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ABSTRACT Human communication includes rich emotional content, thus the development of multimodal
emotion recognition plays an important role in communication between humans and computers. Because of
the complex emotional characteristics of a speaker, emotional recognition remains a challenge, particularly
in capturing emotional cues across a variety of modalities, such as speech, facial expressions, and language.
Audio and visual cues are particularly vital for a human observer in understanding emotions. However, most
previous work on emotion recognition has been based solely on linguistic information, which can overlook
various forms of nonverbal information. In this paper, we present a new multimodal emotion recognition
approach that improves the BERT model for emotion recognition by combining it with heterogeneous
features based on language, audio, and visual modalities. Specifically, we improve the BERT model due to
the heterogeneous features of the audio and visual modalities. We introduce the Self-Multi-Attention Fusion
module, Multi-Attention fusion module, and Video Fusion module, which are attention based multimodal
fusion mechanisms using the recently proposed transformer architecture. We explore the optimal ways
to combine fine-grained representations of audio and visual features into a common embedding while
combining a pre-trained BERT model with modalities for fine-tuning. In our experiment, we evaluate the
commonly used CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets for multimodal sentiment analysis.
Ablation analysis indicates that the audio and visual components make a significant contribution to the
recognition results, suggesting that thesemodalities contain highly complementary information for sentiment
analysis based on video input. Our method shows that we achieve state-of-the-art performance on the
CMU-MOSI, CMU-MOSEI, and IEMOCAP dataset.

INDEX TERMS Multimodal emotion recognition, heterogeneous features, transformer, attention based
multimodal, BERT.

I. INTRODUCTION
An effective communication among humans requires not only
intellectual exchange but of sharing contextual emotions.
While most humans are natural in perceiving others’ emo-
tional states, the sensitivities of recognizing key sentiments
may not be even among us. When we look at Leonardo
Da Vinci’s ’Mona Lisa’ many of us may judge that she
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is smiling and may conclude that her emotional state is
positive. It turns out, however, that this seemingly preva-
lent observation may not necessarily be universal. In fact,
an analysis of the painting has been undertaken to determine
if the painting is really conveying a positive emotion [1].
Perceiving other’s emotional states is obviously an impor-
tant factor in peer-to-peer human interactions. It is also of
paramount importance when considering effective human-
to-computer interactions. As such, there has been a steady
stream of efforts in developing techniques to enable machines
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to better recognize and estimate a person’s emotional state.
Much of the work in emotion recognition focused on uni-
modal handcrafted features. From speech, Han et al. [2]
extracted 238 Low-Level Descriptors (LLDs) at speech frame
level using openSMILE [3] and had them automatically
aligned with emotional labels with a recurrent neural network
based Connectionist Temporal Classification (CTC) model.
Tzinis et al. [4] compared the impact of choosing time-scales
and a variety of LLDs (local features) that are relevant to
global features applied to an RNN. As in other fields, there
has been an explosion of deep learning techniques applied
for emotion recognition to extract high-level features from
raw data. The following are some of these methodologies
based on speech as a unimodal feature. Han et al. [5] pro-
posed speech emotion recognition using deep neural net-
work (DNN) from raw data. Trigeorgis et al. [6] proposed
a solution based on a Convolutional Neural Network (CNN)
to recognize local emotional features with contextual consid-
erations obtained from a Long Short-Term Memory (LSTM)
network. Gao et al. [7] proposed a rapid end-to-end emotion
recognition model with a simple structure using CNN for
real-time speech emotion recognition. Zhao et al. [8] pro-
posed the CTC attention model by applying attention mech-
anisms, allowing the model to focus on emotionally salient
parts of the speech signal. For some of the emotion recog-
nition research, visual features based on images or videos
have been considered as providing salient clues to a person’s
emotional state. These efforts considered local features such
as Gabor wavelet [9] or global geometric [10] features.
Sikka et al. [11] proposed amethod that extracts facial expres-
sions and head posture from a video sequence and aligns them
as sequential features for sentiment analysis. Cole et al. [12]
presented a method for synthesizing neutral expressions of
facial features by extracting facial landmarks. For deep learn-
ing based emotion recognition, [13]–[16] utilized CNN to
extract facial features salient to expressed emotions. Another
important feature for classifying emotions is the textual con-
tent of speech. Wilson et al. [17] proposed a keyword-based
method of exploring opinion clauses. Yang et al. [18] pro-
posed sentiment classification of the web blog corpus using
SVM (Support Vector Machine) and CRF (Conditional Ran-
dom Field) techniques. Some of the textual based approaches
took advantage of recently developed word embeddings, such
as Glove [19] or Word2Vec [20] as follows. Zhang et al. [21]
used CNN while Abdul-Mageed et al. [22] applied RNN
for classifying emotional states. Ghosal et al. [23] tack-
led the problem of individual sentiment recognition from
a multi-person conversation using RNN. Zhang et al. [24]
proposed an interactive graph-based CNN for recognizing
sentiments. In addition, an attention mechanism based model
that applies feature fusion for context weighting and sum-
marizing has been proposed [25]. To improve performance,
there have been some efforts of fusing different features
extracted from a unimodal source. Lee et al. [26] proposed
a method that combines two features of CNN and BERT in
parallel from an audio spectrogram. Xu et al. [27] proposed

‘‘Hierarchical Grained and Feature Model (HGFM)’’
by fusion of handcrafted features and Gated Recurrent
Unit (GRU) network extracted features. [28]–[30] built
an emotion recognition model by fusing handcrafted fea-
tures and deep learning based features from facial images.
However, the effectiveness of these unimodal feature based
methods was found to be insufficient to infer the speaker’s
sentiment as much of salient emotional features are expressed
simultaneously via different modalities [31]. For example,
extracting emotional elements from a sentence ‘‘It’s it’s
(stutter) a fantasy’’ considering only its textual content is
very difficult as it is quite ambiguous in expressing the
speaker’s emotional state. In such cases, considering only
textual contents may not be sufficiently discriminative to
discern the subject’s emotions. To enhance emotion recog-
nition performance over unimodal methods, there have been
efforts in simultaneously considering multiple modalities
including audio, visual, and textual features [32]–[36]. [32],
[36] proposed an attention-based framework that uses atten-
tion on multimodal representations to learn the contribut-
ing features among them. [32] extracts the representation
of each modality using a transformer similar to our pro-
posed method. However, the fusion method of [32], [36]
contributed to the learning of multimodal features, but the
influence of text-based features was insufficient. [37] shows
that text features dominate over audio and visual features
in multimodal emotion recognition. As a means of fusion,
[34] utilized text information by adjusting word expressions
with audio and visual features. However, these latest multi-
modal studies have only used handicraft functions in audio
and visual, and are lacking in the use of textual informa-
tion [32]–[36]. Evenwithmodels utilizingmultimodal fusion,
the emotion recognition performance of these approaches
has not been shown to be sufficient for useful applications.
Further improvement, therefore, is needed. Based on these
previous efforts, it can be summarized that fusion of features
at various levels andmodalities would help. From the findings
of [27]–[29] as well as our investigation, it’s been shown that
handcrafted features in audio and visual domains seem to
provide improved saliencies associated with emotions over
deep network extracted features. Combining audio, visual,
and text features with an effective fusion would lead to
additional performance improvements. As it’s been observed
from the existing studies, textual features and the associated
context deliver more influential features in determining the
speaker’s emotions. As such, a greater emphasis should be
placed on text based features when these multimodal features
are combined. While word embeddings and employment of
RNNs have been shown to be effective, based on our reviews,
pre-trained models based on large-scale data seem to deliver
additional improvements in capturing contextual information.
As such, we propose to integrate BERT in textual feature
extraction in our architecture. In summary, we propose to
address these challenges of recognizing emotions from ana-
lyzing utterance-level multimodal input as follows. First,
we combine information from various unimodal features with
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relevant saliency, then efficaciously fuse them with appro-
priate placement of relative weights among the modalities
for accurately recognizing emotions. Our proposed model,
Heterogeneous Features Unification(HFU-BERT), integrates
BERT into our architecture to effectively combine hetero-
geneous features extracted from both handcrafted and deep
learning based methods. The main contributions of this paper
can be summarized as follows:

• We present an effective way of complementing and
fusing both handcrafted and deep learning bottleneck
features in audio, visual, and text for accurately predict-
ing emotions therein.

• Wedevelop an architecture to effectively combine BERT
extracted textual features with other modality based
features by structuring the network with appropriate
emphasis placed on each feature modality.

We demonstrate experimentally that our model outper-
forms state-of-the-art emotion recognition models. To prove
the effectiveness of our method, we test it using public multi-
modal sentiment analysis datasets CMUMultimodal Opinion
Sentiment Intensity (CMU-MOSI) [38] and CMU Multi-
modal Opinion Sentiment and Emotion Intensity
(CMU-MOSEI) [39], and Interactive Emotional Dyadic
Motion Capture (IEMOCAP) [40]. The paper is organized as
follows: Section II summarizes previous works related to this
research field. Section III and IV describes video processing
and modality feature extraction with details on the proposed
HFU-BERT framework. Session V presents an experimental
analysis to evaluate the performance of the proposed model
in theMOSI,MOSEI, and IEMOCAP corpus. Section VI dis-
cusses the results. Section VII describes the ablation studies.
Lastly, Section VIII presents a summary and future work.

II. RELATED WORK
Multimodal sentiment comprehension is a popular research
area in recent years [41]–[46]. Previous work used early
fusion approach to concatenate input features from differ-
ent modalities and then immediately conduct multimodal
fusion [47]–[49]. Decision-level fusion method trains differ-
ent models for each modality and then integrate the infer-
ence of each modality to make a final decision [50]–[52].
Gajšek et al. [53] employed weighted product rule for audio
and video decision-level fusion. Decision-level fusion, how-
ever, cannot explore inter-modality dynamics by design.
Therefore, the following efforts opted to concatenate mul-
timodal features as a means of fusion and train them
in an integrated architecture to embed inter-modal cor-
relations in the learning process. Harwath et al. [54]
fused dataset of images and audio in this fashion to
associate spoken words and their visual representation.
Similarly, Zhou et al. [55] combined the features of
text and audio modality and proposed a semi-supervised
multi-path generative neural network to better infer emotion.
Duong et al. [56] used pooling to classify emotional states by
fusion of features in image and text modalities. While these

efforts focused on using bimodal fusion, others explored
combining audio, visual, and language features together.
Xu et al. [57] explored aspect-level multimodal sentiment
analysis by proposing a multi-hop memory network to model
the cross-modality and single-modality interactions among
the three feature domains. Zadeh et al. [58] proposed a tensor
fusion network that expresses multimodal fusion informa-
tion using the product of image, audio, and visual features.
Pu Liang et al. [59] proposed a Recurrent Multistage
Fusion Network (RMFN) that decomposes a multimodal
fusion problem into multiple stages using LSTM to cap-
ture synchronous and asynchronous multimodal interac-
tions. To alleviate the added computational cost due to
considering all three modalities, Liu et al. [60] reduced
the computational complexity of the parameters by apply-
ing a low-rank multimodal fusion method that uses a
low-rank tensor. Poria et al. [61] applied LSTM separately
to text, visual, and audio first, and their extracted fea-
tures are combined in a multi-level fusion learning archi-
tecture. Due to its effectiveness, the attention mechanism
has recently attracted some in the field for its ability
to combine multimodal features. Ghosal et al. [36] pro-
posed a multi-attention recurrent network framework that
learns features using attention for multimodal representation.
Tsai et al. [41] proposed learning interactions between the
modalities by designing an attention based cross-modal archi-
tecture using multimodal transformers. Also, recently, trans-
fer learning techniques that use pre-trained networks to
extract features [26], [62]–[64] have advanced significantly.
BERT, a Transformer based model, has shown performance
improvement by fine-tuning from pre-trained weights for
a specific downstream task [65]. As demonstrated here,
employing BERT with its wide availability of pre-trained
weights, can save both time and cost in a variety of tasks.
We present an effective fusion framework for fine-tuning
by fusing heterogeneous nonverbal features that complement
the linguistic expressions of BERT. The following sections
describe our proposed architecture and the training process.
To better understand the multimodal fusion method and the
importance of BERT, we conducted ablation studies to under-
stood the impact of our proposed model.

III. PREPROCESSING
This section presents a method for extracting heteroge-
neous features for the multimodal emotion recognition tasks.
We introduce video preprocessing and feature extraction
steps for audio signals, visual and textual information from
videos. Figure 1 shows the architecture of our proposed
model.

A. VIDEO PREPROCESSING
In this paper, we focus on analyzing human sentiment from
utterance-level video. The multiple utterance [66] means a
unit of speech bounded by sentences, and process video as
utterance units. Let us assume a video to be considered as
Vi = [utti,1, utti,2, . . . , utti,L] is the ith utterance belongs
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FIGURE 1. The figure above represents the architecture of the model proposed in this paper. We process raw video in utterance units to obtain audio,
visual, and text information. Audio and visual modalities extract each handcraft features and bottleneck features through the toolkit and pre-trained
models. Each heterogeneous feature of audio and visual is connected and the high-level representation is extracted the fusion process through the
self-multi-attention fusion module. Text extracts expressions through pre-trained BERT. Then, through our BERT with heterogeneous function unification
(HFU-BERT) architecture, we predict the final emotional state by simultaneously fine-tuning the BERT and fusion applying the multi-attention fusion
module.

to video vi and L is the number utterances in the video.
We denote the set of modalities for each utterance as M ∈
{a, v, l} as audio, visual, text and extract the feature set for
the input sequence. The input features xt and emotion label
yt of the i-th utterance are expressed as follows:

X =
[
xMt : 1 ≤ t ≤ T , x

M
t ∈ Rdim

]
. (1)

Y =
[
yt : 1 ≤ t ≤ T , yt ∈ R1

]
. (2)

where dim is the input features of the modality for each
sequence t . Following prior work, To obtain time series data
of the same length, each feature is zero padded based on the
word boundary. In addition to the handicraft features in audio
and visual, we also consider the bottleneck features extracted
from the pre-trained models.

B. AUDIO FEATURES
We extract three representative handcraft features and bottle-
neck features that are frequently utilized in the field of speech
emotion recognition. As handcraft features, we extracted

1582 dimensional features using the openSMILE toolkit [3].
We follow the same procedure as Schuller et al., [67],
extracted with robust emotional features. The toolkit encap-
sulates several features including Mel Frequency Cepstral
Coefficient (MFCC), 4MFCC, loudness, pitch, jitter, etc.
with acoustic low-level descriptors (LLDs). LLDs capture
the signal of affective states by using prosodic information
from different speakers. All LLDs are extracted with win-
dow shift using a Hamming window of 25 ms step size.
We specify the audio features extracted with the openS-
MILE toolkit as LLDs. In addition, we extract deep learning
bottleneck features using SoundNet [68] and VGGish [69]
models. The SoundNet network extracts rich, natural sound
representations utilizing pre-trained models on large amounts
of unlabeled video sound datasets. The SoundNet is a
one-dimensional convolutional network and is composed of
convolutional layers and pooling layers. We process audio
data as network input and extract high-level 1024D bottleneck
features from Conv 7-layer. In our previous work, we used
VGGish Bottleneck Features to show that it is effective in
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speech emotion recognition [70], [71]. The VGGish has
been pre-trained for AudioSet [72], which includes an event
class with more than 600 audio clips and 10 YouTube video
soundtracks with over 2 million human labels. We extract
the log spectrogram from the audio and process it as a
VGGish network input. The VGGish input log spectrogram is
96× 64. In VGGish, we extract semantically meaningful and
high-level 128D embedding features from the last fully con-
nected layer. We extract LLDs (aLLDs), SoundNet (asound ),
and VGGish (avggish) features from raw audio, and select
and fuse the features xa = (aLLDs, asound , avggish) suitable
for the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets.
through experiments. The formula is as follows.

aLLDs ∈ R1582. (3)

asound =
{
asoundt |asoundt ∈ R1024, t = 0, . . . ,T

}
. (4)

avggish =
{
avggishtt |avggisht ∈ R128, t = 0, . . . ,T

}
. (5)

C. VISUAL FEATURES
Visual features consist of the OpenFace [73] estimators for
the whole frame and the representation of the VGG [74]
and ResNet [75] on the face regions. For the OpenFace
features, the OpenFace toolkit is used to extract facial land-
marks estimated from the eye region HOG, gaze vector,
head posture, hard head shape, and facial action units [76]
intensity representing facial muscle movements. Face images
extracted with OpenFace zero the background according to
the face contour indicated by the facial landmarks. We extract
709D with OpenFace features. Also, in OpenFace toolkit,
the parts that could not detect landmarks of the face recog-
nition module were removed and used. As a deep learn-
ing feature, we utilize the VGG16 and ResNet50, which
are pre-trained facial recognition models on a large facial
dataset [77]. The VGG16 extracts 4096D facial features from
the fully connected 7-layer and ResNet50 extracts 2048D
features from the average pool. The overall features xv =
(vface, vvgg, vresnet ) of each openface (vface), vgg16 (vvgg), and
resnet50 (vresnet ) extracted from the visual are as follows.

vface =
{
vfacet |v

face
t ∈ R709, t = 0, . . . ,T

}
. (6)

vvgg =
{
vvggt |v

vgg
t ∈ R4096, t = 0, . . . ,T

}
. (7)

vresnet =
{
vresnett |vresnett ∈ R2048, t = 0, . . . ,T

}
. (8)

D. TEXT PREPROCESSING
We tokenize the text on subword units by WordPiece [78]
in the same as in BERT [65]. As an example, the sentences
are divided into words as [‘‘anyhow’’,‘‘it’’, ‘‘was’’, ‘‘really’’,
‘‘good’’], where the word ‘‘anyhow’’ is ‘‘any’’ and ‘‘##how’’
Separated by, ‘‘##’’ indicates that the pieces belong to one
word. Given a text sequence of word-piece tokens x l =
[t1, t2, . . . , tn], where n is the number of sequence length.
Since the embedding layer of the BERT model has a special
token [CLS] added at the beginning of the sequence to obtain
the representation of the whole input, the output of the last

encoder layer is a n + 1 length sequence which is denoted
as x l = [CLS, t1, t2, . . . , tn]. The vector representations x l

of input tokens are computed via summing the correspond-
ing token embedding, position embedding, and segment
embedding.

IV. HFU-BERT ARCHITECTURE
This section describes the workflow of the HFU-BERT
method for feature fusion shown in detail in Figure 2.
We search for heterogeneous features with handcraft fea-
tures and deep learning bottleneck features for both audio
and visual and fuse the features suitable for the CMU-
MOSI, CMU-MOSEI, and IEMOCAP datasets using the
Multi-headedAttention encoder. Thenwe review the standard
BERTmodel and present our multimodal extension of BERT.
We describe the process of a transformer that can effectively
fuse audio and image heterogeneous feature information.
Finally, we report in detail the proposed multimodal archi-
tecture HFU-BERT.

A. PRE-TRAINED BERT
To utilize information from text data, we use BERT [65],
a transformer-based language model [79] that achieves state-
of-the-art performance on various NLP tasks. BERT is com-
monly trained with two steps: pre-training and fine-tuning.
It is pre-trained on a large corpus of unlabeled text which
includes the entire Wikipedia (about 2.5 billion words) and a
book corpus (800 million words). As opposed to directional
models, which read the text input sequentially, BERT is
considered a bidirectional path. This characteristic allows the
model to learn the context of a word based on all of its sur-
roundings (left and right of the word). In this paper, we use the
baseline BERT model which includes 12 transformer blocks,
12 attention heads, and 110 million parameters. After embed-
ding, each word in an utterance is represented by a 768D
vector. Specifically, we first fine-tune the BERT-base model
using the masked language model and adjust the impact of
BERT and effective fusion sentiment prediction objectives for
audio and visual components. The encoder architecture of the
BERTmodel utilizes the Self-Multi-Attention fusionmodule,
which is described in the next section.

B. SELF-MULTI-ATTENTION FUSION
Transformer [79] is inspired by a non-repetitive neural archi-
tecture designed for sequential data, building a basic encod-
ing block that assumes a latent adaptation that fuses various
functions. Attention within Transformer is motivated by how
we pay visual attention to different regions of an image or
correlate the most salient features in audio. Also, in sen-
tences, using word attention allows us to focus on contex-
tual words. First, we extracted the effective heterogeneous
features (handcraft and bottleneck features) for each audio
and visual from the data and then used the concatenation
method for fusion. It applies a relative positional encoding
mechanism to enable state reuse without causing temporal
confusion between frames. Because the dimensions of the
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FIGURE 2. The proposed BERT with heterogeneous features unification (HFU-BERT) framework. Given an input consisting of heterogeneous features,
namely, audio and visual, internal representations are produced by a corresponding feature transformer (self-multi-attention fusion module). Then,
the vocabulary representations output from BERT is fused to nonverbal representations with video fusion and multi-attention fusion modules.

audio and visual features are obviously different than the text
features, we use a 1D temporal convolution layer to control
them in the same dimension [32].{

x̂a, x̂v
}
= Conv1D

({
xa, xv

}
, k{a,v}

)
, (9)

where k{a,v} represents the size of the convolution kernel for
audio and visual modalities. We use the multi-head attention
in [79] to fuse the attention features from each modality. The
multi-head mechanism executes scaled dot-product attention
multiple times in parallel. We propose not only the con-
textual information between each modality feature, but also
the textual representation of BERT and two attention mech-
anisms (Self-Multi-Attention Fusion and Multi-Attention
Fusion) that combine these features. As shown in the
bottom-right corner of Figure 2, Self-Multi-Attention Fusion
and Multi-Attention Fusion contain residual connection [80]
and layer normalization [75]. Self-Multi-Attention Fusion
module estimates how salient correlations exist between

elements of a single modality and extracts sympathetic repre-
sentation. The Self-Multi-Attention fusion can be described
as follows:

ε (X) = Wm [head1, . . . , headm]+ bm,

headi = softmax
(
QKT
√
m

)
V ,

= softmax

((
XWQi

) (
XWKi

)T
√
m

)
XWVi . (10)

We define the query as Q = XWQ, the key as K = XWKi ,
and the value as V = XWVi , where, WQi ∈ Rf×f , WKi ∈

Rf×f , WVi ∈ Rf×f , Wm ∈ Rf×f and bm are weights. Specif-
ically, the softmax function measures the attention given for
the time step. Hence, the time step of headi is a weighted
summary of V . As shown in Figure 2, the outputs of the
m attention heads are concatenated together and followed by
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a linear layer.

Z = LayerNorm(X + ε (X)). (11)

H = LayerNorm(X + Feedforward(Z )). (12)

Finally, the entire model stacks NLayers in a similar way
to the BERT layers and the final hidden state of the first
token (i.e., [CLS]) is fed to a linear transformation function
for classification.

C. MULTI-ATTENTION FUSION
We introduce a multimodal fusion approach using BERT
and audio and visual influenced representations. The
Multi-Attention Fusion module automatically models the
rich interactions between audio-visual representations (Video
Fusion module: Audio-Text and Visual-Text) and BERT
models. The Video Fusion module is described in the fol-
lowing subsection. The i-th head attention takes the form
of Equation 13.

ε′ (Q,KBERT ,VBERT ) = W ′m
[
head ′1, . . . , head

′
m
]
+ b′m,

head ′i = softmax


(
QW ′Qi

) (
KBERTW ′Ki

)T
√
m


×VBERTW ′Vi . (13)

where W ′Qi , W
′
Ki , W

′
Vi , W

′
m ∈ Rf×f and b′m are parameters.

Similarly to the BERT model, theNlayers are stacked to obtain
the final representation, by connecting the feed-forward
layer and residual connections. Finally, we use the final
hidden state of the [CLS] token, to supply target-oriented
emotions to the linear function for classification. All mod-
ules (i.e., the Video Fusion and fine-tuned BERT model)
are trained simultaneously, to ensure that the model can
learn the emotional content of each utterance. Furthermore,
the Multi-Attention fusion module computes greater weight-
ings for the BERT representation.

D. VIDEO FUSION
As shown in the upper-right corner of Figure 2, we describe
the Video Fusion module. We added a Hadamard product
operation to the concatenation, unlike the usual concatenation
method. The two representations are then fused together as:

rept = [αt ;βt ;αt � βt ]Wrep + brep. (14)

where � denotes Hadamard product, Wrep ∈ R3d×d and
brep ∈ Rd are trainable weights and bias. After collecting rept
from all time steps, we get rept ∈ RT×d . The Video Fusion
module shows its effectiveness in our ablation studies in the
next section.

V. EXPERIMENTS
In this section we outline the experiments in this paper.
We first start by describing the datasets, followed by present-
ing the experimental details.

A. DATASETS
We perform the experiments on three state-of-the-art bench-
marking video sentiment analysis datasets: CMU-MOSI [38],
CMU-MOSEI [39] and IEMOCAP [40]. All of the datasets
include audio,text, and video modalities.

1) CMU-MOSI
CMU-MOSI consists of 2,199 short monologue video clips,
examples of YouTube movie reviews specifically for mul-
timodal emotions and emotion recognition. Unlike com-
mon emotion labels, such as happiness, anger, sadness, etc.,
the emotions of each sentence are annotated with the scale
of emotion within the range of [−3,3], and marked from
extremely negative sentiment −3 to means extremely pos-
itive +3. After dividing the video into utterances, we use
1,284 utterances as training set, 229 utterances as validation
set, and 686 utterances as test set, keeping it consistent with
prior works.

2) CMU-MOSEI
Similar to CMU-MOSI, this dataset is from YouTube but
it is larger. CMU-MOSEI is the largest multimodal anal-
ysis data made up of 22,777 movie review videos. Addi-
tionally, that data consists of 22,856 annotated utterances.
CMU-MOSEI is annotated with various emotion scores rang-
ing from −3 to +3, identical to the CMU-MOSI dataset.
To compare the models with the two datasets CMU-MOSI
and CMU-MOSEI, we follow the latest prior work [32], [33],
[35], using binary accuracy (i.e., Acc-2: positive or nega-
tive sentiments), seven class accuracy (i.e., Acc-7: sentiment
score classification), F1-score, Mean Absolute Error (MAE),
and Correlation Coefficient (Corr) as the main evaluation
metrics. Specifically, when the algorithm is trained, the pre-
diction score is the nearest integer from the set of integers
−3 to +3, which classifies the data into 7 classes. In all met-
rics, the lower score for the MAE is the better performance
and the higher the value excluding the MAE, the higher the
performance. In the following experimental table, we indicate
that (h) the higher the notation, the better the (l) the lower
the better. Each utterance is treated as a separate multimodal
example, and the training and test sets contain 16,326, 1,871,
and 4,659, respectively, as in the previous work.

3) IEMOCAP
IEMOCAP is an acted multimodal emotion dataset has five
sessions and each session consists of 2 actors (one male
and one female) which contains 12 h data with the entire
10 actors to record the different emotions like anger, disgust,
fear, sadness, neutral, happiness and excited. We selected
and evaluated four commonly used emotion categories:
happy, sad, anger, and neutral. We followed the experimental
procedure and evaluation indicators of previous studies [32],
[33], [35] and provide a comparison of model perfor-
mance with other State-of-the-art models for binary accuracy
(Acc-2) and F1-score. We use 4,290 utterances as training
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set, 2,124 utterances as validation set, and 1,208 utterances
as testing set.

B. EXPERIMENTAL DETAILS
We use a pre-trained language model from BookCorpus [81]
and English Wikipedia, based on the BERTbase model pub-
lished by Devlin et al., [65]. The BERTbase model is specifi-
cally a model with 12 layers of transformer blocks with each
block having a hidden state size of 768 and 12 attention heads
and we use the same hyperparameters. Our proposed Self-
Multi-Attention fusion and Multi-Attention fusion modules
consist of 3 attention blocks and 4 attention heads. We use
dropouts of 0.3 for training each module. Our proposed
framework easily suffers from overfitting because the size
of the dataset is limited. To prevent the overfitting problem,
in this paper we endeavor to seek help from other auxiliary
tasks. We introduce data normalization, dropout, and layer
normalization as regularization methods to avoid overfitting.
The dropout value is set to 0.3. We trained using the Adam
optimizer [82] with an initial learning rate of 1e-5 and used
a linear decay learning rate schedule with warm-up. The
model was trained with a batch size of 48 for 1000 epochs
and saved when the validation loss did not decrease during
training. IEMOCAP dataset is trained for 100 epochs. For
parameter optimization in CMU-MOSI and CMU-MOSEI,
the loss function is set as the Mean Absolute Error (MAE).
Additionally, IEMOCAP dataset the predicted loss func-
tion as categorical cross-entropy. The model is trained with
batch-size 48 for 1000 epochs. All data is normalized to
50 equal to the length of the longest text sentence. We run
our model using Pytorch, and it is trained and evaluated
using two NVIDIA GeForce GTX 2080TI (11 GB memory)
GPU systems.

VI. RESULTS AND DISCUSSION
In this section we outline the experiments for performance
evaluation. In our approach, audio, visual and text features
are taken into account to improve the recognition perfor-
mance. First, we describe the analysis of features extracted
from audio and visual. We experiment with the database
described in Section V with the CMU-MOSI, CMU-MOSEI
and IMOCAP database. Audio and Visual features are passed
through using the Self-Multi-Attention Fusion module to
analyze the performance. Selected heterogeneous features are
entered into themodule and fused by simply ‘‘concatenation’’
all features. Then, the baseline and multimodal results are
described.

A. AUDIO FEATURE-LEVEL FUSION ANALYSIS
The performance of the individual features introduced in
Section III is compared with that when the features are com-
bined at the feature-level. In the experiment, select audio fea-
tures including LLDs, VGGish, and SoundNet. Tables 1 to 3
show experimental results for audio features. In each
table, experiment numbers 1 to 3 are single audio features
and 4 to 7 are the result of combining single features.

TABLE 1. Comparison of the proposed audio features on CMU-MOSI
dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven class accuracy,
F1-score, MAE: mean absolute error, and corr: correlation coefficient.

TABLE 2. Comparison of the proposed audio features on CMU-MOSEI
dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven class accuracy,
F1-score, MAE: mean absolute error, and corr: correlation coefficient.

Table 1 compares the performance of the proposed
features in the CMU-MOSI dataset. LLDs+VGGish, a com-
bination of handcraft features and deep learning features,
outperforms other features except for Corr. Corr shows
better results with the combination of SoundNet+VGGish
features. It shows that in an audio sentiment recognition
experiment, handcraft features achieve competitive perfor-
mance compared to pre-trained deep learning features. For
example, in Table 1, the handcraft features show compet-
itive performance compared to the pre-trained deep learn-
ing features, and LLDs achieve higher performance at
Acc-2 than VGGish. However, the method of combining
all features, LLDs+VGGish+SoundNet shows lower perfor-
mance than LDDs+VGGish, and it is confirmed that there
exist effective features according to data. Table 2 shows
the results of the CMU-MOSEI dataset. From the exper-
imental results of the CMU-MOSEI dataset, we can see
that Num.5 LLDs+VGGish performs better in most cases.
CMU-MOSEI has similar data characteristics to CMU-
MOSI, and has higher performance because the data size is
larger than CMU-MOSI. We show the efficiency of heteroge-
neous features combining handcraft features LLDs and bot-
tleneck features VGGish in CMU-MOSI and CMU-MOSEI
dataset. Table 3 shows the performance results for the
IEMOCAP dataset. Unlike the experimental results in
Tables 1 and 2, IEMOCAP data shows that SoundNet+
VGGish has better performance in most cases (Happy,
Angry and Neutral). SoundNet achieves better perfor-
mance of the results of Acc-2 and F1-score of 0.8566 and
0.8453 respectively in Sad sentiment. In IEMOCAP dataset,
it is shown in performance that the functions of SoundNet
and VGGish play an important role in emotion recogni-
tion. We confirm that it is necessary to select and fuse
effective features according to the dataset rather than
increasing the performance by fusion of a lot of multiple
features.
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TABLE 3. Comparison of the proposed audio features on IEMOCAP dataset. We use the binary accuracy(Acc-2) and F1-score metric for each of the four
emotions.

TABLE 4. Comparison of the proposed visual features on CMU-MOSI dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven class accuracy, F1-score,
MAE: mean absolute error, and corr: correlation coefficient.

TABLE 5. Comparison of the proposed visual features on CMU-MOSEI dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven class accuracy,
F1-score, MAE: mean absolute error, and corr: correlation coefficient.

TABLE 6. Comparison of the proposed visual features on IEMOCAP dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven class accuracy, F1-score,
MAE: mean absolute error, and corr: correlation coefficient.

B. VISUAL FEATURE-LEVEL FUSION ANALYSIS
In this experiment, we employ visual features includ-
ing OpenFace, VGG16, and ResNet50. Table 4 compares
the performance of visual features on the CMU-MOSI
dataset. The experimental results of the CMU-MOSI
dataset in Table 4 show that OpenFace+VGG16 has bet-
ter performance in Acc-2, Acc-7, and F1-score. MAE
and Corr are shown to perform better with OpenFace
handcraft features of 1.457 and 0.2279, respectively.
Table 5 shows the experimental results for visual fea-
tures by applying the CMU-MOSEI dataset. In the exper-
imental results of the CMU-MOSEI dataset, we showed
that OpenFace+VGG16 performed better in all met-
rics. Table 6 presents the experimental results from the

IEMCOAP dataset for visual features. Unlike the exper-
imental results in the previous table, the visual fea-
tures of the IEMOCAP dataset has better performance in
OpenFace+VGG16+ResNet50. In subsequent experiments,
we compare how the multimodal mechanism works when
keeping the high-performing features in a frozen state for
each dataset.

C. BASELINE METHODS
We consider a variety of state-of-the-art models and compar-
isons for multimodal comparison.

• MFN (Zadeh et al., 2018) [83] synchronizes multimodal
sequences using a multi-view gated memory that stores
intra-view and cross-view interactions over time.
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• RAVEN (Wang et al., 2019) [34] did language modeling
by shifting word expressions with non-verbal behaviors
(audio and visual).

• MCTN (Pham et al., 2019) [37] proposed to learn robust
multimodal representation using the Seq2Seq model by
translating between modalities.

• MulT (Tsai et al., 2019) [32] modeled a multimodal
sequence by using an attention based cross modal trans-
formers and combines their output in a late fusion man-
ner to model a multimodal sequence.

• ICCN (Sun et al., 2020) [35] used deep canonical cor-
relation analysis (DCCA) to fuse audio and video into
an outer product centered on text to determine the cor-
relation, and then tested against multimodal embedding
algorithms.

• MFRM (Mai et al., 2020) [33] proposed a residual
memory network (RMN), and time-step level fusion was
introduced to model time-restricted interactions among
modalities.

• Human [84] was asked to predict the sentiment score
of each opinion utterance from CMU-MOSI dataset and
human performance was recorded.

D. MULTIMODAL RESULTS
To evaluate the effectiveness of our proposed method,
we compare the proposed approach with the state-of-the-art
multimodal algorithm mentioned above. Table 7 to 9 shows
the performance of ourmodel compared to the state-of-the-art
models. Our model for CMU-MOSI dataset in Table 7 outper-
forms the current state-of-the-art methods across most eval-
uation metrics. In the experimental results of CMU-MOSI
dataset, the proposed HFU-BERT model shows 0.08 and
0.1153 performance improvements in Acc-2 and Acc-7,
respectively, compared to that of the lowest state-of-the-art
performance. However, a gap is still observed between
HFU-BERT and human, showing space for further improve-
ment. Table 8 shows the performance of our model compared
to the previous model in the CMU-MOSEI dataset. Com-
pared to the baseline model, our model outperforms each
in Acc-2, F1-score, and Corr. However, in Acc-7 and MAE,
ICCN shows better performance results at 0.5158 and 0.565,
respectively, but the difference is marginal by about 0.02.
Table 9 shows the superior accuracy and F1-score for each
sentiment compared to previous work on the IEMCOAP
dataset. MFRM performs better in happy emotion than our
model, but the difference is subtle.

VII. ABLATION STUDIES
In order to analyze the usefulness of the various fusions of the
HFU-BERT model, we consider three questions:

Q1:What is the effect of changing the number ofmodalities
while training an HFU-BERT model?

Q2: When fusing with each modality in the HFU-BERT
model, what is the effect of changing the position of repre-
sentations fusion?

Q3: What is the effect of changing the pre-trained BERT?

TABLE 7. Comparison between HFU-BERT and other state-of-the-art
algorithms on CMU-MOSI dataset. Metric used is Acc-2: binary
accuracy, Acc-7: seven class accuracy, F1-score, MAE: mean
absolute error, and corr: correlation coefficient.

TABLE 8. Comparison between HFU-BERT and other state-of-the-art
algorithms on CMU-MOSEI dataset. Metric used is Acc-2: binary
accuracy, Acc-7: seven class accuracy, F1-score, MAE:
mean absolute error, and corr: correlation coefficient.

Q4: Is it better to use HFU-BERT’s fusion method than to
use other fusion methods?

To highlight the importance of the number of modali-
ties, a series of ablation studies on Q1 is conducted using
the CMU-MOSI, CMU-MOSEI, and IEMOCAP datasets.
However, Q2, Q3, and Q4 performed corresponding ablation
studies using only the CMU-MOSEI dataset. CMU-MOSEI
dataset was chosen because it has the highest number of
training examples compared to other datasets. In addition,
we compared and evaluated using Acc-2 and F1-score in
ablation studies from Q2 to Q4.

A. COMPARISON OF THE EFFECTS OF EACH MODALITY
FUSION
To explore the underlying information of each modality,
we carry out an experiment to compare the performance
among unimodal, bimodal and trimodal(HFU-BERT) sys-
tems. Table 10 shows the ablation studies for CMU-MOSI
dataset. We perform audio and visual features by apply-
ing a combination of the aforementioned high-performance
features. In Table 10, A is the audio modality, an audio
feature that combines LLDs and VGGish features. V is the
visual modality, and it is a video feature that combines
OpenFace+VGG16 features. T is the text modality extracted
by the pre-trained BERT model. Unimodal showed that text
dominates over audio and visual. In bimodal, it can be
seen that A+V without text has much lower performance
than those with text, and T+V has the high performance.
Our HFU-BERT showed the highest performance in Acc-2,
Acc-7, F1-score, and MAE by fusion of A+V+T.
Table 11 shows the ablation studies for CMU-MOSEI dataset.
The features of A, V and T are the same as those of
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TABLE 9. Comparison between HFU-BERT and other state-of-the-art algorithms on IEMOCAP dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven
class accuracy, F1-score, MAE: mean absolute error, and corr: correlation coefficient.

TABLE 10. Unimodal, bimodal and trimodal results of HFU-BERT on
CMU-MOSI dataset. Here, ‘‘L’’ means text modality, ‘‘A’’ denotes audio
modality, and ‘‘V’’ represents visual modality. Metric used is Acc-2:
binary accuracy, Acc-7: seven class accuracy, F1-score, MAE: mean
absolute error, and corr: correlation coefficient.

TABLE 11. Unimodal, bimodal and trimodal results of HFU-BERT on
CMU-MOSEI dataset. Here, ‘‘L’’ means text modality, ‘‘A’’ denotes audio
modality, and ‘‘V’’ represent visual modality. Metric used is Acc-2:
binary accuracy, Acc-7: seven class accuracy, F1-score, MAE: mean
absolute error, and corr: correlation coefficient.

CMU-MOSI dataset. In unimodal, T showed higher perfor-
mance than A andV. In the case of bimodal, in Table 11, T+A

achieves the best performance and A+V shows the lowest
performance. The comparison of T+V, T+A, and A+V
shows that T has a dominant effect on emotion recognition.
In the CMU-MOSEI dataset, our HFU-BERT fused A+V+T
outperformed all performance. Table 12 shows the ablation
studies for IEMOCAP dataset. A is the audio modality, which
is an audio feature that combines SoundNet and VGGish
features. V is the visual modality, and it is a video feature that
combines OpenFace+VGG16+ResNet50 features. T is text
modality and is a feature extracted by the pre-trained BERT
model. In unimodal, most of the A showed high performance
(angry, sand, neutral). T+A, which combines text and audio
in bimodal, has high performance in most cases (happy,
angry, sad). Our HFU-BERT showed the highest performance
in happy, angry, and sad by fusion of A+V+T.

B. COMPARISON OF THE CENTRAL MODALITY
INFLUENCE OF HFU-BERT MODEL
We perform a comparison of the influence of the
central modality in the HFU-BERT model. As shown
in Figure 2, the proposed HFU-BERT model is fused
in the audio and visual representations and the Video
Fusion module, centering on the text modality. As shown
by Equation 13 in the Multi-Attention Fusion module of
HFU-BERT, two alternative fusion strategies (video focused,
audio focused, and BERT focused) are applied to the atten-
tion mechanism by taking different value combinations of
the query, key, and value. Our experiment compares the
impact of robust modalities by changing these central modal-
ities. Figure 4 shows the impact of the fusion performance
between modalities. HFU-BERT (robust-text) is robustly

TABLE 12. Unimodal, bimodal and trimodal results of HFU-BERT on IEMOCAP dataset. Metric used is Acc-2: binary accuracy, Acc-7: seven class accuracy,
F1-score, MAE: mean absolute error, and corr: correlation coefficient.
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FIGURE 3. Comparison of ablation studies for various fusion methods. (a) is our proposed HFU-BERT fusion method. (b) is a fusion method that replaced
video fusion module with concatenate in HFU-BERT. (c) fuses three modalities in a concatenate method. (d) is the method using single multi-head
attention. (e) is the fusion method excluding early concatenate.

designed with BERT representation as a central position in
the Video Fusion module and Multi-Attention Fusion mod-
ule. Similarly, HFU-BERT (robust-audio) and HFU-BERT
(robust-visual) are robustly designed with each represen-
tation as a central position for the Video Fusion module
and the Multi-Attention Fusion module. We show that the
robust-text (Acc-2: 0.863, F1-score: 0.862) is more robust
than the robust-visual (Acc-2: 0.859, F1-score: 0.858) and
robust-audio (Acc-2: 0.854, F1-score: 0.853) modalities cen-
tered fusion. It is essential to highlight that the modality with
only BERT representation performs significantly better than
other modalities.

C. COMPARISON OF THE EFFECTS OF PRE-TRAINED BERT
IN THE HFU-BERT MODEL
We compare the impact of pre-trained BERT on text rep-
resentation in the HFU-BERT model. To compare with the
BERT model, we use publicly available 300-dimensional
word2vec [20] vector trained on 100 billion words from
Google News. As shown in Figure 6, the HFU-BERT
model we proposed proceeds by changing BERT in text
representation. Compare experiments using three methods:

FIGURE 4. Comparison of modality effects in MOSEI according to three
fusion strategies in HFU-BERT.

We use the fine-tuning model HFU-BERT (Fine-tuning
BERT) and the model HFU-BERT (Non-pretrained BERT)
using only the BERT structure, not the pre-trained BERT,
and the HFU-BERT (Word2vec) applying word2vec.
In Figure 6, HFU-BERT (Word2vec) has better performance
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FIGURE 5. Validation set convergence of HFU-BERT model. (a), (b) and (c) show the calculated losses for both training and validation processes in
CMU-MOSI, CMU-MOSEI and IEMOCAP datasets.

FIGURE 6. Comparison of the effect of fine-tuning in the HFU-BERT
model using CMU-MOSEI dataset.

than HFU-BERT (Non-pretrained BERT) and shows the
effect of pre-training model. However, when compared to
the same two pre-trained models, HFU-BERT (Fine-tuning
BERT) shows higher performance than HFU-BERT
(Word2vec). In our experiment, HFU-BERT (Fine-tuning
BERT) showed the highest performance, and BERT showed
the effect of fine-tuning.

D. COMPARISON WITH THE OTHER FUSION METHODS
We use several models to test our design decisions using
CMU-MOSEI dataset. Consists of five major fusions to per-
form multimodal fusion, as shown in Figure 3: (a) Proposed
fusion method, (b) Concat change, (c) Concat fusion method,
(d) Single Multi-head Attention, (e) without early concat.
(a) is the fusion method proposed by us, and (b) is the fusion
method in which the Video Fusion module is changed to
concatenate. Here we can compare the effects of the Video
Fusion module. (c) is a fusion method that simply applies
concatenate using three basic modalities. (d) is a model when
only one Multi-head Attention is used, and can be compared
with the two existing Multi-head Attentions of (b). (e) is the

FIGURE 7. Comparison of various fusion methods on MOSEI dataset.

part directly applied to Multi-head Attention without early
concatenate, and the effect of concatenate can be confirmed
compared to (b). The results of the fusion design are shown
in Figure 7. (a) is Acc-2(0.8629) and F1-score(0.8623), and
(b) is Acc-2(0.8581) and F1-score(0.8521) to show the effect
of Video Fusion (a) in the two comparisons. The simple
fusion methods of (c) are Acc-2 (0.8485) and F1-score
(0.8446), and Acc-2 showed the lowest performance.
(d) Acc-2 (0.8491), F1-score (0.843) is compared with (b),
we can see that the proposed Multi-Attention Fusion two
Multi-head Attentions is effective. (e) is Acc-2 (0.8547)
and F1-score (0.8546). Compared to (b), early connection
was effective, but the effect was marginal. The proposed
HFU-BERT fusion method showed superior performance
compared to other fusion methods.

E. COMPARISON OF VALIDATION SET CONVERGENCE
IN HFU-BERT MODEL
Figure 5 shows the loss values for the training and validation
process of the CMU-MOSI, CMU-MOSEI, and IEMOCAP
datasets of the HFU-BERT model. (a) and (b) select the
best predictive model at 554 and 196 epochs, respectively,
when repeated for 1000 epochs. (c) is a model trained on
IEMOCAP dataset, reaching the best performance at
87 epochs when repeated for 100 epochs. In the experi-
ments, several effective methods have been used to reduce
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overfitting, but overfitting could not be completely avoided.
The CMU-MOSEI dataset (b) with the most training data
converges with better performance. Therefore, recording a
large number of multimodal emotion databases is very impor-
tant to facilitate development in this research topic.

VIII. CONCLUSION
In this paper, we proposed a HFU-BERT model that
effectively fuses multimodal emotion recognition using
pre-trained BERT model for multimodal languages and het-
erogeneous features unification for audio and visual. The pro-
posed HFU-BERT integrated visual and acoustic modalities
into heterogeneous features and was successfully fine-tuned
using BERT. Our method was shown to exceed the state-of-
the-art in three challenging benchmarks: CMU-MOSI, CMU-
MOSEI, and IEMOCAP. In order to analyze the effect of
each modal, an ablation study was performed on HFU-BERT.
A potential limitation of our proposed model was increased
computations due to the generation of more trainable weights
and hyperparameters. Moreover, further research needs to be
conducted to confirm the robustness of our proposed model.
In future work, we will explore how to learn a better represen-
tation audio, visuals and text using models similar to BERT.
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