reduction is based on expenses of reliability of
HES. For this reason, the restriction of LOLP will be lower
than 1% and the value ofM = 1.0 in the coming studies.
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FIGURE 18. The variation of the objective function, LCOE, and LOLP with
weight parameter M.

3) EFFECT OF LOAD ELASTICITY ON THE COST AND
RELIABILITY OF HES
This study is very important to show the effect of demand
elasticity on the sizing of HES. The sizing problem taking the
DRS into account is considerably imitating the real-life when
the real-time tariff is used in the smart grid system. The cost
and reliability are considerably changing with the level of the
elasticity of the load. The elastic load gives HES the ability
to pass the critical conditions without a need for increasing
the size of HES components that can reduce the cost of HES
significantly. On the other way, if the load is inelastic, which
means that the customers do not cooperate with the change
in tariff or the FRP is used, HES should increase the size of
components to be able to pass abnormal operating conditions
that increase the cost of the system. This concept is discussed
in this section where the relationship between the LCOE and
the LOLP along with PED is shown in Fig. 19. It is clear
from this figure that the LCOE is reducing with increasing
the elasticity of the load. This means that taking DRS into
account can reduce the size and LCOE of HES considerably
which proves the importance of using smart grid concepts
in the design of modern HES into consideration. It is also
clear from Fig. 19 that all the performance of the HES are
improved as discussed in the following points:

• The LCOE is reducing from PED = 0 to −1 and after
that, it will be saturated. The LCOE is reduced from
0.073 $/kWh with PED = 0 to 0.064 $/kWh when the
PED=−2. whichmeans that the use of DRSwill reduce
the LCOE by (0.073-0.064)/0.064 = 14.1%.

• The LOLP is reduced from 10.1% when PED= 0 to 1%
when the PED = −1.

• The curtailment loss cl which measures the energy to the
dummy load till the total load energy is reduced from
30% at PED = 0 to 3.5% when the PED = −1 which
means that most of the energy that was lost in the dummy

FIGURE 19. The variation of the assessment factor with along with PED.

load is used as a useful load with reduced tariff for
customers.

• The power reduction ratio KPR which measures the
percentage of the peak of the new load and peak of
the original load is considerably improved from 0.82 at
PED = 0 is increased to 1.28 which means that the new
load power peak is improved even more than the load
needs.

• The peak to average ratio, PAR is increased from 2.27 to
3.51 for PED = 0 and −1, respectively, which means
that HES becomes able to feed the loads with a peak
greater than 3.5 of its average value.

• The SR which measures energy consumed by the
new load energy to the required energy by the loads.
At PED = 0, SR= 0.985 whichmeans some of the loads
cannot be supplied from HES. Once PED = −1, SR is
increased to 1.12 which means that the load received
more energy with DRS 10% than its original needs.

• The renewable energy fraction, REF which measures
the contribution of RES in the load energy is increased
from 0.92 without the DRS (PED = 0) to 0.98 when
the DRS is used with PED = −1, which means that
with the same size of the system the contribution from
diesel generator is reduced from 8% to 2% of the load
requirements which reduces the LCOE significantly and
makes HES more green.

Many studies conclude that PED is in the range of
−0.4 to −0.8 and with the modern communication systems
used in the smart grid this value may be increased [6]. With
PED = −1.0 the variation of the load, generated power,
battery power, SoC, diesel generator power, and dummy loads
are shown in Fig. 20. This figure shows the new load power
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is becoming more correlated with the generated power from
RES. This achievement can be more visible when similar
curves are illustrated without DRS (PED = 0) as shown
in Fig. 21. This figure showed the big discrepancy between
the load and the generated power, moreover, it showed a
higher increase in diesel generator operation compared with
the use of DRS (PED = −1). Moreover, it is clear from
Fig. 17 (PED = −1) and Fig. 21 (PED = 0) that the dummy
power is higher without the use of the DRS (Fig. 21) com-
pared with the similar one when using DRS with PED = −1
(Fig. 20).

TABLE 8. The change in the size of HES components, diesel, and dummy
energies due to the DRS.

The optimal sizes of HES components in the case of
PED = 0 and −1 are shown in Table 8. It is clear from this
table that, the use of the PED = −1 is reduced the size of
the WT by 19.6% meanwhile it increases the PV area by
−54.18% compared with the FRP (PED = 0). Also, it is
cleared from this table that the need for batteries is increased
by 105.6% when used FRP compared with PED=−1. Also,
it is clear from Table 8 that the energy generated from the
diesel generator and the energy lost in the dummy loads are
increased by 292.5% and 757.15%when used FRP compared
with PED = −1.

From the results shown in Table 8, the WT numbers,
batteries, and diesel generator power is significantly reduced
when using DRS with PED = −1 compared with the FRP
(PED = 0), meanwhile, the PV area is increased.

4) THE RISK ANALYSIS
The risk analysis is very important to predict the change
in cost and other important factors when one or more fac-
tors were not accurate enough in the data. The first study
introduced in this section is in case of the wind speed is
changed ±20%. This study is conducted by changing the
wind speed as shown in Fig. 22. It is clear from this fig-
ure that when the wind speed is increased by 20 % the cost is
dropped from 0.0657 $/kWh to 0.0653 $/kWh and the LOLP
is reduced from 1% to 0.03%.Meanwhile, if the wind speed is
reduced by−20% the LCOE is increased from 0.0657 $/kWh
to 0.0858 $/kWh and the LOLP will be increased from
1% to 5.5%.

Similar study is conducted with the PV energy system
as shown in Fig. 23 where the values of solar irradiances
are increased by ±20%. It is clear from this figure that in
case of increase the solar irradiances by 20%, the LCOE
is reduced from 0.0657 $/kWh to 0.0642 $/kWh and the

FIGURE 20. The time variation of load, generated power, diesel, and
dummy powers as well as the battery power and SoC with PED = −1.

FIGURE 21. The time variation of load, generated power, diesel, and
dummy powers as well as the battery power and the SoC with PED = 0.

LOLP is reduced from 1% to 0.07%. Meanwhile, if the
solar irradiances are reduced by -20% the LCOE is increased
from 0.0657 $/kWh to 0.082 $/kWh and the LOLP will be
increased from 1% to 1.7%.

As discussed before the LCOE and LOLP have an inverse
relationshipwhere this study is introduced for different values
of PED as shown in Fig. 24. This study is performed by
variation of weight value, M . It is clear from this figure that
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FIGURE 22. The effect of wind speed data changes on the LCOE and the
LOLP.

FIGURE 23. The effect of solar irradiances data changes on the LCOE and
LOLP.

the PED has a great influence on the values of LCOE, and
LOLP which proves the superiority of using DRS and FLC.

C. THE SIMULATION RESULTS OF THE REAL-TIME MODEL
The real-time model described in section III is implemented
on the Simulink simulation program for the same results
obtained from the average sizing optimization program
shown in Table 8. The system is simulated for 10 s with
variable wind speed, solar irradiances, load, and at starting
SOC of the battery 80%. The variation of the solar irradiance
(W/m2), wind speed (m/s), the generated power and load
power, battery power, and SOC of the battery are shown

FIGURE 24. The relation between the LOLP with the LCOE for different
values of elasticity.

FIGURE 25. The time variation of the results of real-time model.

in Fig. 25. The results obtained from the real-time simulation
model shows the superior performance of the HES system
under varying weather and load variations.

IX. CONCLUSION
Hybrid energy systems (HES) are becoming attractive
options for generating electricity for remote communities.
Taking the demand response strategy (DRS) into consider-
ations using real-time pricing (RTP) as one of the smart grid
concepts reduces the size of HES components significantly.
With a modern communication system, the need for the appli-
cation of a smart grid will reduce the cost of energy (CoE) and
increase system reliability where customers will participate
in the stability of HES and they will benefit from reducing
their electricity bills. This study proposed a demand response
strategy (DRS) using a fuzzy logic controller (FLC) that
varies the tariff based on the stability situation of HES. The
proposed DRS is using the SoC and the charging/discharging
power of the batteries as inputs to FLC and the output is
the change in tariff. Based on this technique the customers
will adapt their loads to avoid the high tariff periods and
excess their loads in the low tariff periods. This strategy will
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enhance the correlation between the load and the available
generation from renewable energy sources which can signifi-
cantly reduce CoE and increase reliability of HES. The use of
MCS optimization algorithm reduced the convergence time
by 25% to 63% compared with 10 benchmark optimization
algorithms used in this study which proved the superiority of
the MCS compared with the benchmark optimization algo-
rithms in terms of the convergence time and accuracy. The
results from this study showed that the required sizes for HES
components are increased by 19.6%, 105.6, and 326.85%
for the WTs, batteries kWh, and the diesel generator size,
respectively with used flat-rate pricing (FRP) compared with
the DRS with PED = −1, meanwhile, the size of the PV is
reduced by −54.18%. More results are obtained from this
study where the salient results are shown in the following
points:
• The CoE and loss of load expected (LOLP) are reduced
by 14.1 and 10.1%, respectively when DRS is used
compared with the FRP.

• The loss of the generated energy in the dummy load is
reduced from 30% to 3.5% when DRS is used compared
with the FRP.

• The sufficient ratio that measures the new load energy
compared with the original load is increased from
0.985 to 1.12 when DRS is used compared with the FRP.

• The renewable energy fraction, REF is increased from
0.92 to 0.98 when DRS is used compared with the FRP.

• The change in wind speed data ±20% will change the
LCOE from 0.0653 $/kWh to 0.0858 $/kWh.

• The change in wind speed data ±20% will change the
LOLP from 0.03% to 5.5%.

• The change in solar irradiance data ±20% will change
the LCOE from 0.0642 $/kWh to 0.082 $/kWh.

• The change in wind speed data ±20% will change the
LOLP from 0.07% to 1.7%.

LIST OF SYMBOLS
h Hub height of the WT.
u Wind speed m/s
hg Height of the anemometer
UC Cut-in wind speed
UR Rated wind speed of the WT
UF Cutoff wind speed of the WT
K Weibull shape parameter.
PPV PV output power at the DC-bus
PW Wind energy system generated power
PG The total generated power from the wind and

PV at the AC-bus
PVA PV area (m2)
Ht Solar irradiance
ηc Efficiency of PV array
ηDC Efficiency of the PV DC/DC converter.
ηcr Rated solar cell efficiency
Tcr Rated solar cell temperature
Tc Solar cell temperature

Ta Ambient temperature
t Time (h) (1:8760)
βt Temperature coefficient
SoC State of charge of the batteries
DoD Depth of discharge of the batteries
SoH State of health of the batteries
SoCmin Minimum SoC
SoCmax Maximum SoC
EB(t) Hourly batteries’ stored energy
Emin
B minimum stored energy in the batteries
Emax
B Maximum stored energy in the batteries
ERB The rated energy of the batteries
PRB Maximum allowable charging/discharging

power
PB Charging/discharging batteries’ power
PBC Charging batteries’ power
PBD Discharging batteries’ power
σ Self-discharge rate
ηBC , ηBD Charging/discharging efficiency of the

batteries
CB Total cost of the batteries
FD (l/h) Fuel consumption of the diesel generator
Pdsr Rated power of the diesel generator
Pds(t) Hourly Diesel generator power
Pdsr Rated power of diesel generator
Eds Total generated power from the diesel
Pmin
dsr Minimum allowable power from diesel
Bds,Ads Fuel consumption coefficients of the diesel

generator
ηds Diesel generator efficiency
LHV Lower heat value of diesel fuel
ρ(t) Electricity tariff
ρ0 Basic electricity tariff
PLA Average power of the original load
PLO Original load power
PL Modified load power
PED Price elasticity of demand factor
ηinv Inverter efficiency
ηBDC Battery charger efficiency
Pdum Dummy power
Edum Total energy lost in the dummy load
ET Total load energy after using DRS.
ETO Total energy of the original load
REF Renewable energy fraction
WEF Wind energy fraction
PVEF PV energy fraction
Cl Curtailment losses
KPR Power reduction ratio
PAR Peak to average power ratio
SR Sufficient ratio
LOLP Loss of load probabilities
LOEE Loss of energy expected
Pde The deficit in load power
NPV Net present value
PVI Present value of expected income
PVC Present value of invested cash
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OMC operating and maintenance cost of the whole
system

SDR The system degradation rate.
r interest or discount rate
T Project lifetime
PSV present value of salvage of all components
SV Salvage value of each component
n Number of components in HES
Nrep Number of replacements over the system life

period
LT(i) Lifetime of component i
CC Total capital cost
PRC Total replacement cost
POMC Present value of operation and maintenance

costs
WEp Price of wind energy system
PVp Price of PV energy system
BAp Price of the battery system
DGp Price of the diesel generator price
SGp Smart grid components cost
RC(i) Replacement cost of the component i
LCOE Levelized cost of energy
CRF Capital recovery factor
TPV Total cost spent
M Weight constant of the objective function
SS Swarm size
dki Particle position of particle k at iteration i.
α Step length of CS particles
dbest Best position of CS particles
ε Predefined tolerance
is Number of iterations to the stopping strategy
it Total number of iterations in the optimization

algorithms
NSS Total times the objected function executed
PWR Rated power of each WT
PVDEG Degradation factor of PV
Pmin
dsr Minimum allowable load of diesel generator

LIST OF ABBREVIATIONS
HES Hybrid energy system
DR Demand response
DRS Demand response strategy
CS Cuckoo search algorithm
MCS Modified cuckoo search algorithm
CoE Cost of energy
PV Photovoltaic
RES Renewable energy sources
RTP Real-time pricing
SoC State of charge
DoD Depth of discharge
WT Wind turbine
FLC Fuzzy logic controller
GWO Grey wolf optimization
GA Genetic algorithm
SC Soft-computing
PSO Particle swarm optimization

BBO Biogeography-based optimisation
ABC Artificial bee colony
BFA Bacterial foraging algorithm
GOA Grasshopper optimization algorithm
CSA Crow search algorithm
FFA Firefly algorithm
SMO Social mimic optimization
LOLP Loss of load probability
MPPT Maximum power point tracker
FRP Flat rate pricing
IBR Inclining block rate
CPP Critical peak pricing
ToU Time of use tariff
PDU power dispatch unit
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