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ABSTRACT An optimized design with real-time and multiple realistic constraints in complex engineering
systems is a crucial challenge for designers. In the non-uniform Internet of Things (IoT) node deployments,
the approximation accuracy is directly affected by the parameters like node density and coverage.We propose
a novel enhanced differential crossover quantum particle swarm optimization algorithm for solving nonlinear
numerical problems. The algorithm is based on hybrid optimization using quantum PSO. Differential
evolution operator is used to circumvent group moves in small ranges and falling into the local optima and
improves global searchability. The cross operator is employed to promote information interchange among
individuals in a group, and exceptional genes can be continued moderately, accompanying the evolutionary
process’s continuance and adding proactive and reactive features. The proposed algorithm’s performance is
verified as well as compared with the other algorithms through 30 classic benchmark functions in IEEE
CEC2017, with a basic PSO algorithm and improved versions. The results show the smaller values of
fitness function and computational efficiency for the benchmark functions of IEEE CEC2019. The proposed
algorithm outperforms the existing optimization algorithms and different PSO versions, and has a high
precision and faster convergence speed. The average location error is substantially reduced for the smart
parking IoT application.

INDEX TERMS Convergence, crossover operator, differential evolution operation, Internet of Things,
optimization, particle swarm optimization, quantum computing.

I. INTRODUCTION
Optimization problem frequently occurs in real-time scenar-
ios and one need to have efficient technique to attain the
optimal solution with high convergence while dealing with
a specific problem. The traditional gradient-based optimiza-
tion method has limitations, and it fails to address com-
plex optimization problems [1]. Metaheuristic algorithms
are extensively utilized in solving the real life optimization
problems. They are iterative and based on social behaviors
or natural phenomena [2], [3]. The fundamental idea behind
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natural evolutionary and swarm intelligence algorithms is
to use mathematical models for simulating biological and
physical structures in nature. The metaheuristic algorithms
are comparatively efficient than the gradient based on the
optimization [4]–[8]. The capability of parallel execution
and disseminated features of swarm intelligence algorithms
facilitates the probability of solving complex non-linear
problems with innovative abilities such as flexibility, robust-
ness, and searching capacity. However, the metaheuristic
algorithm still needs to be upgraded because the conver-
gence rate towards an optimum solution is comparatively
slower. Hence, there is a need to alter and enhance explo-
ration and exploitation abilities of the algorithms. [9]–[14].
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Classical particle swarm optimization (PSO) [15], ant
colony optimization (ACO) [16], grey wolf optimiza-
tion (GWO) [17], Dragonfly Algorithm (DA) [18],
Improved Whale Optimization (IWO) [19], Bat optimiza-
tion algorithm (BOA) [20], Grass Hoffer Optimization
Algorithm (GHO) [21], An enhanced bacterial foraging
optimization (EBFO) [22], Gray Wolf Optimization (GWO)
hybridizedwith Grasshopper OptimizationAlgorithm (GOA)
and developed GWO-GOA optimization algorithm [23], and
others are the few examples of swarm intelligence algorithm.
These algorithms determine the optimal solution with heuris-
tic information and can be applied to dynamic, multiobjec-
tive, and NP-hard problems.

With exponential growth in the deployment of the Internet
of Things (IoT) and the advancements in supporting tech-
nologies such as cloud computing, mobile applications, and
interfaces, swarm intelligence-based optimization exhibits
considerable importance in dealing with the challenges faced
for performance optimization by these networks. Generally,
IoT deployment comprises large number of low cost and low
power sensor nodes connected to the cloud servers and appli-
cations through the access points or gateways devices [24].
The important characteristics and requirements for IoT are
traffic patterns and data rates, capacity and densification, cov-
erage, energy efficient operations, localization, lower hard-
ware complexity and cost effectiveness, and others. The
IoT has a several applications such as smart cities, smart
environment, utility metering, smart grid and energy, secu-
rity and emergencies, retail, automotive and logistics, indus-
trial automation and manufacturing, agriculture and farming,
smart home/buildings, and real estate, health, life sciences,
and wearables. Connectivity of a large number of devices
in heterogeneous networks, energy consumption, node local-
ization, routing of data packets, and security are the crucial
challenges in IoT.

The IoT systems are modelled as a set of simple devices,
and swarm intelligence algorithms can be used to optimize
the performance. A huge amount of data is collected from IoT
nodes. The analysis of such data is performed using different
mechanisms employing edge computing, fog computing, and
cloud computing, where swarm intelligence can be applied as
a multiobjective optimization problem. This approach greatly
helps in improving the performance of the networks and
reducing the complexity and cost. A variety of algorithms
based on swarm intelligence has been developed for wireless
sensor network (WSN) routing protocols. A global position-
ing system (GPS) is commonly used for node localization
problems. However, it is not economical and feasible due
to high energy consumption. IoT node localization can be
resolved as an error optimization problem using a swarm
intelligence algorithm. Likewise, swarm-based optimization
can be used in various ways to improve the performance of
IoT networks. One of the such challenges is non-uniform
deployment of IoT nodes due to mobility and because of
application requirements. The mobile IoT nodes significantly
improve data sensing capabilities with enhanced coverage

and lower energy consumption. However, such scenarios
and topologies pose the additional challenge of maintain-
ing the node density and coverage to satisfy the application
requirements. The node density and coverage directly affect
the approximation accuracy. Many of the existing IoT node
localization approaches are designed on a basic disk cover-
age model, which is unrealistic for implementing in actual
application environments. In these approaches, spatial rela-
tionships of the supervised physical characteristics, sensor
node association, and network fault tolerance are ignored, and
hence it fails to attain the global optimization requirements.
Furthermore, these approaches did not discuss and address
the optimal solutions for node density and coverage in the
IoT networks. To tackle the challenges of optimizing the
node density and coverage, we propose a novel enhanced
differential crossover quantum particle swarm optimization
(EDCQPSO) algorithm. We have used hybrid optimization
using quantum PSO, differential evolution operator, and
crossover operator to have proactive and reactive opera-
tions. The developed algorithm has smaller fitness values
and faster convergence, and it can be used for optimiza-
tion in a wide variety of IoT applications. To demonstrate
the usability of algorithm in IoT, we considered car park-
ing IoT application. Our algorithm gives lower localization
error and improved precision for the higher node densities
as compare to the other existing algorithms. The paper’s
remaining structure is organized as: Section II presents
the literature study about PSO enhancements. Section III
describes a quantum particle swarm optimization (QPSO).
Section IV presents the development of enhanced dif-
ferential crossover quantum particle swarm optimization
(EDCQPSO) algorithm. Section V discusses results and
performance evaluation. Section VI presents the study on
EDCQPSO for IoT application, and the paper is concluded in
Section VII.

II. RELATED WORK
In the recent past, several swarm intelligence approaches, and
modifications have been proposed. The relevant approaches
to the research undertaken are discussed here.

Tam et al. [25] proposed a hybrid approach using fuzzy
clustering and PSO to reduce network interruption. This
hybrid approach is executed repetitively until the construc-
tion of optimal sensor topology. Energy consumption is
reduced by this method and improves connectivity from clus-
ter head to base station and other nodes to cluster head.
Optimized minimal spanning tree topology control using
PSO is proposed in [26] to overcome low coverage draw-
backs in traditional approaches. It converges to the con-
densed topology uniformly with lesser energy consumption.
Swarm-based modified bat optimization algorithm [27] is
utilized for calculating the precision of node localization
problems. It improves localization and attains fast conver-
gence. Discrete PSO and minimal spanning tree-based topol-
ogy scheme with multiobjective constraints [28] consider
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the distance among the nodes, coverage of each edge, and
their residual energies. Ghorpade et al. [29] developed a
binary grey wolf optimization topology control technique
which works on active-inactive schedules of sensor nodes
and presents a fitness function to minimize number of
active nodes for achieving extended lifetime. This algorithm
achieves maximum coverage and connectivity. Ant colony
optimization (ACO) is combined with local search for node
deployment in WSN by considering cost reliability as a con-
straint [30]. Simulations results have proven that the pro-
posed approach generates improved quality than the greedy
algorithm.

Although the PSO-based node localization approach [31]
is computationally effective, there is not much improvement
in the localization error. Bat algorithm-based localization [32]
replicates bats’ behavior using echolocation for the prey hunt-
ing during the darkness. In this approach, bat calculations
are concurred along with a growing of chemotactic bacterial
sponging control for improving the constraint accuracy in the
lesser time. A multiobjective GWO technique for accurate
localization of IoT nodes [33] is developed for achieving the
higher efficiency with smaller number of the anchors. The
objective functions have included the distance and topologi-
cal constraints. Kumar et al. [34] have proposed a combined
hybrid particle swarm optimization (HPSO) technique with
the biogeography based optimization (BBO), which is also a
two-step location estimation for minimizing location errors.
RSSI is used as an input parameter, and the output weight
is used for weighted centroid localization. These methods
are inclined towards lower accuracy in case of uneven-
ness between the identified nodes. A novel multiobjective
optimization agent using particle swarm GWO and inverse
fuzzy ranking is proposed in [35]. The developed enhanced
PSGWO model is utilized for population and multi criteria
based soft computing algorithms. This bio-inspired optimiza-
tion technique is used to calculate low energy optimum path
for IoT networks.

An IoT-based range-based localization for smart city
applications is proposed for accurate and low-cost local-
ization [36]. The extreme learning machine (ELM), fuzzy
system, and modified swarm intelligence is used to develop
hybrid optimized fuzzy threshold ELM (HOFTELM) algo-
rithm for the localization of elderly persons in smart cities.
The algorithm outperforms existing techniques with average
location error ratio (ALER) and computationally efficient.
Although Van [37] has demonstrated that PSO is not an algo-
rithm for global optimization; however, for the improvement
in the performance of PSO, Sun et al. [38] have proposed
quantum PSO (QPSO) by combining quantum theory with
PSO. QPSO algorithm guarantees the global optimal solu-
tion for the infinite number of search iterations. However,
it is impractical since any algorithm permits only finite for
the best solution in real-time applications. Moreover, QPSO
falls into the local optima resulting the slower convergence.
Various approaches have been proposed for the improvement
in the convergence speed and global optima. Liang et al. [39]

has developed comprehensive learning quantum PSO using
the learning approach. The information from other parti-
cles is utilized for updating particle velocity. This approach
allows the swarm’s diversity to be well-maintained for dis-
couraging convergence occurring at an early stage. Paral-
lel diversity-controlled quantum particle swarm optimization
(PDQPSO) [40] is proposed to enhance efficiency and get
rid of early convergence. This approach aims to use the
parallel technique to increase the population’s diversity and
reduce the algorithm run time. It achieves promising perfor-
mance and reduced computational time for most of the test
functions. LDS Coelho [41] incorporated a chaotic muta-
tion operator with Quantum PSO. Simulations are carried
out for solving optimization problems and it demonstrates
improved performance. Shanshan Tu et al. [42] proposed
updating of crossover parameter to improve the quantum
PSO performance and global search abilities. An approach
proposed in [43] combines QPSO with Cauchy mutation
operator (QPSO-CD) which adds extended capabilities for
global hunt.

Quantum based PSO with opposition based learning
and generalized opposition based learning (CSQPSO) [44]
improves the exploitation and also supports exploration.
However, parallel improvement in global exploration ability
and convergence speed is a challenging task. While avoiding
local optima, the convergence speed of an algorithm may get
reduced.

Accordingly, the QPSO algorithm is requires precise
design for the real-world optimization problem. For the
swarm intelligence algorithms, balancing the global and local
search capabilities is a crucial problem. In PSO, when we
think of exploration, the fast convergence features lead to
early convergence. If the focus is on gain, then the single
exploration approach of particle swarm has unsatisfactory
convergence accuracy. For multiobjective PSO, the regular
updates in global solutions also increase exploration and
progress.

For improving QPSO, sufficient data about each particle
its own and optimal global position should be utilized by
choosing an appropriate technique. Our research has incor-
porated a differential evolution into QPSO for improving the
population diversity and avoid local optima. It uses compe-
tition and cooperation among individuals to solve optimiza-
tion problems. Additionally, we have introduced a crossover
operator with QPSO. The cross operations will promote
the information interchange among individuals in a group,
and those exceptional genes can be continued moderately,
accompanying the continuance of the evolutionary process.
The value of crossover probability plays a vital role in an
algorithm’s searchability and convergence speed. Ultimately
groups can progress in the desired route. Enhanced differ-
ential crossover QPSO algorithm aims to improve control
of exploring and exploiting hunts by considering adjacent
relationships between the particles by a linear increase in
the connectivity of the swarm’s topology and carrying out
regulating mechanisms.
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III. QUANTUM PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) [15], is based on the
concept of swarm’s social behavior that results in a group of
nodes spread in a search space. It starts with initial popula-
tion of swarm, called as nodes which explores the arbitrary
position plm and velocity vlm in m – dimensional hyperspace
for node l. Every node is determined by using an objective
function f (p1, p2, p3, . . . , pm)where f : Rm→ R, represents
the number of sensors. The PSO tries for wide coverage for
a given connectivity value. Then, PSO guides each node for
the position updates in the search space by considering the
obtained global solution and best fitness values. The position
update process is continued until the desirable globally best
solution is attained or performed the given target of iterations.

To determine the next position of a node in each iteration,
velocity is updated by using (1), and position is updated by
using (2)

V t+1
lm = V t

lm + a1b1
(
Pbesttlm − P

t
lm
)

+ a2b2
(
Pgbesttlm − P

t
lm
)

(1)

Pt+1lm = Ptlm + V
t+1
lm (2)

l .m = 1, 2, 3, . . . ,M +N . l .m represents index of the sen-
sor Ptlm and V t

lm are the mth position component and velocity
of l th sensor in t th iteration. b1 and b2 are the random numbers
such that 0 ≤ b1, b2 ≤ 1. Pbesttlm and Pgbesttlm are the
best and global best positions of l th sensor and the swarm. a1
and a2 are confidence nodes as in perception and community
behavior. In the process of estimation, the sensor will take the
weighted average position, which is determined using

W t
lm =

a1 (b1)tlm Pbest
t
lm + a2 (b2)

t
lm Pgbest

t
lm

a1 (b1)tlm + a2 (b2)
t
lm

,

1 ≤ m ≤ M (3)

PSO inclines to get stuck into local optima while tack-
ling the composite problems. For improvement of PSO
Sun et al. [38] have proposed quantum PSO (QPSO). The
quantum particle swarm optimization algorithm assumes that
the node swarm system satisfies quantum mechanics’ ele-
mentary proposition. Node l moves in the δ probable well
centered at the point ‘W ’ in mth dimension with basic quan-
tum actions characteristic and its state can be described by

ψ
(
Pt+1lm

)
=

1
√
C
t
lm

∗ exp

−
∣∣∣P t+1

lm −W
t
lm

∣∣∣
C t
lm

 (4)

where C is the characteristic length of probable well δ and is
associated with speed of the convergence and searchability.
The probability density function of node l is as given in

Q
(
Pt+1lm

)
=

1
√
C
t
lm

∗ exp

−2
∣∣∣Pt+1lm −W

t
lm

∣∣∣
C t
lm

 (5)

To obtain the node’s position, it is collapsed into a classical
state from the quantum state. The position of the node is

determined by using

Pt+1lm = W t
lm ±

C t
lm

2
ln

1
r tlm

(6)

whereW is the node motion center and is called the attractor
of the node. r is lies between 0 to 1with a uniform distribution
function. Parameter C is determined by using

C t
lm = 2γ

∥∥L tm − Ptlm∥∥ (7)

L tm =

∑N
l=1 Pbest

t
lm

N
(8)

γ is the contraction and expansion factor, which has
to be decreased while running the algorithm. L t =

{L t1,L
t
2, . . . . . . ,L

t
m} is mean optimal position, representing

mean optimal position of all nodes.

IV. ENHANCED DIFFERENTIAL CROSSOVER QUANTUM
PARTICLE SWARM OPTIMIZATION
In QPSO, every node holds the weighted mean position
obtained by considering earlier individual and group opti-
mal positions as a desirability point. Such a method has the
advantage of simple calculations, but this holding weighted
mean position has two drawbacks; in addition to own learn-
ing experience, the position of every node is subject to the
group’s historical optimal position. In addition to this, the
possible dispersal space of each node’s attraction point pro-
gressively declines during an algorithm’s development pro-
cess. It leads to a swift decay of diversity reducing capability
while handling the multiobjective and composite optimiza-
tion problems. It ultimately reduces ability to jump out of
local optimization in the later stage.

Since the algorithm gets in to local optima in finishing
stage, indicating that individual and global positions of the
particles are almost adjacent to each other or maybe coin-
cident. Hence, for improving the QPSO algorithm’s perfor-
mance, adequate information about the nodes’ individual and
global optimal positions can be used by choosing a suitable
technique. To overcome this drawback, a differential evolu-
tion operator can be incorporated into QPSO. A differential
evolutionary algorithm [45] is proposed on the population
differences. It is based on the use of competition and cooper-
ation among individuals for solving optimization problems.
The differential evolution operator improves the population
diversity as well as jumping out of local optima. Position
update in QPSO is performed by using

U t
lm = χPbest

t
lm + (1− χ) gbest

t
m (9)

AVbestm =
1
N

N∑
l=1

Pbesttlm (10)

Pt+1lm = W t
lm ± γ

∣∣Avbestm − Ptlm∣∣ ln( 1
r tlm

)
(11)

χ is lies in between 0 and 1. W t
lm is arbitrary position amid

Pbest and gbest . By combining (3) and (5), the position
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evolution equation changes to (12) as given below,

Pt+1lm = χ
(
Pbesttlm − gbest

t
m
)
+ gbesttm

± γ
∣∣AVbestm − Ptlm∣∣ ln( 1

r tlm

)
(12)

Let a and b be the nodes in the existing swarm distinct from
l then the position difference between them is,

∅ = Pb − Pa (13)

Substitute ∅ to replace the difference Pbesttlm − gbesttm
of (12) and randomness can be increased by adding a random
number (1− χ) to the second term gbest tm of (12). The new
evolution equation is

Pt+1lm = χφm + (1− χ) gbest
t
m

± γ
∣∣AVbestm − Ptlm∣∣ ln( 1

r tlm

)
(14)

Differential evolution operator introduced in (14) helps
avoid group moves in small range, hence falls in to the local
optima, as favorable for enhancing the global searchability.

In the next phase, we have introduced a crossover oper-
ator with QPSO. These cross operations will promote the
information interchange among individuals in a group, and
those exceptional genes can be continued moderately, accom-
panying the continuance of the evolutionary process. Ulti-
mately groups can progress in the desired route. The position
estimate Pt+1l of node l is generated by using (3), (7), (8),
and (14). Later, the estimated position Pt+1l and individual
optimal position Pbest tl are separated for the generation of
the test position Yml =

{
ytl1,y

t
l2, . . . ,y

t
lm

}
the cross equation

is,

Y t+1lm =

{
Pt+1lm , (rand)m < c,m = mrand

Pbesttlm, otherwise
(15)

where (rand)m is random number with uniform distribution
such that (rand)m ∈ [0, 1] and c is the crossover probability.
Whereas mrand is randomly and uniformly generated integer
on [1,M ].

Lastly, updated optimal position is given by

Pbestt+1lm =

{
Y t+1lm , f

(
Y t+1lm

)
< f

(
Pbesttlm

)
Pbesttlm, otherwise

(16)

f (∗) is a compatible cost function. The value of the crossover
probability plays a vital role in an algorithm’s searchability
and convergence speed. Smaller values of probability enable
individuals to hold further information and preserve higher
diversity of the group, helps during the global exploration.
On the contrary, the larger value of the probability impulses
individuals to acquire additional experimental information in
the group, consequently accelerating an algorithm’s conver-
gence speed.

By considering the crucial role of crossover probability c,
it is directly encoded into each node for achieving adaptive
control. Node l in given population is defined in

Ptl =
{
ptl1, p

t
l2, . . . , p

t
lm, c

t
l
}

(17)

Crossover probability for every node in the population is
updated by using

ct+1l =

{
randm (0, 1) , randm (0, 1) <∝
ctl , otherwise

(18)

α is the updated probability of parameter c. For ease of
operations, we have introduced an additional binary vector
Bt+1l for every node l.

Bt+1l =

{
bt+1l1 , bt+1l2 , . . . , bt+1lm

}
(19)

bt+1lm =

{
1, randm (0, 1) < ct+1l ,m = mrand

0, otherwise
(20)

Z t+1l =
1
M

M∑
l=1

bt+1lm (21)

By ignoring the influence of mrand, Z
t+1
l follows binomial

distribution with M parameters and probability ct+1l . The
probability ct+1l is calculated by using

ct+1l =

{
BtlZ

t+1
l +

(
1− Btl

)
ctl , f

(
Z t+1l

)
< f

(
ctl
)

ctl , otherwise
(22)

Random number Btl lies between 0.9 ≤ Btl ≤ 1. Addi-
tionally, extension coefficient λ is designed so that with the
increase in the number of iterations, it decreases linearly.

λ = λmax −
t
T
∗ (λmax − λmin) (23)

where T represents the maximum iterations to be attained.
Enhanced DCQPSO algorithms process flow is shown in
the Fig. 1

The steps of the algorithm are as given below:
1. Set t = 0, initialize current position P0l of every node

in the swarm, and assemble c0l = P0l . Also, set other
relevant parameters.

2. Determine the mean optimal position of the node
swarm by using (10).

3. For every node l, (1 ≤ l ≤ N ) in the group, perform
Step 4 to Step 7.

4. Use (4) to introduce differential evolution operator for
updating node position.

5. Establish the crossover operator and estimate the posi-
tion by considering an updated position in the previous
step and initiate the test position by using (15).

6. At the test position, determine the adaptive value of
every node’s dimension and use (22) to update the
crossover probability.

7. Update the individual optimal position of the nodes by
using (16)

V. EXPERIMENTAL SETUP AND
PERFORMANCE ANALYSIS
We initially present the comparison of proposed algorithm,
EDCQPSO, with others through 30 classic benchmark func-
tions in IEEECEC2017 [46], as shown in Table 1. The perfor-
mance of our algorithm on benchmark functions was verified.
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FIGURE 1. Process flow of EDCQPSO algorithm.

EDCQPSO is also compared with different PSO versions
using ten benchmark functions in IEEE CEC2019, as shown
in Table 2. We used the Friedman test [47] and Wilcoxon
symbolic rank test [48] for optimal results on the benchmarks
and statistical analysis. To analyze the proposed algorithm’s
performance, we have used classic benchmark functions
from IEEE CEC2017 [49] and IEEE CEC2019 [50]. IEEE
CEC2017 is composed of three unimodal (C01-C03), seven
multimodal (C04-C10), ten hybrid (C11-C20), and ten com-
posite (C21-C30) functions. IEEE CEC2019 is composed
of 10 functions (C31-C40). The benchmark functions of IEEE
CEC2017 is as given in Table 1 and used for comparing our
algorithm with other swarm intelligence algorithms.

Simulations are carried out in MATLAB with identical
parameter settings for comparison of the results. For perfor-
mance analysis, the Friedman test [47] is used to thoroughly
evaluate all algorithms’ optimal results on the benchmark
functions. To classify the chosen algorithms’ mean perfor-
mance, the average sort value (ASV) is attained through
statistical comparisons.

TABLE 1. CEC2017 test functions [46].

Additionally, we have implemented the paired Wilcoxon
symbolic rank test [48] for statistical assessment to identify
variance among two samples with 5% level of significance.
The statistical results are shown in Table 5 and Table 8.
In these tables, symbol ‘+’ specifies that with 95% inevitabil-
ity the null hypothesis is rejected (Avg. value < 0.05),
the symbol ‘-’ indicates that the null hypothesis is rejected
(Avg. value < 0.05) and symbol ‘=’ represents that there is
no statistical variance among the pairwise algorithms (Avg.
value ≥ 0.05).

A. COMPARISONS OF THE EDCQPSO WITH OTHER
SWARM ALGORITHMS
We have compared the performance of EDCQPSO with
six recently developed swarm intelligence algorithms. These
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TABLE 2. CEC2019 test functions [46].

TABLE 3. Simulation parameters (1).

algorithms are; GWO [17], DA [18], IWO [19], GHO [21],
EBFO [22], and GWO-GOA [23]. All the algorithms are
simulated in the same environment on the benchmark func-
tions of CEC2017 by setting parameters required parameters
for each algorithm. Details of parameters chosen for every
algorithm are presented in Table 3. Max. number of iterations
to be attained are 2000 with population’s size of 40 for each
algorithm.

The comparison of mean values and standard devia-
tion after thirty iterations on thirty benchmark functions
are listed. Table 4 shows that EDCQPSO ranks first, fol-
lowed sequentially by GWO-GOA, GHO, GWO, IWO,
EBFO, and DA, based on overall rank for CE01-CE30 func-
tions of CEC2017 [46]. On three unimodal test functions
(CE01-CE03), EDCQPSO performs better than other algo-
rithms. The multimodal test functions (CE04–CE10) EDC-
QPSO are highly comparable for CE04, CE06, and CE09.
However, GWO-GOA outperforms all the other algorithms
on CE10.

It can also be observed that results obtained by GWO-GOA
are competing closely to multimodal EDCQPSO, but the
trend changes for hybrid and composite functions. On the
ten hybrid test functions (CE11–CE20), excluding CE14,
EDCQPSO attains the optimal results. For the hybrid func-
tions CE11, CE12, CE13, CE15, CE17, and CE19, EDC-
QPSO performs outstandingly compared to other algorithms.
Lastly, for the ten composition functions (CE21–CE30),

EDCQPSO outperforms the remaining algorithms. except
for CE24. It gives the best optimal value for CE30. The
performance improvement is due to the proposed differ-
ential evolution operator which escapes group changes in
smaller range and falling in to local optima, promoting global
searchability.

Proposed algorithm shows an average improvement
of 87.65%, 81.29%, 76.98%, 70.79%, 69.68% and 66.38%
in comparison with DA, EBFO, IWO, GWO, GHO and
GWO-GOA respectively. The convergence progression of
all the above comparative algorithms for sample functions
from CEC2017 is shown in Fig.2. The logarithmic scale of
optimal objective function value on standard test functions
is evaluated by considering a population size of 40 with
2000 iterations.

The proposed algorithm shows appropriate behavior until
maximum iterations on most tested functions throughout the
evolution process, whereas others methods get stuck into
local minima.

Approximately after 600 iterations, EDCQPSO converges
rapidly towards the global optimum because the cross opera-
tions used in the proposed algorithm encourage information
interchange among individuals in a group. Those exceptional
genes get continued moderately, accompanying the contin-
uance of the evolutionary process. The convergence rate of
GWO-GOA for unimodal is also comparable. However, in the
case of hybrid and composite function, it converges fast for
initial iterations, and for higher iterations, it moves around
local optima.

On an average for unimodal, multimodal, hybrid and
composite function EDCQPSO performs 34.94%, 34.39%,
31.01%, 23.18%, 19.37% and 16.27% faster than DA, EBFO,
IWO, GWO, GHO and GWO-GOA respectively.

The results shows that EDCQPSO performs better as
compared to other five algorithms for most CEC2017 test
functions.

B. COMPARISONS OF THE EDCQPSO WITH OTHER
VERSIONS OF PSO
We have also compared performance of EDCQPSO with
PSO and its versions. These algorithms are; PSO [15],
PDQPSO [40], QPSO – CD [42], CLQPSO [43], and
CSQPSO [44]. All these algorithms are simulated in the same
environment on the IEEE CEC2019 benchmark functions by
setting parameters the same as that of the original paper.
Details of parameters chosen for every algorithm are pre-
sented in Table 6.

The maximum number of iterations to be attained are
2000 for population size of 40 for each algorithm. For all
the PSO algorithm variants, convergence rate, as shown
in Fig. 3, is analyzed in a logarithmic scale of best objec-
tive function value on test functions. EDCQPSO reaches the
optimal solution with high precision and faster convergence
speed.

All the results and statistical analysis shows that the
proposed algorithm improves the solution quality and
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TABLE 4. Mean and standard deviation of different algorithms for IEEE CEC2017.

convergence behaviour. On an average for the test functions
in IEEE CEC 2019 EDCQPSO performs 65.05%, 53.77%,
53.72%, 48.19%, and 26.58% faster than PSO, PDQPSO,
CLQPSO, QPSO-CD and CSQPSO, respectively. The mean,
standard deviation, and rank of the algorithm after ten

iterations on ten benchmark functions of IEEE CEC2019 are
compared and are shown in Table 7.

The outcomes of Table 8 prove that based on overall rank
on the CE31-CE40 functions of CEC2019, EDCQPSO ranks
first and then followed sequentially by CSQPSO, QPSO-CD,
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FIGURE 2. (a) Convergence progression for unimodal, multimodal, hybrid, and composite function for CEC2017. (b) CE09. (c) CE12.
(d) CE26.
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FIGURE 2. (Continued.) (a) Convergence progression for unimodal, multimodal, hybrid, and composite function for
CEC2017. (b) CE09. (c) CE12. (d) CE26.

TABLE 5. Statistical analysis of different algorithms for IEEE CEC2017.

CLQPSO, PDQPSO, and PSO. Proposed algorithm shows an
average improvement of 76.52%, 65.38%, 54.72%, 47.90%,
and 43.75% in comparison with PSO, PDQPSO, CLQPSO,
QPSO-CD and CSQPSO respectively.

TABLE 6. Simulation parameters (2).

The proposed approach has enhanced its global searching
capability compared to the other optimal methods on all the
test functions.
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FIGURE 3. (a) Convergence progression for unimodal, multimodal, hybrid, and composite function for CEC2019. (b) CE33.
(c) CE35. (d) CE38.
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FIGURE 3. (Continued.) (a) Convergence progression for unimodal, multimodal, hybrid, and composite function for CEC2019. (b) CE33. (c) CE35.
(d) CE38.

VI. EDCQPSO FOR IoT APPLICATIONS
IoT has large number of applications in different areas such
as localization, target tracking, automation, environmental
monitoring, utility meters, agriculture, health andmanymore.
These applications in wide area are feasible because of

large numbers of sensor nodes are deployed and periodi-
cally sensing of given parameters. Accurate localization of
sensor nodes is one of the most crucial requirements for
many applications. Localization is the process of estimating
current locations of sensor nodes without the knowledge of
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TABLE 7. Mean and standard deviation and rank of different algorithms for IEEE CEC2019.

TABLE 8. Statistical analysis of different algorithms for IEEE CEC2019.

their initial locations. Localization algorithm should have a
capability to accurately locate the sensor node quickly with
minimal energy consumption. To achieve the performance
improvement, recently, swarm intelligence based algorithms
are being developed for localizing the sensor nodes. Such
challenge can be treated as optimization problem in a
multi-dimensional space.

Here, using the EDCQPSO algorithm, we aim to localize
the deployed IoT nodes and reduce the computational com-
plexity, enhancing these resource-constrained node’s life-
times. To demonstrate localization, we consider IoT based
smart car/vehicle parking application. We consider M num-
ber of anchor nodes and N number of normal sensor nodes
(M < N ) deployment in a two dimensional space. The model
has an objective function f (p1, p2, p3, . . . , pm)which defines

coordinates of sensor nodes based on the information about
anchor nodes location, using (16) and (22).

The constraints make the evaluated coordinates closer to
real positions and helps in generating an accurate topology.
In this case, objective function follows two steps. In first
step, the normal sensor node will determine its own position
based on the received signal strength indicator (RSSI) and
time of arrival (ToA) of incoming signal from the anchor
node. In the second step, it computes the location of the
normal sensor node. For performance analysis, the results of
EDCQPSO are comparedwith PDQPSO [40], CLQPSO [42],
QPSO-CD [43], and CSQPSO [44]. With random deploy-
ment of sensor nodes in localization area, average localization
error (ALE) is calculated as a standard statistical metric and
given by

ALE =

∑N
i=1

√(
ui_pred − ui_actual

)2
+
(
vi_pred−vi_actual

)2
N

(24)

where
(
ui_actual,vi_actual

)
is the real-time position of the node,

and
(
ui_ pred,vi_ pred

)
is the node’s estimated position.

The simulations were carried out for 200 m × 200 m with
200 nodes with random distribution so that M anchor nodes
can be found. By assuming the Gaussian distributed RSSI
ranging error and node transmission range of 10m to 40m
and anchor nodes changing from 20 to 60. Other parameters
are same as given in Table 5. The results of anchor node
versus ALE for all four algorithms is as shown in Fig. 4. The
proposed approach reduces the ALE by aminimum of 47.5%,

VOLUME 9, 2021 93843



S. N. Ghorpade et al.: Enhanced Differential Crossover and Quantum PSO for IoT Applications

FIGURE 4. Average location error.

31.5%, 26.37% and 25%, compared to CLQPSO, PDQPSO,
QPSO-CD and CSQPSO, respectively. It is also observed that
the position approximation precision for all the approaches is
high for the higher node densities.

VII. CONCLUSION
A novel hybrid enhanced differential crossover quantum PSO
algorithm is proposed for IoT applications where real-time
processing is required in the presence of multiple realis-
tic constraints. Our algorithm uses quantum PSO, differen-
tial evolution operator, and crossover operator. Performance
and the proposed algorithm results are validated with thirty
benchmark functions of IEEE CEC2017 and on ten test func-
tions of IEEE CEC2019. The algorithm performance is also
compared with other existing optimization algorithms and the
PSO variants. Results of the proposed algorithm have smaller
fitness values, high precision, and faster convergence. The
algorithm is used to localize the IoT nodes in smart parking
application, and the average location error is reduced up to
25% compared to the existing algorithms.
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