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ABSTRACT Quantum computers are expected to be able to outperform classical computers. In fact, some
computational problems such as integer factorization can be solved on quantum computers substantially
faster than classical computers. Interestingly, these problems can be cast in a framework of the hidden
symmetry subgroup problem. However, only a few of quantum algorithms for efficiently solving this problem
have been known, and the approaches used in all previous results can be applied to particular groups with
specific group actions. In this paper, we introduce new technique for solving the hidden symmetry subgroup
problem which can be applicable for any groups and any group actions with a certain condition. In addition,
we define the continuous hidden symmetry subgroup problem on a group by employing a continuous oracle
function, and prove that if the group is a metric space and the group action satisfies some condition, then
the continuous hidden symmetry subgroup problem can be efficiently reduced to the continuous hidden
subgroup problem. In particular, we show that there exists an efficient quantum algorithm to solve the
continuous hidden symmetry subgroup problem on Rn, while it has not yet been shown that the original
hidden symmetry subgroup problem on Rn can be efficiently solved by a quantum computer.

INDEX TERMS Quantum algorithm, continuous hidden symmetry subgroup problem, hidden symmetry
subgroup problem.

I. INTRODUCTION
A. BACKGROUND
Many researchers have been actively studying algebraic prob-
lems and algorithms to solve them which can achieve sig-
nificant speed-up on quantum computers. Shor invented a
polynomial time quantum algorithm for the integer factor-
ization problem, while the best known classical algorithms
take superpolynomial time [1]. Shor’s factoring algo-
rithm breaks the Rivest–Shamir–Adleman (RSA) public-key
encryption [2] which is based on the hardness of factoring
a large composite integers. Quantum computers can threaten
various cryptosystems that have been broadly used until now
like the RSA encryption [3]–[10]. In the last few years,
there has been a growing interest in developing cryptogra-
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phy called the post-quantum cryptography (PQC) which is
secure against quantum attacks. It is remarkable that the U.
S. National Institute of Standards and Technology has been
working on the PQC standardization for years even though
there is no practical quantum computer yet.

Recently, there has been an increasing interest in research
on continuous analogues of discrete algebraic problems, and
some results are closely related to cryptography. In the con-
tinuous version of the hidden subgroup problem (HSP) over
Rn proposed in [6], it was shown that there is an efficient
quantum algorithm for solving the continuous HSP over Rn.
Moreover, this algorithm can also be used for attacking cer-
tain cryptosystem based on the hardness to find short vectors
in ideal lattices, which is not obtainable from the original
HSP on Rn with fixed n [7]. The continuous version of the
hidden shift problem over Rn was studied in [11], and the
continuous analogue of the Learningwith Errors problemwas
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also introduced most recently, and it can be seen as breaking
new ground in quantum attacks on lattice problems [12].
Therefore, we can say that the continuous version with a
continuous oracle function makes the original problem more
meaningful.

B. RELATED WORKS AND OUR CONTRIBUTION
In addition to the cryptographic issues, most algebraic prob-
lems which can be solved more efficiently on quantum
computers can fit into a framework of the hidden symmetry
subgroup problem (HSSP) [13]. The HSSP can be described
as follows. Let G be a finite group and the binary function

◦ : G× X → X (1)

be a group action of G on a finite set X , and H be a family
of closed subgroups of G. For some H ∈ H and a finite set
S, we say that an oracle function f : X → S hides H by
symmetries if

f (x) = f (y) ⇐⇒ H ◦ x = H ◦ y, (2)

where

H ◦ x = {h ◦ x : h ∈ H}. (3)

Note that the integer factorization problem and the discrete
logarithm problem can be considered as the HSSP when
G = X = ZN and G = X = Zp−1 × Zp−1, respectively, and
the group actions are the group operations.

Although it is important to solve the HSSP, there have been
only a few of known results for the HSSP. Decker
textit et al. [13] showed that there is an efficient quan-
tum algorithm for solving the HSSP for Frobenius groups
by employing the reduction scheme from the HSSP to the
HSP in which the level sets of the oracle function from
G to some finite set S ′ correspond to the cosets of some
unknown subgroup H . Also, Kim et al. dealt with the HSSP
on semi-direct product of cyclic groups,ZNoZp, with certain
constraints [14]. In addition, we note that all known results on
the HSSP have focused on discrete groups.

The methods used in all previous results are only appli-
cable to specific groups with particular group actions. These
restrictions may have caused some additional constraints in
the reduction scheme from the HSSP to the HSP. On the other
hand, our new technique to deal with the HSSP can be applied
to any groups and any group actions except that the group
action satisfies a certain condition, and it allows us to have
very simple and more efficient reduction scheme from the
HSSP to the HSP as we will show in Section II. We also prove
that the similar approach can be employed to the continuous
HSSP that we newly define in Section III.

In this paper, we also present the continuous version of
the HSSP on a group by using a continuous oracle function.
In order to construct a continuous version of an algebraic
problem, we may simply think of substituting discrete groups
with continuum groups in the definition of the problem.
However, it can be more productive and more meaningful if

we should add the continuity of the oracle function to the
definition. For instance, Hallgren [3] presented a quantum
algorithm for solving the HSP over Rn by replacing the
continuum group Rn with its discretized set, and it has been
known that the rounding error is tolerable when n is fixed, but
the error is worsened in higher dimensions [4], [5]. However,
the continuous HSP over Rn using the continuous oracle
function gave aid to resolve this difficulty [6].

Furthermore, we newly define the continuous HSP on a
group which is also a metric space, and we prove that the
continuous HSSP is efficiently reducible to the continuous
HSP by utilizing our new reduction technique. In addition,
we show that there exists an quantum algorithm to solve the
problem in time polynomial in n by applying the reduction
scheme to the continuous HSP on Rn. As we have seen in
the above example, we expect that quantum algorithms for
solving the continuous version of the original problem may
have better potential applications.

This paper is organized as follows. In Section II, we present
a new approach to make the reduction from the HSSP to the
HSP simpler and more efficient. In Section III, we introduce
the definition of the continuous HSSP over a group which
is a generalization of the original HSSP, and show that the
new approach is also applicable for the continuous HSSP.
In Section IV, as one of our main results, we prove that there
exists an efficient quantum algorithm to solve the continuous
HSSP on Rn by reducing it to the continuous HSP over the
same group. Finally, we summarize our results and discuss
the results and plans for future work in Section V.

II. NEW APPROACH FOR SOLVING THE HIDDEN
SYMMETRY SUBGROUP PROBLEM
Let G be a group with the identity element e and X be a set.
A group action ◦ of G on X is a map ◦ : G×X → X defined
as (a, x) 7→ a ◦ x which satisfies

a ◦ (b ◦ x) = (ab) ◦ x (4)

and e◦x = x for any a, b ∈ G and x ∈ X . For a subset Y ⊆ X ,
we denote

a ◦ Y = {a ◦ y : y ∈ Y }. (5)

For each x ∈ X ,

Gx = {a ∈ G : a ◦ x = x} (6)

is called the stabilizer subgroup of G with respect to x. The
H -orbit of x is defined as

H ◦ x = {h ◦ x : h ∈ H}. (7)

Then it is easy to show that the set of the H -orbits

H∗ = {H ◦ x : x ∈ X} (8)

forms a partition of X . On the other hand, if π = {πi} is a
partition of X , we define the group of symmetries of π as

π∗ = {a ∈ G : a ◦ πi = πi for all i} (9)
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which is a subgroup of G. The subgroup

H∗∗ = {a ∈ G : a ◦ (H ◦ x) = H ◦ x ∀x ∈ X} (10)

is called the closure of H , and the partition

π∗∗ = {π∗ ◦ x : x ∈ X} (11)

is called the closure of π [15]. It is clear to show that H is
a subgroup of H∗∗, and π is finer than π∗∗. We say that the
subgroup H is closed if

H = H∗∗. (12)

In a similar way, π is said to be closed if

π = π∗∗. (13)

Note that if the group action ◦ of G on X satisfies the
condition, ‘‘For an arbitrary x ∈ X ,

a ◦ x = b ◦ x ⇐⇒ a = b (14)

for all a, b ∈ G,’’ then any subgroupH ofG is closed. Indeed,
for a subgroup H of G, since the closure of H is defined as
in Eq. (10), it is always true that H ⊆ H∗∗. Conversely, if
a ∈ H∗∗, then for each x ∈ X ,

a ◦ (h1 ◦ x) = h2 ◦ x (15)

for some h1, h2 ∈ H . It follows from Eq. (14) that

ah1 = h2, (16)

or equivalently,

a = h2h
−1
1 ∈ H . (17)

Thus, we have H∗∗ = H .
Now, let us assume that the group action ◦ of G on X

satisfies the condition in Eq. (14). Then we can prove that the
HSSP can be reduced to the HSP more simply and efficiently
than the original reduction scheme presented in [13].

Let f be an oracle function of the HSSP on G which
hides a subgroup H of G by symmetries with a group action
◦ : G×X → X satisfying Eq. (14) and let us construct a new
function fHSP : G→ S as

|fHSP(a)〉 = |f (a ◦ x)〉

for any fixed x ∈ X . Then we can show that the function fHSP
hides the subgroup H by employing the following lemmas.
Lemma 1: Let ◦ be a group action of a group G on a set

X satisfying the condition in Eq. (14). For each x ∈ X,
the stabilizer subgroup Gx is trivial.

Proof: Observe that for each x ∈ X

Gx = {a ∈ G : a ◦ x = x}

= {a ∈ G : a ◦ x = e ◦ x}

= {e},

where the last equality follows from Eq. (14). �
From Lemma 1, it is easy to show that the function fHSP

hides the subgroup H .

Lemma 2: Let ◦ be a group action of a group G on a set X
satisfying the condition in Eq. (14). Then for all a, b ∈ G,

fHSP(a) = fHSP(b) ⇐⇒ a ∈ Hb. (18)

Proof: Suppose that

fHSP(a) = fHSP(b) (19)

for a, b ∈ G. By definition of the function fHSP, it implies that

f (a ◦ x) = f (b ◦ x). (20)

Since the oracle function f of the HSSP hides the subgroup
H by symmetries,

H ◦ (a ◦ x) = H ◦ (b ◦ x). (21)

So, for some h1, h2 ∈ H , we have

h1a ◦ x = h2b ◦ x, (22)

which implies that

a = h−11 h2b ∈ Hb (23)

because the only element ofGwhich fixes x is e by Lemma 1.
Conversely, suppose that a ∈ Hb. Then we have

a = hb (24)

for some h ∈ H , and so

a ◦ x = h ◦ (b ◦ x), (25)

which implies that

fHSP(a) = f (a ◦ x) = f (b ◦ x) = fHSP(b) (26)

since f hides the subgroup H by symmetries. �
It follows from Lemma 2 that the HSSP is efficiently

reducible to the HSP for a randomly chosen x ∈ X if we can
compute the group action ◦ efficiently. Furthermore, we show
that this new approach can be also applicable for a continuous
version of the HSSP if we assume a certain condition of the
group action on a metric space with respect to the metric. The
details are presented in the next section.

III. CONTINUOUS HIDDEN SYMMETRY SUBGROUP
PROBLEM
In this section, we present the definitions of the continuous
HSSP on a group and the continuous HSP on a group which
is also a metric space. By employing the same approach in
the previous section, we show that the continuous HSSP can
be reduce to the continuous HSP efficiently when the group
action satisfies a similar condition with Eq. (14).
First, let us present the definition of the continuous HSSP

on a group G as follows.
Definition 3 (The continuous HSSP): Let ◦ : G×M → M

be a group action of a group G on a metric space M with
metric dM , andH be a family of closed subgroups of G. Let S
be a set of unit vectors in a Hilbert space, and suppose that a
function f : M → S is defined as x 7→ |f (x)〉 for a pure state
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|f (x)〉 in S, and the function f with positive real parameters
(α, r, ε) satisfies the following properties for some H ∈ H.

1) For all x, y ∈ M,

f (x) = f (y) ⇐⇒ H ◦ x = H ◦ y (27)

⇐⇒ x ∈ H ◦ y. (28)

2) (Lipschitz) There exists α > 0 such that

‖|f (x)〉 − |f (y)〉‖ ≤ α · dM (x, y) (29)

for all x, y ∈ M, where ‖·‖ is the norm naturally
induced by the inner product in the Hilbert space. A
function f satisfying the inequality (29) is called Lips-
chitz with Lipschitz constant α.

3) (Pseudo-injective) If

inf
h∈H

dM (x, h ◦ y) ≥ r, (30)

then

|〈f (x)|f (y)〉| ≤ ε. (31)

Then we say that f continuously hides the subgroup H by
symmetries. Given such a function f , the continuous HSSP on
G is to find H.

Note that the Lipschitz condition says if the inputs x and y
are closed enough then the output states of them are closed as
well. From the pseudo-injectivity, we can see that if the input
x is far from the H -orbit of y, H ◦ y, then the output states of
x and y are almost orthogonal.

The oracle function of the original HSSP can only discrim-
inate whether theH -orbits of the inputs are same or different.
On the other hand, the oracle function of the continuousHSSP
gives more information from its continuous HSSP properties
such as whether theH -orbits of the inputs are close enough or
far away. However, we note that if dM is the discrete metric on
M , 0 < r < 1, and 0 < ε < 1, then the continuous HSSP is
essentially equivalent to the original HSSP. This implies that
the continuous HSSP can be considered as a generalization
of the original HSSP.

Remark that if the group G in Definition 3 is also a metric
space with metric dG, and the group action ◦ of G on M
satisfies the following property

dM (a ◦ x, b ◦ x) = dG(a, b) (32)

for a, b ∈ G and x ∈ M , then any subgroup of G is closed
since Eq. (32) implies Eq. (14).

Now, we define the continuous HSP on a group which
is also a metric space, and then present a reduction
scheme from the continuous HSSP to the continuous
HSP.
Definition 4 (The continuous HSP): Let G be a group and

a metric space with a metric dG, H be a family of subgroups
of G, and S be a set of unit vectors in a Hilbert space.
Assume that an oracle function f : G→ S with positive real
parameters (α, r, ε) hides a subgroup H ∈ H in the following
way.

1) For all a, b ∈ G,

f (a) = f (b) ⇐⇒ Ha = Hb (33)

⇐⇒ a ∈ Hb. (34)

2) (Lipschitz) For all a, b ∈ G,

‖|f (a)〉 − |f (b)〉‖ ≤ α · dG(a, b). (35)

3) (Pseudo-injective) If

inf
h∈H

dG(a, hb) ≥ r, (36)

then

|〈f (a)|f (b)〉| ≤ ε. (37)

A function f satisfying the above conditional statement
is said to be pseudo-injective with respect to parame-
ters (r, ε).

The continuous HSP on G is to find H when such an oracle
function f is given.

We remark that the continuous HSSP onG can be regarded
as a generalization of the continuous HSP on G which is the
case in which the group acts on itself and the group action
is defined as the group operation, and also remark that if
dG is the discrete metric on G, then the continuous HSP is
essentially equivalent to the original HSP when 0 < r < 1
and 0 < ε < 1, as in the continuous HSSP. In addition,
the basic idea of the reduction scheme comes from themethod
proposed in the previous section.

Let f be an oracle function with parameters (α, r, ε) of the
continuous HSSP on G with a group action ◦ : G×M → M
in Definition 3, and let us construct a new function fcHSP :
G→ S as

|fcHSP(a)〉 = |f (a ◦ z)〉 (38)

for any fixed z ∈ M . Then we can show that the function
fcHSP satisfies the continuous HSP properties in Definition 4
when the group action satisfies Eq. (32) by employing the
following lemmas. Since Eq. (32) implies Eq. (14), we imme-
diately obtain the following two lemmas from Lemma 1 and
Lemma 2.
Lemma 5: Let G and M be metric spaces with metric dG

and dM , respectively, and assume that G is a group. Let ◦ be
a group action of G on M satisfying Eq. (32). For any z ∈ M,
the stabilizer subgroup Gz is trivial.
From Lemma 5, it is easy to show that the function fcHSP

satisfies the first condition of the continuous HSP properties
in Definition 4.
Lemma 6: Let ◦ be a group action of G on M satisfying

Eq. (32). Then for all a, b ∈ G,

fcHSP(a) = fcHSP(b) ⇐⇒ a ∈ Hb. (39)

Now, we prove that the function fcHSP is Lipschitz and
pseudo-injective under the assumption of the group action ◦
in Eq. (32).
Lemma 7: Let ◦ be a group action of G on M satisfying

Eq. (32), and assume that f satisfies the inequality (29)
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with Lipschitz constant α. Then the function fcHSP becomes a
Lipschitz function with Lipschitz constant α in the continuous
HSP.

Proof: In order to check the Lipschitz condition of fcHSP,
we observe that

‖ |fcHSP(a)〉 − |fcHSP(b)〉 ‖ = ‖|f (a ◦ z)〉 − |f (b ◦ z)〉‖

≤ α · dM (a ◦ z, b ◦ z)

= α · dG(a, b). (40)

The inequality (40) is due to the Lipschitz condition of f
in (29) and the equality (32). So, the oracle function fcHSP is
a Lipschitz function with Lipschitz constant α. �
Lemma 8: Let ◦ be a group action of G on M satisfying

Eq. (32). Then the function fcHSP is pseudo-injective with
parameters (r, ε) in the continuous HSP.

Proof: For the last condition of the continuous HSP,
suppose that

inf
h∈H

dG(a, hb) ≥ r (41)

for a, b ∈ G. Then

inf
h∈H

dM (a ◦ z, h ◦ (b ◦ z)) ≥ r (42)

since the group action ◦ satisfies Eq. (32). From the third
condition of f in Definition 3, we have

|〈f (a ◦ z)|f (b ◦ z)〉| ≤ ε. (43)

Hence, we immediately obtain

|〈fcHSP(a)|fcHSP(b)〉| ≤ ε (44)

by the definition of fcHSP. �
Combining the above lemmas, it can clearly be obtained

that the function fcHSP has parameters (α, r, ε) which are the
same as those in the definition of the continuous HSSP, and
fcHSP hides the subgroup H ∈ H, when the group action ◦
satisfies Eq. (32). Since all subgroups of G are closed in this
case, we have one of our main theorems as follows.
Theorem 9: If the group action ◦ of G on a metric space

M satisfying Eq. (32) is computable in polynomial time, then
the continuous HSSP on G can be reduced to the continuous
HSP on G in polynomial time.

Proof: Let z ∈ M be chosen randomly, and assume
that the group action ◦ of G satisfies Eq. (32), and it can
be computed efficiently. Then all subgroups of G are closed.
Furthermore, by Lemma 6, Lemma 7, and Lemma 8, we can
efficiently construct the instances of the continuous HSP onG
from ones of the continuous HSSP onG. Thus, the continuous
HSSP on G is directly reducible to the continuous HSP on G.

�
From Theorem 9, we conclude that if there exists an effi-

cient quantum algorithmwhich can solve the continuous HSP
on G, then the continuous HSSP on G can also be solved
efficiently by a quantum computer, when the group action in
the continuous HSSP satisfies Eq. (32). Thus, the quantum

FIGURE 1. Flowchart of the algorithm for the continuous HSSP.

algorithm for solving the continuous HSSP can be described
as follows.
Algorithm 10 (Continuous HSSP on G):

Input: The group action ◦ : G × M → M satisfying
Eq. (32) and the oracle function f : M → S with positive
real parameters (α, r, ε) that hides the subgroup H of G by
symmetries.

1) Pick an element z from M randomly.
2) Construct fcHSP with f and z.
3) Perform the quantum algorithm for the continuous HSP

on G to the oracle function fcHSP.
4) Obtain the subgroup H.

Output: The subgroup H.
The flowchart of the algorithm for the continuous HSSP on

G is presented in Figure 1, where the quantum algorithm for
solving the continuous HSP onG is denoted by cHSP(G) and
cHSSP means the continuous HSSP.
Corollary 11: If cHSP(G) can solve the continuous HSP

on G in time polynomial in t for some parameter t related to
the group G, then Algorithm 10 solves the continuous HSSP
on G in time polynomial in t.

Proof: Assume that cHSP(G) solves the continuous
HSP on a group G in time P(t) for some nonzero poly-
nomial P and some parameter t with respect to G. For a
randomly selected element z ∈ M , as defined in Eq. (38),
the new function fcHSP can be constructed from the oracle
function f of the continuous HSSP in time Q(t) for some
nonzero polynomial Q. By Theorem 9, fcHSP is essentially
an instance of the continuous HSP on G, and hence it
can solve the continuous HSP on G in time P(t). There-
fore, by applying Algorithm 10, the subgroup hidden by
symmetries can be found in time polynomial in t , that
is, P(t)+ Q(t). �
As an example, we can prove that the continuous HSSP

on the additive group Rn with the group action satisfying
Eq. (32) can be solved by a quantum computer in time poly-
nomial in n by means of this reduction scheme. See the next
section for details.
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IV. CONTINUOUS HIDDEN SYMMETRY SUBGROUP
PROBLEM ON Rn

In this section, we take into account the continuous HSSP on
the additive group Rn with some conditions, and prove that
there exists a polynomial-time quantum algorithm for solving
the problem.

In order to proceed with our work, we assume that G is
the additive group Rn which is a metric space with the usual
metric, and H is the family of all full-rank lattices L with
λ(L) ≥ λ and d(L) ≤ d for some fixed positive number λ
and d , where λ(L) is the length of the shortest vector and d(L)
is the unit cell volume. Then the definition of the continuous
HSP on G in Definition 4 is exactly the same as that of the
continuous HSP on Rn which has already been presented
in [6].

Note that there exists a quantum algorithm to solve the
continuous HSP on Rn in time polynomial in n [6]. From
Theorem 9, we can have the following theorem.
Theorem 12: Let ◦ be a group action of the additive group

Rn on a metric space M satisfying Eq. (32), and assume
that the group action ◦ is computable in time polynomial
in n. Then there exists a quantum algorithm for solving the
continuous HSSP on Rn in time polynomial in n.

Proof: Assume that the group action ◦ of Rn on a
metric space M satisfies Eq. (32), and the group action ◦ is
computable in time polynomial in n. Then we can construct
the oracle function of the continuous HSP on Rn by Theo-
rem 9. Since the continuous HSP onRn can be solved in time
polynomial in n [6], we can also solve the continuous HSSP
on Rn by applying Algorithm 10 to the group Rn. �
Remark 13: In [6], the hidden full rank lattice L in Rn

can be found by using n2 + cn samples selected from the
probability distribution qu with the probability of success at
least (

1−
n
2n

) (
1−

log(Rnd(L))
2n

)
,

where R = �(α), d(L) is the unit cell volume of the lattice L,
and c = dlog(Rnd(L))e. Thus, it follows from Corollary 11
that the continuous HSSP on Rn can be solved in time poly-
nomial in n.

V. CONCLUSION
Although the framework of the HSSP can importantly be
related to various cryptosystems, there have been only a
few of known results for the HSSP. Furthermore, it is more
meaningful to consider the continuous version of the HSSP
since it may be able to attack some cryptosystems that the
discrete version of the problem cannot break.

So, in this paper, we have presented the definitions of the
continuous HSSP on a group and the continuous HSP on a
groupwhich is also ametric space using the continuous oracle
functions, and have observed that the continuous HSSP is a
generalization of the original HSSP. The continuous HSSP
can also be regarded as a generalization of the continuous
HSP where the group acts on itself and the group operation

corresponds to the group action. In addition, we have proved
that the continuous HSSP on a group which is a metric space
can be reduced efficiently to the continuous HSP when the
group action ◦ has a certain condition.

Moreover, as a special case of the continuous HSSP,
we have introduced the continuous HSSP on the additive
group Rn which is an extended definition of the HSSP on
discrete groups to the continuum groupRn. By using our new
reduction technique, we have shown that there is an efficient
quantum algorithm to solve the continuous HSSP on Rn.

Remark that we have not yet obtained an algorithm to solve
the HSSP on Rn in time polynomial in n without the continu-
ity of the oracle function. Indeed, if we consider the HSSP
on Rn with only the condition in Eq. (27) in Definition 3,
we would use the similar reduction to the HSP on Rn which
was presented in [3]. In that case, the success probability of
the HSP subroutines for Rn is at least(

N − 2nm
N

)n N (N − 4nm)
(N + 4nm)(N − 2nm)

, (45)

where N is a sufficiently large constant and m is the length of
the longest basis vector in some reduced basis of the hidden
lattice L. Since the probability approaches zero as n tends
to the infinity, it is not guaranteed that the HSP subroutines
can be successful for an arbitrary natural number n. However,
in our case, the success probability for the continuous HSP
subroutines for Rn is bounded by a positive constant which
is independent on n as we can see in [6]. It follows that the
continuous HSSP on Rn can be efficiently solved.

For the next step, we can try to apply the same reduction
scheme from the continuous HSSP to the continuous HSP
when using a different group action of a given group or
another oracle function with some properties such as conti-
nuity. Furthermore, we can investigate whether there exists
an efficient algorithm for solving the continuous HSSP or the
continuous HSP over any groups other thanRn which are also
metric spaces.

On the other hand, we can also try to consider a continuous
version of other algebraic problems with hidden structures
such as hidden polynomial problem and hidden polynomial
graph problem, and investigate relations between the contin-
uous versions of these problems and the continuous HSSP.
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