
Received May 20, 2021, accepted June 18, 2021, date of publication June 28, 2021, date of current version July 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3092732

Secure-Stor: A Novel Hybrid Storage System
Architecture to Enhance Security and
Performance in Edge Computing
MAIS NIJIM 1, (Senior Member, IEEE), AND HISHAM ALBATAINEH2
1Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
2Department of Physics and Geosciences, Texas A&M University-Kingsville, Kingsville, TX 78363, USA

Corresponding author: Mais Nijim (mais.nijim@tamuk.edu)

This work was supported by the Department of Homeland Security under Grant 21STSLA00011-01-00.

This work did not involve human subject or animals in its research.

ABSTRACT The Internet of Things (IoTs) is attracting the attention of scientists worldwide. With its
explosive growth along with applications that require real-time computing power, a new technology called
edge computing has emerged. As a result, edge computing has changed the way data are processed and
handled back and forth for millions of devices worldwide, such as autonomous vehicles and electric
cars. The confinement of cloud computing technology, such as a content delivery network (CDN), con-
tributed significantly to edge computing development. Currently, this technology can meet the demands of
ever-growing mobile devices and the IoTs. This paper describes a novel secure framework consisting of a
hybrid storage architecture consisting of CDN, edge computing, and centralized storage. Centralized storage
consists of multilevel storage systems that comprise solid-state drivers (SSDs) and hard disk drivers (HDDs),
which provide optimal data storage solution for a wide variety of real-time data processing applications.
Transforming the data back and forth between SSDs and HDDs is crucial for achieving high performance
while meeting the edge device request deadline. Additionally, a new dynamic solid-state disk partitioning
mechanism is introduced to optimize security for the proposed framework among hard disk drives. A partition
from the solid-state disks to hard disk drives is assigned based on hard disk drive workloads.

INDEX TERMS Hybrid storage systems, machine learning, satisfied ratio, security level.

I. INTRODUCTION
Cloud computing infrastructure generally provides various
services, such as networking, storage, and computation
for individual organizations, reducing the burden of edge
devices. The cloud servers of cloud computing facilities have
enough space for storage and computing capacity, which
is beneficial for many users. Being far away from local
devices, cloud computing does not support distributed Inter-
net of Things (IoTs) environments to a maximum extent. IoTs
applications need to support location awareness, mobility,
a response in real-time and context awareness, restricting
the freedom to use cloud computing far away from user
machines. One of the cloud computing’s essential func-
tions is that it manages a tremendous amount of raw data,
which might be the bottleneck of present networks or laid
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infrastructure primarily due to queuing delays. To address
these issues, edge computing has been developed.

Data are stored in more places, in a different format in a
larger quantity than ever before. From autonomous cars, oil
rigs, and factories, there is a need for real-time data process-
ing. One solution for all such problems is edge computing.
Currently, public clouds, such as content delivery networks
(CDNs) [1], are widely used due to their ability to compute
and store data on a large scale. CDN is the transparent back-
bone of the delivery of content on the Internet. A CDN stores
a cached version of its content in different geographic loca-
tions to reduce the distance between the website’s server and
visitors. The CDN contains many caching servers responsible
for providing visitors within its vicinity with information and
placing content in a variety of locations at once, providing
customers with superior coverage. ACDN is a geographically
based data center and can communicate in its corresponding
geographical region with users. Its primary objective is to
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reduce time by taking the information closer to the website
visitor. Each CDN comprises several caching servers. Each
caching server is responsible for the delivery and storage of
cached files. Its primary purpose is to speed up load times for
websites. Each CDN caching server usually keeps multiple
hard drives and high quantities of RAM resources. In CDN
caching servers, cached files are stored on hard-disk and
solid-state drives.

Limitations on the size of internet pipelines and light speed
create some problems while moving the cloud’s stored data.
With edge computing [2], data are processed at the source
level, which provide real-time insights, and it is not sent to the
cloud. This creates an environment that acts as a public cloud.
In recent years, the rapid advances in smart mobile apps and
the IoTs [3] have significantly enabled edge computing [4]
to advance. In edge computing, generous support is given
for IoTs devices to perform difficult tasks in the best way.
It avoids large threats occurring in the factor of security plat-
forms and applications. Edge computing is simply described
as the processing and transmission of data from devices
distributed worldwide. The rapid development of devices
associated with networking technologies, IoTs, and their
applications continues to drive edge computing frameworks.
The fast growth in networking technologies, such as wireless
networking technology, accelerates development and enables
real-time applications, such as self-driving vehicles, artificial
intelligence video processing, and analytics. Edge computing
works on instant data, real-time data produced by the sensor,
and real-time users. Alternatively, cloud computing is a tech-
nology that runs on big data.

Edge computing provides location consciousness, suffi-
cient bandwidth, privacy, and real-time and low-cost infras-
tructure to keep up with emerging smart city applications.
These advantages over the cloud have contributed to the
growth of edge computing. Edge computing’s market size is
increasing every day. The accomplishments of the IoTs and
lush cloud services helped establish a new generation of edge
computing. Data processing takes place at the network edge
instead of processing the data entirely in the cloud. It could
address issues such as cost of bandwidth, latency, limited bat-
tery life, privacy, and security. Moving computing activities
to the cloud network is considered an efficient method to
handle data, as the cloud has more processing capacity than
computers at the edge network.

Moreover, while processing data speeds have risen expo-
nentially, no massive increase in the networks’ bandwidth
has occurred that carry data to the cloud. Simultaneously,
the system is becoming the bottleneck of a cloud with edge
devices producing more data. For example, an autonomous
vehicle camera can capture a vast amount of raw data that
the system needs to process in real time to generate better
driving results without latency. If there is no edge server,
the data need to be processed in the cloud, and the response
time will be longer where the response efficiency is affected.
Autonomous vehicles are one area that would further strain
network reliability and bandwidth. Processing data at the

edge is more productive and efficient; it produces shorter
responses that will lower pressure on the network. Intercon-
nectivity, which has increased tremendously, provides access
for more applications with improved edge computing. A new
IoTs and specific business use cases of the industry are used.
Edge computing-based infrastructure is approved to be one of
the best storage servers and has immense growth in the future.

There are several factors [5] that determine cloud com-
puting that are not adequate for use alone. The first impor-
tant factor is latency. Edge computing can provide latency
in milliseconds by sending data to the edge server, and a
high response time can be obtained. In the cloud computing
model, applications need to send data to the data center
and then attain a response, which significantly increases the
latency period of the system. The second factor is the high
throughput: Throughput is available to the user from the
edge, served via locally generated or cached content. In the
proposed framework, data will be cashed in an array of solid-
state disks. The third factor is data reduction when running
edge-based computing applications, such as data analytics.
Operators and application providers may significantly reduce
the amount of data submitted upstream, often used to achieve
cost savings. The fourth factor is data availability, where there
are currently an increasing number of cloud-based Internet
services; the use of such services has become an essential
part of our everyday lives. The fifth important factor is that
security cloud service providers can also secure their net-
works against attacks from customer premise equipment or
user equipment using edge security. There is a concern with
high-speed connections in the number of places not always
linked to the Internet. During times of disrupted or missing
connectivity, an edge cloud can provide services that provide
disaster resilience.

Hybrid storage systems provide a reduced cost for data
centers without affecting the requested response times. In the
proposed hybrid storage systems, two levels in the centralized
location are used, which are consistent with the solid-state
disks in the upper level and hard disk drives in the lower
level. The most frequently used data is placed on the upper
level. The data requests are first checked at the upper-level
storage device, which is the SSDs. If the data are not found
in the upper level, the lower-level device, which is the HDD,
is checked. These steps are constantly repeated until the data
request is found.

Security services for the above architecture are essential to
protect and secure residing data from talented intruders [6].
In addition, many edge server requests must be finished
before their absolute deadline [7]. Through this thesis work,
a hybrid storage framework that integrates several storage
devices is proposed, i.e., CDN, edge server connected with
the CDN, and an array of solid-state disks. In the central
location, a hybrid storage system architecture consisting of
a combination of solid-state disks and a variety of hard
disk drives are used. The proposed framework uses security
control protocols that can be adjusted to encounter security
change necessities and workload environments, providing
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a high security level for all edge device requests. A prominent
feature of the proposed framework is the solid-state disk parti-
tioning mechanism, which helps to increase the security level
of the proposed framework while maintaining the desired
deadline.

As current edge servers do not include hybrid storage to
improve security level (SL) quality, the next-generation paral-
lel system server is intended to be highly scalable to maintain
differing SLs under different conditions against experienced
intruders, such as modification of the SL or a changing work-
load. There is an even greater need for security optimization
mechanisms in various real-time applications, as processing
and sensitive data content require specific protections against
unauthorized access.

This paper proposes a hybrid storage framework that inte-
grates several storage devices, i.e., CDNs, edge servers that
is connected with CDNs, and an array of solid-state disks.
In the central location, we use a hybrid storage system archi-
tecture consisting of a combination of an array of solid-state
disks and an array of hard disk drives. The proposed frame-
work uses security control protocols that can be adjusted to
encounter security change necessities and workload environ-
ments; therefore, providing a high level of security for all
edge device requests. A prominent feature of the proposed
framework is the use of the solid-state disk partitioningmech-
anism that helps in incrementing the level of security of the
proposed framework while maintaining the desired deadline.

The paper is organized as follows. Section 2 describes the
background and the problem statement. In section 3, we sum-
marize the literature review. Section 4 describes the proposed
architecture and the data management plan. In section 5,
we describe the proposed algorithm. Section 6 analyses the
experimental results. Lastly, section 7 concludes the paper
with future recommendations.

II. BACKGROUND AND PROBLEM STATEMENT
A. BACKGROUND
1) SECURITY IN EDGE COMPUTING
To support different IoTs applications and extend cloud com-
puting to the edge of a network, edge computing is considered
a groundbreaking technology. Although edge computing is
beneficial, they might still have numerous privacy and secu-
rity issues. The basic definition and functionality of edge
computing are compared to cloud computing. The poten-
tial privacy and security threats to propose several perfor-
mance requirements and security requirements are analyzed.
Much advanced secure data analytics in edge computing is
reviewed. A variety of problems related to safe data analytics
in edge computing are present. There is a demand and need
for real-time response in edge computing from some IoTs
applications. The question of how to manage efficiency and
security is still unanswered. A very significant number of
works require user devices to run certain complex operations
that incur enormous costs for computing. Complex comput-
ing influences performance specifically for consumer devices

whose resources are constrained. Therefore, in many realis-
tic circumstances, making a tradeoff between efficiency and
security becomes essential.

Neither edge nodes nor cloud servers can be trusted entirely
in edge computing, making it challenging to ensure pro-
cessing, analytics, and computing data correctness. There is
no practical approach for testing data accuracy when using
edge nodes to perform data analytics. In outsourced data
analysis, the correctness of the calculation remains of primary
importance. If no security solution is available to ensure
accuracy, end users would not be able to use edge com-
puting technology. To classify end-user data sensitivity and
manage those data files, edge computing becomes the main
problem to achieve robust and stable data analytics, e.g.,
geographic information and health status, while some are not,
e.g., climate-related data and social events.

2) MACHINE LEARNING TECHNIQUES IN EDGE COMPUTING
Due to a lack of training data and computational power,
machine learning models are not commonly used [8]. How-
ever, machine learning can now be realized due to improved
computing capability and extensive data availability to train
machine learning algorithms. The caching of most known
content close to user devices, i.e., at edge nodes, is the
primary approach for enhancing customer service efficiency
on future generation networks. However, it is challenging to
accurately forecast the popularity of the content and deter-
mine which content needs to be stored in the cache of the
server. Machine learning algorithms are used to predict and
learn the popularity of content. They have achieved high pre-
diction precision with developments in increased computing
power and big data. In the cloud data center, machine learning
models [9] are trained and used to make a successful decision
on the cache. Then, to store the typical content proactively,
the decision is sent to each server.

Edge nodes offer access to a community of close people
who have common interests in content. Caching common
data on edge nodes while reducing the core networks’ load
contributes to lower latencies [10]. To measure the success of
content from a global viewpoint, social and temporal char-
acteristics of content, such as likes and number of people
who watched, are applied. The dominant dynamic features
of edge networks include user versatility, expectations, and
popularity of content. Machine learning approaches can be
used in edge networks to predict content popularity based on
end-user expectations, replacement strategies, related content
interests, and to optimize cache replacement. They have given
a collection of network state predictions and limitations.
These machine learning applications can assist in defining
appropriate content for an edge network. Modern mobile
apps require low latency and have support for mobility, high
bandwidth, and energy efficiency from backend data stores
that are usually hosted in content delivery networks (CDNs)
and cloud data centers.

Cache refers to in-network storage that includes the content
of the request that is frequently accessed. In the last decade,
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edge networks have addressed high content latency prob-
lems while lowering the burden on backhaul networks with
the aid of network caching. For tasks involving clustering,
grouping, prediction, and ML techniques are helpful [11].
Machine learning (ML) offers computer systems the oppor-
tunity to learn from experience without the need for explicit
programming. In this case, the experience is the dataset on
which the algorithms used to train themselves. With time,
the models in the dataset will discover the underlying trends
and patterns. These models can make accurate predictions
after good learning and, thus, provide predictive analytics.

3) MACHINE LEARNING MODES
There are two types of machine learning styles: supervised
and unsupervised. Supervised learning allows one to collect
data or produce output data from experience. It helps to opti-
mize performance criteria using experience. In contrast, unsu-
pervised learning discovers all sorts of unidentified trends in
the information, and unsupervised techniques help identify
functionality that can be helpful for classification. Therefore,
supervised learning aims to learn a model that best predicts
the relation between the observable output and input content.
In the classification area, supervised learning usually occurs
when the input is mapped to the output labels. The objective
of both classification and regression is to identify specific
relationships or structures in input data to produce correct
output data.

B. PROBLEM STATEMENT
In the public and private sectors, IoTs technologies are
becoming pervasive and are currently an integral part of our
everyday lives. The benefits provided by these innovations
are often associated with severe security concerns that are
often not adequately managed or even ignored. The IoTs
threat environment is vast and diverse and requires various
technologies for software and hardware. IoTs devices such
as cameras, health monitors, and smart bulbs are actively
adopted by consumers, with figures expected to grow to bil-
lions. However, such devices are often easily attacked or used
to launch attacks on a wide scale and increasing frequency.
IoTs devices are exposed to various security threats due to
the lack of adequate protocol security services and limitations
or incorrect configuration of the products and services being
deployed. The cloud computing paradigm does not meet
demands due to centralized processing and is far from local
computers. To store and process data at the edge of networks,
edge computing was then implemented and is closer to data
sources than cloud computing, making it powerful and loca-
tion conscious. Unexpectedly, as applied to data analytics,
edge computing presents privacy and security problems.

While edge servers offer several advantages, they also
face several threats including privacy and security issues.
Since edge computing is a cloud computing extension, it has
some cloud computing issues with security. Due to its dis-
tinctive characteristics, such as low latency and geographic
spread, edge computing often has privacy and security issues.

The implementation of security frameworks is indispensable
for achieving safe data analytics. Unfortunately, the cloud
system’s standard protection frameworks are not appropriate
for the edge system due to limited edge device resources.
Therefore, it is necessary to build security solutions for edge
computing to support efficient and reliable IoTs-based edge
applications.

Data protection requires ensuring that unauthorized snoop-
ers do not understand shared data between endpoints. Using
three steps, whether encoded, plaintext, or encrypted, the con-
fidentiality of exchanged data can be determined. All commu-
nication channels are analyzed between the device and user
app, device and cloud server, user app and cloud server of a
given IoTs device. Therefore, various encryption algorithms
are used to provide maximum protection and complete the
IoTs request within the given deadline.

There are difficulties in integrating edge computing with
the IoTs and with the advantages that edge computing can
provide. The efficient handling of edge infrastructure and
assigning resources available to IoTs devices is one poten-
tial problem. At any time, IoTs devices can request various
services, and the computation and storage capacity of each
edge server node is limited. When the edge server is assigned
to provide services, various criteria need to be addressed.
Another issue is that the edge server can be optically mapped
to IoTs devices to meet IoTs application requirements. Fur-
thermore, protection and privacy problems also remain.

In each computing paradigm, data protection and privacy
conservation are important issues, especially in edge comput-
ing. For an outsourcing situation, processing situations and
data storage become more complicated. Summarizing a few
open research questions concerning privacy and data protec-
tion must be addressed before edge computing is deployed.
To achieve distributed and lightweight and data encryption
systems, edge computing’s accessible properties, such as
resource constraints, parallel computing, the coexistence of
multiple trust domains, and massive data processing, should
be thoroughly considered in design encryption processes.

Users create massive data at the edge network, and this cre-
ated data are measured in part or entirely on edge machines.
In the dynamic data updating process, most of the existing
privacy management methods do not have a dynamic update
feature, so the security of fine-grained data and privacy would
be a severe challenge. Large amounts of data are generated
by edge devices, which provides an intruder the ability to per-
form privacymining, integration, and data association. There-
fore, it is essential to create a complex privacy-preserving
framework from the perspective of the user’s actions, identity,
position, and interest.

Although protection of the users’ privacy is ensured, a wide
variety of data protection functions and safety concerns
should be resolved in the context of cooperative contact
between users. Privacy-preserving technologies provide ben-
efits for edge applications and service providers, but they
impose communicational and computational overhead. The
suggested privacy approaches should also satisfy the criteria
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of privacy and efficiency and evaluate data analytics security
risks in edge computing to offer a few protection and perfor-
mance criteria.

III. LITERATURE REVIEW
From a holistic viewpoint, Liu et al. [12] described the
shaping factors of edge computing. They provided a thor-
ough analysis of the concept of edge computing, and the
architecture also presents exciting applications for edge com-
puting. There are five essential criteria: availability, confiden-
tiality, privacy requirements, integrity, access control, data
protection, and privacy specifications. Next, they described
a detailed overview of possible privacy and security issues
in edge computing. The current data protection and privacy
management frameworks are discussed, and data security
research architecture is proposed. The progress of the IoTs
around edge computing has been widely researched in recent
years. Shi and Dustdar [13] addressed problems such as
latency, restricted battery life of mobile devices, security and
safety, and provided real-time examples. Security and privacy
at the end of the edge network are described. Shi and Cao state
that edge computing can resolve battery life issues, response
time, bandwidth, cost savings, safety, and data protection.
The idea of edge computing is introduced, followed by sev-
eral studies, ranging from clouds to smart cities and homes,
to materialize the concept of edge computing and interactive
edges. Ultimately, in edge computing, they present many
challenges and opportunities. Shi and Dustdar [13] discussed
several shortcomings of edge computing in the IoTs, such
as latency, bandwidth, availability, energy, and security, and
stated the evolution of edge computing and its basic function-
alities. Shi et al. [14] defined community problems, from the
necessary technology to emerging real-time applications and
future business models.

Caching authoritative content at edge nodes at the edge
server is a critical approach for improving the efficiency
of consumer services in future generation networks. How-
ever, it is difficult to correctly forecast potential popularity.
Thar et al. [15] proposed a caching scheme involving pre-
dicting each content’s future class label, caching the expected
content with high popularity scores, and the future popularity
score of content on the basics of projected class labels. Paral-
lel disk access technologies have resolved the speed disparity
between disk access and processors by relying on input and
output technologies and the cache. Karedla et al. [16] looked
at caching to minimize device response times and improve
disk system data throughput. Kotz and Ellis [17] suggested a
parallel access approach that performs load balancing dynam-
ically across every disk depending on each disk load vol-
ume. Big write caches are commonly used to increase the
throughput of the storage device by leveraging spatial and
temporal locations, i.e., data may be combined and overwrit-
ten many times until written to the disk. Kotz and Ellis [17]
researched numerous cache-control methods used in parallel
systems to bridge the disk and processor speed difference.
Rajasekaran [18] proposed a randomized and deterministic

algorithm for a parallel disk system. Despite enhancements
to their disk system, many of the current implementations do
not improve the security efficiency of storage systems. Our
thesis attempts to explore the use of cache to enhance the
security and efficiency of parallel system servers. By intro-
ducing hybrid storage systems and new dynamic solid-state
disk partitioning, the level of security can be increased.

IV. THE PROPOSED ARCHITECTURE AND DATA
MANAGEMENT PLAN
A. THE PROPOSED ARCHITECTURE
In this section, we propose a novel architecture called
Secure-Stor and a set of its supporting features is explained,
including data partitioning, security management, and data
placement. Fig. 1 illuminates the hybrid architecture for
Secure-Stor. CDN is responsible for storing metadata and
stream videos. The proposed architecture consists of an array
of hard disk drivers (HDDs), an array of solid-state disks
(SSDs), a parallel system server, and a data handler request
transmitter and receiver that are directly connected to the
edge devices. The number of hard disk drives and solid-state
disks are independent of each other. An array of SSDs is a
nonvolatile cache that will save the highly requested data,
and is used to boost performance. If the requested content
is not available at the SSDs, it is requested from the HDDs;
if there is an error or a failure in the HDDs, then the data is
requested from the central location server. The security man-
agement controller is the heart of Secure-Stor architecture.
It comprises a security middleware service, a solid-state disk
partitioning system, a real-time response time estimator, and
a security controller. The security middleware services are
responsible for assigning a security level for each user request
based on the request response time. Security middleware
services are incredibly adaptable because they allow new
security services, such as new encryption algorithms, to be
added or to replace old security services. As shown in Table 1,
nine different encryption algorithms have been applied by the
security mechanism. In conjunction with the cryptographic
algorithms’ efficiency. The security level 1 is allocated to the
best and slowest cryptographic algorithm.

B. SECURITY MANAGEMENT CONTROLLER
The performance of the whole architecture can be signifi-
cantly enhanced by employing an array of solid-state disks.
Solid-state disks are vital because they can judiciously store
frequently used data for future access. Notably, the solid-state
drives can help shorten the response time for data requests if
they are not available in the edge server, making it possible
to increase security for the whole system while meeting the
user’s deadlines. The least recently used algorithm (LRU) is
used for moving data from SSDs to HDDs. To maximize the
request security without violating the application deadline,
the SSDs are vigorously segregated among the hard disk
drives. The total size of the solid-state disks are divided into
several equal-size partitions. Each hard disk drive is assigned
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FIGURE 1. The general architecture of secure-stor.

one or more sections based on the hard disk drive workload.
Each solid-state disk partition is managed individually using
the least recently used replacement policy.

The group of security services that are required by an edge
device request Eri is Si = (S1i , S

2
i , S

3
i , . . . . . ., S

j
i), where

Sji is the required level of security range for each edge device
request.

If we let PAi be the degree of parallelism of Eri, then,
the security allowance of request Eri can be calculated by the
following equation:

S (Eri,PAd )

=

∑PAm

j=1
SecLevels (Eri,PAd ) ,PAm ≤ K ,PAd ≤ PA (1)

where PA is the total size of the solid-state disks, PAd is the
d th hard disk drive partition size, and K is the number of
hard disk drives available in the cloud system. The parallelism
degree PA cannot exceed the total number of hard disk drives
in the whole system. Our main goal is maximizing the level
of security of all requests, which can be formalized by the
following nonlinear equation:

Maximize
∑k

d=1
S (Erd ,PAd ) (2)

C. THE RESPONSE TIME ESTIMATOR OF EDGE DEVICES
Edge device request response time is described as the time
gap between the request launched by a client or edge device
and the time the subsequent input/output operations are
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TABLE 1. Cryptographic algorithms for confidentiality services [19].

performed by the parallel system server. To improve edge
request security levels, an adaptive solid-state disk partition-
ing scheme is developed for each disk need and an estimate of
the edge request response time is determined. When a freshly
issued edge request Er arrives, the response time of Er can be
calculated by:

T (Er ,PA, SL (r)) = Tqueue

+
pmax i=1

{
T iproc

(
Er ,PAd(i), SL

(
Er ,PAd(i)

))}
(3)

where PA is the degree of parallelism; Tqueue is the queueing
waiting delay at the edge device; PAd(i) corresponds to the
HDD partition volume of the disk serving the ith stripe unit;
SL(Eri, PAd(i)) is the security level, as shown in equation (3),
by the ith tripe unit of edge request Er, SL(r) = (SL(Er1,
PAd(1)); and SL(Er2, PAd(2) . . ., SL(Erp, PAd(p))) is the secu-
rity level f the disk request for its p stripe units. T i proc is a
delay experienced in system processing by the ith stripe of the
Edge request Er. The processing delay of the system T i proc
for the request of the ith stripe can be defined as:

T iproc
(
Er,PAd(i), SL

(
Eri,PAd(i)

))
= T isecurity

(
Er,PAd(i), SL

(
Eri,PAd(i)

))
+ T intework (Er)

+TSSD data + hiSSD data
(
Er,PAd(i)

)
T iHHDdisk (Er)

+ hiHHDdata
(
Er,PAd(i)

)
T iCDN (4)

where Ti
network, T

i
security, TSSDdata, THHDdata, and Ti

CDN are
the delays at the network subsystem, security mechanism,
SSD data, HHD data access, and content Accesses from
CDN, respectively. The hiSSD data(Er, PAd(i)) in the previous

equation specifies whether the data are retrieved from SSD
or HDD.

hiSSD data
(
Er,PAd(i)

)
=

{
0 if there is data found in SSD
1 if the data is dot found in SSD

Similarly, the hiHDD data(Er, PAd(i)) term in the above
equation indicates whether the data are retrieved from HDD
or the CDN.

hiHHDdata
(
Er,PAd(i)

)
=

{
0 if there is data found in HDD
1 if the data is dot found in HDD

The security overhead, which is the delay in processing
at the security mechanism, will be subject to the assigned
security level (SL) and divided partitions across the SSDs.
As each algorithm’s level of security increases, the efficiency
decreases. The size of data secured and algorithms (crypto-
graphic) used for encryption are responsible for computa-
tional overhead due to encryption. Based on the reference
paper [20], Ti

security can be easily derived (Er, PA, σ ) from
the following:

T isecurity
(
Er,PAd(i), SL

(
Eri,PAd(i)

))
= Tsecurity

(
SL
(
Eri,PAd(i)

))
=

∑q

k=1

d

pµk
(
ski
(
PAd(i)

)) (5)

where d refers to the size of data requested, i.e., data size,
and d/PA is defined as the ith data size divided across a set
of HDDs or SSDs. The security service throughput of whose
security level (ski (PAd(i)) is defined as µk(ski (PAd(i))). Based
on the previous equation, the security overhead model shown
in the security management controller explains the total pro-
cessing delay due to security mechanisms. The overhead
because of a specific security service is defined as the ratio
of the data size and throughput of the corresponding security
service.

T inetwork (Er) =
i dPAi +

∑k
j=1 dj

Bnetwork
(6)

The B network represents the effective bandwidth of the
network, and PAj represents the jth hard disk data size in the
network queue.

For the ith stripe unit of the edge request, when arriving at
the HDD disk, disk j should process x disk requests before
handling the arrived edge request. Therefore, the delay in the
HDD subsystem Tidisk is given as:

THDDdisk (Er) = THDDdisk,j

(
d
PA

)
+

∑x

l=1
THDDdisk,j (d) (7)

where THHDdisk,j(d) is defined as the time required to pro-
cess requests of d bytes of data in an HDD subsystem.
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THDDdisk,j(d)THDDdisk,j (d) can be written as:

THDDdisk,j (d) = Trotation + Tseek +
d

Bdisk
(8)

where Trotation and Tseek are the rotational latency and seek
time, and d

Bdisk is the data transferring time depending on the
disk bandwidth Bdisk and data size d .

Similarly, when the edge request Kth stripe unit arrives at
the CDN when the requested data are not available in the
HDD disk, the data are fetched from the CDN. There are
y Edge requests that must be processed by the CDN before
handling that Edge device request. Thus, the delay in the CDN
subsystem TCDN is given as:

TCDN (Er) = TCDN (
d
PA

)+
∑k

l=1
TCDN (d)

TCDN (Er) = TCDN

(
d
PA

)
+

∑k

l=1
TCDN (d) (9)

where TCDN(d) is the CDN processing time of a request
containing d bytes of data, and TCDN can also be derived as:

TCDN = Tround trip time + Tlatency (10)

where Tround trip time is the delay in time when an edge device
requests to be transferred from a starting point to a destination
and back again to the starting point, andTlatency is the time that
passes between user action and the resulting response due to
network delays or by an Internet delay.

D. DATA MINING IN EDGE COMPUTING
To make a significant decision to predict content popularity
based on end-user expectations and decide which contents
should be stored in the SSDs and HDDs, deep learning
models are trained as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and long short-termmem-
ory recurrent neural networks (LSTMRNNs). These are used
in the cloud center or CDN. The data predicted by the learning
model are then sent to the parallel system server. From there,
data are distributed to the SSD and HDD to store the desired
contents. The algorithm’s fundamental aim is to reduce the
delay in the accessibility of content to the user by storing
frequently used contents at SSD and HDD with the use of
deep learning content-based popularity algorithms. To fore-
cast future popularity content and the future demand counts,
the supervised-depth learning approach is used for training.
The contents are then cached, depending on expected results.
In an edge network, the process of supervised learning should
include the following steps. First, user content ratings and
preferences are collected during peak activity hours. Super-
vised learning algorithms estimate content popularity. The
most common content for a group of edge users is cached.
In the case of a cache hit, the user request is served from the
local cache.

The learning process should forecast patterns unique
to the edge network while simultaneously satisfying stor-
age constraints at the edge. With little to no knowledge,
ML techniques learn and can identify popular content with

time variance enabled by data-driven analytics. Caching and
distribution problems can be configured for a collection of
network states and storage constraints. An appropriate predic-
tion model is challenging to find among the different types of
deep learning models, such as convolutional neural networks
(CNNs), multilayer perceptron’s (MLPs), and recurrent neu-
ral networks (RNNs).

A content delivery network (CDN) is performed as the
high-end computing server, and the edge server or parallel
system server is implemented as the base station. Using gath-
ered data from the edge server, the CDN is responsible for
deep learning model training and then to forecast the con-
tent’s potential importance with trained models and content
sent to the SSD and HDD to store common content. Con-
tents predicted by the CDN are responsible for storing SSDs
and HDDs. If the edge device requested Data are found in the
SSD and HDD, the network instantly responds to the end-
users. If not, the requested data is obtained from the CDN
and sent to the users.

As shown in Fig. 2, the CDN contains the Data Mod-
ule, Management Module, Generating Module, Preprocess-
ing Module, Prediction Module, and Training Module. The
management module is responsible for controlling all com-
ponents of the CDN and parallel system server. The Data
Collector Module collects data that are frequently requested.
The preprocessing module removes unwanted data, extracts
the log files and forms the prediction model dataset. The
generativemodule produces different predictionmodels, such
as convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs) [21]. The training module controls the
training phase of the constructed models using a dataset and
stores relevant details such as accuracy, validation accuracy,
and model configuration. Then, the management module
chooses the most refined model and manages the prediction
model’s training, starting from where to store the state of the
trained model and when to end training by monitoring the
training module.

Furthermore, the management module transfers and gen-
erates the content containing predicted content and request
counts to the parallel system server. The parallel server con-
sists of a data collector module and a set of SSD and HDD
modules. The Data Collector collects the number of requests
and hit count. The parallel system server downloads content
from a server based on the content generated and delivered
by the CDN. The Data Handler Request Transmitter and
Receiver controls and organizes the arriving requests from
edge devices. The arrived request is checked by the request
handler to determine whether the content that is requested is
present in SSD or HDD. If the requested content is in the SSD
or HDD, then the content is delivered to the edge device; oth-
erwise, the Data Handler accesses the content from the CDN.

E. LONG SHORT-TERM RECURRENT NEURAL
NETWORK (LSTM RNN)
Recurrent neural networks can scale deep network models
for approximation functions to manage temporal sequences.
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FIGURE 2. An overview of the learning-based model.

The output from the previous time step determines the deci-
sion that the network produces for the next step. In addition
to the current model input, RNNs involve the use of memory
to recall data acquired in previous time measures. There
are different types of RNNs, such as gated recurrent units
and LSTM. LSTM [22] is chosen because it can provide
better output than regular recurrent units using LSTM cells.
LSTM networks are well suited for making predictions,
classifying, and processing based on time series data. The
memory cells are extended along with RNNs to provide the
output and store information, which helps to learn temporal
connections over long time periods.

Running gradient descent-based RNN training created
problems with exploding gradients, which were resolved by
LSTM models with additional information flow structures
called gates. The LSTMmodel has proven accurate and useful
in solving mobility problems and traffic prediction within
communication networks. The main objective of LSTM is
problem optimization, popularity prediction, and mobility,
and its patterns are from history-based locality and user
context-based popularity. It improves the cache hit ratio and
reduces transmission energy and delay.

As shown in Fig. 3, the full LSTM-based prediction model
contains a set of input layers, which needs feed input, i.e.,
a batch normalization layer that allows even higher learning
speeds. The time series data are learned by recurrent layers
to avoid overfitting issue dropout, whereas time distributed
network layers can also classify the output along with the
data layers. The network is trained by backpropagation.
The predicted output values can be iteratively updated to the
output layer.

FIGURE 3. Recurrent neural network model.

The training process for predicting the content of the
RNN model at the CDN is to improve the accuracy of the
model. The inputs for this algorithm are a subset of raw data
obtained from edge devices. First, the training accuracy and
validation accuracy metrics of the RNN model are assigned
a value of zero. Then, the regularization rate and learning
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FIGURE 4. The proposed secure-stor algorithm.

rate are assigned fixed values. The finest values are found
for the regularization rate and learning rate by iteration of
input data. In this process, the solution’s behavior changes
are continuously updated with input conditions. If the old
validation accuracy is less than the current accuracy, then the
regularization rate and learning rate are updated. The output
of this RNN algorithm is an optimized trained model for
predicting popularity content, which is then transferred to
SSDs and HDDs by the parallel system server. The LSTM
model architecture outperforms most of the algorithms on
all crucial metrics, i.e., training time, training accuracy, and
validation.

The training process for predicting the content of the RNN
model at the CDN is to improve the accuracy of the model.
The inputs for this algorithm are a subset of raw data obtained
from edge devices. First, the training accuracy and validation
accuracy metrics of the RNN model are assigned a value
of zero. Then, the regularization rate and learning rate are
assigned fixed values. This is completed to find the finest
values for the regularization rate and learning rate by iteration
of input data. In this process, the solution’s behavior changes
are continuously updated with input conditions. If the old
validation accuracy is less than the current accuracy, then
update the regularization rate and learning rate. The output
of this RNN algorithm is an optimized trained model for
predicting popularity content, which is then transferred to
SSDs and HDDs by the parallel system server. The LSTM
model architecture outperforms most of the algorithms on
all crucial metrics, i.e., training time, training accuracy, and
validation.

V. THE PROPOSED ALGORITHM
The flow representation of the Secure-Stor algorithm is
shown in Fig. 5. Consider a newly arrived Edge Device

FIGURE 5. Flow chart representation of the secure-stor algorithm.

Request as Er1. The absolute Deadline of the request Er1
is D1. The best encryption algorithm is chosen for data trans-
fer with maximum security and completes the given request
within the deadline using our Secure-Stor algorithm. Each
request has a different security level based on the absolute
deadline and encryption algorithm we choose. First, a weak
encryption algorithm measured as 0.1 Complexity is used
and determines whether the given request response can be
finished within the absolute deadline. If that satisfies the
given deadline, it can further increase the complexity of
the encryption algorithm by 0.1 and determine whether the
request-response can be finished in the absolute deadline;
if this is satisfied, then the process can be continued by
increasing the complexity of the encryption algorithm every
time by 0.1, where the most robust encryption algorithm
complexity is one that compares with the deadline until the
request is assigned with maximum security and the response
is sent in the deadline without delay. The New Edge Request
is —Er1, and the Absolute Deadline is –0.7 Nano Seconds.

Here, the encryption algorithm for request was cho-
sen based on the response time and deadline. Assuming
the Weak Encryption Algorithm S1 with a 0.1 complexity
and a response time of 0.2, then (0.7 < 0.2); therefore,
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if we increase the complexity by 0.1 with Encryption Algo-
rithm S2, the new response time is 0.4, and still the response
time is below the Deadline (0.7 < 0.4), then the complexity
of an algorithm is further increased using S3 and the response
time becomes 0.6, which satisfies the Deadline (0.7 <0.6).
If the complexity is increased using S4 Encryption Algo-
rithm the response time will become 0.9, which does not
meet the Deadline of 0.7. Therefore, this would be terminated
and the S3 encryption algorithm would be used, which has
maximum security and completes within the deadline.
Theorem: O(nm) is the time complexity of the Secure-Stor

algorithm, where m is the maximum security level, and n is
the number of edge requests in the queue.

Proof: The security level of each edge request can be
increased in O(m) time. Since there are n edge requests
with O(n) time at the waiting queue, the time complexity
is O(n)O(m) = O(nm) to improve the security of all disk
requests.

A. THE OPTIMALITY OF THE PROPOSED ALGORITHM
In this segment, the concept of nonsecure response time is
used. Illustrate the optimality of Secure-Stor in terms of the
security efficiency of each edge device request. The time of
the stripe unit to respond that is not secured for the jth stripe
unit in edge device request Eri is described as the nonsecure
time T ijnonsecure.

Therefore, the following equation applies:

T ijnonsecure=Tqueue + Tpartition + TSSD data + THHDdata + T
ij
disk

(11)

Theorem 1: For edge device request Eri corresponding
to any given stripe unit (jth stripe unit) and a security
management controller, the Secure-Stor algorithm tends to
maximize SL σij of the corresponding stripe unit.

Proof: Let us consider the jth stripe unit in the Edge
device request Eri without loss of generality. The theorem is
proved by showing to the impossibility to further raise the
security level σij of the jit stripe unit. The first few steps in
the algorithm try to reduce the nonsecure response time of
all stripe units in the edge device request Eri using solid-state
disk partitioning.

Accordingly, the nonsecure time of response of any stripe
unit is reduced. Thus, the nonsecure time to respond Tqueue+

Tpartition + TSSDdata + THHDdata + Tij
network + Tij

disk. of the j
th

stripe, the unit is reduced. Since Secure Stor cannot decrease
the T queue+ T partition, the algorithm decreases Tij

network+

Tij
HHDdata + Tij

SSD data.
Step 5 ensures that the equation Tqueue + Tpartition d +

Tij
network + Tij

SSD data + Tij
HHDdata + Tij

security ≤ ti holds.

Accordingly, Tij
security ≤ ti − (Tqueue + Tpartition + Tij

network +

Tij
SSD data + Tij

HHDdata). The equation Tqueue + Tpartition +

Tij
network + Tij

SSD data + Tij
HHDdata is the first phase of the

algorithm that minimizes the inequality’s right-hand side,
meaning that Tij

security spent in security is increased. As an

outcome, steps 6 and 7 of the algorithm exploit the increased
time Tij

security to improve security σ ij. Thus, Theorem 1 is
complete.
Theorem 2: For an edge device request Eri, if the levels of

security of all corresponding stripe units are maximized, then
the secure-stor algorithm improves the security quality for an
edge device request Eri when written.

∀ ≤ j ≤ Pi : σij is maximized →
∑pi

i=1
σij is maximized

(12)

Proof:Without effects on the security level of the other
strip of Eri, the value of σij can be maximized. The SLs of all
the stripe units inside the edge request Eri can be increased
by the Secure-Stor algorithm simultaneously. Consequently,
the summation of security levels of all the stripe units of the
edge device request Eri has increased by steps 6 and 7., i.e.,∑pi

j=1 σij is maximized. Thus, the theorem is proved.

The theorem below shows the Secure-Stor algorithm’s
optimality.
Theorem 3: For any given Edge request Eri and Security

Management controller, the optimization of the quality of
Security for Edge device request Eri is done by Secure-Stor
Proof: Theorem 1 states that every stripe unit in the

Edge device request Eri has the respective level of security
increased. Theorem 2 proves that if the levels of security of all
the stripe units in an Edge device request Eri are increased in
a security management controller, then the Secure–Stor algo-
rithm improves security quality for edge device request Eri.
Therefore, from Theorems 1 and 2, the proof is immediate.

VI. EXPERIMENTAL RESULTS
To test the Secure-Stor framework’s performance, a simula-
tion toolkit consisting of a collection of critical components
was implemented. The core component includes parallel data
transfer between the HDDs and SSDs and parallel data trans-
fer between the edge server, CDN, and the solid-state disks.
Nine confidentiality services algorithms are implemented
within the simulation toolkit. Eight SSD disks, each with a
capacity of 1 GB, and eight hard disk drives with 200 GB
are used. Comparably, other frameworks do not incorporate
the hybrid storage system in the central location and do
not require solid-state disk partitioning. In our toolkit, two
metrics are used to show the efficiency of Secure-Stor. The
first metric is the success ratio, which is the fraction of total
arrived edge server requests that are completed before their
absolute deadline. The second metric is the average security
level, which is the ratio between the sum of the security level
of all requests and the total requests.

A. IMPACT OF ARRIVAL RATE
In this study, the impact of the edge device requests arrival
rates when the solid-state disk size and the disk bandwidth are
varied. To accomplish this goal, the arrival rate was increased
from 0.1 to 0.5 NO./SEC. The edge device request data size
is set to 1 GB, and the disk bandwidth is set to 100 MB.
The Secure-Stor algorithm reveals that it significantly
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FIGURE 6. (a) Impact of arrival rate on satisfied ratio. (b) Impact of arrival rate on security level.

FIGURE 7. (a) Impact of data size on satisfied ratio. (b) Impact of data size on security level.

outperforms the other algorithms. Additionally,
Fig. 6(a) and (b) show that Secure-Stor outperforms different
algorithms that do not use the component proposed in the
Secure-Stor framework. Secure-Stor delivers a higher level
of security than the other algorithms.

B. IMPACT OF THE EDGE DEVICE REQUEST DATA SIZE
This section analyzes the efficiency impacts of the requested
data size on a parallel system server by differing the data
size from 1 GB to 20 GB while keeping all other workload
parameters the same. Fig. 7(a) and (b) reveal the impact of
data sizes on a parallel server with respect to success ratio
percentage and normalized level of security by comparing to

the server that does not use hybrid storage architecture and
solid-state disk partition. As the data size increases from the
graph, a higher success ratio is observed compared to the edge
server that does not implement hybrid storage with parallel
data transfer with maximum security.

C. IMPACT OF THE EDGE DEVICE REQUEST WITH
RESPECT TO DISK BANDWIDTH
In this experiment, we test the impact of the disk bandwidth
in a parallel system server. The value of the bandwidth
varies from 10 MB/sec. to 100 MB/Sec. Fig. 8(a) reveals
that the satisfying success ratio of the Secure-Stor archi-
tecture, which uses hybrid storage and dynamic solid-state
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FIGURE 8. (a) Impact of disk bandwidth on satisfied ratio. (b) Impact of disk bandwidth on security level.

FIGURE 9. (a) Impact of the number of SSDs on the satisfied ratio. (b) Impact of the number of SSDs on the security level.

disk partitioning, is improved as the bandwidth of the
disk increases. High disk bandwidths allow short data
transmission times, which lead to lower processing times for
edge device requests. Consequently, several disk requests can
be finished within their absolute deadline. As the bandwidth
of the disk increases, the disk processing time decreases,
and the security level increases for a particular edge request.
Therefore, the Secure-Stor algorithm outperforms the other
algorithm, which does not use the component proposed in
the Secure-Stor framework at the security level as observed
in Fig. 8(b).

D. THE IMPACT OF THE NUMBER OF SOLID-STATE DISKS
The impact of performance by varying the number of
solid-state disks from 4 SSD to 20 SSD with 4 SSD. Fig. 9(a)
shows that as the number of SSDs increases, the satisfied
success ratios of the Secure-Stor algorithm also increase
due to more frequent data stored in the SSD, leading to
lower data access from the CDN. Additionally, Secure-Stor
outperforms the other algorithm, which does not use hybrid
storage to satisfy the success ratio. Fig. 9(b) shows that
the increasing number of SSDs helps increase the security
levels. The overall performance of Secure-Stor is the best
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among the algorithms, especially with a higher number
of SSDs.

VII. CONCLUSION
Approximately 75% of companies have considered process-
ing data at the edge by 2025, and the edge of the network is
a new hotspot for IT investments for an increasing number
of organizations. Edge computing allows organizations to
enhance processing, analytics capabilities, and data storage.
With the transfer of data from network sources to edge plat-
forms, security risks emerge. The edge serves as a primary
target for hackers because the edge architecture connects with
hundreds of thousands of network-connected computers.

This paper presents a novel hybrid framework that inte-
grates CDN with edge servers in the cloud and a hybrid
storage architecture that consists of hard disk drivers and
solid-state discs in centralized storage. Consequently, secu-
rity has become crucial for cloud and edge computing. With
our proposed Secure-Stor algorithm, hybrid storage systems,
and new dynamic solid-state disk partitioning, the level of
security is increased, and the security middleware services
are extremely configurable that allows new security services,
such as new encryption algorithms to be added or to replace
old security services with new ones. As with ever-growing
technology, different encryption algorithms are introduced
with higher security and better performance by replacing
them, making the edge request even more secure in the
future. Our simulation results reveal that when comparing
the performance and the security of Secure-Stor with another
architecture that does not use the solid-state partitioning tech-
nique, Secure-Stor significantly increases the security and
performance of the system by an average of 85%.

Our future work will focus on determining secured and
suitable models among various types of deep learning models
and characterizing cryptographic algorithms by high commu-
nication and computation costs due to their large key size.
Hence, the security management controller should focus on
lightweight security, such as block-ciphers lightweight cryp-
tography and permutation-based lightweight cryptography.
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