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ABSTRACT We present a novel segmentation-based seam cutting algorithm to generate visually plausible
high-resolution 360-degree video efficiently. While the demand for an efficient video stitching algorithm for
generating immersive videos has increased, it has received limited attention in the literature. Furthermore,
stitched videos often suffer from distorted objects, temporal inconsistency and time constraints. Thus, in this
paper, we propose an efficient seam finding algorithm that preserves objects from distortion, minimizes tem-
poral inconsistency, and reduces processing time. One of the fundamental steps in image and video stitching
is the estimation of seam boundary. To do this, the proposed algorithm leverages a convolutional neural
networks-based instance segmentation algorithm that provides more accurate object regions. It computes
energy surfaces considering the regions and then estimates seam boundary by discovering a minimal energy
path with minimal computations. We validate the proposed algorithm using real-world high-resolution
360-degree sequences. The experimental results verify that the proposed algorithm can produce seam
boundaries that avoid objects with better temporary consistency. The proposed algorithm reduces the number
of pixels passed through objects by approximately 30% on average compared to the existing algorithms. The
qualitative comparisons furthermore demonstrate that the proposed algorithm consistently produces more
perceptually pleasing results.

INDEX TERMS Video stitching, image stitching, seam estimation, 360-degree video, instance segmentation,
deep neural network.

I. INTRODUCTION
Video stitching is a crucial technique to generate immersive
videos since omnidirectional scenes are usually captured by
using multiple cameras [1], [2]. It creates a combined, usually
wider field of view, video from a collection of videos with
overlapping fields of view. A typical video stitching pipeline
consists of feature extraction, correspondence matching,
image registration, and image composition [3]–[5]. By fea-
ture extraction and correspondence matching, corresponding
points are found between images from different views. Then,
given the corresponding points, the image registration process
aligns the images by transforming them into one coordinate
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system. Finally, as the aligned images have overlapping
regions, the image composition step determines the color
information in overlapping regions and their nearby locations.

While image registration has been extensively studied to
enhance the quality of image alignments [6]–[10], it is still
a challenging problem when input images are captured with
large parallax, lens distortion, scene motion, and exposure
difference [3]. Input images should be captured by cam-
eras that are sufficiently far away from the scene to reduce
parallax [3], [11], [12]. It, however, limits many potential
applications and usages that apply video stitching only to
images with small parallax, lens distortion, scene motion,
and exposure difference. Thus, many image composition
algorithms, such as seam cutting [13]–[17], and advanced
image blending [4], [18] algorithms, have been proposed to
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FIGURE 1. Overview of the proposed framework. The proposed framework focuses on the seam cutting algorithm that utilizes instance
segmentation-based energy map estimation to minimize visual artifacts. The framework does not have any constraint on the number of input videos.

FIGURE 2. Examples of visual artifacts on the objects in the stitched
images. The object boundary is blurred in (a), and the object on the wall
is duplicated in (b).

relieve registration artifacts and produce visually plausible
stitched images.

In addition to the challenges of image stitching, video
stitching further suffers from visual artifacts caused by tem-
poral inconsistency and time constraints. Additional visual
artifacts are induced by transitions of seam location or
light condition variations across successive frames. Consid-
ering processing time, as modern camera systems capture
high-resolution videos at a high frame rate, the demand
for efficient video stitching algorithms has been increasing.
Nevertheless, efficient video stitching has received limited
attention in the literature [19]–[22].

To this end, we proposed a new video stitching algorithm
taking visual artifacts, spatiotemporal consistency, and time
constraints into account. The proposed framework induces
fewer visual artifacts by applying an efficient and effec-
tive seam finding algorithm. The overall framework of the
proposed algorithm is explained in Figure 1. As one of
the severe visual artifacts of video stitching is the dis-
tortion of objects (See Figure 2), we propose an energy
map estimation method that leverages convolutional neural
networks(CNN)-based instance segmentation to preserve the
structures of objects. Moreover, to improve temporal con-
sistency, we develop an efficient seam finding algorithm
that includes a decision algorithm for seam updating and a
spatiotemporal smoothing process, suppressing undesirable
seam changes over frames. As a side note, image/video
stitching is a typical ill-posed problem without ground-truth
stitched images/videos. This makes it challenging to evaluate

performance properly and to accomplish a quantitative per-
formance analysis. Thus, we present a way to assess how
well seam locations are determined and preserve contents in
the stitched results. We then compare the performance of the
proposed algorithm with the current state-of-art seam finding
algorithms based on it. In summary, the contributions of this
work are as follows:

• Propose an efficient seam finding algorithm for stitch-
ing 360-degree videos using instance segmentation and
temporal smoothing process.

• Present a way to evaluate the performance of seam find-
ing algorithms.

• Validate the performance of the proposed algorithm
using both real-world videos and common benchmark
videos.

The remainder of this paper is organized as follows.
In Section II, we present related works regarding image/video
stitching and instance segmentation. We then introduce
the proposed algorithm including energy map estimation
algorithm in Section III-A and seam finding algorithm in
Section III-B. In Section IV, we present experimental results
to demonstrate the effectiveness and efficiency of the pro-
posed algorithm. Lastly, we conclude with a summary of key
observations in Section V.

II. RELATED WORKS
A. IMAGE AND VIDEO STITCHING
1) IMAGE REGISTRATION
Many advanced methods have been studied for fixing
the aforementioned artifacts by estimating more accurate
homography and/or by applying spatially varying warping.
Instead of using a single global homography, Gao et al. [11]
proposed a dual-homography (DH) warping method by
assuming that the scene contains a ground plane and a dis-
tant plane. The estimated two homographies were blended
using the per-pixel weight that controls the contribution
of each homography. Because a global affine transforma-
tion only well-fits to the regions of dense correspondences,
Lin et al. [23] replaced the pre-computed global affine trans-
formation with a smoothly varying affine (SVA) transform
over the rest of the scene. The warp method, known as
as-projective-as-possible (APAP) [24], also allows local
deviation from the global transformation. An input image
is partitioned into small cells, then the local homography
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TABLE 1. The summary of the approaches and strengths/limitations of previous seam finding algorithms.

for each cell is refined by the weighted feature points.
More recently, mesh-driven approaches were proposed aim-
ing at improving local alignment quality. Zhang et al. [25]
designed a mesh-based framework to optimize alignment
by adding line preserving, orientation, and loop clo-
sure constraints. Another mesh-based approach proposed
in [26] determines a total energy function by simultane-
ously optimizing the as-projective-as-possible warp and the
quasi-homography warp [27] including alignment, distortion,
and saliency. The seam-guided local alignment (SEAGULL)
scheme iteratively optimizes local alignment by performing
seam-guided feature reweighting [13]. The method in [28]
used a global similarity prior (GSP) constraining edges away
from the overlapping region to generate natural stitched
images. To ensure more robust alignment, Li et al. [12]
proposed a robust elastic warping method using TPS [29]
model and a Bayesian feature refinement model based on
robust elastic warping.

2) IMAGE COMPOSITION
Despite the studies to construct better alignment functions,
the artifacts of non-ideal camera settings cannot be concealed
only by better registration. Therefore, post-processing tech-
niques have been extensively explored tomitigate registration
artifacts between images, such as seam cutting and image
blending. A general approach for finding optimal seam is
discovering the path that minimizes certain important energy
functions [14], [15]. Graphcut is a widely used seam selection
algorithm that maximizesMarkov randomfield (MRF) likeli-
hood based on the similarity of pixels between the reference
and warped images [14]. Based on the Graphcut algorithm,
Eden et al. [18] defined the energy functions in radiance
space. The functions prefer values with large signal-to-noise
ratios and unsaturated/normally exposed in the scenes with
large motions and exposure differences. Zhang et al. [25]
defined the energy function as the combination of the align-
ment error and color difference and optimized it using the
Graphcut algorithm. An energy map was modified based on
the human eye’s perception defined by saliency and color
difference [16]. As advanced object detection techniques

developed [30], [31], Herrmann et al. composited the energy
using the detected object information [17]. Table 1 summa-
rizes the approaches to find seams and pros/cons of previous
seam finding algorithms.

3) VIDEO STITCHING
Compared to image stitching, video stitching has received
limited attention in the literature. The straightforward
approach is extending image stitching to video stitching.
El-Saban et al. reduced the processing time by tracking inter-
est points over multiple frames [19]. Jiang and Gu proposed
the content-preservingwarping algorithm that optimizes local
alignment and image composition in the spatiotemporal
domain [20]. To alleviate alignment artifacts in multi-view
videos, Lee and Sim estimated the parameters of ground
plane homography, fundamental matrix, and vertical vanish-
ing points using the appearance and activity-based feature
matches [21]. Recently, the work in [22] adapted a deep
learning framework to stitch videos inspired by pushbroom
cameras.

B. INSTANCE SEGMENTATION
Instance segmentation task aims to classify each pixel to
the corresponding class and object instance [32]–[35]. It is
closely related to object detection and semantic segmentation.
Object detection task aims to detect all the objects in the given
image by localizing them using bounding boxes and by clas-
sifying them to the corresponding classes [31], [36]–[39].
The goal of the semantic segmentation task is classify-
ing each pixel in the given image to the corresponding
class [40]–[43]. Object detection has a limitation on localiz-
ing objects at pixel-level while semantic segmentation cannot
separate object instances. Instance segmentation overcomes
the limitations by fusing the two tasks although it cannot
segment stuff.

He et al. presented a framework for object instance seg-
mentation by extending an object detection method [31]
by adding a branch for predicting an object mask [32].
For real-time instance segmentation, Bolya et al. proposed
a fully convolutional model [34]. The framework consists
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FIGURE 3. Description of the proposed algorithm.

of generating a set of prototype masks and predicting
per-instance mask coefficients. Wang et al. presented a
single-shot instance segmentation framework that utilizes
uniform grids [35], [44] similar to YOLO [38]. For each grid
cell, the method predicts a semantic class and the correspond-
ing instance’s mask.

III. PROPOSED METHOD
Existing seam finding algorithms do not necessarily pro-
duce visually pleasing results and suffer from visual arti-
facts. In particular, objects in overlapping regions are often
distorted, cropped, duplicated, or occluded, as shown in the
examples of Figure 2. In addition to these spatial-visual
artifacts, video stitching inherently faces temporal coherence
issues. Specifically, seam boundaries frequently change over
frames, yielding blinking outputs in consecutive sequences.
In order to overcome these limitations, we design a new
approach that creates seam boundaries preserving contents in
the stitched regions and maintains temporal consistency.

In this section, we provide the details of the proposed
seam finding algorithm. We first discuss the energy map
that enables detecting dominant objects in the overlapping
regions. Besides, the function is designed for maintaining
spatial-temporal consistency in videos. Then, we describe
how to find seam boundaries that bypass dominant objects
efficiently. The overall pipeline of the proposed algorithm is
given in Figure 3.

A. ENERGY MAP ESTIMATION
After the initial registration, individual frames from different
views are blended to produce a single seamless frame. Given
two aligned t-th RGB frames I t0 and I t1 as inputs, and the
stitched frame I t , a seam finding problem can be thought
of as selecting a discrete label L t (i, j) ∈ {0, 1} for all pixel
locations (i, j) in the overlapping regions of two frames. The
label determines which frame provides the pixel value at the
pixel location (i, j), for example, L t (i, j) = 0 indicates that
the pixel at the location (i, j) is from the frame I t0(i, j). This
transition can be determined by the locations of dominant

objects in the overlapping region. As such, we would like to
create seam boundaries that avoid dominant objects.

Figure 4 describes the steps of the proposed energy map
estimation algorithm. The object energy map is initially com-
puted by the instance segmentation. The initial energy map is
then combined with the energy associated with the previous
frame.

1) OBJECT ENERGY
For object energy, instance segmentation results can be rep-
resented by a binary map S t (i, j), which indicates whether the
pixel belongs to objects:

S t (i, j) =
{
1, if (i, j) ∈ �o
0, otherwise,

(1)

where�o is the set of pixel locations belonging to the objects
in the overlapping regions. Allowing misalignment error in
the overlapping regions, in practice, S t (i, j) is computed as the
union of pixels that belong to any objects detected in either
I t0 or I

t
1:

S t (i, j) = S t0(i, j) ∨ S
t
1(i, j), (2)

where the operation ∨ denotes a logical disjunction; S t0 and
S t1 indicate the instance segmentation results corresponding
to I t0 and I

t
1, respectively. Note that any instance segmentation

methods can be used to detect dominant object regions. In our
experiment, we used a convolutional neural networks-based
instance segmentation method YOLACT [34] in overlapping
regions because of its efficiency.

2) TEMPORALLY CONSISTENT ENERGY
In the video stitching process, the stitched outputs often suffer
from temporal inconsistency due to the presence of dynamic
elements or varying exposures across frames. Therefore,
to preserve the spatial-temporal consistency, we propose an
efficient temporal smoothing process based on the feedback
scheme. The proposed smoothing process maintains energy
information over an arbitrary number of frames while reduc-
ing computational cost and memory requirements. Moreover,
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FIGURE 4. Description of the proposed energy map estimation algorithm. Given two input images, the proposed algorithm estimates spatial-temporally
consistent object energy function.

the contribution of each frame to the output energy map can
be easily controlled by adjusting an attenuation factor.

We formulate the temporally smooth energy map E t (i, j) at
the pixel location (i, j). The function consists of object energy
augmented with the energy associated with previous frames,
as follows:

E ts (i, j) = αE
t−1
s (i, j)+ (1− α)S t (i, j), (3)

where E t−1s (i, j) is the energy map of the (t − 1)-th frame.
The attenuation constant α decides the contribution of the
previous energy map to form the current energy map. Owing
to the recurrent structure of (3), the energy map of E ts is inter-
preted as the weighted sum of a set of object energies (i.e.,{
S0(i, j), · · · , S t (i, j)

}
). That is, the current energymapmem-

orizes objects moving through the previous frames. This is an
efficient structure to combine energy maps over an arbitrary
number of frames and smooth temporal changes without stor-
ing previous frames. However, since memorizing long-term
object energy may produce invalid seam boundaries by accu-
mulating the trajectories of all objects passing through the
overlap, we regulate the contribution of the energy map of
previous frames as:

E ts (i, j) =
{
E ts (i, j), if E ts (i, j) ≥ τ
0, Otherwise,

(4)

where τ is the threshold that defines a time window to
accumulate energies. Object movement history is truncated
after the defined time window by τ . In our implementation,
we would like to form the smoothing process as a weighted
average that weights the energy of the current framemore and
gradually downweights the energy of the temporally distant
frames. Thus, τ was set to αN (1−α), where N is the number
of frames to maintain energies, and α was set to 0.1.
In addition to finding temporal coherency, we further

alleviate spatial-temporal misalignment by applying dilation
operations. This can help robustly handling object deforma-
tion artifacts that appear in the overlapping regions. Since
dilating object energy implicitly gives the prediction of object
movement, this leads seams to be formed avoiding objects

that will appear in the future frames. Furthermore, the dilation
would compensate for possible unstable object segmentation.
We have found that the contribution of the temporal smooth-
ing energy is maximal when segmentation over frames is
unstable.

B. SEAM FINDING
Given the energy map (3) and (4), seam boundaries are com-
puted as the minimal path of (4). A set of seam boundaries
can be built by connecting pixels with consistent windings.
Solving this minimal path problem even for an image is
typically a computationally expensive and memory-intensive
process [15], [20]. Thus, in order to accelerate the seam
finding process for videos, we develop a way to efficiently
approximate optimal seam boundaries in the spatial-temporal
domain. The details of the seam finding steps are given in
Figure 5.

1) SEAM BOUNDARY
The proposed algorithm finds the minimal energy seam
boundary that stretches from the top of the overlapping region
to the bottom, moving left or right by a few pixels from
one row to the next. While traversing rows from the top
to the bottom (i.e., i = 2, · · · ,H ) where the size of the
overlapping region is H × W , only the pixels in the row
directly under are examined to efficiently find seam with
minimal computations. Moreover, the next seam path through
the energy surface is searched on a set of adjacent pixels of
the previous seam location. Defining a function V t (i) as a
seam path with the lowest energy on the surface of E ts in the
overlapping region, this can be accomplished by using the
greedy search [45], as follows:

V t (i) = argmin
k

{
E ts (i, k)

}
. (5)

To avoid abrupt seam changes over each row and to expe-
dite the processing time, we only searched k ∈ {j−p, j, j+p}. j
is the seam location of the previous row in the horizontal line,
and p is the offset from j.
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FIGURE 5. Description of the proposed seam finding algorithm. Given the estimated energy map, the proposed algorithm finds seam boundaries
by examining preattentive object locations behind the current row.

In (5), we assign a minimal adjacent pixel as the seam
only if the minimal pixel is unique and has never belonged
to objects (i.e., E ts (i,V

t (i)) = 0). Otherwise, the seam path
is computed depending on whether the seam location of
the previous row is on the reference line. The details are
explained below in a) Seam Finding on Reference Line and
b) Seam Finding off Reference Line. This is to form a seam
boundary avoiding a contiguous group of object pixels once
the dominant image is determined in the local area.Moreover,
setting a reference line is effective to improve the temporal
consistency in background regions by using the same refer-
ence for every frame. In practice, we used the vertical path
connecting the midpoint of each row as the reference.

The details of the steps, when the minimal pixel is not
unique and/or has belonged to objects, are as follows:

a) Seam Finding on Reference Line: When the current
seam is on the reference line, we compute V t (i) taking into
account the energy map behind the current row y, making it
preventing possible seam creation that passes through objects.
We examine the energies behind the y-th row on the left side
E tL and the right sideE

t
R from the reference line, where dW/2e

is the horizontal location of the reference line and d·e is a ceil-
ing operation. These energies are approximately estimated
by summing E ts considering its distance from the reference
line to the pixels of objects. Then, V t (i) is determined by
finding the lower energy between E tL and E tR. Specifically,
the preattentive energies E tL and E tR are defined as

E tL(y) =
dW/2e−1∑

j=1

H∑
i=y+1

(
E ts (i, j)+ Ep(i, j)

)
E tR(y) =

dW/2e+bW/2c∑
j=dW/2e+1

H∑
i=y+1

(
E ts (i, j)+ Ep(i, j)

)
, (6)

Ep(i, j) = (β1 |i-y| + β2 |j− dW/2e|)1
(
E ts (i, j) > 0

)
,

(7)

where 1{·} is an indicator function. The β1 and β2 control
the contribution of the preattentive energy E ts by the distance
from the reference line. Then, the seam is determined toward
the direction that has minimal preattentive energy by compar-
ing E tL and E tR:

V t (y+ 1) =

dW/2e − p, if E tL(y) < E tR(y)
dW/2e, if E tL(y) = E tR(y)
dW/2e + p, Otherwise.

(8)

The energy function (6) penalizes the pixels on high energy
regions and the pixels far from the current seam location. This
implies that the pixels on the path that objects passed through
are less likely to be selected as the seam.

b) Seam Finding off Reference Line: When the current
seam pixel (y, j) is off the reference line, we approach a
simple seam path search strategy to find a minimal distance
path, reducing processing time. In order to prevent the seam
path from forming off the overlapped, we treat the seam path
moves toward the reference line:

V t (y+ 1) =


min {|dW/2e − k|} ,

if min
{
E ts (y+ 1, k)

}
= 0

max {|dW/2e − k|} ,
Otherwise,

(9)

where k ∈ {j− p, j, j+ p}.
Figure 6 illustrates the example of the proposed seam path

finding algorithm, where each node corresponds to a pixel.
The black nodes conceive the object’s energy, and the white
nodes are the pixels that have no object energy. The adjacent
pixels in (5) are marked in the blue boxes. The seam path
moves toward the left-most pixel in Figure 6(a) since the min-
imal energy is unique and zero. In contrast, the minimal seam

VOLUME 9, 2021 93023



T. Kim et al.: Segmentation-Based Seam Cutting for High-Resolution 360-Degree Video Stitching

FIGURE 6. Examples of seam findings. Each node corresponds to a pixel, and the black nodes are the pixels that conceive the object’s energy.
The candidate pixels for seam are marked in blue areas in the case that p is 1. The areas shaded with green are the pixels to be considered
for the EL and ER computation. The (a) and (b) are examples when the current seam is on the reference line. They are distinguished whether
the candidate pixel is unique or not. The (c) and (d) show the examples when the current seam is off from the reference line.

path is computed by comparing the preattentive energies E tL
and E tR in (b). In the examples of (c) and (d), the seam path
moves toward the reference line avoiding contiguous object
regions as explained in b).

2) UPDATE RULE
Although the initial seam is found in the temporally smoothed
energy surface, undesirable seam changes could occur across
frames. To prevent incurring unnecessary seam changes over
frames, seam boundaries are updated only if necessary in our
proposed video stitching pipeline.

To do this, we consider two indicators which correspond to
energy variation and location changes along the seams. The
energy variation Ie is defined, as follows:

Ie =

∣∣Sc − Sp∣∣
Sc

, (10)

where Sc and Sp are the sum of energies in the current seam
path and the previous seam path, respectively,

Sc =
∑H

i=1
E ts (i,V

t (i)),

Sp =
∑H

i=1
E ts (i,V

t−1(i)), (11)

and V t−1 denotes the set of seam pixels at the (t − 1)-th
frame. Large Ie indicates that the sum of energies on the
current seam’s pixels differs largely from the sum of energies
from the previous seam’s pixels on the current energy map.
It shows the suitability of changing seam from previous to
current. In addition, the location change I` is measured by
taking the differences of the seam location from the middle
of the overlapping regions:

I` =

(
H∑
i=1

(
V t (i)− dW/2e

))( H∑
i=1

(
V t−1(i)− dW/2e

))
.

(12)

A negative I` indicates that the current seam shifts the
moving direction from the previous seam, whereas a positive
I` implies no shift in the moving direction of seams.

Given two indicators, the seam is updated to V t (i) only if
the following condition U is satisfied:

U = ((Ie > ε) ∨ (I` ≥ 0)) ∧
(
Sc < Sp

)
, (13)

where ε is the constant that measures energy variation. Oth-
erwise, the seam is not updated and maintains the previous
location.

IV. RESULTS AND DISCUSSION
A. REAL-WORLD DATA RESULTS
1) SETUP
In order to validate the proposed algorithm, we used the video
sequences captured using Insta360 Pro 2 with a 6-camera
setting, which results in 6 overlapping fields of view (See
Figure 1). The sensor resolution of the camera is 7680×3840.
The test sequences contain more than 3, 000 frames, and the
frame rate of the test sequences is 60 fps. The sequences con-
tain several moving objects, which is important for validating
content preservation in the stitched videos. All test sequences
were initially aligned using VRWorks [46]. The energy func-
tion in (1) was generated using YOLACT [34] with Resnet50-
FPN [47] as the backbone. We temporally smoothed the
energy function in (4) over 7 frames (i.e., N = 7), and spa-
tially smoothed it by applying 23 × 13 dilation kernel. The
offset p in (5) was 1, and ε in (13)was set to 1. All experiments
were performed on Intel i7-10700K 8-core processor with
64GB of memory and two NVIDIA GTX 1080 Ti.

The proposed algorithm was compared against the current
seam computation algorithms – the algorithm in [48] (‘‘Gra-
dient’’), the algorithm in [14] (‘‘GraphCut’’) , and the
algorithm in [16] (‘‘Perception’’). Although the evaluation
of the stitching algorithms not designed for seam com-
putation does not necessarily represent the seam com-
putation performance accurately, we included the visual
comparison against the state-of-art algorithms because it
has become commonplace in the literature. The compared
algorithms were Automatic Panoramic Image Stitching algo-
rithm (‘‘Autostitch’’) [4], natural image stitching with the
global similarity prior algorithm (‘‘GSP’’) [28], and robust
elastic warping (‘‘Robust ELA’’) algorithm [12]. Notice
that we considered more state-of-art algorithms for com-
parisons rather than the earlier mentioned algorithms. How-
ever, most of them often failed to align the test sequences,
which is probably because they were developed mainly for
planar images.
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FIGURE 7. Example of an input image and the corresponding ground
truth image. (a) Input image. (b) Ground truth image.

2) QUANTITATIVE EVALUATION
The proposed seam computation algorithm was designed,
aiming at preserving foreground objects in the stitched
regions. To ensure the purpose of content preserving, we eval-
uated the seam computation performance by counting the
number of frames and pixels that seam boundaries pass
through objects in the overlapping regions. By leveraging
instance segmentation algorithms for quantitative compari-
son, we segmented object regions in the stitched sequence
without applying any seam cutting and blending at the full
resolution. Then, wemanually inspected segmentation results
and excluded the frames that had any incorrect or incom-
plete object segments. Figure 7 shows an example of a
pair of the input image and ground truth. We note that any
instance segmentation method can be used for generating
ground truth.

3) RESULTS
The performance of seam computation is tabulated in Table 2
in terms of i) the number of frames including seams passed
through objects in any overlap among 6 overlaps and ii) the
average number of seam pixels on objects per overlap. The
number of error frames produced by the proposed algorithm
is reduced by about 85%, 85%, and 88% relative to Gradient,
Graphcut, and Perception algorithms on average over all test
videos. And the average number of error pixels per overlap
produced by the proposed algorithm is reduced by about 20%,
20%, and 49% relative to Gradient, Graphcut, and Perception
algorithms on average over all test videos’ error frames.

TABLE 2. The comparisons of seam computation performance for
different algorithms. The performance is measured in terms of the
number of frames, including seams passed through objects (# frames)
and the average number of seam pixels on objects (# pixels) among
7680× 3840 pixels.

TABLE 3. The comparisons of seam computation time. The proposed
algorithm and the comparison algorithms were implemented using C++,
except for the Perception algorithm implemented using MATLAB.

These results verify that the proposed algorithm can produce
the seam that preserves dominant objects in the overlapping
regions.

We also provide a visual comparison of seam changes
to demonstrate the effectiveness of temporal consistency,
as shown in Figure 8. The interval between frames shown
in the figure was set to 100 ms. By comparisons, the seams
produced by Gradient algorithm [48] and Graphcut algo-
rithm [14] tend to pass through the object in the overlapping
region. This is partly due to the fact that they only use
low-level features of the input images, not semantics. The
seam produced by the proposed algorithm well maintains
temporal consistency while other algorithms yield frequent
seam changes across frames since theywere designedwithout
considering temporal consistency.

Table 3 reports the processing time of seam computations
for different algorithms. The comparing algorithms were
implemented using C++ except for the Perception algorithm
implemented using the MATLAB API. As demonstrated
in Table 3 and Figure 8, the proposed algorithm improves
time efficiency due to its structural simplicity with better
visual quality. The proposed algorithm requiresO(log(n)) on
computational complexity whereas Graphcut and Perception
algorithms require O(n log(n)) [14]; the Gradient algorithm
requiresO(n), where n is the number of pixels in the overlap-
ping region examined.

In addition to the quantitative and qualitative comparison
of the seam computation algorithms, the visual comparisons
against Autostitch, GSP, and Robust ELA algorithms are
shown in Figure 12. As observed in the example figures,
the proposed algorithm generates visually plausible results,
whereas Autostitch and GSP often produce objects that suffer
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FIGURE 8. Visual comparison of the estimated seam from 961-th frame to 1015-th frame for the different algorithms every 6 frames.
(a) Gradient [48]. (b) Graphcut [14]. (c) Perception [16]. (d) Proposed. The seam produced by the proposed algorithm well maintains temporal
consistency while other algorithms yield frequent seam changes across frames.

from the ghosting effect in the overlapping regions. The
objects in the results generated by Robust ELA are likely to
be structurally and perspectively distorted.

B. ABLATION STUDY
To validate the effectiveness of the spatial-temporally con-
sistent energy function and seam update rule, we study the
individual contribution of each step described in Section III-
A and Section III-B by disabling one or more of them. They
are finding seam based on the energy function in (4) without
any temporal smoothing and update rule (‘‘O’’), finding seam
based on the energy function in (4) with temporal smooth-
ing (‘‘O+T’’), finding seam using the energy function of (4)
and the update rule in (13) (‘‘O+U’’), and finding seam by
the proposed algorithm (‘‘O+T+U’’).

We measured how frequently dominant image transition
occurs within a short interval – 50ms, 100ms, and 200ms
on four different combinations. The dominant image is the
image that contributes to more than 50% of an overlap-
ping region between two overlapping images. The tempo-
ral consistency is then measured in terms of the ratio of

TABLE 4. The ratio of dominant image transition within a given interval
(ms) for different combinations of the proposed algorithm. The
combinations are finding seam based on the energy function without any
temporal smoothing process (‘‘O’’), finding seam based on the energy
function with temporal consistency filtering (‘‘O+T’’), finding seam using
the energy function with the update rule in (13) (‘‘O+U’’), and finding
seam by the proposed algorithm (‘‘O+T+U’’).

dominant image transition that happened given time inter-
val over the total number of dominant image transitions
across entire frames, which is reported in Table 4. The
59% of dominant image changes took place within 200ms
when the seams were produced by the energy function that
only includes object energy (‘‘O’’), yielding undesirable
blinking in the output videos. The ratio of image transi-
tions is lessened to 50% with update rule (‘‘O+U’’) and
to 30% with temporal smoothing process (‘‘O+T’’). Only
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TABLE 5. The ratio of dominant image transition with different numbers of frames accumulated (N) to form the proposed energy function.

FIGURE 9. Visual comparisons of the dominant image transition. (a) Computed seam boundaries by the proposed algorithm (‘‘O+T+U’’).
(b) Computed seam boundaries by the proposed algorithm without update rule (‘‘O+T’’). The dominant image transition occurred over the short
frames when the update rule was not applied. The numbers below images are the frame numbers.

13% of image transition occurred within 200ms when apply-
ing both the temporally smoothing process and the update
rule (‘‘O+T+U’’). The results verify that the proposed algo-
rithm can generate the spatial-temporally consistent seam
across frames.

We also studied the effectiveness of the length of the time
window to accumulate energies, which is associated with the
number of frames N . Table 5 reports the ratio of the domi-
nant image transition given intervals (50ms, 100ms, 200ms)
depending on the length of the time window. The seam
changes within a short interval frequently occur without the
temporal smoothing process (i.e., N = 0). The ratios of dom-
inant image transitions decrease as N increases up to N = 9,
which implies that applying the temporal smoothing process
is advantageous in preventing abrupt seam changes. The ratio
of the interval 100ms slightly increases when N = 11. This
indicates that accumulating the trajectory of moving objects
for a long time would hurt temporal coherency because
the energy function can be affected by the objects already
passed.

In order to thoroughly examine the effectiveness of the
update rule, we examined the seam changes of the case
with update rule (‘‘O+T+U’’) and the case without update
rule (‘‘O+T’’). The examples of the produced seam by two
cases are displayed in Figure 9. As demonstrated in the figure,
the dominant image transition could occur without the update
rule (See Figure 9(b)), proving the effectiveness of the design
of the update rule.

C. BENCHMARK DATA RESULTS
1) SETUP
As publicly available datasets for multiview 360-degree
images are limited, we modified a common benchmark video

FIGURE 10. Example of input images from the KITTI Multiview-Extension
in Section IV-C. (a) Input images from different views. (b) Ground-truth
images of (a). (c) Input images from different views. (d) Ground-truth
images of (c).

dataset, the KITTI 1 multiview-extension [49], [50] for eval-
uation. The test sequences were created from 100 training
videos of the KITTI multiview dataset with 21-view stereo
pairs. Each video consists of 21 frames per view, and the
resolution of each camera is 375×1242. To delicately register
the image pairs, we refined image alignment and obtained
feature points using the oriented fast and rotated binary
robust independent elementary features (ORB) [51]. The cor-
responding points were then matched by using the fast library

1Karlsruhe Institute of Technology and Toyota Technological Institute
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FIGURE 11. Visual comparison of the computed seam of the KITTI multiview-extension dataset for different algorithms. (a) Gradient [48].
(b) Graphcut [14]. (c) Perception [16]. (d) Proposed. The proposed algorithm produces seams that preserve objects in the overlaps.

for approximate nearest neighbors (FLANN) algorithm [52]
and random sample consensus (RANSAC) [53].We then used
the 8-point algorithm [54] to find homography. The estimated
homography at the first frame was applied to the remaining
frames to keep temporal consistency for each test video. The
resolution of each test video differs from the registration
results. There are approximately 460, 000 pixels per frame
in the stitched image region on average.

Ensuring the purpose of developing the proposed algorithm
to find a seam that preserves contents, we selected overlap-
ping regions centered at dominant objects after registration.
Since the KITTI dataset was collected on an autonomous
driving platform for depth estimation, its image pairs typ-
ically have wide scenes and huge overlaps. Note that the
overlapping regions are almost 97.11% of the entire image
region on average. This is undesirable to our video stitching
problem, in which the primary goal is to generate stitched
videos preserving dominant objects in the overlaps. Hence,
the test frames were cropped so that the overlaps contain
dominant objects in the scene, as shown in Figure 10.
The energy function in (1) was generated using

YOLACT [34] with Resnet50-FPN [47] as the backbone.
The energy function in (4) was smoothed with N = 1, and
spatially smoothed it by applying 23×13 dilation kernel. The
offset p in (5) was 1, and ε in (13) was set to 1.

2) RESULTS
For quantitative evaluation, we generated ground truth
object maps following the way described in Section IV-A

TABLE 6. The comparisons of seam computation performance for
different algorithms in the KITTI multiview-extension [49], [50]. The
performance is measured in terms of the number of frames including
seam passed through objects (# frames) and the average number of seam
pixels on objects (# pixels) over 2100 frames. The average total number
of pixels is 460, 000 in the stitched image region.

(See Figure 10) and evaluated seam computation perfor-
mance with the metrics used for the real-world test videos.
We considered the algorithm in [48] (‘‘Gradient’’), the algo-
rithm in [14] (‘‘GraphCut’’) , and the algorithm in [16] (‘‘Per-
ception’’). Table 6 shows the quantitative evaluation results
in terms of the number of frames including seam passed
through objects and the average number of seam pixels on
the objects. The number of error frames produced by the
proposed algorithm is reduced by about 27%, 17%, and 5%
relative to Gradient, Graphcut, and Perception algorithms.
The average number of error pixels is reduced by about 43%,
45%, and 60% relative to Gradient, Graphcut, and Perception
algorithms.

In addition to quantitative evaluation, we also visually
demonstrate the performance of the proposed algorithm
with computed seams against the compared algorithms in
Figure 11. Although the Gradient and Graphcut algorithms
were sensitive to detect the regions where the color variations
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FIGURE 12. Visual comparison of stitching algorithms for the real-world dataset. (a) Autostitch [4]. (b) Robust ELA [12]. (c) GSP [28].
(d) Proposed. The proposed algorithm generates visually plausible results, whereas other algorithms often produce objects with the
ghosting effect and structure distortion.

were distinct, they were likely to produce seams on dominant
objects due to the lack of semantic information. The Percep-
tion algorithm could place seams on the small objects that

were considered as nonsalient regions. In contrast, the pro-
posed algorithm could produce seams that preserve object
structure.
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FIGURE 13. Visual comparison of stitching algorithms for the KITTI multiview-extension dataset. (a) Robust ELA [12]. (b) GSP [28]. (c) Autostitch [4].
(d) Photomerge from Photoshop [55]. (e) Proposed. The proposed algorithm can consistently generate visually pleasing results, whereas the stitched
results by other algorithms often suffer from visual artifacts.

Figure 13 shows qualitative comparison against the
state-of-art stitching algorithms and commercial software–
Robust ELA [12], GSP [28], Autostitch [4], and Pho-
tomerge from Photoshop [55]. In this experiment, we used
the test videos without registration as inputs to compar-
ing algorithms except for Photomerge and the proposed
algorithm. As demonstrated in the examples, the pro-
posed algorithm could consistently produce visually pleas-
ing stitched images while the stitched images generated by
other algorithms suffered from visual artifacts. For example,
the objects in the stitched results suffered from ghosting
effect (See Figure 13(a) and (b)), the object in Figure 13(c)
was occluded by the road and the object in Figure 13(d) was
structurally distorted.

V. CONCLUSION
We proposed an efficient seam computation algorithm for
360-degree high-resolution multi-view videos. With the
advancement of instance segmentation algorithms, the energy
function was chosen to high weight to dominant objects

in the overlapping regions. In order to maintain temporal
consistency, the energy function was associated with the pre-
dicted moving directions of objects. Due to its structural sim-
plicity, the proposed algorithm finds seam boundaries with
minimal computations. The experimental results using the
real-world video sequences and the benchmark dataset ver-
ified that the proposed seam computation algorithm reduces
visual artifacts and produces visually pleasing results.
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