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ABSTRACT Max-min fuzzy relation inequalities have recently been introduced to describe the peer-to-peer
(P2P) educational information resource sharing systems. It is well known that the complete solution set of the
max-min fuzzy relation system is fully determined by its minimal solutions. However, solving all theminimal
solutions has been proven to be equivalent to the set-covering problem, which is NP-hard. Without solving
the complete solution set, some specific solutions can be obtained through the corresponding fuzzy relation
optimization problems. However, these solutions are usually unstable and fragile. Any minor fluctuations to
the components of these specific solutions will cause them to be no longer feasible. In this work, we define
and study the widest interval solution of a max-min fuzzy relation inequality system for the first time. The
interval solution allows the solution to fluctuate within some range. The fluctuation range is determined by
the width of the interval solution. We propose a novel resolution method for searching for the widest interval
solution. The resolution method is carried out by detailed procedures and illustrated by a numerical example.

INDEX TERMS Fuzzy relation inequality, fuzzy relation equation, max-min composition, interval solution,
widest interval solution.

I. INTRODUCTION
In classical algebra, the composition operation is typi-
cal addition-multiplication. However, in various application
fields, it has been found that the addition-multiplication
composition is defective and unsuitable for modeling the
quantitative relation. The max-min composition became an
effective substitute for the addition-multiplication relation.
Correspondingly, the relevant max-min algebra has attracted
some scholars’ attention [14]–[17], [35]. The max-min com-
position and mechanism have been widely applied in engi-
neering management and control [8]–[13].

The max-min composition was introduced to the linear
equation system by Sanchez [19], [20] for the first time. It was
named max-min fuzzy relation equations. The structure of
the solution set for a max-min fuzzy relation equation system
was much different from that for a classical linear equation
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system. It has been formally proven that the complete solu-
tion set of a consistent max-min system is a nonconvex set
in most cases (when its minimal solutions are not unique).
The solution set is fully determined by its unique maximum
solution and a finite number of minimal solutions.

When first investigated by E. Sanchez, fuzzy relation equa-
tions were applied to medical diagnoses [20]. Fuzzy rela-
tion systems, including both equation systems and inequality
systems, have been successfully applied for dealing with
various kinds of practical problems, such as fuzzy infer-
ence systems [21], image compression and reconstruction
[22], [23], medical diagnosis [24], [25], knowledge engineer-
ing [26], three-tier media streaming systems using HTTP
protocols [27], peer-to-peer (P2P) network systems [28],
BitTorrent-like peer-to-peer (BTP2P) file-sharing systems
[29], [36]–[41], foodstuff supply [30]–[32], and wireless
communication systems [33], [34].

Recently, the max-min fuzzy relation system was applied
to educational information resource allocation [18], [46]
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(see Fig. 1.). Assume the educational information resources
stored in terminals, denoted by A1,A2, . . . ,An, are unbal-
anced. Each terminal is connected to any other terminal
and free to download its required educational information
resources. The bandwidth between the terminals Ai and Aj is
assumed to be aij. That is, when the ith terminal Ai downloads
its required resources from the jth terminal Aj, the actual
quality level is

aij ∧ xj,

where xj (measure: Mbps) represents the quality level on
which Aj shares (sends out) its local resources. aij∧xj denotes
the receiving quality level at Ai from Aj. In general, Ai will
select the terminal with the highest receiving quality level
to download the resources. Additionally, we assume that the
download traffic requirement is no less than bi and no more
than di. Then, the Ai requirement can be written as

bi ≤ (ai1 ∧ x1) ∨ (ai2 ∧ x2) ∨ · · · ∨ (ain ∧ xn) ≤ di.

Without loss of generality, we also assume that some of
the terminals, i.e., {A1,A2, . . . ,Am}, request their required
resources for downloading. As a consequence, their require-
ments can be represented by the following max-min fuzzy
relation inequalities after normalization:

b1≤ (a11 ∧ x1) ∨ (a12 ∧ x2) ∨ · · · ∨ (a1n ∧ xn)≤d1,
b2≤ (a21 ∧ x1) ∨ (a22 ∧ x2) ∨ · · · ∨ (a2n ∧ xn)≤d2,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

bm≤ (am1 ∧ x1) ∨ (am2 ∧ x2) ∨ · · · ∨ (amn ∧ xn)≤dm,

(1)

where aij, xj ∈ [0, 1], 0 < bi ≤ di ≤ 1, i ∈ I , j ∈ J , and

I = {1, 2, . . . ,m}, J = {1, 2, . . . , n}.

In [18], the authors investigated the approximate solu-
tion(s) of the max-min fuzzy relation equations system in
cases where the system is inconsistent. In some existing
works, the total deviations, i.e., the sum of all deviations
with respect to each equation, were applied to characterize
the approximate solution. Instead of the total deviations,
the authors defined the approximate solution based on the
largest deviation [18]. They also proposed a linear search-
ing algorithm for obtaining the approximate solution of the
inconsistent system.

Different from the inconsistent system studied in [18],
the above system (1) considered in this paper is assumed to
be consistent. We investigate the interval solution of system
(1) in this work.

The novelty and contribution of this work can be summa-
rized as follows.

(i) In this paper, the fluctuation of a given solution to the
max-min fuzzy relation inequality system, i.e., system (1),
is considered for the first time.

(ii) We define the interval solution concept for system (1).
The width of an interval solution is designed to characterize
the corresponding fluctuation range.

FIGURE 1. P2P educational information resource sharing system.

(iii) To maximize the solution fluctuation range, we define
and investigate the widest interval solution of system (1). An
effective and detailed resolution algorithm is proposed for
searching the widest interval solution of system (1).

The remainder of this manuscript is organized as follows.
Section 2 presents some existing concepts and results on
max-min fuzzy relation inequalities. In Section 3, we define
the widest interval solution and provide a sufficient and nec-
essary condition for its existence. In Section 4, we propose
a novel resolution method for obtaining the widest inter-
val solution of system (1). We also give detailed resolution
procedures and a numerical illustrative example. Section 5
concludes.

II. PRELIMINARY
System (1) can be written in its matrix form as

bT ≤ A ◦ xT ≤ dT ,

where A = (aij)m×n, x = (x1, x2, . . . , xn), b =

(b1, b2, . . . , bm), d = (d1, d2, . . . , dm) and ‘‘◦’’ represents
the max-min composition. Here, the order relation ≤ is
defined as follows. For any x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) ∈ [0, 1]n, x ≤ y means that xj ≤ yj for all
j ∈ J . In what follows, the set of all solutions of system (1) is
denoted by X (A, b, d), i.e.,

X (A, b, d) = {x ∈ [0, 1]n|bT ≤ A ◦ xT ≤ dT }. (2)

Definition 1 ([7]Consistency): System (1) is said to be
consistent, if X (A, b, d) 6= ∅. Otherwise, it is said to be
inconsistent.
Definition 2 ([7]Maximum/Minimal Solution): For sys-

tem (1), a solution x̂ ∈ X (A, b, d) is said to be the maximum
solution if x ≤ x̂ for any x ∈ X (A, b, d); a solution
x̌ ∈ X (A, b, d) is said to be a minimal solution if for any
x ∈ X (A, b, d), x ≤ x̌ implies that x = x̌.
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To check the consistency of system (1), we introduce the
vector x̂ as follows. For arbitrary j ∈ J , let

Ij = {i ∈ I |aij > di}. (3)

Furthermore, denote x̂ = (x̂1, x̂2, . . . , x̂n), where

x̂j =


1, Ij = ∅,∧
i∈Ij

di, Ij 6= ∅.
(4)

Then, we obtain the following Theorem 1.
Theorem 1 ([5]–[7]): System (1) is consistent if and only

if the above-defined vector x̂ is a solution of system (1).
Moreover, if system (1) is consistent, x̂ is exactly its unique
maximum solution.

In fact, when system (1) is consistent, it always has a
unique maximum solution and a finite number of minimal
solutions. Moreover, the complete solution set of system (1)
can be represented as indicated in the following Theorem 2
Theorem 2 ([5]–[7]): If system (1) is consistent, then its

solution set can be represented by

X (A, b, d) =
⋃

x̌∈X̌ (A,b,d)

[x̌, x̂]. (5)

Here, x̂ is its unique maximum solution, and X̌ (A, b, d)
denotes the set of all its minimal solutions.

As shown in Theorem 2, solving system (1) is equivalent to
searching all its minimal solutions. However, it is difficult to
obtain all the minimal solutions since they have been proven
to be highly related to the set-covering problem [1]–[4].
Moreover, the number of minimal solutions to a consistent
max-min fuzzy relation inequality (or equation) system is
exponentially associated with the size of the system. It is
hard and unnecessary to compute and represent the complete
solution set of system (1).

III. WIDEST INTERVAL SOLUTION DEFINITION
As noted in the previous section, obtaining all the (minimal)
solutions is difficult and unnecessary. Some researchers have
paid attention to optimization problems subject to the fuzzy
relation system [5], [6], [27], [35], [42]–[45]. By solving the
corresponding fuzzy relation optimization problems, some
specific solutions to the fuzzy relation system can be found.
However, these specific solutions are usually unstable and
fragile. When some minor fluctuation or perturbation occurs
in any component of the specific solution, it might no longer
be a max-min fuzzy relation system solution. To study the
fluctuation in the solution of system (1), we define and inves-
tigate the widest interval solution in this work as follows.
Definition 3 (Width of an Interval): Let [x ′, x ′′] ⊆ [0, 1]

be an interval with x ′ ≤ x ′′. We say min
j∈J
{x ′′j − x

′
j} the width of

the interval [x ′, x ′′]. Moreover, we denote the width of [x ′, x ′′]
by w[x ′, x ′′].
Definition 4 (Interval Solution): Let [x ′, x ′′] ⊆ [0, 1] be

an interval with x ′ ≤ x ′′. We say [x ′, x ′′] an interval solution
of system (1), if [x ′, x ′′] ⊆ X (A, b, d).

Definition 5 (Widest Interval Solution): Let [x∗, x∗∗] ⊆
X (A, b, d) be an interval solution of system (1). [x∗, x∗∗] is
the widest interval solution if w[x∗, x∗∗] ≥ w[x ′, x ′′] for any
interval solution [x ′, x ′′] ⊆ X (A, b, d).
Proposition 1: Let [x ′, x ′′], [y′, y′′] ⊆ X (A, b, d) be two

interval solutions of system (1). If [x ′, x ′′] ⊆ [y′, y′′], i.e. x ′ ≥
y′ and x ′′ ≤ y′′, then we have w[x ′, x ′′] ≤ w[y′, y′′].
Proof: The proof is straightforward following Definition 3.

�
Theorem 3: Assume system (1) is consistent with themax-

imum solution x̂. Then, there exists a minimal solution x̌∗ ∈
X (A, b, d), such that [x̌∗, x̂] is the widest interval solution of
system (1).
Proof: Let [x ′, x ′′] ⊆ X (A, b, d) be an arbitrary interval

solution of system (1) with x ′ ≤ x ′′. It is clear that x ′, x ′′ ∈
X (A, b, d). Note that x̂ is the maximum solution, which is

x ′′ ≤ x̂. (6)

According to Theorem 2, X (A, b, d) =
⋃

x̌∈X̌ (A,b,d)

[x̌, x̂],

where X̌ (A, b, d) represents the minimal solution set. Since
x ′ ∈ X (A, b, d), there exists a minimal solution x̌ ′ ∈
X̌ (A, b, d) such that x ′ ∈ [x̌ ′, x̂], i.e.,

x̌ ′ ≤ x ′. (7)

(6) and (7) indicates that [x ′, x ′′] ⊆ [x̌ ′, x̂]. It follows from 1
that

w[x ′, x ′′] ≤ w[x̌ ′, x̂]. (8)

Note that X̌ (A, b, d) is a finite set. There exists x̌∗ ∈
X̌ (A, b, d) such that

w[x̌∗, x̂] = max
x̌∈X̌ (A,b,d)

w[x̌, x̂]. (9)

Since x̌ ′ ∈ X̌ (A, b, d), we have

max
x̌∈X̌ (A,b,d)

w[x̌, x̂] ≥ w[x̌ ′, x̂]. (10)

(8), (9) and (10) contribute tow[x̌∗, x̂] ≥ w[x ′, x ′′]. Due to the
arbitrariness of [x ′, x ′′], [x̌∗, x̂] is the widest interval solution
of system (1). �

It is indicated in Theorem 3 that when system (1) is consis-
tent, the widest interval solution can be obtained by selecting
it from the minimal solution set by pairwise comparison.
However, as noted in the last section, obtaining the minimal
solution set is hard to achieve. To overcome such hardness,
we propose a novel resolution method to find the widest
interval solution of system (1) in the following.

IV. RESOLUTION METHOD BASED ON THE MAXIMUM
SOLUTION AND INDEX SETS
In this section, to obtain the widest interval solution of
system (1), we propose a resolution method based on the
maximum solution and some index sets.

96168 VOLUME 9, 2021



Y. Chen et al.: Interval Solution to Fuzzy Relation Inequality With Application

A. THEORETICAL ANALYSIS AND PROOF
Based on the maximum solution x̂, we define the following
index sets:

Ji = {j ∈ J |aij ∧ x̂j ≥ bi}, (11)

for i = 1, 2, . . . ,m. Moreover, denote

P = J1 × J2 × · · · × Jm. (12)

Proposition 2: If system (1) is consistent, then it holds that
Ji 6= ∅ for any i ∈ I , i.e., P 6= ∅.
Proof: If system (1) is consistent, then it follows from

Theorem 1 that x̂ ∈ X (A, b, d). Observing system (1), it holds
that

bi ≤ ai1 ∧ x̂1 ∨ · · · ∨ ain ∧ x̂n ≤ di, ∀i ∈ I . (13)

Hence, for any i ∈ I , there exists some ji ∈ J such that
aiji ∧ x̂ji ≥ bi. By (11), we have

Ji 6= ∅, ∀i ∈ I , (14)

i.e., P 6= ∅. �
Theorem 4: Let X = [x ′, x ′′] ⊆ X (A, b, d) be an arbi-

trary interval solution of system (1). Then, there exists p =
(p1, p2, . . . , pm) ∈ P such that [x ′, x ′′] ⊆ [xp, x̂], where
xp = (xp1 , x

p
2 , . . . , x

p
n ) and

xpj =


0, if Ipj , {i ∈ I |pi = j} = ∅,∨
i∈Ipj

bi, if Ipj , {i ∈ I |pi = j} 6= ∅. (15)

Proof: Since [x ′, x ′′] is an interval solution and x̂ is the
maximum solution of system (1), it is obvious that

x ′ ≤ x ′′ ≤ x̂, (16)

and

bi≤ (ai1 ∧ x ′1) ∧ (ai2 ∧ x ′2) ∧ · · · ∧ (ain ∧ x ′n)≤di, ∀i ∈ I .

(17)

Hence, for any i ∈ I , it holds that

aij ∧ x ′j ≤ di, ∀j ∈ J , (18)

and there exists pi ∈ J such that

aipi ∧ x
′
pi ≥ bi. (19)

Since x ′ ≤ x̂, we have

aipi ∧ x̂pi ≥ aipi ∧ x
′
pi ≥ bi, ∀i ∈ I . (20)

It follows from (11) that pi ∈ Ji, ∀i ∈ I . Thus, p =
(p1, p2, . . . , pm) ∈ P.

Next, we check that xp ≤ x ′. Take arbitrary j ∈ J . Case 1.
If Ipj = ∅, then it is clear that x

p
j = 0 ≤ x ′j . Case 2. If I

p
j 6= ∅,

then we have xp =
∨
i∈Ipj

bi. For any i ∈ I
p
j , {i ∈ I |pi = j},

it is clear that pi = j. It follows from (19) that

x ′j = x ′pi ≥ aipi ∧ x
′
pi ≥ bi, ∀i ∈ Ipj . (21)

This implies that x ′j ≥
∨
i∈Ipj

bi = xpj . Following Cases 1 and

2, it holds that xpj ≤ x
′
j , ∀j ∈ J . So we obtain

xp ≤ x ′. (22)

Inequalities (16) and (22) contribute to xp ≤ x ′ ≤ x ′′ ≤ x̂.
Hence, [x ′, x ′′] ⊆ [xp, x̂]. �
Define p∗ = (p∗1, p

∗

2, . . . , p
∗
m), where

p∗i = argmax
j∈Ji
{x̂j}, (23)

i = 1, 2, . . . ,m. It is clear that p∗ ∈ P = J1 × J2 × · · · × Jm
and

x̂p∗i = max
j∈Ji
{x̂j}, ∀i ∈ I . (24)

Furthermore, we define the following vector xp
∗

based on
p∗. Denote xp

∗

= (xp
∗

1 , xp
∗

2 , . . . , xp
∗

n ) and

xp
∗

j =


0, if Ip

∗

j , {i ∈ I |p
∗
i = j} = ∅,∨

i∈Ip
∗

j

bi, if Ip
∗

j , {i ∈ I |p
∗
i = j} 6= ∅. (25)

Next, we verify that the above-defined vector xp
∗

is exactly
a solution of system (1). As a consequence, we obtain an
interval solution of system (1) as [xp

∗

, x̂].
Lemma 1: For arbitrary i ∈ I and j ∈ J , it holds that aij ∧

x̂j ≤ di.
Proof: Take arbitrary j ∈ J .
Case 1. If Ij = ∅, then by (3) and (4), x̂j = 1 and aij ≤ di

for all i ∈ I . So we have

aij ∧ x̂j = aij ∧ 1 = aij ≤ di, ∀i ∈ I . (26)

Case 2. If Ij 6= ∅, then by (4), x̂j =
∧
k∈Ij

dk . When i /∈ Ij,

it follows from (3) that aij ≤ di. Hence, aij ∧ x̂j ≤ aij ≤ di.
When i ∈ Ij, we have aij ∧ x̂j = aij ∧ (

∧
k∈Ij

dk ) ≤
∧
k∈Ij

dk ≤ di.

Combining cases 1 and 2, we have aij ∧ x̂j ≤ di, ∀i ∈ I . �
Theorem 5: Let xp

∗

be the vector defined by (25) based on
p∗ = (p∗1, p

∗

2, . . . , p
∗
m). Then, [x

p∗ , x̂] is an interval solution
of system (1).
Proof: In fact, we only have to verify that xp

∗

is a solution
of system (1). Take arbitrary k ∈ I .
Denote jk = p∗k ∈ Jk . By (25), it is clear that k ∈ Ip

∗

jk 6= ∅.
So we have

xp
∗

jk =
∨
i∈Ip

∗

jk

bi ≥ bk . (27)

It follows from jk ∈ Jk and (11) that akjk ∧ x̂jk ≥ bk . This
indicates that

akjk ≥ akjk ∧ x̂jk ≥ bk . (28)

Inequalities (27) and (28) contribute to

(ak1 ∧ x
p∗

1 ) ∨ (ak2 ∧ x
p∗

2 ) ∨ · · · ∨ (akn ∧ xp
∗

n )

≥ akjk ∧ x
p∗

jk ≥ bk . (29)

VOLUME 9, 2021 96169



Y. Chen et al.: Interval Solution to Fuzzy Relation Inequality With Application

For any j ∈ J , we further check the inequality that akj ∧
xp
∗

j ≤ dk in two cases. Case 1. If Ip
∗

j = ∅, then akj ∧ x
p∗

j =

akj ∧ 0 = 0 ≤ dk . Case 2. If I
p∗

j 6= ∅, then x
p∗

j =
∨
i∈Ip

∗

j

bi. For

any i ∈ Ip
∗

j , it follows from (25) that

j = p∗i ∈ Ji. (30)

Furthermore, according to (11), we have

x̂j ≥ aij ∧ x̂j ≥ bi, ∀i ∈ I
p∗

j . (31)

This indicates that

xp
∗

j =
∨
i∈Ip

∗

j

bi ≤
∨
i∈Ip

∗

j

x̂j = x̂j. (32)

Following Lemma 1,

akj ∧ x
p∗

j ≤ akj ∧ x̂j ≤ dk . (33)

Due to the arbitrariness of j, we obtain

(ak1 ∧ x
p∗

1 ) ∨ (ak2 ∧ x
p∗

2 ) ∨ · · · ∨ (akn ∧ xp
∗

n ) ≤ dk . (34)

Considering inequalities (29) and (34), it is obvious that
xp
∗

is a solution of system (1). Hence, [xp
∗

, x̂] is an interval
solution. �
Theorem 6: The width of the interval solution [xp

∗

, x̂] is

w[xp
∗

, x̂] = min
i∈I
{x̂p∗i − bi} ∧ min

j∈J−Jp∗
{x̂j},

where Jp
∗

= {p∗1, p
∗

2, . . . , p
∗
m} ⊆ J .

Proof: According to Definition 3, the width of the interval
solution [xp

∗

, x̂] is

w[xp
∗

, x̂] = min
j∈J
{x̂j − x

p∗

j }

= min
j∈Jp∗
{x̂j − x

p∗

j } ∧ min
j∈J−Jp∗

{x̂j − x
p∗

j } (35)

If j ∈ J − Jp
∗

, then j /∈ Jp
∗

. This indicates that there does
not exist any i ∈ I such that p∗i = j. Note that Ip

∗

j = {i ∈

I |p∗i = j}. We have Ip
∗

j = ∅. It follows from (25) that xp
∗

j = 0.
Hence

min
j∈J−Jp∗

{x̂j − x
p∗

j } = min
j∈J−Jp∗

{x̂j}. (36)

If j ∈ Jp
∗

, then there exists i ∈ I such that p∗i = j. Thus,
Ip
∗

j 6= ∅. Note that Jp
∗

= {p∗1, p
∗

2, . . . , p
∗
m} ⊆ J and Ip

∗

j =

{i ∈ I |p∗i = j}. It is clear that⋃
j∈Jp∗

Ip
∗

j = I . (37)

For any j ∈ Jp
∗

, since Ip
∗

j 6= ∅, it follows from (25) that

xp
∗

j =
∨
i∈Ip

∗

j

bi. Hence

min
j∈Jp∗
{x̂j − x

p∗

j } = min
j∈Jp∗
{x̂j −

∨
i∈Ip

∗

j

bi}

= min
j∈Jp∗
{

∧
i∈Ip

∗

j

{x̂j − bi}}

= min
j∈Jp∗

min
i∈Ip

∗

j

{x̂j − bi}. (38)

According to Ip
∗

j = {i ∈ I |p
∗
i = j}, it holds for arbitrary

j ∈ Jp
∗

that

p∗i = j, ∀i ∈ Ip
∗

j . (39)

Hence, for any j ∈ Jp
∗

, we have

min
j∈Jp∗

min
i∈Ip

∗

j

{x̂j − bi} = min
j∈Jp∗

min
i∈Ip

∗

j

{x̂p∗i − bi}. (40)

Considering (37), (38) and (40), we further obtain

min
j∈Jp∗
{x̂j − x

p∗

j } = min
j∈Jp∗

min
i∈Ip

∗

j

{x̂j − bi}

= min
j∈Jp∗

min
i∈Ip

∗

j

{x̂p∗i − bi}

= min
i∈I
{x̂p∗i − bi}. (41)

Equalities (35), (36) and (41) contribute to

w[xp
∗

, x̂] = min
i∈I
{x̂p∗i − bi} ∧ min

j∈J−Jp∗
{x̂j}.

The proof is complete. �
Theorem 7: For any p = (p1, p2, . . . , pm) ∈ P, define

xp = (xp1 , x
p
2 , . . . , x

p
n ), where

xpj =


0, if Ipj , {i ∈ I |pi = j} = ∅,∨
i∈Ipj

bi, if Ipj , {i ∈ I |pi = j} 6= ∅. (42)

Then, it holds that w[xp, x̂] ≤ w[xp
∗

, x̂].
Proof: Let Jp

∗

= {p∗1, p
∗

2, . . . , p
∗
m} ⊆ J . Then

w[xp
∗

, x̂] = min
k∈Jp∗
{x̂k − x

p∗

k } ∧ min
k∈J−Jp∗

{x̂k − x
p∗

k }. (43)

Take arbitrary k ∈ J .
Case 1. If k /∈ Jp

∗

, i.e., k ∈ J − Jp
∗

, then according to the
proof of Theorem 6, we have Ip

∗

k = ∅ and x
p∗

k = 0. Hence

x̂k − x
p∗

k = x̂k ≥ x̂k − x
p
k ≥ min

j∈J
{x̂j − x

p
j }=w[x

p, x̂]. (44)

Case 2. If k ∈ Jp
∗

, then according to the proof of Theo-
rem 6, we have Ip

∗

k 6= ∅ and x
p∗

k =
∨
i∈Ip

∗

k

bi. Obviously, there

exists i′ ∈ Ip
∗

k such that bi′ =
∨
i∈Ip

∗

k

bi. Notice that i′ ∈ Ip
∗

k

indicates

p∗i′ = k. (45)

Hence

x̂k − x
p∗

k = x̂p∗
i′
− bi′ . (46)
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Denote

pi′ = k ′. (47)

It is clear that k, k ′ ∈ Ji′ . It follows from (24) that

x̂p∗
i′
≥ x̂k ′ = x̂pi′ . (48)

pi′ = k ′ also indicates i′ ∈ Ipk ′ 6= ∅. Thus

xpk ′ =
∨
i∈Ip

k′

bi ≥ bi′ . (49)

Considering (46)-(49), we have

x̂k − x
p∗

k = x̂p∗
i′
− bi′

≥ x̂pi′ − bi′

≥ x̂pi′ −
∨
i∈Ip

k′

bi

= x̂k ′ − x
p
k ′

≥ min
j∈J
{x̂j − x

p
j }

= w[xp, x̂]. (50)

Combining Cases 1 and 2, we have

x̂k − x
p∗

k ≥ w[x
p, x̂], ∀k ∈ J . (51)

Hence, w[xp
∗

, x̂] = min
k∈J
{x̂k − x

p∗

k } ≥ w[x
p, x̂]. �

Theorem 8: Let xp
∗

be defined by (23) and (25), and x̂ be
the maximum solution of system (1). Then, [xp

∗

, x̂] is the
widest interval solution of (1).
Proof: According to Theorem 5, [xp

∗

, x̂] is an interval
solution of system (1). Moreover, its width is

w[xp
∗

, x̂] = min
i∈I
{x̂p∗i − bi} ∧ min

j∈J−Jp∗
{x̂j},

by Theorem 6. Let [x ′, x ′′] ∈ X (A, b, d) be an arbitrary
interval solution of (1). Then, by Theorem 4, there exists
p ∈ P such that [x ′, x ′′] ⊆ [xp, x̂]. It follows from Propo-
sition 1 and Theorem 7 that

w[x ′, x ′′] ≤ w[xp, x̂] ≤ w[xp
∗

, x̂]. (52)

Due to the arbitrariness of [x ′, x ′′], it follows from Def-
inition 5 that [xp

∗

, x̂] is the widest interval solution of
system (1). �

B. RESOLUTION PROCEDURES
Based on the theoretical results presented in the previous
subsection, we summarize the resolution procedures for the
widest interval solution of system (1) as follows.

Step 1. Compute the index sets I1, I2, . . . , In by (3).
Step 2. Compute the potential maximum solution x̂ =

(x̂1, x̂2, . . . , x̂n) by (4).
Step 3. Following Theorem 1, check the consistency of

system (1) by the above-obtained vector x̂. If x̂ ∈ X (A, b, d),
then system (1) is consistent and goes to the next step. Oth-
erwise, system (1) is inconsistent and has no widest interval
solution.

Step 4. Compute the index sets J1, J2, . . . , Jm by (11).
Step 5. Compute the optimal indexes p∗1, p

∗

2, . . . , p
∗
m by

(23) and denote p∗ = (p∗1, p
∗

2, . . . , p
∗
m).

Step 6.Based on the above-obtained p∗, compute the index
sets Ip

∗

1 , Ip
∗

2 , . . . , Ip
∗

n , where Ip
∗

j = {i ∈ I |p
∗
i = j}, ∀j ∈ J .

Step 7. Based on the above-obtained index sets
Ip
∗

1 , Ip
∗

2 , . . . , Ip
∗

n , compute the vector xp
∗

= (xp
∗

1 , xp
∗

2 , . . . ,

xp
∗

n ) by (25).
Step 8. Combining xp

∗

and x̂, we find the widest interval
solution of system (1) as [xp

∗

, x̂] according to Theorem 8.
Our proposed resolution procedures are represented

in Fig. 2.

C. NUMERICAL EXAMPLE
Example 1: Assume a P2P educational information

resource sharing system with six terminals is reduced into the
following max-min fuzzy relation inequalities: system (53).

0.55≤ (0.5 ∧ x1) ∨ (0.7 ∧ x2) ∨ (0.5 ∧ x3) ∨ (0.4 ∧ x4)
∨(0.3 ∧ x5) ∨ (0.8 ∧ x6) ≤ 0.8,
0.6≤ (0.7 ∧ x1) ∨ (0.6 ∧ x2) ∨ (0.5 ∧ x3) ∨ (0.6 ∧ x4)
∨(0.8 ∧ x5) ∨ (0.4 ∧ x6) ≤ 0.7,
0.7≤ (0.6 ∧ x1) ∨ (0.9 ∧ x2) ∨ (0.8 ∧ x3) ∨ (0.3 ∧ x4)
∨(0.5 ∧ x5) ∨ (0.7 ∧ x6) ≤ 0.8,
0.75≤ (0.8 ∧ x1) ∨ (0.7 ∧ x2) ∨ (0.6 ∧ x3) ∨ (0.95 ∧ x4)
∨(0.8 ∧ x5) ∨ (0.5 ∧ x6) ≤ 0.9,
0.7≤ (0.5 ∧ x1) ∨ (0.85 ∧ x2) ∨ (0.3 ∧ x3) ∨ (0.7 ∧ x4)
∨(0.9 ∧ x5) ∨ (0.8 ∧ x6) ≤ 0.8,
0.65≤ (0.9 ∧ x1) ∨ (0.4 ∧ x2) ∨ (0.6 ∧ x3) ∨ (0.5 ∧ x4)
∨(0.8 ∧ x5) ∨ (0.6 ∧ x6) ≤ 0.75,

(53)

We aim to find the widest interval solution of the sys-
tem (53).

Solution:
The matrix form of the above system (53) is

bT ≤ A ◦ xT ≤ dT ,

in which

A =


0.5 0.7 0.5 0.4 0.3 0.8
0.7 0.6 0.5 0.6 0.8 0.4
0.6 0.9 0.8 0.3 0.5 0.7
0.8 0.7 0.6 0.95 0.8 0.5
0.5 0.85 0.3 0.7 0.9 0.8
0.9 0.4 0.6 0.5 0.8 0.6

 ,

and x = (x1, x2, . . . , x6), b = (0.55, 0.6, 0.7, 0.75, 0.7, 0.65),
d = (0.8, 0.7, 0.8, 0.9, 0.8, 0.75).
Next, we attempt to find the widest interval solu-

tion of system (53) following our proposed resolution
procedures.

Step 1. By (3), it is easy to compute the index sets as I1 =
{6}, I2 = {3, 5}, I3 = ∅, I4 = {4}, I5 = {2, 5, 6}, and I6 = ∅.
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FIGURE 2. Flowchart of resolution procedures.

Step 2. Based on the index sets obtained in Step 1, we can
compute the potential maximum solution x̂ by (4) as follows.
Since I3 = I6 = ∅, it is clear that x̂3 = x̂6 = 1. In addition,

x̂1 =
∧
i∈I1

di = d6 = 0.75,

x̂2 =
∧
i∈I2

di = d3 ∧ d5 = 0.8 ∧ 0.8 = 0.8,

x̂4 =
∧
i∈I4

di = d4 = 0.9,

x̂5 =
∧
i∈I5

di = d2 ∧ d5 ∧ d6 = 0.7 ∧ 0.8 ∧ 0.75 = 0.7.

(54)

Hence, the potential maximum solution is x̂ =

(0.75, 0.8, 1, 0.9, 0.7, 1).

96172 VOLUME 9, 2021



Y. Chen et al.: Interval Solution to Fuzzy Relation Inequality With Application

Step 3. It is easy to determine that x̂ satisfies all inequalities
in (53). Thus, x̂ ∈ X (A, b, d) is a solution of system (53).
It follows from Theorem 1 that system (53) is consistent, and
we continue to the next step.

Step 4. By (11), we compute the index sets J1, J2, . . . , J6
as J1 = {2, 6}, J2 = {1, 2, 4, 5}, J3 = {2, 3, 6}, J4 = {1, 4},
J5 = {2, 4, 5, 6}, J6 = {1, 5}.

Step 5. According to (23), we have

p∗1 = argmax
j∈J1
{x̂j} = argmax{x̂2, x̂6}

= argmax{0.8, 1} = 6,

p∗2 = argmax
j∈J2
{x̂j} = argmax{x̂1, x̂2, x̂4, x̂5}

= argmax{0.75, 0.8, 0.9, 0.7} = 4,

p∗3 = argmax
j∈J3
{x̂j} = argmax{x̂2, x̂3, x̂6}

= argmax{0.8, 1, 1} = 3,

p∗4 = argmax
j∈J4
{x̂j} = argmax{x̂1, x̂4}

= argmax{0.75, 0.9} = 4,

p∗5 = argmax
j∈J5
{x̂j} = argmax{x̂2, x̂4, x̂5, x̂6}

= argmax{0.8, 0.9, 0.7, 1} = 6,

p∗6 = argmax
j∈J6
{x̂j} = argmax{x̂1, x̂5}

= argmax{0.75, 0.7} = 1. (55)

Hence, p∗ = (6, 4, 3, 4, 6, 1).
Step 6. Compute the index set Ip

∗

j by Ip
∗

j = {i ∈ I |p
∗
i = j},

for j = 1, 2, . . . , 6. Since

p∗6 = 1, p∗3 = 3, p∗2 = p∗4 = 4, p∗1 = p∗5 = 6,

we have Ip
∗

1 = {6}, I
p∗

2 = ∅, I
p∗

3 = {3}, I
p∗

4 = {2, 4}, I
p∗

5 = ∅,
Ip
∗

6 = {1, 5}.
Step 7. Compute the vector xp

∗

= (xp
∗

1 , xp
∗

2 , . . . , xp
∗

6 ) by
(25), we have xp

∗

2 = xp
∗

5 = 0 since Ip
∗

2 = Ip
∗

5 = ∅.
Additionally,

xp
∗

1 =
∨
i∈Ip

∗

1

bi = b6 = 0.65,

xp
∗

3 =
∨
i∈Ip

∗

3

bi = b3 = 0.7,

xp
∗

4 =
∨
i∈Ip

∗

4

bi = b2 ∨ b4 = 0.6 ∨ 0.75 = 0.75,

xp
∗

6 =
∨
i∈Ip

∗

6

bi = b1 ∨ b5 = 0.55 ∨ 0.7 = 0.7. (56)

Hence, xp
∗

= (0.65, 0, 0.7, 0.75, 0, 0.7). Moreover, it fol-
lows from Theorem 6 that the width of [xp

∗

, x̂] is w[xp
∗

, x̂] =
0.1.

Step 8. Following Theorem 8,

[xp
∗

, x̂]

=([0.65, 0.75], [0, 0.8], [0.7, 1], [0.75, 0.9], [0, 0.7], [0.7, 1])

FIGURE 3. The widest interval solution of system (53).

is the widest interval solution (see Fig. 3.) of system (53) with
width 0.1.

V. COMPARISON WITH THE EXISTING WORKS
In this section, we compare our studied problems with those
in the relevant existing works.

(i) In the existing works [18], [46], [47], the system
of max-min fuzzy relation inequalities or equations was
assumed to be inconsistent. Under this assumption, there
was no solution for such a system. As a consequence,
the so-called approximate solution was defined and stud-
ied for the inconsistent fuzzy relation system with max-min
composition [18], [47].

(ii) Solving the complete solution set of max-min fuzzy
relation inequalities or equations is always an important
research topic [1], [19], [26], [35]. The solution set of a
consistent max-min system can be represented by a union
of a finite number of closed intervals. However, it has been
verified that solving the complete solution set is hard in most
cases [1], [4]. Instead of solving the complete solution set,
we focus only on the widest interval solution of the max-min
fuzzy relation system in this paper.

(iii) Some of the existing works focused on the minimal
solution(s) of a fuzzy relation system [48]–[51]. It is well
known that the set of all minimal solutions is exactly a
finite set. However, the number of minimal solutions might
increase exponentially associated with the increase in the
problem size. Hence, it is not easy and it is unnecessary to
obtain all the minimal solutions. In this paper, our resolu-
tion method successfully avoids obtaining all the minimal
solutions.

(iv) Other works have attempted to search for the optimal
solution of the optimization problem subject to fuzzy rela-
tion inequalities or equations [5]–[7], [27], [28], [35], [45].
In fact, these optimal solutions can be viewed as specific
solutions to the fuzzy relation constraints. However, these
optimal solutions are usually unstable and fragile. Any minor
fluctuations in the components of these optimal solutions
will make them no longer feasible. Any minor fluctuation
is not permitted for the optimal solution. To overcome the
frangibility of the optimal solution, this paper further studies
the so-called interval solution, which allows the solution to
fluctuate in a certain range.
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VI. CONCLUSION
In the existing works [18], [46], [47], the max-min fuzzy
relation inequalities, i.e., system (1), were introduced to
model a P2P sharing system. The authors only considered
the inconsistent case and studied the approximate solution of
the max-min fuzzy relation system. In theory, the complete
solution of system (1) can be obtained; however, this is
difficult, since it is equivalent to the set-covering problem,
a famous NP-hard problem. Instead of solving system (1)
completely, optimal solutions to some kinds of optimization
problems with fuzzy relation constraints were investigated
[5], [6], [27], [35], [42]–[45]. However, no perturbation was
permitted to these optimal solutions. Minor fluctuations in
their components will make them no longer optimal or even
no longer feasible in the max-min fuzzy relation system.
In this paper, we study the interval solution, which allows the
solution to fluctuate to some degree. The fluctuation range is
determined by the width of the interval solution. Tomaximize
the allowable fluctuation range, we define and investigate the
widest interval solution. A detailed resolution method is pro-
posed to find the widest interval solution of system (1). The
resolution procedures are illustrated by a numerical example.
In the future, we will further extend the concept of the widest
interval solution to other types of fuzzy relation systems.
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