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ABSTRACT Today’s industry is flooded with tracking data originating from vessels across the globe that
transmit their position at frequent intervals. These voluminous and high-speed streams of data has led
researchers to develop novel ways to compress them in order to speed-up processing without losing valuable
information. To this end, several algorithms have been developed that try to compress streams of vessel
tracking data without compromising their spatio-temporal and kinematic features. In this paper, we present
a wide range of several well-known trajectory compression algorithms and evaluate their performance on
data originating from vessel trajectories. Trajectory compression algorithms included in this research are
suitable for either historical data (offline compression) or real-time data streams (online compression).
The performance evaluation is three-fold and each algorithm is evaluated in terms of compression ratio,
execution speed and information loss. Experiments demonstrated that each algorithm has its own benefits
and limitations and that the choice of a suitable compression algorithm is application-dependent. Finally,
considering all assessed aspects, the Dead-Reckoning algorithm not only presented the best performance,
but it also works over streaming data, which constitutes an important criterion in maritime surveillance.

INDEX TERMS Error metrics, lossy compression techniques, similarity measures, simplifying trajectory
algorithms, trajectory compression algorithm, trajectory similarity.

I. INTRODUCTION
In recent years, the number of vessel tracking data has drasti-
cally increased, following an impressive exponential trend.
This is due to the fact that not only all larger vessels are
obliged to be equipped with an Automatic Identification Sys-
tem (AIS) transponder, but smaller vessels are also adopting
this technology voluntarily. AIS is a global tracking system
that allows vessels to transmit data about their whereabouts.
Through the AIS, vessels are able to be aware of vessel traffic
in their vicinity and avoid potential collisions. Despite the
fact that the initial purpose of the AIS was safety, it did not
take long for the maritime authorities to exploit it for the
identification of illegal vessel activities and the monitoring
of vessels’ behavior.

The exploitation of AIS data from the maritime authori-
ties has shifted the focus of researchers’ attention towards
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the development of trajectory mining techniques. Such tech-
niques allow the authorities to further take advantage of the
trajectories formed from the AIS messages either in real-time
[1]–[3] or on historical data [4]–[6]. The main challenge to be
tackled in the development of trajectory mining techniques is
the data’s huge volume generated globally and the associated
high frequency. The increasing amount of data poses new
challenges related to storing, transmitting, processing, and
analyzing these data [7]–[11]. For instance, the transmis-
sion rate of the AIS protocol can reach a frequency of one
message every two seconds per vessel. Such a frequency in
combination with the approximately 200, 000 vessels using
the AISworldwide, yields a total amount of 16, 000messages
per second and 46GB of data per day. Thus, the enormous
volumes of trajectory data can quickly overwhelm avail-
able data storage systems and the redundant information
often contained in these data can overwhelm human analysis.
In general, the more points collected, the more accurate a
trajectory representation becomes. Nevertheless, most vessel
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movements on the water are relatively steady in space, thus
the shape of a vessel trajectory can be represented by only a
small portion of carefully selected points.

A typical approach towards these challenges is to reduce
the size of trajectory data by employing compression tech-
niques. A compression algorithm is required to not only
compress redundant position information but also retain the
vessel’s behaviour information included in the trajectory.
In other words, trajectory compression aims at substantial
reductions in the amount of data while minimizing the loss
of information and at the same time preserving the quality
of trajectory. Quality is strongly related to the information
loss and measured through metrics that calculate the applied
error over a trajectory if a certain point is discarded. There-
fore, it is become clear that there is a trade-off between the
compression rate and the quality of trajectory achieved after
compression [12].

The objective of this work is to evaluate some of the most
representative lossy compression algorithms over AIS data.
Specifically, the algorithms evaluated are: Douglas-Peucker
(DP), Time-Ratio (TR), Speed-based (SP), Heading-based
(HD), Time-Speed-Heading-based (TSH ), STTrace (STT ),
SQUISH (SQ), Dear-Reckoning (DR) and Open-Window
Time-Ratio (OWT ). The comparison is based on the compres-
sion ratio and the execution time achieved across a real-world
dataset. Their performance characteristics were compared
against different dynamically defined thresholds. Each tra-
jectory is different from others, hence it is beneficial to
select the appropriate threshold for each trajectory accord-
ing to its characteristics. Threshold refers to the discarding
criterion employed by each algorithm. Thus, we suggest
an automatic technique, in which a different threshold is
applied in the corresponding algorithm, which depends on
the actual features and peculiarities of each trajectory. In this
way, we have eliminated the need of arbitrary user-defined
thresholds.

The examined algorithms are lossy which means they
present information loss and therefore it is important to mea-
sure the quality of the compressed AIS data. Different error
metrics are used in the literature to evaluate compression. For
instance, the error in [13] is provided by a formula which
measures the mean error of the compressed representation
in terms of distance from the original trajectory. In [14] the
average and median synchronized Euclidean distance (SED)
as well as the speed error are employed in reference to
compression ratio while in [15] the same metrics are used
with the extra addition of heading error. Furthermore, in [16]
the average SED, spatial and speed error are utilized. In this
research work, the quality of the compression is evaluated
by employing similarity measures over both the original and
the compressed trajectory data, in order to evaluate their
accuracy. The purpose of a similarity measure is to obtain
a quantitative measure between any two trajectories, thus
to identify to what extent two objects are similar. Most
of the well-established similarity measures selected in this
work, consider the shape of the trajectory which consist a

characteristic of utmost importance in the maritime domain
and can provide insights about vessels’ behavior [3], [17].

The main contributions of this study are as follows:
• nine trajectory compression algorithms are compared
and evaluated. The examined algorithms are suitable
either for historical data or real-time data streams
compression;

• the compression evaluation is based on six different
trajectory similarity measures which consider the spa-
tiotemporal aspect of the trajectory;

• different dynamically defined thresholds are applied by
each compression algorithm based on the actual features
and peculiarities of each trajectory, thus eliminating the
need for arbitrary user-defined thresholds;

• Dead-Reckoning is considered the best algorithm when
dealing with AIS data, followed by Douglas-Peucker
and Open-Window Time-Ratio. These algorithms pre-
sented the most suitable performance in terms of com-
pression ratio, execution time and information loss.

The rest of the paper is structured as follows. Section II
serves as a literature review in the field of trajectory com-
pression. Section III describes the compression algorithms
while Section IV presents the similarity measures. Section V
details the compression evaluation and presents the results,
while Section VI summarizes the merits of our work.

II. RELATED WORK
Trajectory compression algorithms are widely used in various
areas, such as cartography and computer graphics, trajectory
clustering, road traffic, pedestrian movement information,
weather analysis and map generalisation. The aim of tra-
jectory compression algorithms is to balance the trade-off
between the achieved compression rate and the acceptable
degree of error.

Meratnia and de By [18] was among the first research
studies considering three dimensional mobility data, where
the temporal factor was taken into consideration in the com-
pression techniques. Leichsenring and Baldo [19] present
an evaluation of seven lossy compression algorithms with
a view to identify the most important aspects in selecting
the appropriate compression algorithm. Muckell et al. [15]
also present a performance comparison of seven compression
algorithms when utilizing two different errors, SED and the
median difference in speed. The comparison is based on the
execution times of compression algorithms and on the error
committed. Chen et al. [20] present a lossy compression
batch algorithm for GPS trajectories that considers both line
simplification and quantization in the compression process.
The quantization technique can improve the encoding pro-
cedure that takes into account speed and direction changes
for selecting the approximated trajectory for compression.
For the evaluation of the compression, the maximum SED
is employed. Birnbaum et al. [21] present a method which
exploits the similarities between sub-trajectories and creates
a time mapping by finding for each time value of a trajectory
the corresponding time value of a similar trajectory, using
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linear interpolation. A compression algorithm is applied on
the time mapping, which removes the points but keeps the
compression error under a user-defined threshold. The strong
correlation between time values of similar trajectories, allows
high compression of time mapping.

A dynamic storage system called TrajStore which is able
to co-locate and compress spatially and temporally ‘‘close’’
adjacent trajectories is presented in [22]. The compression
algorithm combines two schemes: a lossless delta com-
pression scheme which encodes spatiotemporal coordinates
within a trajectory and a lossy compression scheme for clus-
tering trajectories traveling on nearly identical paths. Another
system called REST is presented in [23]. The proposed frame-
work extracts a small collection of subtrajectories, called
reference trajectories, from raw trajectory data that form the
compressed trajectory within a given spatio-temporal devia-
tion threshold. In addition, greedy and dynamic algorithms
achieve an optimal compression ratio and high levels of
efficiency.

Regarding vessel trajectory compression from AIS data,
several studies have already conducted. Liu et al. [24] present
an adaptive Douglas-Peucker algorithm with automatic
threshold selection for AIS-based trajectory compression.
In general, Douglas-Peucker requires a static user-defined
distance threshold to decide which points to retain or remove
from the resulting curve. However, the choice of an opti-
mal threshold value is difficult and differs across various
applications. The proposed algorithm is able to maintain
the main geometrical structures of each trajectory and auto-
matically calculates a different threshold for each trajectory
based on the actual trajectory characteristics. Then, the DTW
algorithm with a warping window is employed in order to
calculate the distances between the various time series. The
evaluation of the proposed algorithm is based on classi-
fication and clustering experiments. Wei et al. propose a
method in [25], which is able to compress AIS data by con-
sidering both spatial and motion features. Douglas-Peucker
algorithm is employed to simplify trajectories, according to
spatial features and a sliding window is adopted to simplify
trajectories based on motion features such as the course
alterations and speed variations. A fixed threshold of 0.8
times the ship length is employed in DP, as proposed in [26],
while for sliding window the Gaussian distribution is uti-
lized for threshold determination regarding speed and course
variations. Then, a merging operation is performed, which
gathers the simplification results of the two methods. The
final compression results are evaluated based on the com-
pression rate, length loss rate and shape similarity. DTW
method is used to calculate the similarity between the original
and the compressed trajectory. On the other hand, Zhao and
Shi [27] present an improved version of Douglas–Peucker
which considers the shape of the vessel trajectory derived
only from course. Themethod is able to recognize the straight
and curve parts of a trajectory by detecting the transition
point. Transition points are directly retained as the start and
end points of the track segments. In the first phase of the

algorithm, a window detects the clear turningwhile in the sec-
ond, each segment is compressed by the traditional DP algo-
rithm. For user-defined threshold elimination, the threshold
of each individual trajectory is based on each ship’s length.
In [28], the authors propose a density-based spatial clustering
of trajectories based on DBSCAN. In the clustering process,
the similarities between trajectories are computed. As the
number of AIS points are extremely large, the similarity
process can be prohibitively costly. Thus, the DP algorithm is
used again for AIS trajectory compression. The threshold of
the algorithm is determined according to the changes in shape
of the trajectories. Etienne et al. [29] reduced the number
of positions of a trajectory by adopting the DP algorithm
while retaining only the virtual positions. Their purpose was
to optimize the calculation time of traffic flow pattern recog-
nition. Vries and Someren [30] employed DP algorithm to
retain the stop and move information on the ship’s trajectory.
To the compressed trajectory data, alignment based similarity
measures are applied. It is evident that Douglas-Peucker is
among the most popular and successful algorithms on trajec-
tory simplification due to its speed and accuracy.

In [31] the compression effect is evaluated using the
KDE-based AIS vessel density visualization on both the com-
pressed and uncompressed trajectory data. Thus, the thresh-
old value selected is the one for which the visualization results
are the same for both compressed and uncompressed data.
Similarly in [32], the DP algorithm and kernel density esti-
mation (KDE) algorithms are utilized for trajectory compres-
sion and visualization respectively. The massively large-scale
parallel computing function computation capabilities of the
Graphics Processing Unit (GPU) have been employed to
reduce the execution time of the Douglas-Peucker algorithm.
The compression is evaluated through the density map visu-
alizations produced by KDE.

As trajectory compression is very sensitive to parametriza-
tion, Fikioris et al. [33] present an approach for fine-tuning
the selection of parameter values for compression. A genetic
algorithm that iterates over several combinations of the
parameter values is employed until converging to a suit-
able configuration per vessel type. This genetic algorithm is
trained on a public dataset and as the system supports incre-
mental optimization, by training in data batches, the perfor-
mance continuously improves. The system aims to minimize
the compression ratio, while at the same time to minimize the
approximation error which is quantified with the Root Mean
Square Error (RMSE). Sun et al. [34] propose an online com-
pression of vessel trajectories, by utilizing the classic SPM
(scan-pick-move) compression algorithmwith the addition of
a slidingwindow. Themaximum offset distance reference tra-
jectory point in the sliding window is utilized as the criterion
of whether to retain or to discard a point. For the compression
evaluation several performance metrics are employed such as
compression time, compression ratio and compression error.

In our previous study [12], several trajectory compres-
sion algorithms are evaluated by employing classifica-
tion techniques and similarity measures. Specifically, four
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FIGURE 1. Douglas–Peucker algorithm. (a) Line segment formed by anchor and float points. (b) The point (P1) with the
maximum perpendicular distance from line segment is selected. (c) The process is repeated using recursion on each
line segment. (d) New simplified trajectory.

classification methods which extract trajectory features are
selected based on the classification accuracy. After the extrac-
tion of the features, the Random Forest algorithm is used
for comparing the different techniques. Two distance mea-
sures are employed, EDR and UMS for trajectory similarity.
In order to evaluate the similarity results, the F-Score metric
was utilized. Four real-world datasets were selected in order
to capture the full spectrum of trajectories ranging from the
mobility of people, vehicles, animals even natural phenom-
ena. On the other hand, in the present work our intention is
to focus specifically on the effect of compression over AIS
data. Thus, a wide range of offline and online compression
algorithms are compared in contrast to our previous work
which compares only five offline compression algorithms.
Furthermore, the evaluation process in this work is based
solely on the average distance produced by the different
similarity measures. Finally, the intention of this work is to
provide some insights regarding the selection of the most
suitable compression algorithm for AIS data while in our
previous work we focused on the effect of compression in
trajectory similarity and classification problems.

III. TRAJECTORY COMPRESSION ALGORITHMS
Compression algorithms can be classified into two broad cat-
egories depending on the moment the compression procedure
is performed [35]: offline and online.

More specific, offline compression is performed after a
trajectory has been fully generated by discarding redundant
points from the original trajectory. Online algorithms com-
press the trajectory during the point collection process which
has the advantage of supporting online applications [36].

Offline algorithms, also known as batch algorithms, are
able to obtain more accurate results and present smaller errors
than online algorithms as the algorithm has a global view
of the entire trajectory. On the other hand, online algorithms
remove redundant data from trajectories as they occur, avoid-
ing the unnecessary transfer of data over the network, improv-
ing data storage and reducing the memory space. With the
exponential growth of AIS data, online algorithms seem to be
a more appropriate approach for data compression. AIS data

will eventually become prohibitively ‘‘big’’ for storage and
transmission, thus offline algorithms are not suitable, as only
collected historical data can be compressed.

In this research work, the examined algorithms are lossy in
the sense that attempt to preserve the major characteristics of
the original trajectory by removing the less significant data
when compared to the original data. The main advantage of
lossy compression techniques is that they can reduce storage
size while maintaining an acceptable degree of error [14].

A. OFFLINE COMPRESSION ALGORITHMS
1) DOUGLAS-PEUCKER (DP)
Douglas-Peucker algorithm was proposed in 1973 [37] as an
approximate simplification method with error bound guaran-
tee. The process of the algorithm is illustrated in Figure 1. An
AIS trajectory is represented as a point set S = {Pa, . . . ,Pb},
as shown in Figure 1a. Initially, the first (anchor) and
last (float) point from the trajectory are selected and these
two points form a line segment LSPa→Pb . The starting curve
is a set of points and a threshold (distance dimension) ε > 0.
After, the algorithm calculates the perpendicular distance PD,
of each point (Pi) between the trajectory and its projection
on the line segment LSPa→Pb . Subsequently, the point with
the maximum perpendicular distance dP1 from LSPa→Pb is
selected (P1). If dP1 > ε, the point is retained in the
resulting set and becomes the new float point for the first
segment, and the anchor point for the second segment as
shown in Figure 1b. Thus, the original trajectory is splitted
into two sub-trajectories STrPa−P1 and STrP1−Pb . Otherwise,
if dP1 < ε, all the points between Pa and Pb are discarded.
This process is repeated using recursion on each line seg-
ment (Figure 1c). The algorithm halts when the maximum
distance between the original trajectory and the line seg-
ments is below ε. When the recursion is completed, a new
simplified trajectory is generated of only those points that
have been marked as kept (Figure 1d). In the worst case
scenario its running time is O(n2) where n is the amount of
points in the trajectory. An improved version which includes
convex hulls (DPhull) is presented in [38] with running
time O(n log n).
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2) TOP-DOWN TIME-RATIO (TR)
The main drawback of line generalization algorithms like
Douglas-Peucker, is that when dealing with trajectory data
of moving objects, they do not consider the temporal aspect.
They treat each trajectory as a line in two-dimensional space.
But a trajectory has an important extra dimension, time.
Time-Ratio algorithm computes the distances between pairs
of estimated temporally synchronized positions, one on the
original and one on the corresponding approximated trajec-
tory as illustrated in Figure 2.

FIGURE 2. Time Ratio algorithm.

For each point on the original trajectory such asPi, the tem-
porally synchronized point Pi′ is located on the approximated
trajectory TrPa−Pb and the coordinates (x ′i ,y

′
i) of Pi

′ are calcu-
lated using linear interpolation as:

x ′i = xa +
ti − ta
tb − ta

(xb − xa)

y′i = ya +
ti − ta
tb − ta

(yb − ya) (1)

After the temporally synchronized points are determined,
the next step is to calculate the distance between Pi′ and Pi.
If this distance is greater than a user-defined threshold,
the particular point is included in the resulting set otherwise it
is discarded. By including the temporal information, as well
as spatial data in its compression heuristic, the algorithm
provides more accurate results. The worst-case running time
of TR is O(n2) since it extends the original Douglas-Peucker
algorithm.

3) SPEED-BASED (SP)
Speed-based algorithm exploits the speeds from subsequent
segments of a trajectory. If the absolute value of speed dif-
ference of two subsequent trajectory segments, for example
|VSTrPb−Pc−VSTrPa−Pb |, is greater than a threshold, the point in
the middle (Pb) is retained otherwise it is discarded. The pro-
cess continues until all points in the trajectory are examined.
The algorithm is illustrated in Figure 3.

FIGURE 3. Speed-based algorithm.

4) HEADING-BASED (HD)
Heading-based algorithm exploits the angle formed by sub-
sequent segments of a trajectory. Initially, the distances of
continuous segments of the trajectory are calculated; i.e.
dSTrPa−Pb and dSTrPb−Pc. Then for each triangle formed by
three continuous points like PaPbPc, the distance (length)
of the opposite side of the examined angle is calculated e.g.
dSTrPa−Pc. Knowing the size of three sides and utilizing the
law of cosines, the angle is calculated. For example we can
calculate A1 (6 PaPbPc) as c2 = a2+b2−2ab cos γ , where γ
denotes the examined angle (A1) contained between the sides
of length a (dSTrPa−Pb) and b (dSTrPb−Pc) and located oppo-
site the side of length c (dSTrPa−Pc). If the angle of two
subsequent segments is greater than a threshold, the point in
the middle is retained otherwise it is discarded. The process
continues until all points in the trajectory are examined. The
algorithm is illustrated in Figure 4.

FIGURE 4. Heading-based algorithm.

5) TIME-SPEED-HEADING-BASED (TSH)
By integrating the concepts of time ratio distance, speed and
heading, a new algorithmic approach can be obtained. The
proposed algorithm, namely Time-Speed-Heading-based,
considers ship behaviour characteristics in terms of motion
features related to speed and course variations but also exam-
ines time, in the sense of synchronized euclidean distance
of temporally synchronized points. The algorithms sets an
anchor point and then gradually ‘‘opens the window’’. In each
recursion, three halting conditions are examined, the syn-
chronous euclidean distance measure, the speed difference
and the heading difference between trajectory subsegments.
If SED, speed or heading are greater than a SED, speed and
heading threshold respectively, the point is retained otherwise
it is discarded. Of note, the integration of different com-
pression algorithms is not a novel idea but was originally
proposed by Meratnia and Rolf in [13].

B. ONLINE COMPRESSION ALGORITHMS
1) SPATIOTEMPORAL TRACE – STTrace (STT)
STTrace was proposed by Potamias et al. [11] and introduces
the use of SED as an error metric. The algorithm is designed
to preserve spatiotemporal, heading and speed information in
a trace. Initially, every incoming point along with its SED
is inserted in the allocated memory. The SED is calculated
after its successor is stored in the sample. As soon as the
allocatedmemory gets exhausted and a new point is examined
for possible insertion, the sample is searched for the item
with the lowest SED, which represents the least possible loss
of information. If SED of the inserted point is larger than
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the minimum one found already in the sample, the current
processed point is inserted into the sample at the expense of
the point with the lowest SED.When a point is excluded from
the memory, SED attributes for the neighboring points of the
removed one are recalculated alongwith a reassessment of the
new minimum SED. The time complexity of the algorithm is
O( 1n log

n
m logm) where n refers to trajectory size (number of

points) and m to the memory size.

2) SPATIO QUALITY SIMPLIFICATION HEURISTIC – SQUISH
(SQ)
SQUISH is presented by Muckell et al. [14] and although it
is a similar approach to STTrace, it differs on the criteria of
adding a point in memory. The algorithm requires an input
parameter, i.e. the size of a buffer that contains the number
of points that will exist in the final data after compression.
Initially, all incoming points are inserted in the buffer until
is full and any new incoming point requires the removal
of another point that is already stored inside the buffer.
The selection of the point to be removed is based on the
SED estimation if that point is removed. In other words,
the removed point is that with the minimum estimated SED
error, which will introduce the lowest amount of error in the
compression. Subsequently, the algorithm estimates the upper
bound SED error of the adjacent neighbors by adding the SED
value of the deleted point. Since removal of any point would
require reassigning priorities to every point in the buffer,
the prioritization algorithm uses local optimization instead
of a more accurate global approach. The time complexity of
the algorithm is O(n log(n′)) where n refers to trajectory size
(number of points) and n′ to the compressed trajectory size.

3) DEAD-RECKONING (DR)
Dead-Reckoning algorithm, proposed by Trajcevski et al.
[39], employs a prediction location strategy in order to esti-
mate the localization of the next trajectory point in time,
using the point’s current position and velocity. The algorithms
requires a single tolerance value as an input parameter, which
specifies the maximum distance a future position can deviate
from the estimated position. Then, the distance between the
predicted location and the actual location of an incoming
point is calculated. If this distance is greater than the defined
tolerance, the point is included in the compressed trajectory,
otherwise, the point is discarded. The algorithm has a Sliding
Window approach withO(n) time complexity. This complex-
ity is due to the fact that it takes only O(1) time to compare
the actual and predicted locations of each point.

4) OPENING-WINDOW TIME-RATIO (OWT)
Opening Window algorithm proposed by Meratnia and
Rolf [13] starts by defining a segment between the anchor
(first data point) and the float (third data point) in a tra-
jectory. Subsequently, the perpendicular distances of each
intermediate point are calculated and if they are under a
predefined error threshold, the float is moved to the next
point. The process continues until the perpendicular distance

of a point inside the window exceeds the error threshold.
Then, two strategies can be employed depending on which
version of the algorithm is executed: i) the data point causing
the threshold violation is the one selected to remain (Nor-
mal OW) and ii) the predecessor of the actual float point
is selected (Before OW). The selected point becomes the
anchor and the float is set two points ahead. If no threshold
is exceeded, the float is moved one up the data points and the
method continues, until the entire series has been transformed
into a piecewise linear approximation. Opening-Window
Time-Ratio is an improved version of the OW algorithm.
It employs the time-ratio distance measuring technique pre-
sented in III-A2, thus considering the temporal aspect of
the trajectory in the compression process. The worst-case
running time of Opening Window algorithms is O(n2).

Table 1 depicts the basic characteristics of the compression
algorithms compared in this study. Specifically, the compres-
sion algorithms are categorized into offline and online mode
and the computational complexity is presented in terms of
time complexity and memory (space cost). Furthermore the
error criterion of each algorithm is presented. Each trajec-
tory compression algorithm employs particular heuristic(s) in
order to discard or retain points. Different error metrics such
as perpendicular distance, time-ratio distance, synchronized
Euclidean distance etc. are utilized as criteria to decide which
points to discard. Finally, the table illustrates the different
trajectory features each algorithm considers in compression.
For example, DP only considers the geometrical shape of a
trajectory while TR takes also time into consideration. TSH
considers all the examined features followed by DR which
considers all except heading. As the table suggests, online
algorithms tend to consider more features in compression
than offline.

C. THRESHOLD DEFINITION
One of the challenges is to define the required thresholds to be
employed by the compression algorithms. Setting the proper
threshold can significantly affect the compression results in
terms of compression ratio and achieved quality. Thresh-
old determination is an application-dependent process and
varies between different studies. For example, in [26], [40]
the 0.8-times the ship length-threshold is utilized while
in [41] the threshold distance is set experimentally to 500 m.
Each trajectory is different, hence it is beneficial to select the
appropriate threshold for each trajectory automatically.

In general, each of the examined algorithms follows the
steps below:
• group the points and create a trajectory of each object
based on an identifier. This practically means that the
number of trajectories in a dataset is as large as the
number of objects

• compress the whole trajectory of each identifier
• write the points remaining after compression to a file
grouped by identifiers

As we group the points for each identifier (object) in
the dataset, we extract the trajectories (one trajectory for
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TABLE 1. Summary of trajectory compression algorithms.

each object). In order to determine the threshold that each
algorithm will use, a dynamic process is proposed: for each
individual trajectory a different threshold is automatically
defined based on an average. Specifically, the average value
refers to the discarding criterion of each algorithm. For
example, in case of DP the average epsilon (ε) is calculated
while for STTrace two thresholds are calculated, the aver-
age speed and the average orientation. Then we use this
average value as a reference point to define a common
rule for the threshold calculation. This practically means
that in every trajectory of each dataset a different threshold
is applied in the corresponding algorithm, which depends
on the actual features and peculiarities of this trajectory.
Thus, we have eliminated the need of arbitrary user-defined
thresholds.

IV. TRAJECTORY SIMILARITY MEASURES
In this section, we describe the similarity measures that were
used in the experiments to evaluate the trajectory compres-
sion algorithms. Several trajectory similarity algorithms have
been proposed and evaluated in the literature [42]–[47], each
with its own advantages and drawbacks. Similarity measures
are employed for different purposes in information retrieval
and data mining, such as top-K similarity queries, trajec-
tory outlier detection and clustering techniques [48]. One of
the most recent studies [49], has created a hybrid unsuper-
vised learning method for trajectory similarity computation,
by combining auto-encoders and convolutional neural net-
works. The original vessel trajectories are transformed into
images which in turn are remapped into two-dimensional
matrices. Then, low-dimensional representations of the afore-
mentioned produced trajectory images were obtained using
the proposed hybrid network. Finally, the trajectories sim-
ilarities are measured by calculating the distances between
the low-dimensional feature vectors learned from the corre-
sponding trajectory images. The results show that the pro-
posed method outperformed both Fréchet distance and DTW
in terms of efficiency and effectiveness.

Most of the well-established similarity measures selected
in this work consider both the spatial and the temporal
aspect of the trajectory [50]. The spatial aspect or the
shape of a trajectory is a key characteristic that is of
utmost importance in the maritime domain and can provide

insights about vessels’ behavior [3]. The well-known Longest
Common Sub-Sequence (LCSS) [51] and Edit Distance on
Real sequence (EDR) [52] algorithms were not selected
because they try to find matching pairs of points based on a
user-defined parameter, ε. This parameter is a threshold that
defines two points between two trajectories as similar if the
distance between the points is less than ε. When comparing
compressed and uncompressed trajectories all of the points of
the compressed trajectory are contained in the uncompressed
trajectory, therefore a parameter of ε ≥ 0 would result in
misleading results.

A. DYNAMIC TIME WARPING
The Dynamic Time Warping (DTW) is a method that
calculates the distance between two temporal sequences
or time-series of different length and a one-to-one match
between these sequences is not possible. Let A and B be
two temporal sequences of spatial or positional data points,
A = [a1, a2, . . . , an−1, an] and B = [b1, b2, . . . , bm−1, bm],
where n andm is the number of points of A and B respectively
and n 6= m. These sequences can form a matrix M = A× B,
where each point Mi,j is the distance between ai and bj. The
Dynamic TimeWarping algorithm then finds an optimal path
W between M0,0 and Mn,m. As a result the optimal path W
is a set of edges Mi,j that connect points of ai and bj and the
DTW distance is the total distance of these edges:

Ddtw =
k∑

x=0

Wx (2)

where k is the number of elements inW . More details on the
optimal path finding can be found in [53]. Figure 5 illustrates
an example of the DTW algorithm. In Figure 5(a) we can see
that a one-to-one match is not possible between sequences
of different length. In Figure 5(b) we can see the edges
connecting A and B that consist the optimal pathW .

B. EDIT DISTANCE WITH REAL PENALTY
The Edit distance with Real Penalty (ERP) algorithm is
a metric that computes the distance between two numeric
sequences or time-series of different length. Similar to
the DTW algorithm, ERP creates a distance matrix M
that describes the mapping between two series A and B,
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FIGURE 5. Example of the Dynamic Time Warping distance.

M = A × B and tries to find an optimal path betweenM0,0
andMy,y, where y = max(n,m) and n and m is the number of
elements in A and B respectively. The key difference between
ERP and DTW is that ERP allows for gaps or sequences
of data points that cannot be matched with any other data
point. These gaps are then penalized based on the distance of
the unmatched points from a constant value g. The distance
between ai and bi can be formulated as follows:

Derp(ai, bi) =

 |ai − bi|, if ai, bi not gaps
|ai − g|, if bi is a gap
|bi − g|, if ai is a gap

 (3)

More details on the optimal path finding and the computa-
tion of the ERP distance can be found in [52].

C. FRÉCHET
The Fréchet distance is a similarity measure between curves
and is named after the mathematician Maurice Fréchet. This
distance metric takes into account the location and the order-
ing of the points along the curves, thus reflecting the course
of the curves. Let f : [a, b] → V and g : [a′, b′] → V
be two curves or continuous mappings, where a, bεR, a ≤ b
and (V , d) is a metric space. Given these curves the Fréchet
distance between them is defined as:

DF (f , g) = inf
α,β

max
tε[0,1]

d(f (α(t)), g(β(t))) (4)

where α and β are two arbitrary continuous and
non-decreasing functions from [0, 1] onto [a, b] and [a′, b′]
respectively. For instance, assuming that a person walks a
dog on a leash, both traverse two separate finite curves with
different speeds, but neither can go backwards. The Fréchet
distance between these two curves is the length of the shortest
leash long enough to traverse both separate paths from the
beginning to the end of the curves. According to equation 4,
f (α(t)) would be the position of the dog and g(β(t)) would be
the position of the person at time t or vice versa. More details
on the Fréchet distance can found in [54].

D. DISCRETE FRÉCHET
The difference between the Fréchet distance and its discrete
counterpart is that the latter is a restriction of the continuous
case described in the example with the person and the dog.
Considering the previous analogy one would imagine that in
the case of the discrete Fréchet distance, snapshots of both the
person’s and the dog’s curves would be taken at discrete time
points, thus representing poly-line points or polygonal curves.
Given two polygonal curves, P = [u1, u2, . . . , up−1, up] and
Q = [v1, v2, . . . , vq−1, vq] where ui and vi are their discrete
points respectively, a coupling L between these curves is
defined as a sequence (ua1 , vb1 ), (ua2 , vb2 ), . . . , (uam , vbm ) of
distinct pairs where a1 = 1, b1 = 1, am = p, bm = q and
for all a = 1, . . . , q we have ai+1 = ai or ai+1 = ai + 1 and
bi+1 = bi or bi+1 = bi + 1, thus respecting the ordering of
the points in P and Q. The length of the longest link in L is
defined as:

||L|| = max
i=1,...,m

d(uai , vbi ) (5)

and the discrete Fréchet distance between P and Q is
defined as:

DdF (P,Q) = min||L|| (6)

where DdF (P,Q) = DdF (Q,P) and DdF (P,P) = 0. For a
visual illustration, see Figure 6 where there are two poly-lines
or polygonal curves: [a1, a2, a3] and [b1, b2]. The possible
couplings between the two are [b1 a1, b2 a2, b2 a3] and
[b1 a1, b1 a2, b2 a3] taking into account that the ends of
both polygonal curves must match given that we respect the
ordering of the points and we do not go backwards. The
smallest of the maximum pairwise distances is the discrete
Fréchet distance. In this example, the maxima b2 a3 of both
couplings is equal to two, therefore the minimum of both is
also two.

E. HAUSDORFF
The Hausdorff distance is defined as the maximum distance
of a set to the nearest point in the other set and was named
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FIGURE 6. Example of the discrete Fréchet distance.

FIGURE 7. The Hausdorff distance H(A, B) between A and B.

after Felix Hausdorff. Formally, let A and B be two sets of
positional data points, A = [a1, a2, . . . , an−1, an] and B =
[b1, b2, . . . , bm−1, bm], where n and m is the total number of
points of A and B respectively. Then, the Hausdorff distance
h(A,B) is defined as:

h(A,B) = max
aεA

(min
bεB

(d(a, b))) (7)

where d can be any distancemetric between the points such as
Euclidean or Haversine. Furthermore, the Hausdorff distance
is directed which means that h(A,B) 6= h(B,A). For instance,
in Figure 7 we can observe that h(A,B) = d(a5, b1) where b1
is the nearest point of B to A and d(a5, b1) is the maximum
distance. Similarly, h(B,A) = d(b5, a1) where a1 is the
nearest point ofA toB and d(b5, a1) is themaximum distance.
Due to this asymmetry, a more general definition is given to
the Hausdorff distance:

H (A,B) = max(h(A,B), h(B,A)) (8)

where H (A,B) is defined as the maximum distance between
the two directed Hausdorff distances. Figure 7 illustrates the
distance H (A,B) between A and B. For the rest of the paper
when referring to the Hausdorff distance, the distance of
equation 8 is used.

F. SYMMETRIZED SEGMENT-PATH DISTANCE
The Symmetrized Segment-Path Distance (SSPD) is similar
to the Hausdorff distance but the key difference is that instead

of calculating the maximum distance of a set to the nearest
point in the other set, the mean distance is used. Therefore,
equation 7 can be rewritten as:

DSPD(A,B) = mean(min
bεB

(d(a, b))) (9)

where DSPD(A,B) 6= DSPD(B,A). The SSPD is simply the
mean of the two asymmetric Segment-Path Distances (SPD)
and is defined as:

DSSPD(A,B) = mean(DSPD(A,B),DSPD(B,A)) (10)

More details on the SSPD can found in [55].
Table 2 summarizes the features of the trajectory similarity

measures used in this work.

V. EVALUATION
This section presents the experimental evaluation of the
examined compression algorithms. The performance evalu-
ation is conducted in terms of compression ratio, execution
speed and distance similarity. The underlying computing
infrastructure has been a commodity machine with the fol-
lowing configuration: Ubuntu 18.04.4 LTS 64-bit; Intel Xeon
E312xx @ 1.70GHz × 12; and 64 GiB RAM.

A. DATASET DESCRIPTION
The analysis of a global AIS dataset is challenging as it
combines areas of very different message density due to the
patterns that vessels follow, the system’s technical character-
istics and the means of collection (i.e. satellite or terrestrial
network).

There is a lack of temporal and spatial uniformity in
global AIS datasets affected by several factors; for example,
in coastal areas the spatial and temporal distance between
the collected positions is much smaller as opposed to open
sea journeys where the lack of coverage can create much
sparsely defined trajectories (e.g. a single position received
in several hours). In this perspective it makes sense to focus
on a representative dataset as the following which is a subset
in the Mediterranean sea, rather than examining a very sparse
dataset, e.g. in the Pacific or Atlantic ocean.

The dataset used in the following experiments contains AIS
messages collected from a Terrestrial AIS receiver (T-AIS).
The surveillance area covers the Saronic Gulf (Greece) and
the vessels have been monitored for almost one and a half
month period starting at February 18th, 2020 and ending
at March 31th, 2020. The dataset provides information for
1229 unique vessels and contains 11, 769, 237 AIS records
in total, each comprising 8 attributes as described in Table 3.
A sample of the dataset used can be found in [56].

B. COMPRESSION EVALUATION
The compression ratio achieved by the different algorithms is
presented in Figure 8. Top-down algorithmsDP and TR depict
the highest compression ratios. In top-down algorithms, a tra-
jectory is recursively splitted until a halting condition is met.
Specifically,DP presents a compression ratio of almost 96%.
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TABLE 2. Trajectory similarity measures.

TABLE 3. Dataset attributes.

FIGURE 8. Compression ratio achieved by different algorithms.

Compression is slightly lower in TR but nevertheless remains
extremely high at about 95%. Algorithms that consider time
information to decidewhether or not to discard a point, tend to
preserve more points in a trajectory. As DP treats a trajectory
as a line in two-dimensional space and does not consider
the temporal aspect, it possess the highest compression. On
the other hand, opening-window algorithms SP and TSH
preserve more points in the resulting set than the aforemen-
tioned algorithms, with a compression ratio of 10% less.
Compression ratio is decreased in case of online algorithms
STT , SQ and DR which employ SED as error criterion (DR
also exploits speed), but maintained at a high level, about
90%. OWT which utilizes TRD is slightly behind by 8%
from the other online algorithms with a compression of 82%.
HD presents the lowest compression ratio of 34%, almost
three times smaller than DP and TR. This practically means,
the majority of trajectories present significant heading varia-
tions in some subsegments that exceed the average heading
threshold variation of the trajectory as a whole. Thus, HD
algorithm retains these ‘‘significant’’ points where the head-
ing variations occur.

Besides the compression ratio, it is important to assess the
execution time of each algorithm as it constitutes an important

index to measure efficiency and can serve as a decision ele-
ment for selecting an algorithm among others. As illustrated
in Figure 9, the execution times (measured in hours) of the
examined algorithms are presented in two groups, based on
the exhibition time scales. Indeed, the first group’s execution
times are maintained low with a maximum of 11 hours,
while in the second group the measurements range from
69 to over 800 hours. As shown in Figure 9(a), DR presents
the lowest execution time among all algorithms followed by
OWT andDP. The fairly low execution time ofDR is justified
by its low complexity. The execution times of OWT and DP
are slightly higher, but the advantage of DP compared to DR
is that the former reaches around 6% more compression than
the latter. On the other hand, the compression ratio of OWT
is 8% less in comparison with DR. SQ and TR spent consid-
erable more time than the other algorithms belonging to the
first group. Specifically, TR is 4 times slower than DR but
reaches around 5% more compression. Additionally, when
compared to OWT the compression ratio difference of TR is
even higher, about 13% but accompanied with 3 times slower
execution of the latter. SQ exhibits almost the same execution
time with TR but presents almost the same compression ratio
as DR. DP holds the highest compression ratio (96%) and is
accompanied by a fairly low execution time, only 1.4 times
slower than DR. Nevertheless, at this point it is worth noting
that online algorithms have the advantage of executing in
online mode.

In the second group, as shown in Figure 9(b), the execution
times of SP and STT differ by 6 hours with the latter to
present 4% more compression. The execution time of HD is
4 times larger than STT , with a compression ratio of only
34%. TSH exhibits an extremely high execution time due
to its exponential complexity, 869 hours. This means that
this algorithm is 2.7 times slower than HD and 335 times
slower than DR which presents the lowest execution time.
The compression ratio of TSH is 2.5 times better than HD,
but lacks only 5% when compared to DR. Only STT from
the online algorithms has a relatively high execution time.
In fact, the execution times of DR, OWT and SQ remain low,
except for the OWT which slightly increases. On the other
hand, all the offline algorithms depict high execution times,
extremely high in some cases (HD, TSH ) except for the DP
algorithm.

C. DISTANCE EVALUATION
To evaluate the amount of information loss that is posed by
each compression algorithm, trajectory similarity measures
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FIGURE 9. Execution times of different groups.

TABLE 4. Distance results.

were chosen (see Section IV) that are able to measure the
distance between the original trajectory and the compressed
one in terms of shape. The shape of the trajectory and the
pattern that it forms can play an important role in the identifi-
cation of illegal activities [3], [17]. Therefore, for each com-
pression algorithm, we measured the distances D between
each trajectory and its compressed counterpart and calculated
the mean distance and the standard deviation of distance
for the entirety of the dataset. Furthermore, the trajectory
distance measures do not calculate the distance in the range
of 0 to 1 and for that reason we normalized the results.

Table 4 illustrates the normalized distance results for each
compression algorithm and for each trajectory distance mea-
sure. It can be seen that the HD compression algorithm
presents the lowest distance in most of the cases and therefore
the highest similarity with its uncompressed counterpart. Fur-
thermore, the TSH compression algorithm which is a combi-
nation of TR, SP and HD yields the highest distance in most
of the cases. This can be explained by the fact that it filters out
data points based on both the speed and the heading, thus the
amount of points kept is greatly reduced and the distance to
the original trajectory is increased. The rest of the compres-
sion algorithms present similar distances in the majority of
the similarity measures. Moreover, it is worth noting that the

Hausdorff distance and the SSPD yield similar results due to
the similarity of these two distance metrics (see Section IV).
These results can be further verified by the percentiles from
10 to 90 percent of each distance measure and compression
algorithm that are illustrated in Figure 10. Each percentile
denotes the percentage of the dataset that has a distance value
less than or equal to the illustrated value. The x axis of all sub-
figures of Figure 10 represents the percentile of the dataset,
the y axis represents the respective distance value and each
line represents a different compression algorithm. Similar to
Table 4 it can be seen that the HD algorithm has the lowest
distance in most of the percentiles and distance measures,
while the TSH algorithm has the highest distances in most
of the cases. Finally, despite the fact that all compression
algorithms present an upward trend as the percentage of the
dataset increases, it can be observed that all algorithms except
HD present a steeper curve in most distance measures. This
denotes that the HD compression algorithm is less volatile
and it is an indicator that it is more suitable for datasets in
the maritime domain. This is further confirmed by research
conducted in [17] where the proposed trajectory classification
algorithm achieves a better classification performance when
the HD is used in trajectories compared to the rest of the
algorithms.
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FIGURE 10. Distance percentiles of compression algorithms.

D. DISCUSSION
Table 5 presents a comparison of the different algorithms
in terms of compression ratio, execution time and similarity
score. The algorithms are represented in descending order
regarding their performance in each aspect with the top algo-
rithm demonstrating the best performance and the bottom
algorithm representing the worst performance. The results

demonstrate high compression ratios for DP, TR and DR. DR
is considered the best algorithm, because it is one of the three
best algorithms in all evaluating criteria.DP is also one of the
best three algorithms in two of the three evaluating criteria.
However, it presents the worst similarity score along with TR
and TSH . The high compression ratio of TR is accompanied
with a moderate execution time and a low similarity score.
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TABLE 5. Compression algorithms comparison.

SQ and SP are neither in the best or worst results. They
present a moderate performance in all evaluating criteria.
STT presents a moderate value regarding compression ratio
but achieves one of the best similarity scores. Nevertheless,
the execution time is among the three worst. STT and SQ are
the only two algorithms that use a memory size-based com-
pression approach. OWT belongs to the best three algorithms
regarding execution time but presents a moderate similarity
score and one of the worst compression ratios. STT and
OWT compete for the third place among the best algorithms
with STT to present slightly better results. In general terms,
TSH exhibit the worst results in the sense that present the
smaller accuracy for all the evaluation criteria. In fact, its
execution time is extremely high in comparison with the other
algorithms. HD presents the highest similarity score but on
the other hand the compression ratio is significantly lower in
comparison with the other algorithms and also the execution
time is among the lowest.

Finally, it is worth noting that all of the compression algo-
rithms require user defined parameters. In the set of experi-
ments proposed in this work, the parameters were simply an
average value of either speed or heading, depending on the
algorithm. Despite the fact that this technique of parameter
selection is suitable for compression algorithms comparison,
the parameters of its compression algorithm should dynam-
ically change for the same trajectory in real-world settings.
The reason for this is that vessels exhibit different behavior
such as speed and movement in different geographic areas,
thus a global static parameter would yield erroneous results
in large trajectories that pass through a variety of water
areas. Therefore, a recommended solution for either offline
or online compression algorithms is to segment the trajectory
in temporal sliding windows and use a different parameter for
each window.

VI. CONCLUSION
In this work, we presented a set of well-established trajec-
tory compression algorithms. In particular, nine compression
algorithms were compared against different defined thresh-
olds. The dynamic determination of threshold values elimi-
nates the need of arbitrary user-defined thresholds. Instead,
a threshold is applied in each trajectory, based on its actual
features and its peculiarities. Furthermore, we presented
the distance metrics that are suitable to best evaluate their

performance and run experiments on a maritime dataset that
contains AIS messages. In the experimental evaluation all
compression algorithms were evaluated on three aspects:
execution time, compression ratio and distance between the
compressed trajectories and their uncompressed counter-
parts. Experiments demonstrated that the best performance
of offline and online compression algorithms was achieved
by DP, SP and DR, STT respectively. However, considering
all assessed aspects, DR presented the most suitable perfor-
mance in general. Undoubtedly, online algorithms have the
advantage of executing in online mode.

The results suggest that there is a trade-off between the
compression ratio and the quality achieved. Choosing a
proper compression algorithm is not an easy task as the selec-
tion is application-dependent. Different application scenarios
may require different trajectory characteristics preservation.
Nevertheless, this research work can provide some insights
of choosing and handling trajectory compression algorithms
over AIS data.
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