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ABSTRACT This work focuses on sequence learning to improve the daily routine recognition in hearing aids
(HA), where the goal is to personalize the device configuration for each user.We apply the sequence methods
on two large real-world data sets. One publicly available set contains the acceleration (ACC) data of one
person, Huynh, over sevenworking days, whereas our set includes the real life of seven subjects over 104 days
with ACC and audio data of a HA. For both sets, we design statistical features to represent the recurring
routine behavior well. In our comprehensive simulations, we analyze several sequence classifiers learning the
temporal relationships of high-level activities. The multi-layer perceptron (MLP) and random forest (RF) as
an observation model for the hidden Markov model (HMM) show the best F-measure performance of 85.3%
and 91.6% on our set and the Huynh set, respectively. In particular, the MLP-HMM combination strongly
improves on both sets compared to the non-sequence classifier MLP by 6.7% and 10.2%.Within the segment
error analysis, we show that the sequence classifiers improve the temporal prediction stability by a reduction
of insertion errors. Thus, the improved sequence classification helps the user to better address his condition
due to preferred HA settings.

INDEX TERMS Sequence learning, hearing aids, human activity recognition, sensors, sensor fusion.

I. INTRODUCTION
The daily routine is a sequence of high-level activities and
contains many recurrent situations and environments. It is
periodically performed and is stable for a longer time. In
contrast, the acoustic scene is highly non-stationary, changes
in short time intervals, and can be ambiguous [1]. Due to
this behavior, the acoustic classification of hearing aids can
lead to frequent unwanted setting changes that are linked
to the sound classes, e.g., speech in noise [2]. These mod-
ifications of HA parameters, e.g., frequency gains, can be
uncomfortable for the wearer. A stable and reliable situation
identification is necessary for a natural and subtle HA control.

Our goal is to personalize the configuration to the user’s
wishes and requirements. Therefore, the ideal HA device
setting is specified by the user’s intention in a certain situa-
tion, which translates to different hearing needs. For example,
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the user plays football and someone close to him shouts some
commands. Thus, the classification system could decide
based on the short-term acoustic cues, that the wearer is
in a conversation. Therefore, the system activates a direc-
tional processing to emphasize this voice. However, the user
wants tomonitor his total surroundings. Hence, the short-term
acoustic cues can be ambiguous, and, for example, the motion
behavior needs to be considered over a longer period to
gain more reliable scene information. Therefore, we use an
acceleration sensor within a HA for a better scene analysis.

To enhance the user satisfaction, we propose to connect
the repetitive daily routine situations and environments to
a preferred device setting [3]. Ideal device settings can be
found with the described approach of [4], where in a situation
the HA parameters are optimized based on subjective A and
B comparisons. Since the daily routine consists of recur-
ring activity sequences, the sequence learning problem takes
into account the consecutive sample relationships to exploit
these routine characteristics. Therefore, we apply sequence
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learning methods to improve the classification results com-
pared to a classifier without modeling the temporal relation-
ships. This research is not only valuable for hearing aids, but
for other hearables or, in general, wearables as well. These
devices can profit from the subject- and environment-specific
setting adjustments. The following contributions have been
achieved in this article:

• We performed the comprehensive sequence experiments
on two real-world data sets and analyzed the routine
behavior in detail.

• To model the sequences, we designed a strong hidden
Markov classifier with two discriminative observation
models, random forest and multi-layer perceptron.

• Thereby, we outperformed the prior work of Huynh
using a topic model or Gaussian mixture model with the
hidden Markov model.

• A thorough classifier performance assessment of the
time and segment-based evaluation criteria shows the
strong improvement of temporal prediction stability.

The article has the following structure. In section II, meth-
ods for daily routine recognition (DRR) and sequence learn-
ing are discussed. In section III, the used data sets are pre-
sented. In section IV, the DRR processing scheme is intro-
duced and applied to the routine data. Finally, the results are
analyzed, and conclusions are made in sections V and VI,
respectively.

II. RELATED WORK
For DRR with body-worn sensors, unsupervised topic mod-
els have been used to recognize these high-level activities
based on clustered acceleration (ACC) data [5], [6]. Further
investigations have been carried out on semi-supervised and
supervised approaches to reduce annotation effort and test
the recognition performances [7]. All this research has been
applied to one public data set, which contains the accelera-
tion data of the author Huynh over seven working days [8].
We also processed this data set with our supervised scheme
and outperformed the topic model (TM) approach [9]. The
major obstacle for further research on model generalization
across multiple subjects is the time-consuming recording of
data sets. We bridged this gap and built a large real-life data
set of multiple subjects in our earlier work on offline and
online classification approaches. Thereby, the random for-
est (RF) and multi-layer perceptron (MLP) network showed
the best performance in both scenarios on our data set of
seven people featuring ACC and additional audio data [3].
In particular, the acoustic features are very rich for detecting
sound events or characteristic acoustic scenes like certain
environments [10], activities of daily living [11], conversa-
tions [12], or transportation modalities [13]. This effectively
complements the analysis of ACCpatterns to differentiate, for
example, seated activities like office work vs. having a con-
versation [14]. We confirmed this fact that our audio features
are very informative and improve the routine classification in
comparison to only applying ACC features [9].

To further improveDRR, this article focuses on approaches
to model the sequence behavior [15]. The classical method
is the hidden Markov model (HMM), where a model of
each activity state generates the observed data and the tran-
sitions between them only depend on the previous state
(Markov assumption) [16]. In the domain of routine activ-
ities, this assumption does not hold, since the neighboring
samples have a correlation that can exhibit longer periods,
i.e., from minutes to hours. In contrast to gesture recognition
or low-level activities, where these primitivemovements have
a correlation that can last for a few seconds. For example,
an HMM can decode from posture sequences the interest of a
child performing tasks [17]. A static posture classifier returns
probability scores for the classes, such as lean forward or
backward, and the HMM deciphers the posture sequence to
one of four interest levels. Furthermore, in assembly tasks,
a Gaussianmixturemodel (GMM)fitted onACC data was the
input for an HMM to model the transitions between different
working steps [18]. Additionally, a second classifier trained
on audio features was fused to the GMM-HMM for an opti-
mized decision-making. The audio properties showed to be
beneficial. For DRR on the Huynh data set, the GMM-HMM
was applied to recognize the daily routine and was inferior to
the TM on a long observation window of a half-hour shifted
by 5 minutes [8]. Thus, the GMM is often used as a gener-
ative observation model [19], but discriminative models can
also be applied and demonstrated a better performance [16].
We cross-compare the GMM with our well-performing MLP
and RF of our earlier work. Further methods are recurrent
neural networks, where we evaluate the performance of a
long short-term memory (LSTM) network, since it demon-
strated in lots of activity studies a good outcome [20], [21].
For example, the activities of daily living or gestures, such
as household tasks, physical exercises, opening a door or
gait parameters, are accurately detected from sensor readings
like acceleration or angular velocity data [22]. In particular,
the LSTM net favors learning of long-term relationship in
data with a natural ordering, which is limited for an HMM
due to the Markov assumption [16].

III. DATA SETS
In this article, we propose to improve the daily routine recog-
nition using sequence learning. For this objective, we use
the large real-life data set of our earlier work in [3] and
the public Huynh set of [8], where the key characteristics
are summarized in Table 1. Please refer to the mentioned
articles for further details. We give a short overview of
our data set containing the real-world routine behavior of
seven non-representative subjects. They are younger than
typical HA wearers and have a more active lifestyle [23].
The subjects followed their normal routine behavior in an
unconstrained way. That is why, the set contains a broad
scope of performed activities and reflects the real life. This
creates a strong data variability and lots of challenges for
our learning task. The total length is N = 63449 minutes,
which corresponds to a mean duration of about 10 hours a
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FIGURE 1. Two example days of our data set [h]: (a) a workday and (b) a
day on the weekend.

FIGURE 2. Example day of Huynh set [h].

day and over two weeks per participant. We recorded the raw
acceleration and precomputed audio features of one hearing
aid at a rate of 16 Hz and 2 Hz, respectively. It contains five
routine classes: transportation, physical, basics, social, and
listening. The users were instructed to annotate the situations
based on their intention, i.e., a conversation during a car ride
would belong to the social class.

In Fig. 1, two example days, a workday and a day on
the weekend, are shown, where the working day has a typ-
ical structure. Before and after the office work, there is
a transportation scene for commuting and during the day
multiple short conversations happen plus two longer ones
during lunch and dinner time. These working days follow
a natural ordering, which is beneficial to learn these rela-
tionships. At the weekend, the day structure is less ordered
between different day examples and more free time activities
are performed like in Fig. 1 (b), where a longer period of
the physical class happens. Besides, people are more socially
active during weekends, which is, in particular, the case for
young people. Additionally, not all classes are active every
day, e.g., the physical class is absent on the working day
in Fig. 1 (a). The day structure is variable across subjects
and days, i.e., weekends have a different routine order. Ana-
lyzing the duration of routine events, most situations have a
short duration of a couple minutes and fewer events have a
long duration of hours. Thus, the duration probability density
function follows an exponentially decaying relationship. In
general, we note a variable duration of class events and all
25 possible transitions between the classes occur. Therefore,
we have a complex learning task with a high variability and
realistic daily routine situations.

The publicly available Huynh data set, mentioned in the
related work section, is utilized for reproducibility, evalua-
tion, and comparison [8]. The set contains the real life of the

first author, Huynh, in an open setting during working days.
The two triaxial ACC sensors were sampling at 100 Hz and
were placed at the dominant wrist and in the right pocket.
The most frequent routine is (office) work and the remaining
three activities - commuting, lunch, and dinner - happen
only with a single-digit percentage. Unlabeled segments are
not considered for the analysis. The defined classes have a
natural order, i.e., only certain transitions are possible, e.g.,
commuting to work or vice versa, which reduces the possible
complexity of the learning task. The class duration has limited
variability and a uniform probability density function. The
temporal structure is visualized in Fig. 2 and is representative
for all seven working days with marginal changes in duration
and start times of single class occurrences. In contrast to our
set, the Huynh data have less variability of activities and the
temporal day structure is comparable between each working
day, because it does not contain any days of a weekend
or holiday. In both data sets, short recording breaks occur,
since the data are uploaded, device batteries are changed,
or transmission links need to be restarted. Thus, the learning
task is simpler for the Huynh set than for ours and we expect
a better detection performance for the Huynh data.

IV. APPROACH
In this section, we introduce our approach to recognize the
daily routine. First, we compute a feature representation
in two stages and choose the best-performing measures by
a feature selection algorithm. Subsequently, the sequence
behavior is learned based on a LSTM network and an HMM
using various observation models. Finally, we evaluate the
performance of these sequence learners.

A. FEATURES
The feature representation of our data set is identical to our
earlier work and a detailed description can be found in [3].
It has been designed to separate the routine classes well.
Therefore, we extract the ACC features on an activity prim-
itive level, and then build a statistical representation on a
routine level for the ACC and audio data. The raw 3D ACC
signals have a rate of 16 Hz and the 10D audio features
have a rate of 2 Hz. Thus, we fuse the low-level data on
the same time grid at a rate of 2 Hz by applying a sliding
window of 1 second with 50 percent overlap to the raw
ACC data. Thereby, we extract four features: mean, axes
correlation, variance, and mean crossing rate. This encodes
information about the head and body orientation [24], motion
strength [25], conversational gestures [26], and transportation
modalities [27]. Thewindow length of 1 second demonstrated
in other studies to be beneficial detecting activity primitives,
e.g., walking or running [28].

In addition, the precomputed audio features at a rate of 2Hz
are helpful to detect the routine classes using environmen-
tal, music, and speech characteristics [12]. These features
include 10 measures, such as loudness [29], own voice acti-
vation [30], tonality [31], and low-frequency noise [2]. After-
wards, we segment in non-overlapping one-minute frames the
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TABLE 1. Overview of the applied the data sets.

FIGURE 3. The HMM classifier.

22 audio and ACC low-level features to build the high-level
routine representation with the statistical quantities: mean,
variance, and mean crossing rate. This results in 66 high-level
features once per minute, which are normalized to zero mean
and unit variance. After a wrapper-based feature selection
[32], 16 measures are used for the DRR. With these features,
we can distinguish a high number of daily routine situations,
for example, a conversation scene from an office work situ-
ation. In our prior work [9], we used the feature visualiza-
tion approach, t-distributed stochastic neighbor embedding,
to show these capabilities and analyze the situation clusters
in the feature space.

For the Huynh data set, the low-level feature extraction
is already done, since the mean and standard deviation of
each feature is calculated at a rate of 2.5 Hz due to stor-
age reasons. Afterwards, we apply the same three statis-
tical quantities in one-minute frames, which gives a 36D
space. The time-of-day attribute completes the 37D fea-
ture space and strongly improved the classification rates
due to the very repetitive structure of Huynh’s working
days [9].

B. SEQUENCE CLASSIFICATION
With the found feature vector x, we classify the routine
behavior and environments by exploiting the sequence char-
acteristics. Consequently, we take advantage of the order of
feature vectors x1, x2, . . . , xN and labels l1, l2, . . . , lN during
the learning process, where a label l is chosen out of the
K classes C = {c1, . . . , cK } for all of the N samples.
Therefore, the sequence learners, HMM with different

observation models and LSTM, are selected for the evalu-
ation, which are computationally feasible to use in a HA.
We perform sequence learning on the entire training data
and apply the fixed model on the unknown test data for the
evaluation.

HMM describes the observed temporal sequences of fea-
ture vectors as outcomes of hidden states generating these
observations as shown in Fig. 3. Since in our supervised

case the hidden states correspond to the classes, the HMM
is represented by the joint probability distribution [16]:

p(l1, . . . , lN , x1, . . . , xN )

= p(l1)
N∏
n=2

p(ln|ln−1)

[
N∏
n=1

p(xn|ln)

]
. (1)

This simplifies the learning procedure of the three quanti-
ties on the training data:

• The initial probability distribution p(l1) describes the
probability to start in a certain class. This is set to uni-
form distribution with probability 1

K that the observation
model solely determines the class decision for the first
sample, i.e., p(l1, x1) =

p(x1|l1)
K . Alternatively, it can be

determined by the class prior p(l), which is estimated by
the frequency of class labels.

• The transition probability aij = p(ln = cj|ln−1 =
ci) defines the probability to switch from class ci to
cj and is estimated by the maximum likelihood (ML)
approach. That means the expected number of transi-
tions from ci to cj is divided by the expected number
of times ci occurs. Two example transition graphs are
shown in Fig. 9 and 13.

• The observation probability p(xn|ln) expresses the
class likelihood that a feature vector is generated by a
class.

We use three different models to generate the observation
probabilities, which are the following classifiers trained in a
supervised learning scheme:

• random forest trains an ensemble of 20 decision trees
using randomization by bootstrapping samples for each
tree and a random feature selection per binary split,

• multi-layer perceptron iteratively trains a non-linear
decision boundary with 100 hidden neurons, and

• Gaussian mixture model fits a mixture model of 8 com-
ponents per class and a diagonal covariance matrix.

These classifiers decide for the routine class that has the max-
imal posteriori probability p(ln|xn). Hence, we compare the
recognition performance of the sole classifier model against
the combination with an HMM. To apply these classifiers as
observation models in Equation (1), we need to convert their
output to the class likelihood

p(xn|ln) =
p(ln|xn)p(xn)

p(ln)
(2)

via the Bayes rule [33]. The evidence term p(xn) is a constant
and can be ignored in the decoding of the most likely class
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FIGURE 4. The LSTM network consists of a fully-connected (FC) pre-layer and post-layer around the LSTM unit plus a softmax output stage.

sequence, which is given by

arg max
l1,...,lN

p(l1, . . . , lN , x1, . . . , xN ). (3)

According to [16], the Viterbi algorithm decodes the most
likely sequence by setting (2) in (1), taking the logarithm, and
ignoring constant factors:

log p(l1, . . . , lN , x1, . . . , xN ) (4)

∝

N∑
n=2

log p(ln|ln−1)+

[
N∑
n=1

log
p(ln|xn)
p(ln)

]
, (5)

which can be rewritten in a recursive way:

ω(ln+1) = log
p(ln+1|xn+1)
p(ln+1)

(6)

+ max
ln

[
log p(ln+1|ln)+ ω(ln)

]
(7)

with initialization ω(l1) = log
p(l1|x1)
p(l1)

. (8)

This allows to find the most likely sequence for each time
step and the optimal sequence is found by backtracking the
gone steps.

LSTM is capable of learning long-term relationships in
data sequences [21], [22]. Therefore, we test these capabili-
ties in the routine domain, where activities last for longer peri-
ods of minutes to hours. To evaluate these recurrent networks,
we need to specify the network architecture and further
hyper-parameters such as the number of neurons per layer.
Thus, we analyzed the effects of a fully-connected pre-layer
and post-layer around the LSTM layer with a softmax output
unit, which is illustrated in Fig. 4. Hereby, we varied the
number of neurons in a range from 32 to 128 units. After an
empirical architecture evaluation with a L2-regularization to
decay the weights, an Adam optimizer, and an early-stopping
criterion, the LSTM layer started very early to overfit and
learned the training data by heart if it contained too many
neurons. Thus, we optimized the final architecture and the
number of neurons to learn the sequence relationship while
keeping it as small as possible to avoid overfitting. The
results show that the net with 64, 64, and 32 neurons for pre-
layer, LSTM-layer, and post-layer is the best and we use this
network for our evaluation.

We performed the experiments in MATLAB R2019b
and used the LSTM (from the deep learning toolbox),
self-implemented HMM and GMMclassifiers with the fitting
functionality of Python library scikit-learn 0.22.2 for the

MLP network, RF trees, and GMM probability distribution.
The hyper-parameters of the classifiers, such as the number
of RF trees, are empirically optimized to provide the best
classification performance while keeping the computational
complexity as low as possible.

C. EVALUATION
For the supervised sequence evaluation, we assess the model
performance based on a cross-validation (CV) scheme.
We are interested in the model generalization abilities of
sequence models across multiple subjects. Since the Huynh
data set only contains one person, we can only perform
a leave-one-day-out scheme, i.e., the personalized model
capabilities are evaluated on the seven weekdays. In con-
trast, in our data set we can assess the model generalization
abilities across the seven subjects with a leave-one-person-
out scheme. In general, a personalized model has a better
performance than a person-independent one [25], which we
also showed for the high-level daily routine recognition [3].
To deal with the strong class-imbalance in both data sets,
we require recognition metrics that make it obvious if the
classifier ignores theminority classes [34]. Thus, we compute
• the confusion matrix containing the four events per
class: true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN),

• the accuracy (A) TP+TN
TP+TN+FP+FN , and

• the class-averaged F-measure F1 as harmonic mean of
recall TP

TP+FN and precision TP
TP+FP per class.

The accuracy criterion is affected by the class-imbalance,
but the class averaged F1-measure is independent of the
class distribution [25]. Thus, we can judge from the ratio
between the two metrics how well a classifier is doing in the
overall performance as well as for the minority classes. This
means if a classifier has a stronger gap between the A and
F1-measure, the model does not recognize the minority
classes well. However, if both metrics are on a par, all classes
are equally well detected. We use the confusion matrix for
a detailed picture of misclassified routine activities with the
best-performing algorithms.

To further consider the temporal order of the predictions
and ground truth, we apply the segment error assignments
of [35]. It defines a segment as a change in the ground truth
or prediction output. Thus, the three following error types are
computed and illustrated in Fig 5:
• Insertion is a wrong class transition at the start or end
of segment or fragments a segment of the same class
in parts. For example, before or after a social class
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FIGURE 5. The segment error types are shown for a binary classification example with the ground truth (GT) and an output of a classifier.
The vertical dashed lines denote the segment boundaries and the red rectangles mark the erroneous segments.

segment, the classifier wrongly predicts a physical seg-
ment instead of transportation or within a social segment
the predictions change to the listening class. Thus, a high
number of insertions means a classifier is not stable
in time and often changes its predictions between the
classes.

• Overfill is a segment that extends a ground truth seg-
ment over its boundaries, i.e., a class segment starts too
early or ends too late. That is why, a high number of
overfills stand for a classifier that changes its predictions
too less.

• Merge is a special case of an overfill, where between
two occurrences of the same class no change to another
class happens, e.g., the ground truth has a sequence of
social, listening, and social, but the classifier just outputs
social.

Since the segments in both data sets have a variable length,
we normalize the three error types per sample duration and
not per number of segments, which would be misleading,
since the variable segment lengths have a different weight.
Since we face a multi-class problem, the output is a special
kind of confusion matrix, the so-called segment error table.
That is why, we simplify the analysis by summing up the error
patterns over all classes. Therefore, we do not distinguish if,
e.g., an insertion error happened for one class not the other.
Thus, the sum of these three segment errors is 1 minus the
accuracy value. Based on the three segment errors, we can
judge a classifier’s tendency to change predictions a lot or be
stable over time.

V. RESULTS
The DRR results for the LSTM and HMM sequence learn-
ers with three observation models are compared against the
performance of classifiers without exploiting the temporal
relationship on two data sets, Huynh and our set.

A. HUYNH SET
Starting the leave-one-day-out CV analysis on the Huynh set
with acceleration data and the time-of-day feature, we show
the personalized classifier evaluation with recognition rates
and segment error analysis plus the confusion matrix of
the best performing algorithm in Fig. 6, 7, and 8. We first

analyze the performance of the non-sequence classifiers
used as the HMM observation models in Fig. 6 without
modeling the sequence relationships, and then check for a
possible improvement marked as the red bar by sequence
learning approaches. Therefore, the RF classifier is the best
non-sequence learning model with an F1 and accuracy per-
formance of 86.6% and 93.0% compared to GMM and MLP
with an accuracy of 87.8% and 87.4%. However, they both
have detection problems with the minority classes resulting
in a lower F1 rate of 71.8% and 75.4%, since the minority
classes strongly overlap within the ACC space. The MLP has
a higher capability to model a complex decision boundary
than the GMM, which explains the better minority class
detection. In this case, further features such as audio could
ease the detection problem. The reason for the big perfor-
mance gap between the classifiers is, that the decision trees
of the RF can effectively profit from the time-of-day feature.
The decision trees can derive rules like from 12 a.m. to 1 p.m.
it is lunch, because the Huynh set has a very structured daily
routine.

After adding the HMM sequence learner to the three
classifiers, all metrics improve shown by the red bar in Fig. 6.
TheGMM-HMMclassifier has the smallestF1 andA increase
of 1.2% and 1.1%, because it has the most problems with the
class overlap in the feature space. Then, the RF-HMM com-
bination follows and strongly improves by 5% and 2.8%. The
MLP-HMM classifier nearly doubles both metrics by 10.2%
and 5%. However, theMLPmodel starts from a lower level of
correct decisions than the RF. Thus, adding the HMM gives
more possibilities to smooth out erroneous class transitions.
In an overall comparison, the RF-HMM combination is the
best classifier even compared to the LSTM, which has an
F1 and A margin of 13.9% and 9.4% compared to the best.
To enhance the LSTM, the amount of training data needs to
be increased for a better model generalization. The ranking
stays the same as without the sequence modeling since the
class overlap too much within acceleration feature space and
RF is the only classifier that can effectively deal with the time-
of-day feature.

In comparison to the prior work of Huynh [8], we out-
perform both of his methods, GMM-HMM and TM, with
an F1 rate of 64.6% and 74.3%, i.e., our GMM-HMM and
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FIGURE 6. Classifier evaluation on Huynh set. The red bar marks the
sequence learning improvement of the added HMM to the non-sequence
classifiers, such as RF.

RF-HMMhave anF1 rate of 73.0% and 85.6%. The highmar-
gin is a result of our well-performing high-level feature rep-
resentation and the appropriate window length of 1 minute,
where Huynh used a length of 30 minutes. Additionally,
the superior observation model RF has a strong contribution
to the improved HMM performance.

Analyzing the time behavior of predictions, the results of
the segment evaluation are depicted in Fig. 7. Themain source
of errors are insertions with the highest number of cases for
the non-sequence classifiers, GMM and MLP, with 11.7%
and 11.8%. Adding the HMM highly decreases the insertion
percentage by 2.2% and 5.7% while slightly increasing the
overfill error by 1% and 0.4%. Thus, the stability of clas-
sifier predictions is improved as expected, which increases
the number of overfill events. This is also the case for the
RF, which has a similarly low quantity of insertions like the
MLP-HMM and even lower for the RF-HMM with the best
result of 9.5%. The reason is that the decision trees of the
RF can efficiently deal with the time-of-day feature, which
has a very high predictive power for the Huynh set due to
the structured daily work routine. Merge errors only occur
for the RF, RF-HMM, and MLP-RF with a small percentage
of 2.7% to 6.2%, because of the mostly long class duration,
which makes it difficult to merge segments. The LSTM has
the worst performance with the biggest overfill error of 5.1%
and a medium insertion error of 8.5%, since it has a strong
tendency to stay with its class predictions over a longer period
and changes them too less. Therefore, the sequence learning
approaches improve as expected the temporal stability of the
predictions. In some cases, the stability is too strong for the
LSTM algorithm.

Furthermore, we analyze in detail the confusion matrix of
the best-performing RF-HMM, where the class-wise recall

FIGURE 7. Classifier segment error evaluation on Huynh set.

FIGURE 8. Confusion matrix of the best-performing RF-HMM sequence
learner on Huynh set.

is shown in the rows in Fig. 8. The majority class, work,
is particularly well detected with a high recall of 98.7%.
Only a few errors occur due to other situations, which also
consist of seated activities, e.g., lunch or dinner, since the
activity patterns of the ACC data are very similar. Here,
different sensors could be beneficial to distinguish these kinds
of situations. Some confusions, such as between lunch and
commuting or dinner and lunch, do not happen, even though
they could have similar activity patterns. This is the case,
since Huynh’s working routine is very structured and the
classes contain an implicit time order: commute, work, lunch,
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FIGURE 9. Transition graph of the first cross-validation fold on Huynh
set [%].

work, commute to dinner. This knowledge is also present in
the transition matrix of the HMM, since some transitions,
e.g., lunch to dinner, do not happen. To show this switching
behavior between the classes, we plot the transition graph
of the first cross-validation fold in Fig. 9, where the weight of
a transition parameter aij is displayed as the thickness of an
arrow. No transition event between two classes corresponds
to no arrow in the graph, e.g., between lunch and commuting.
Obviously, the strongest transition is staying in the same
class, e.g., 97.3% for dinner, i.e., the probability mass is
strongly concentrated on the diagonal elements of the tran-
sition matrix due to the long duration of routine events. Thus,
the duration density for each class is uniformly distributed
with a small spread. Therefore, it is not optimal for an HMM,
whichmodels the transitions to decay exponentially [16]. The
only exception occurs for commuting that has a peak at the
typical period.

B. OUR DATA SET
On the contrary to the Huynh set, we perform a leave-
one-person-out CV and test the person-independent model
generalization across subjects on the acceleration and audio
data. The results of the classifier evaluation are depicted
in Fig. 10 and 11 as well as the confusion matrix of the best
performing algorithm in Fig. 12.

Again, we start the analysis with the performance of
the non-sequence classifiers in Fig. 10 that are used for
the observation models. Afterwards, the possible gain of
sequence modeling is assessed. The RF classifier is the best
non-sequence learningmodel with anF1 and accuracy perfor-
mance of 79.4% and 83.9%. These rates are slightly superior
to MLP with 78.6% and 83.2%. The GMM lies within a
margin of 6 to 7% in both metrics. In comparison to the
Huynh results, we see a lower overall performance due to
the person-independent training and the more complex prob-
lem. The minority class recognition works relatively better
because of the smaller difference between the accuracy and
F1 metrics. Here, the rich audio features are beneficial to
distinguish the routine classes.

FIGURE 10. Classifier evaluation on our data set. The red bar marks the
sequence learning improvement of the added HMM to the non-sequence
classifiers, such as RF.

To assess the gain of sequence modeling, we use the three
classifiers as observationmodels for the HMMand all metrics
strongly improve about 4 to 7%. Thus, the best non-sequence
classifier, RF, enhances the rates about 4% by including the
HMM, whereas the GMM-HMM gains an upgrade of almost
5%. TheMLP-HMMhas the strongestF1 andA improvement
of 6.7% and 5.4%. Thus, the MLP-HMM combination is
the winner even against the LSTM, which has an F1 and A
margin of 3.8% and 3.5% compared to the best. To enhance
the LSTM performance, the amount of training data needs to
be increased for a better model generalization.

Analyzing the time behavior of predictions, the results
of the segment evaluation are depicted in Fig. 11. The main
source of errors are insertions with the highest number of
cases for the non-sequence GMM classifier with 20.9%.
Adding the HMM to the GMM, it highly decreases the inser-
tion percentage by 6.8% while slightly increasing the overfill
error by 1.7%. Thus, the GMM-HMM has a similar level
of insertion errors like the RF and MLP of about 14-15%.
The RF and MLP including the HMM strongly decrease the
insertions by 9.1% and 9.5% while enhancing the number of
overfills by about 4%. Thus, the stability of classifier predic-
tions is improved as expected, which increases the number
of overfill events. The best overall performance is achieved
by the MLP-HMM. Merge errors only occur for the RF and
the sequence learners with a small percentage of 0.2% to
2.2%. The LSTM has a medium overfill performance of 4.2%
and a medium insertion error of 10.5%, since it has a strong
tendency to stay with its class predictions over a longer period
and rarely changes.

Furthermore, we analyze in detail the confusion matrix
of the best-performing MLP-HMM in Fig. 12. Obviously,
the two majority classes, social and basics, and transportation
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FIGURE 11. Classifier segment evaluation on our data set.

are very well recognized with a recall over 90% and con-
tribute to the high overall accuracy of 88.1%. They are
mainly distinguishable through audio characteristics, such as
low-frequency car noise or own voice activation. In contrast,
the strong confusion between listening and basics (16.4%) or
social (14.8%) stems from the high similarity within the audio
features and the strong dependency of the reference class
on the subjective user intention. This means a background
conversation can be either listening or basic depending if
the subject wants to follow it. Additionally, it can quickly
change to social if the subject decides to participate in the
conversation. Thus, we have many transitions between these
classes and, in general, all routine transitions are possible,
which is different to the Huynh set and makes the prob-
lem more complicated. To show this switching behavior
between the classes, we plot the transition graph of the
first cross-validation fold in Fig. 13. Obviously, the strongest
transition is staying in the same class, e.g., for social 96.7%,
i.e., the main portion of the probability mass lies on the
diagonal elements of the transition matrix. However, on some
days, not all transitions happen since an activity class is not
performed every day. The HMM inherently models a duration
probability density that is exponentially decaying [16], which
is a good fit to our data set. This is, because many events
have a short duration of a few minutes and a small number
of events have a long duration of hours. Similarly, during
sport activities, we have a high intensity in the ACC signal
and a voice activation, which leads to the bigger mismatch
of 17.3% between physical and social. Thus, both classes
can also occur simultaneously and then the user’s intention
decides. Here, the situational intention needs to be better
decoded from suitablemotion patterns or further sensors [36],
e.g., electromyograms for listening attention [37], that can
deliver a more reliable input.

FIGURE 12. Confusion matrix of the best-performing MLP-HMM
sequence learner on our data set.

FIGURE 13. Transition graph of the first cross-validation fold on our
set [%].

To summarize the findings on sequence learning for
daily routine recognition, it strongly improves the classifi-
cation performance of all tested non-sequence learners, RF,
MLP, and GMM, by adding the HMM to them. For the
GMM classifier, the enhancement is less strong than for
the others. The RF and MLP outperform the LSTM model.
Thus, the sequence learning is particularly beneficial for the
RF and MLP classifier as the observation model for the
HMM. In addition, the thorough sequence classifier evalu-
ation shows the expected improvement in the temporal pre-
diction stability.
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VI. CONCLUSION AND OUTLOOK
In this article, we improved the daily routine recognition
(DRR) on two real-world data sets using sequence learning
methods. Our large and realistic data set consists of seven
non-representative hearing aid (HA) wearers, recording their
unconstrained real-life for a total length of 63449 minutes.
Thereby, the acceleration and audio features are designed
to represent the routine characteristics well. In contrast,
the Huynh set contains his real-life of seven working days
with two acceleration sensors. On this basis, we perform a
comprehensive sequence classifier evaluation. We demon-
strated that the multi-layer perceptron (MLP) and random
forest as an observation model for the hidden Markov model
(HMM) achieved the best F-measure performance of 85.3%
and 91.6% on our set and the Huynh set. Thereby, the MLP
has the strongest F-measure improvement of 6.7% and 10.2%
on both sets by adding the HMM sequence learner. The long
short-term memory network has an F-measure of 79.7% and
77.7% on both sets. The segment error analysis discovers
for sequence learners the strong improvement of the tempo-
ral prediction stability. On our set, the remaining confusion
for classifiers mainly stems from the intention-based class
decision of the HA users. Thus, we showed the improved
classification performance of sequence learners.

For future work, we can investigate a tailored motion
representation or apply further sensors to distinguish the
intended behavior more precisely [13], [38]. Further algo-
rithmic improvements can be achieved to make the HMM
backtracking real-time applicable without the need to store
the sequences in memory for an optimal decoding of the
most likely path. Additionally, a data set of represen-
tative HA users can be evaluated to determine the DRR
performance of these elderly wearers. We can investigate,
if they perform other activities, have a weaker motion pat-
terns, or the routine changes over a longer period due
to a concept drift [39]. Nevertheless, it is expected, that
these elderly users rely on more recurring set of activities
and environments [23]. Thus, the daily routine recognition
should be simplified.
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