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ABSTRACT Careful consideration of grid developments illustrates the fundamental changes in its structure
which its developments have taken place gradually for a long time. One of the most important developments
is the expansion of the communication infrastructure that brings many advantages in the cyber layer of the
system. The actual execution of the peer-to-peer (P2P) energy trading is one core advantage which also may
lead to the systematic risks such as cyber-attacks. Consequently, it is necessary to form a useful way to cover
such challenges. This paper focuses on the online detection of false data injection attack (FDIA), which
tries to disrupt the trend of optimal peer-to-peer energy trading in the stochastic condition. Moreover, this
article proposes an effective modified Intelligent Priority Selection based Reinforcement Learning (IPS-RL)
method to detect and stop the malicious attacks in the shortest time for effective energy trading based on the
peer to peer structure. The presented method is compared with other methods such as support vector machine
(SVM), reinforcement learning (RL), particle swarm optimization (PSO)-RL, and genetic algorithm (GA)-
RL to validate the functionality of the method. The proposed method is implemented and examined on three
interconnected microgrids in the form of peer-to-peer structure wherein each microgrid has various agents
such as photovoltaic (PV), wind turbine, fuel cell, tidal system, storage unit, etc. Eventually, the unscented
transformation (UT) is applied for uncertainty analysis and making the near-reality simulations.

INDEX TERMS Peer-to-peer energy trading, microgrid, reinforcement learning, uncertainties, intelligent
priority selection method, cyber-attack detection, stochastic modeling, combinatorial optimization.

NOMENCLATURE
Sets/Indices
j/�i Set/index of number of microgrid.
i/�i Set/index of number of renewable

energy resource.
t/�T Set/index of time where

�T
= {1. . . 24}.

Constants
κt Attack time.
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Xbad,t False data.
Rloss Power loss related to PV.
SWt Wind speed.
T Vt Tidal current.
SWcutin, S

W
rated The cut-in and rated wind speeds.

T Vcutin,T
V
rated Cut-in and rated tidal current

speeds.
Q Direct irradiation.
γ Sea water density.
λ Swept area of the turbine blades.
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Ut Capacity of the PVs.
Pmin/Pmax Min/max limits of battery power.
Vmin/ ≤ Vmax Min/max limits of battery energy.
Pload1t ,Pload2t ,Pload3t Loads of microgrid 1 to 3,

respectively.
γ k Persistent sequence.
CWt ,CTIt ,
CPVt ,CBt

Prices of the WT, tidal, PV and

storage system, respectively.
m, σ Value of the average and variance.
c The injected malicious data.
κ Attack time.
λ Attack vector.

Variables
PBt ,PWt ,TIt ,
PVt ,FC

Power output of the storage, WT,

tidal system, PV, fuel cell,
respectively.

ut Binary variable related to reward.
rt Received Reward at time t.
ϕt Estimate of likelihood.
PBt Battery power.
P13t Power transaction between microgrid

1 and 3.
P12t Power transaction between microgrid

1 and 2.
P23t Power transaction between microgrid

2 and 3.
V fc
t , I

fc
t ,R Voltage, current and resistance of

inverter converter connected to fuel
cell unit.

Pj The power generations of the
microgrid.

H j
t Slackness variable of each microgrid j.

PSkj,t Power set point of microgrid j in
iteration k .

Pjj′t The power transaction among
microgrids.

PBcht /PB
dis
t Charging/Discharging power of

storage.
Rjj′t Auxiliary coefficient related to

microgrids.
VBt Energy of the storage system.
β
jj′
t The trading prices among the

microgrids.
mic1,mic2,mic3 Costs of the microgrid 1 to 3,

respectively.

I. INTRODUCTION
Due to the changing grid structure in the past decade,
the power energy trade is going up at a startling pace. As the
communication tools have been expanding in the electrical
grids, the volume of the real-time trade has been rising at

the same rate. In the sense that creating safe and secure
infrastructures in the field of developing real-time energy
transactions will be provided a more desire for participation
in the real-time energy market among the agents. In this
situation, the penetration of renewables and microgrids is
also growing in the main grid. So the power production,
in order tomeet the consumers’ needs, plays amore important
role in almost every microgrid in the power system, and
energymarkets now tempt agents that never get muchworried
about sales beyond their inner customers. Hence, this research
addresses peer-to-peer energy trading and it’s providing
security. Therefore, the following three parts are addressed in
this paper: A) peer to peer (P2P) energy trading, B) Detecting
false data injection attack (FDIA), C) Applying modified
approach: Intelligent Priority Selection based Reinforcement
Learning (IPS-RL).

A. P2P ENERGY TRADING
P2P energy trading is a new model of power electric
market, where generation units can generate their output
electric power independently and sell it to each customer
locally. In [1], authors have explained effective methods
for P2P energy trading, and surveyed their similarities and
differences. Several projects on P2P energy trading have been
experimentally carried out in recent years. A project was
implemented in the UK [2] in which industrial consumers can
purchase electricity directly from the local generations based
on renewable energy resources. Similar to the UK project,
the P2P energy trading platform in the Netherland functions
performs such as an energy provider that connects customers
and agents, and equilibrates the whole market [3].

On the other hand, a few studies have been carried out
which present a new method for executing P2P energy
trading independently from the practical projects. In more
complex situations such as a multi-agent trading agreement,
a consensus can be a bilateral contract verified among all
agents. In reference [4], bilateral contract networks have been
proposed as new scalable market designs for P2P energy
trading. Recently, the game theory method has received a lot
of attention for resolving mathematical problems. In some
aspects, game theory is a strategic issue or at least the
optimal decision-making of autonomous players is met in a
competing environment. Authors in [5] have briefly carried
out an overview of the application of game-theoretic methods
for P2P energy trading as a pragmatic and executable solution
of the energy management. Authors in [6], [7] have expanded
an optimization model and blockchain-based architecture to
manage the operation of distributed energy systems, with
P2P energy trading. Despite applying the blockchain-based
structure mentioned in references [6], [7], the power grid
is not only a software platform for achieving a consensus.
Therefore, lack of diagnosis of FDIA can damage the system
components. Unfortunately, there are still too few studies in
this field which shows the big gap existing in this area. In this
research, the FDIA detection has been considered such that
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the implementation of P2P energy trading is reconciled with
the modified IPS-RL method.

B. DETECTING FDIA AND PROPOSED SOLUTION
Nowadays, the electrical power grid, as the most impor-
tant infrastructure in every country, is under threat from
cyber-attack point of view. FDIA is widely brought up in
cyber-physical systems e.g. electricity market [8], power
grid [9], [10], control systems [11], [12], and water distri-
bution system [13]. The FDIA in cyber-physical systems
refers to a category of cyber-attacks in which the attacker
desires to change the integrity of the network by influencing
a set of sensor devices and sending incorrect readings of
data to the controller. So, this attack impacts physical devices
that operators and some attackers can access. On the other
hand, owing to sending data by devices of the system,
the output of FDIA is valid for cyber-security systems
based on data mining such as blockchain. Consequently,
the motivation behind the attack will be different. The former
is often sought destruction over the system (a malicious
adversary), the latter benefit (internal beneficiaries). The
power grid with varied types of resources, transmission lines,
distribution networks, and numerous protection devices,
is one of the largest infrastructures in the human life. Since the
measurement devices in these systems are smart equipment
(e.g., smart meters and protection relays), they can always
be an attractive purpose for the cyber hacking. Cyber-attacks
that impact the system operation have been reported in several
researches such as in [8], [14]–[18]. A blockchain-based
architecture and optimization model has been developed [8]
for energy management systems and it is mentioned that
an uncontrollable risk exists in the blockchain-based energy
market, i.e., the attacks from the malicious trading operator.
Monitoring of the system is needful to guarantee the reliable
operation of the power network, and state estimation is an
output of it to reach the best estimate of the power grid.
In [14], the authors have presented an FDIA, against state
estimation in power grids. In [15], malicious cyber-attacks
against some devices in the smart grid have been investigated,
in which an attacker controls a set of meters and is able to
change the measurements from those meters. In [16], [17],
the researchers have analyzed the cyber security of state
estimators in SCADA operating in power grids. A bad data
detection schemes have been presented for state estimation
algorithms to detect random outliers in the measurement data.
Reference [18] has also introduced analytical techniques with
the aim of analyzing the vulnerability of state estimation
when it is subject to a hidden false data injection attack on
a power grid’s SCADA system. Research about FDIA in
kinds of literature are generally included three points of view:
1) theoretical investigates on generating or creating a valid
FDIA [19]–[22], 2) application studies on the general impact
of FDIA [23]–[26], 3) techniques adopted to protect against
FDIAs [27]–[29]. Reference [30] has presented a review
of false data injection impact in modern power systems.
In [31], the authors have formulated detection of FDAI

with the binary classification machine learning problem.
It’s worth mentioning that interrupting power electric is a
notable disorder; therefore, online detection of the FIDA can
considerably contribute to the increasing system reliability.
Research [32] has addressed the issue of joint distributed
secure estimation and distributed attack detection for a
cyber-physical system under cyber and physical attacks.
In this reference, a malicious adversary simultaneously starts
up an FDIA at the physical system layers. In [33], the authors
have considered the problem of data detection in distributed
systems in the presence of falsification data injection attacks.
This type of attack is also known as Byzantine attacks.
Detection methods considered in the reference [33] are based
on distributed consensus algorithms. In [34], researchers
have formulated the online attack detection based on the
reinforcement learning (RL) method. In this investigation,
the effective data in a consensus of P2P energy trading
are sifted by the proposed algorithm then it is broadcasted.
Consequently, the speed of FDIA detection goes up strongly.
The RL method is used for widespread applications. For
example, a distributed multi-agent-based RL method has
been proposed in [35] for optimal reactive power flow.
In order to bring the simulation closer to the reality, the load
and production uncertainty are considered and theUTmethod
is used to simulate the uncertainty. Some of the significant
applications of UT are reported in several literature [36]–[39].

C. CONTRIBUTIONS
Returning to the hypothesis posed at the beginning of this
study in the abstract, cyber-physical attacks such as FDIA
are increasingly recognized as a serious distributed smart
grid concern. Proposing an application solution is the most
important challenge in this investigation. A key aspect of
detection FDIA in P2P systems is attention to the time issue.
Therefore, this paper tries to address the online detection of
FDIA in the power system and optimal peer-t-peer energy
trading process. In this regard, a novel intrusion detection
system, called modified intelligent priority selection based
reinforcement learning (IPS-RL) is developed to detect and
stopover the malicious cyber-hacking activities in the very
short time. The proposed method is compatible with the
peer-to-peer energy trading in a multi-agent mechanism and
consists of the advanced machine learning techniques such
as support vector machine (SVM), reinforcement learning
(RL), particle swarm optimization (PSO)-RL, and genetic
algorithm (GA)-RL. In order to validate the performance of
the proposed intrusion detection system, an interconnected
microgridwith threemicrogrids in a P2P structure is deployed
as the test system. However, there isn’t limitation for applying
case study. For example, in future studies can be adopted
virtual power plant as a case study [40]. Varied types of
generation units such as photovoltaic (PV), wind turbine,
fuel cell, tidal system and storage unit are considered
in the model. Considering the high uncertainty effects, a
stochastic framework based on UT is deployed in this work.
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Given all the above discussions, the main contributions can
be summarized as follows:
• Suggesting a fruitful intrusion (anomaly) detection
scheme based on the IPS-RL approach to get into the
minimum detection delay.

• This article investigates and proposes an effective
P2P energy trading framework equipped by a security
platform based on the IPS-RL method against malicious
cyber-attacks.

• Modeling the attack of FIDA type to assess the security
of the proposed detection method in the P2P energy
market.

• Developing a stochastic framework based on UT for
the proposed P2P based energy management under
uncertainty conditions.

The remaining sections of the paper are arranged as
follows: Section II presents the proposed security manage-
ment architecture based on the proposed attack detection
method. Section III introduces the secured P2P energy
market structure. The uncertainty framework based on UT
is explained in section IV to deal with the stochastic effects.
Section V discusses the simulation results on the proposed
case study. Finally, the main results of the proposed method
are described in section VI.

II. CYBER ATTACK DETECTION APPROACH BASED ON
THE PROPOSED IPS-RL SCHEME
The growing occurrence of malicious attacks in the cyber-
physical systems (CPSs) is one of themain reasons to propose
different detection methods. In this regard, the CPSs need to
develop their communications with the use of the detection
technologies in order to preserve actual data against cyber-
attacks. In a special attack such as FDIA, hackers try to
get into the most social/economic benefits in the shortest
possible time. Therefore, the detection scheme should be able
to recognize the attacks launched to the CPSs with the aim
of minimizing the detection delay. Therefore, this part aims
first to present how an attack of FDIA type is modeled and
introduces an appropriate detection method based on IPS-RL
approach against the malicious attacks.

A. FDIA MODEL
Modeling the cyber-attacks is one of the most significant
tasks in a problem in order to analyze the varied fields
of the system security, including the security defenses and
the destructive effects of attacks. This section introduces
the mathematical formulation for stealthy attacks in the
power systems. Modeling the cyber-attacks can be usually
modeled and categorized in different classes, such as attack
networks, attack trees and attack graphs [41]. The attack
tree method is modeled by the use of the acyclic directed
graph in accordance with the nodes of network. All proposes
related to hackers can be discovered by the attack graph
model when launching a given attack in the network. The
third method (attack networks) is a trusty model, which is
capable of simulating the attack with regards to the malicious

decision of hackers. One of the most destructive attacks is
FDIA type in power cyber-physical systems that are regarded
in the class of third model. A successful FDIA can make
harmful economic and physical effects on the power systems
by manipulating data. Accordingly, impacts of FDIA on the
power system can be mainly categorized in three aspects:
1) the economic impacts 2) the load redistribution attack
3) the energy deluding attack. For instance, the energy market
can be one of the targeting purposes of hackers to deceive an
amount of energy in order to acquire the economic profits
over the energy exchanging among participants. To elaborate
on FDIA model, let us assume that the hacker is able to make
access to the data through the relevant communications in
the system. Keeping this in mind, the problem function is
indicated by (1) in which X and S are defined as the data
and objective function for the system, respectively. Making
altered data by an attacker, the problem function of system
(S) is turned into the new function (Sγ ) in which Xbad
is the manipulated data as shown in (2). In order to get
into a successful FDIA, it is essential that the residue norm
pertaining to the false function should be zero or a slight error
in comparison with the function one as that it is shown in (3).

S = h(Xt ) (1)

Sλ = h(Xbad,t ) (2)∥∥Sλ − h(Xbad,t )∥∥ = ‖S − h(Xt )‖ (3)

Also, FDIA assessment can be checked by using a
significant criterion defined as follows:

λ = h(Xt + ct=κ ) − h(Xt ) (4)

where c donates the injected malicious data at time κ and λ
is the structured attack vector, by which hacker can check the
needed variation to get into a successful FDIA. To make a
targeting attack, the injected false data is defined as below:

Xbad,t =

{
Xt + ct if t ≥ κ
Xt otherwise

(5)

where index κ is described as the change-time for injecting
false data in the system.

B. THE PROPOSED DETECTION METHOD BASED ON
IPS-RL APPROACH
In the literature, the learning machine technology can be
mainly used in classification cases in order to declare
attacks in the different ways, i.e. the supervised learning,
unsupervised learning and RL, which is introduced as the
most important and effective method in the classification
cases [42]. In other words, the learning phase of RL method
is more general than other models due to interaction with
environment to achieve a special goal. The RLmethod perfor-
mance is shown in Fig. 1. As it can be seen, the RL approach
mainly comprises of two general parts: 1) agent 2) environ-
ment. In the learning phase of RL method, the agent should
choose an effective action with regards to the environment
condition. Then, the agent receives a scalar feedback signal
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FIGURE 1. The reinforcement learning approach.

named the reward from environment considering the selected
action in interaction with environment. This trend is achieved
to get into the received maximum reward by the agent. It is
vital to say that the environment may be unknown from the
respective of agent and it should choose the best action even
in the stochastic and uncertain conditions of the environment.
Accordingly, at each step t related to the learning phase, each
of the RL elements briefly serves as follows:
The agent: 1) Executes action 2) Receives observation

3)Receives scalar reward.
The environment: 1) Receives action 2) Emits scalar

reward 3) Emits observation.
Hence, this section concentrates on providing an appropri-

ate attack detection approach based on the RL method using
the observable Markov decision process (POMDP) concept.
Also, the detection method is developed by an Intelligent
Priority Selection algorithm to get into two main goals,
including the minimum detection delay and attack alarm. It is
needed to first present a POMDP setting before explaining
the proposed IPS-RL method. Given an environment and an
agent, a POMDP problem is described by using different
elements, i.e. the set of states (hidden) of the environment
(s), set of observations (o), and set of transition probabilities
among states (T ), set of rewards (r), and set of actions (a).
Note it that in a POMDP problem, the environment is defined
in an invisible state. After determining the observation of
the environment with regards to the current state, the agent
chooses an appropriate action and receives a reward from
the environment depending on its selected action and current
state at each time t . Then, the environment tries to take the
next state (st+1) by considering the probability pertaining
to st+1. This is continued until the environment reaches a
terminal state.

To clarify the proposed method, it is essential that the
attack detection problem is explained as a POMDP function
in the first place and then suggests the solution approach
to get into the main goals described before. Let us assume
that a hacker tries to launch a malicious attack to the system
with unknown strategy at time κ . The detection function is
aimed to minimize the detection delay and declare the attack.

FIGURE 2. The cyber-attack detection scheme.

The proposed function, in fact, can be considered as a
POMDP problem by defining actions, rewards and states
related to problem (see Fig. 2).

Since the attack strategy is unknown, the environment
hidden states are based on the ‘‘before-intrusion’’, ‘‘after-
intrusion’’ and ‘‘terminal’’ states. At each time t , the agent is
permissible to select two actions of ‘‘continue’’ and ‘‘stop’’
in each state. The agent can choose the ‘‘stop’’ action to move
from the present state (before-intrusion or after-intrusion)
to ‘‘terminal’’ state and declare the attack. On the other
hand, the current state will be per-state if the agent decides
to select the ‘‘continue’’ action. It receives the different
rewards arising from the action choice in each state. Let us
assume that the rewards 1 and 0 are considered as penalty
coefficients for action selecting of ‘‘stop’’ and ‘‘continue’’
in ‘‘before-intrusion’’ state when the environment is under
normal condition, respectively. Once attack is occurred in the
environment, if the agent selects the ‘‘continue’’ action in
‘‘after-intrusion’’ state, it would take the penalty coefficient
b due to the detection delay in ‘‘after-intrusion’’ state.
Keeping the above argument in mind, the objective function
of agent is to minimize the sum of the penalty coefficients
emanating from action election for all states. Considering
the environment observations, the agent tries to provide the
stopping time at which the attack is launched. To this end,
the objective function of the agent is developed as below:

minRpenalty = Eκ
[
(rt |ts < κt )+

∞∑
t=κ

b|ts > κt

]
(6)

Let ts shows the stopping time and Rpenalty is defined as
the expected value of the penalty coefficient received by the
agent. As it can be seen, the objective function includes two
main terms pertaining to the received rewards before and after
time κ . In the first term, the agent takes the penalty coefficient
for the sake of selecting the ‘‘stop’’ action at time ts < κ .
On the contrary, the second term donates the sum of the
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TABLE 1. The learning phase.

penalty coefficients taken by the agent due to the ‘‘continue’’
action choice in the ‘‘after-intrusion’’ state at time ts > κ .

After providing the proposed problem, it is needed to
describe an effective solution method to get into the main
goals, including the detection delay minimizing and attack
alarm as described in [38]. The proposed method contains
two underlying phases, 1) learning phase 2) detection phase,
as shown in Table 1 and Table 2. The first phase is developed
with regards to the proposed problem and is aimed to learn an
action value, shown by P(o,a), for each action-observation
pair with many experience episodes. All learning action
values are saved in Y table to deploy in the second phase.
Based on Table 1, it is needed to first define an arbitrary
action and observation based on the ‘‘before-intrusion’’ state
(U ) at time 1. After collecting Xt , the observation signal
(ot+1) is determined by using the estimate of likelihood ϕt
for time t + 1. Then, the optimal action (at+1) for ot+1 is
obtained with regards to ε-greedy policy, opting the action
with the minimum action value (P) and probability 1-ε.
Also, the current action value is updated by using SARSA
control algorithm, which can perform well over PODMP
problem [38].

As the last step, the Y table is revised with the new
action value P and the action-observation pair are updated
to determine and check the new reward value and state for

TABLE 2. The detection phase.

times t < κ and t > κ ( refer to Table 1). This training
procedure continues until the ‘‘stop’’ action is chosen for
all episodes. The second phase concentrates on detecting
the unknown attack in accordance with trained Y table by
the learning phase as indicated in Table 2. In other words,
this phase determines the stopping time ts and declares
the online attack with ‘‘stop’’ action choice. All to all,
according to the proposed method, the agent is developed
to train in such a way that the optimal action is chosen
with regards to the minimum penalty coefficient. Such as
the trained agent can be able to detect the online attack
in the shortest stopping time. It should be mentioned that
the action value updating based on the SARSA algorithm is
notably dependent on a coefficient α, which is an efficient and
significant coefficient to get into an optimal learning phase.
Let us employ an appropriate approach based on Intelligent
Priority Selection (IPS) algorithm with the aim of optimizing
the α value.

C. INTELLIGENT PRIORITY SELECTION ALGORITHM
This document offers a different strong algorithm to assign
the value of α to the learning method optimization. Different
techniques are created and commonly employed to solve
optimal problem depending on mathematical modeling or
artificial intelligence [43]. But then again, long solving
time and inadequate precision are dictated by the use of
mathematical modeling and artificial intelligence tools. This
document additionally recommends a new and strong method
relying on stochastic approaches to improve precision and
to efficiently decrease the overall runtime, simultaneously.
Firstly, in statistical point of view, the number of combina-
tions of N things taken n is defined as follows:(

N
n

)
=

N !
(n!) .(N − n)!

(7)

92088 VOLUME 9, 2021



M. A. Mohamed et al.: Secured Advanced Management Architecture in P2P Energy Trading for Multi-Microgrid

The mentioned equation demonstrates that the sample
space consists of a large amount of possible results for
choosing n samples from N . In this model, the answer would
be precise by using the brute force search, but the method
takes a long time owing to the huge sample space. To solve
such an issue, the model suggested will smartly decrease and
limit the amount of sample spaces. In this respect, it is the
following measures that indicate the suggested technique of
optimization:
Step1: First, assume that the primary set P of the possible

choices includes the optimal values of the issue. The vector
K matrix for the control variables is randomly defined in
the first step. The remaining candidate points (P-K) are
shown in the set W . All possible sets were subsequently
replaced by the sets of K members for each of the W
members, resulting in the matrix KT being created. As
defined in (11), each part of the set H is computed by the
replacement of the i-th member of the W into the set K
which is then followed by calculating the optimal value of
the objective function among the members of the i-th HWi ,
defined as FbestW1,K ′n

. It is worth to say that K ′n in (13) shows the
n-th element of the K which is replaced by the elements
of the W . Eqs (8)–(11), as shown at the bottom of the
page.

The components of i-th HWi , as shown in (12)-(13),
are arranged according to the objective function value.
The components of matrix W are ranked according to the
objective function. The W ′j matrix is shown as an array of
the W matrix components (14) which was discussed earlier.
This discussion is also correct for set K ′′j (15). In this step,
the price of the object function for W ′1 is chosen, ultimately,
as the optimal answer (17).

Fbestm =


Fbestw1,k′′1
·

·

Fbestwm,k′′m

 ∀m ∈ �m (12)

Fbest_sort =


Fbestw′1→k ′′1
·

·

Fbestw′m→k ′′m

 (13)

w′j = [w′1, . . . ,w
′
m] ∀m ∈ �

m (14)

k ′′j = [k ′′1 , . . . , k
′′
m] ∀m ∈ �

m (15)

F = Fbestw′1→k ′′1
(16)

Step 2: The new KT (KT newr ) matrix is obtained at this
stage. First of all, theWj matrix is updated based on (17) with
the W ′j matrix components. As the W ′1 is the best option in
the earlier iteration, W ′2 as stated in (17) initializes this step.
K1newj is described by removing the k

′′

j and w′j components
from the Kj matrix (18). The new KT newr component (same
as (11)), is generated from all these possible sets as a result
of substituting each component of Wj with a component
of K1newj . In KT newr and w′j, the combination of sets is
represented asψr where r is between 1 andm−j, in which j is
the number of iteration and m is a constant value, referring to
the matrix length of W in the first step, as described by (19).
For each member of ψr , the objective value is computed and
the optimal result of the objective function (F1Best ) and the
associated component is stored as (20) and (21) respectively
in matrix ψr (ψBest ). The matrix K is modified by ψBest in
(22) for each iteration as defined in (23).

Wj = w′j+1 ∀j ∈ �
j (17)

K1newj =

{
x
∣∣∣x ∈ Kj, x 6= k ′′j , x 6= w′j

}
∀j ∈ �j (18)

ψr = KT newr ∪ w′j (19)

r = {1, 2, . . . ,m− j}

F1r = f (ψr ) (20)

Fj = F1Best ∀j ∈ �j (21)

Kj = ψBest
∀j ∈ �j (22)

P = [p1, . . . . . . , pN ] (8)
K = [k1, . . . . . . , kn] (9)
W = [w1, . . . . . . ,wm] (10)

KT =



k1/ = k ′1
↑

w1 k2 . . . kn
k2/ = k ′2

k1 w1 . . . kn
kn/ = k ′n

k2 k2 . . .w1


Hw1 . . .

k1/ = k ′1
↑

wm k2 . . . kn
·

·

·

kn/ = k ′n
↑

k1 k2 . . .wm


Hwm

↓

F(Hw1 )=F
best
w1,k′′1

↓

F(Hwm )=Fbestwm,k′′m


,

Hwi =
[
Hw1 ,Hw2 , . . . ,Hwm

]
∀i ∈ �i

k ′′M = [k ′1, k
′

2, . . . , k
′
n]∀M ∈ �

M (11)
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Step 3: The last component in each iteration is chosen as
the optimal one among the others.

Fbest_total = FBest (23)

Figure 3 summarizes the flowchart of the suggested
optimization algorithm.

III. PROPOSED PEER-TO-PEER ENERGY TRADING
FORMULATION
As mentioned before, hackers tend to disorganize the energy
market for the sake of gaining more economic benefits. In the
view of the fact, the online data pertaining to the energy
market is usually indicated with the use of data estimator
and the market operator transfers the data to the estimator by
using the communication channels [44]. For this reason, these
channels may increase the risk of cyber-attack in the energy
market.

In other words, if a malicious hacker can intrude to the
communication channels, the data taken by the estimator and
consequently the results of the energymarket will be affected.
But, this situation can be grossly more vulnerable in the
energymarket based on the peer to peer structure compared to
the centralized one owing to more communication ways [45].
To overcome this issue, we want to develop the effective
IPS-RL method based detection scheme for the energy
market, carrying out on the peer to peer framework. Hence,
it is required to present the proposed peer to peer energy
trading structure in this paper. Let us assume that the three
microgrids, consisting of the different renewable energy
resources, i.e. wind turbine (WT), photovoltaic (PV), tidal
system, fuel cell unit and storage unit, tend to exchange their
energies each other in order to maximize their economic
benefits. To this end, this paper investigates and formulates
an appropriate RCI method based peer to peer energy trading
scheme for three microgrids connected in form of peer to peer
structure. To make it clear that how the RCI method works,
let us first provide the centralized structure of the proposed
problem.

A. PROBLEM FORMULATION DEFINITION BASED ON
CENTRALIZED STRUCTURE
In this section, we intend to introduce and formulate the
infrastructure of the proposed model, consisting of three
microgrids in such a way that each microgrid can exchange
its energy with others for gainingmore economic benefit. The
first microgrid includes a PV unit, two TWs, a tidal system,
storage unit and some loads satisfied by the generation units.
Also, the other microgrids to supply their loads employ some
renewable energy resources, i.e. twoWTs, a fuel cell unit, two
tidal system and battery unit related to the second microgrid
and a fuel cell system, three PVs and storage unite for the third
microgrid [46]. Let us assume that the communication ways
amongmicrogrids are assigned in order to transfer the energy.
Also, a central operator is considered aiming to manage the
power transaction amongmicrogrids. Keeping this discussion

FIGURE 3. The flowchart of the proposed IPS algorithm.

in mind, the formulation of each microgrid can be explained
as follows:

1) MULTI-MICROGRID FORMULATION
Technically, the objective function of eachmicrogrid is aimed
to minimize the cost of self-generation units with the use of
the energy exchanging with the other microgrids as shown
in (24)-(26). To clarify the cost function of microgrid, it is
needed to describe some explanations here. The total power
generation of microgrid includes sum of power produced by
the energy units. Keeping this argument in mind, the cost
function of each microgrid comprises of two main parts.
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The first part is related to the maintenance and investment
costs of each renewable energy unit deployed into microgrid
structure which is conformed to reference [45]. The cost
of trading power which is supplied by these the renewable
energy units, makes the second part of the cost function.
The last term of equation (24) follows the relevant power
transaction cost to microgrid 2 and microgrid 3. By focusing
on (24), the positive values of P12 and P13 imply to transfer
and consequently purchase the power frommicrogrids 2 and 3
to microgrid 1 and vice versa. Similar to the explanation
related to microgrid 1, the objective functions of microgrid
2, 3 are delineated by (25)-(26). From the above-mentioned
considerations, the diverse renewable resources, i.e. WT, PV,
fuel cell, tidal turbine and storage units are employed in the
system to bring the needed power of load demands. The
power generation limits for WT, tidal unit and PV are defined
by (27)-(29). Also, the output power of fuel cell unit is
modeled by using the current and voltage of the connected
power electronic device into the fuel cell unit, as shown in
(30) and (31). Based on (27), the WT can generate power in
compliance with wind speed such that the power value will be
zero if the wind speed is less than a particular range (called
cut-in speed value). Similar to the WT power, the power
generation of the tidal system depends on the tidal current
as indicated in (28) [47]–[50]. Equation (29) describes the
PV power generation regarding to the solar radiation. The
limits related to the charging/discharging of storage unite
can be followed by (31)-(35). It is well accepted that the
energy management of each microgrid is mainly to provide
the power balance between its generation units, power
transaction and load to get into the objective function, as
shown in (36)–(38).

mic1 = min
∑
t∈�T

CTI1t TI
1
t + CPV

1
t PV

1
t + CB

1
t PB

1
t

+

nw∑
i=1

CW 1
t,iPW

1
t,i + C1P

12
t + C2P

13
t

(24)

mic2 = min
∑
t∈�T

nt∑
i=1

CTI2t,iTI
2
t,i + CFC

2
t FC

2
t + CB

2
t PB

2
t

+

nw∑
i=1

CW 2
t,iPW

2
t,i − C3P

12
t + C4P

23
t

(25)

mic3 = min
∑
t∈�T

CFC3
t FC

3
t + CB

3
t PB

3
t +

nv∑
i=1

CPV 3
t,iPV

3
t,i

−C5P13t − C6P
23
t

(26)

PWt =


0 0 ≤ SW ≤ SW

rated

ϕ(SWt ) SWcutin ≤ S
W
≤ SW

rated

∀t ∈ �T

PWrated SWrated ≤ S
W

(27)

TIt =



0 0 ≤ T Vt
≤ T V

rated

0.5Pγ λ
(
T Vt
)3 T Vcutin ≤ T

V
t

≤ T V
rated

∀t ∈ �T

TIratedT
V
rated ≤ T

V
t

(28)

PVt =
Q× Ut
Z
× (1− Rloss) ∀t ∈ �T (29)

PFC,t = V fc
t I fct ∀t ∈ �T (30)

FCt = V fc
t I fct + R(I

fc
t )

2
∀t ∈ �T (31)

VBt = VBt−1 + PBt1tη
Bat
∀t ∈ �T (32)

PBt = PBcht − PB
dis
t ∀t ∈ �T (33)

Pmin
≤ PBt ≤ Pmax

∀t ∈ �T (34)

Vmin
≤ VBt ≤ Vmax

∀t ∈ �T (35)

TI1t +
nw∑
i=1

PW 1
t,i + PV

1
t + PB

1
t + P

13
t + P

12
t

= Pload1t ∀t ∈ �T (36)
nt∑
i=1

CTI2t,iTI
2
t,i +

nw∑
i=1

PW 2
t,i + PB

2
t + FC

2
t + P

23
t

= Pload2t + P12t ∀t ∈ �T (37)

PB3t + FC
3
t + PV

3
t = Pload3t + P13t + P

23
t ∀t ∈ �T

(38)

It is needed to say that the power transaction variables,
which are P12 and P13 and P23, should be only deployed
in either generation or demand side of the power balance
for each microgrid. According to the balance equation of
microgrid 1, the variable P12 is assigned to the demand side
of the power balance of the microgrid 2. This means that the
power is exchanged from microgrid 2 to microgrid 1 if the
value of P12 is positive and consequently it is shown with
negative indication in the objective function of microgrid 2
(see equation (27)). This explanation can mainly be expanded
for the power transaction between microgrids 2 and 3.

B. RCI BASED PEER TO PEER ENERGY TRADING
FRAMEWORK
In the literature, the RCI based p2p trading has been presented
in order to only determine the trading power in energymarket.
But, according to the growing occurrence of malicious
attacks, there is needed to develop the p2p based energy
trading framework in such a way that the relevant data
should be secured to prevent the probable threats. In other
words, Since the energy exchange based on the peer to peer
structure and without a safe decision center is accomplished,
participates (each microgrid) need not only to get into an
acceptable agreement but also their information related to
energy transaction are broadcasted in a secure environment.
In this regard, the main goal of providing this paper is
development of an effective framework to guarantee the
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energy transaction trust in the peer to peer energy trading.
To do this, we tried to develop a RCI based secured algorithm
in order to cover both the data security and energy trading.
Let us assume that the microgrids are connected to each other
in the form of the peer to peer structure. The proposed RCI
algorithm can guarantee to get into an acceptable power/price
transaction amongmicrogrids in such a way that the objective
function of each microgrid is optimality satisfied.

In the RCI method, the master problem is solved by
using two sub-problems similar to the dual approach [47].
The solution of each sub-problem should be converged to
get into the global solution of the main problem. To make
an effective agreement among the participants, the RCI
method is developed to solve the problem by considering
the Karuch-Kuhn-Tucker (KKT) conditions. Comparing this
method with the dual ascent approach, a gradient function is
added to the objective function of the problem to improve
the solving procedure. On the other hand, all participants
can make an appropriate agreement for both the power
and price transactions in the RCI structure, carrying out a
direct method to converge the sub-problems [47]. In addition,
the Lagrangian Relaxation is used in order to limit the power
boundary in the RCI method. Keeping the above argument
in the mind, the objective function of the RCI algorithm in
accordance with the proposed multi-microgrids structure can
be developed as follows:

min
∑m

j=1
micj+Rjj

′

t

(
Pjj
′

t

)
− Pjj

′T

t β
jj′
t

+ H̄ j
t
(
Pj,t − Pj

)
− H j

t

(
Pj − Pj,t

)
(39)

(27)− (38) (40)

Pjj
′

t ≥ 0,Pjj
′

t ≤ 0, (41)

β
jj′(k+1)
t = β

jj′(k)
t − X k (β jj

′(k)
t − β

j′j(k)
t )_κk

× (Pjj
′(k)
t + Pj

′j(k)
t ) ∀t ∈ �T (42)

H̄ j(k+1)
t = max

(
0, H̄ j(k)

t + ξ k
(
Pj,t − Pj

))
∀t ∈ �T (43)

H j(k+1)
t = max(0,H j(k)

t + ξ
k
(
Pj − Pj,t

)
) ∀t ∈ �T (44)

PSk+1j,t
=
−bj + β

j
t − H̄

j
t − H

j
t

aj
∀t ∈ �T (45)

It is important to first mention that as it can be shown,
Equation (39) shows the total objective function of the
RCI algorithm that the first part of this equation describes
the objective function of each microgrid (micj) in which
j indicates a microgrid in the proposed p2p framework.
Also, the exchanging cost for each microgrid j is defined
based on the second/third terms. In this regard, Pjj

′

t and
β
jj′
t donate the power/price transactions from microgrid j to

microgrid j′, respectively. The updating trend of the relevant
problem variables in the RCI method is served with the use
of the relaxed largrangian function and KKT conditions. To
do so, the last term of the objective function is assigned
to the slackness function to satisfy the condition related
to the updating procedure. Equation (40) demonstrates the

operation constraints of three microgrids mentioned in the
previous section. Also, equation (41) shows that Pjj

′

t can
take both positive and negative values. The price exchanging
amongmicrogrids is updated based on theX k/κk coefficients
as defined in (42). It is needed to say that the power
transaction value is notably efficient on the updating trend of
price. For this reason, the appropriate value of κk coefficient
can help to converge process as much as possible. Based
on (43) and (44), the slackness variables are calculated
regarding the limitation of the power transaction.

To update the power transaction for each microgrid j,
it is needed to first define a power set point based on
the Lagrangian function of the relaxed problem and the
inverse gradient. With doing this, the power set point
of each microgrid j is determined by (45). By focusing
on (46), the updating trend of the power exchanging among
microgrids would be developed and defined in (44) in which
Rjj
′(k)
t coefficient is calculated using (47).

Pjj
′(k+1)
t = Pjj

′(k)
t + Rjj

′(k)
t

(
PSk+1jt − P

k
j,t

)
∀t ∈ �T (46)

Rj(k)t =

∣∣∣Pjj′t ∣∣∣+ γ k∣∣Pjn∣∣+ γ k ∀t ∈ �T (47)

It is significant to say that the RCI algorithm has converged
when iterative process is stopped. To this end, the terminating
condition needs to be determined for the RCI algorithm that
is represented as below:

β
jj′(k+1)
t − β

jj′(k)
t < ε (48)

Pjj
′(k+1)
t − Pjj

′(k)
t < γ (49)

H j(k+1)
t − H j(k)

t < τ (50)

As mentioned already, the proposed p2p framework is
made of microgrids, each which has the different generation
unit for supplying load demands. This means that each
microgrid regarding type of generation unit needs to bring its
power set point for getting an optimal power transaction in the
p2p algorithm. Hence, behave of each microgrid considering
the generation unit differentiation can be effective and
significant into the converging procedure of the proposed p2p
algorithm.

Note that this work considers the objection function and the
constraints of generation units including the power balance
and generation limitation related to each microgrid in the p2p
energy trading process (see equations (39) and (40)). This
means that the operator of each microgrid can execute its
system operation in decision making process simultaneously.
In addition, the multi-microgrid structure is designed in such
a way that each of microgrid is able to balance and supply the
power generation and load demand without getting involved
in the p2p energy trading framework. All to all, given the
peer to peer energy trading based on the RCI algorithm, it is
needed to guarantee the security of data exchanging between
microgrids with the IPS-RL based detection scheme against
the malicious attacks as shown in Fig. 4.
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FIGURE 4. The IPS-RL based the RCI algorithm.

IV. UNCERTAINTY MODEL BASED ON UNSCENTED
TRANSFORM METHOD
According to the uncertain output of the renewable energy
resources, it is significant to investigate a close look at their
effects on the energy trading process. To this end, this section
aims to model the uncertainty effects by using UT method.
It is important to say that the proposed model can model
correlation among the uncertainty parameters, which are the
solar radiation, wind speed, tidal current and loads. The UT
model is defined byU = f̂ (R) through 2p+1 different sample
points. Such method uses the normal distributed function in
order to model each variable regarding the mean and standard
deviation values related to variable which is depicted by m

and σ . TheUTmethod process can be described through steps
(1) to (3):
Step 1: 2p + 1 points can be computed by (51)-(53) as

follows:

R0 = m (51)

Rk = m+
(√

p
1−W 0Aaa

)
k

k = 1, 2, . . . , p (52)

Rk+p = m−
(√

p
1−W 0Aaa

)
k

k = 1, 2, . . . , p (53)

where Aaa shows the covariance matrix and R̄ = m.
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Step 2: Weight of points calculated by (52):

W k
=

1−W 0

2c
k = 1, 2, . . . , 2c (54)

Note that the sum of the weights should be equal to 1.
Step 3: By inserting the points calculated by step 1 into

the nonlinear function U k
= f̂ (Rk ), the output values are

determined by:

U =
2p∑
k=0

W kU k (55)

PFF =
2p∑
k=1

W k
(
U k
− U

) (
U k
− U

)T
(56)

V. PERFORMANCE EVALUATION
This section aims to assess and validate the online anomaly
detection scheme based on the proposed IPS-RL method
for a P2P based energy management structure against
malicious attacks. To this end, we try to first implement
an RCI approach based energy trading structure for three
microgrids connected in form of the peer to peer framework.
Then, an attack of FDIA type is launched to the peer
to peer energy trading to get into the malicious goals of
hacker. Also, we check the security of the proposed RCI
algorithm equipped by the IPS-RL scheme for bringing an
effective agreement among microgrids against the FDIA
attack. In this paper, to accurately obtain the relevant results,
we used the experimental sample data (false and correct data)
related to the renewable resources which are collected and
analyzed in reference [51]. As described before, the three
microgrids proposed in this paper contain the renewable
energy resources, i.e. the wind turbine, photovoltaic unit, tidal
system, fuel cell unit as well as storage unit, aiming to supply
the demand loads located in the areas far from the main
grid [52]–[56].

It is needed to say that all the simulations are performed
in GAMS and MATLAB software and solved on 3.4-GHz
windows-based PC with 32 Gbytes of RAM. The above
problem based on proposed method is solved and overall
mixed integer linear problem (MILP) is obtained by using
CPLEX solver. To make the performance of the proposed
model clear, the results are exanimated based on different
case studies as follows:
Case I: Validating the IPS-RL based online anomaly

detection method
Case II: Assessing the IPS-RL based peer to peer energy

trading structure under attack condition
Case III: Analyzing the effect of uncertainty on the

proposed RCI method
Each case is presented and discussed in detail in the

following sections.

FIGURE 5. The measurement noise under attack condition.

FIGURE 6. The measurement data under attack condition.

A. VALIDATING THE IPS-RL BASED ONLINE ANOMALY
DETECTION METHOD
It is significant to first present the validation of the proposed
anomaly detection method against the malicious attacks.
In this regard, this section concentrates on assessing the
IPS-RL based attack detection scheme with the occurrence
of an attack of FDIA type. To this end, we model and
launch the FDIA attack in the first place and then provide
the IPS-RL approach in order to detect the attack. Let us
assume that the hacker injected the false data into the system
at time t = 50 as indicated in Figs. 5 and 6. By focusing
on Fig. 5, it can be seen that the measurement noise has
a high fluctuation at time t = 50. This change can be
eminently seen in the estimated measurement data compared
with the actual data as demonstrated in Fig. 6. In the case
of lack of an attack detection system, the hacker can inject
the false data and get into its malicious goals at subsequent
times (t>50). To overcome this problem, we implement the
proposed detection system based on the IPS-RL method and
evaluate the system under attack condition. Fig. 7 shows
the noise value related to the measurement device equipped
by the proposed detection system when the hacker injected
the compromised data into the system at time t = 50. The
significant point is to check whether the proposed method
could satisfy the main goals including the detection delay
reduction and attack alarm. To make a clear assessment of
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FIGURE 7. The IPS-RL based the RCI algorithm.

the model, the measurement noise can be indicated in three
conditions of normal condition, attack detection condition
and removing condition. In Fig. 7, the measurement device
provided the normal noise from time t = 1 to t = 49.
After launching attack in time 50, the proposed system could
detect the attack at time t = 51. By removing attack,
the measurement noise is in the normal condition. This result
can prove that the FDIA attack is detected and alarmed by the
IPS-RL method with a slight delay, which is almost 1(s).

As mentioned already, one of the main goal of this paper
is development of a p2p based energy trading framework
with the use of making the energy transaction trust of the
decentralized structure based system. Hence, there is needed
to prove effectiveness and high efficiency of this model in
security issue.

To validate this method, we try to compare the proposed
model with the other well-known and successful detection
models, i.e. the support vector machine (SVM) and the rein-
forcement learning (RL). Also, the IPS based optimization
method used to improve the detection model is compared
with the particle swarm optimization (PSO) and genetic
algorithm (GA) methods named as PSO-RL and GA-RL.
To this end, we computed and provided the precision and
recall of 5000 trails for different cases. In this regard,
Fig. 8 shows the precision versus and recall curves based
on equations (57) and (58) for different cases, including the
proposed model, SVM and RL. According to the results,
the precision/recall values related to the proposed model
are almost close to 1 while these values for the RL/SVM
models are 0.8, 0.84 and 0.63, 0.42, respectively. In addition,
the F-score value based on (59) is computed for different
models such as the IPS-RL, SVM, RL, PSO-RL and GA-RL
under 10000 and 5000 trails as shown in Table 3. Given the
result of the F-score, the proposed model is more sensitive to
distinguish the attack than the other models.

Recall =
True Positive

True Positive+ False negative
(57)

Precision =
True Positive

True Positive+ False pasitive
(58)

F − score =
2(Precision ∗ Recall)
Precision+ Recall

(59)

FIGURE 8. The precision/recall of different cases: case1: the proposed
model, case2: the RL model, case3: SVM model.

TABLE 3. The F-score for different models.

B. ASSESSING THE IPS-RL-BASED PEER TO PEER ENERGY
TRADING STRUCTURE UNDER ATTACK CONDITION
One of the significant goals of this paper is to preserve
the security of the data exchanging in the peer to peer
energy system. Hence, this section aims to suggest and
evaluate the RCI based secured energy trading with the use
of the IPS-RL method, detecting the malicious activities
(refer to Fig. 4). To do so, let us first provide the RCI
algorithm performance and then follow the security of the
energy trading against the FDIA. To better realize the
false information injection in the system, it is needed to
first express some explanations here. According to the
performance of reinforcement learning designed based on
two learning and detection phases, the accuracy and optimum
of the proposed detection method depends on the number
and type of the Trails and experiments trained by the
first phase. Hence, to improve the results, we used the
experimental sample data related to the renewable resources
collected by reference [29]. We execute the RCI method
for three microgrids to get into an appropriate agreement
and represent the relevant results in Figs. 9-14. Based on
Fig. 9, the converging trend between microgrids 2 and 3 is
executed in three stages, including high and low fluctuations
and steady. In the first stage, the energy trading procedure
is continued with a high fluctuating trend because of not
being an appropriate power set point for each microgrid.
After determining the power set point, the power transaction
takes a low fluctuation from iteration 40 to 80. As the last
stage, the power exchanging between microgrid 2 and 3 is
converged on an accepted power, which is 23.05 kW at time
t = 4. According to the equations (44) and (53), the positive
value of power implies to receive the power from the relevant
microgrid and vice versa. This explanation can be followed
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FIGURE 9. The power transaction between microgrids 2 and 3.

FIGURE 10. The power transaction between microgrids 1 and 2.

FIGURE 11. The power transaction between microgrids 1 and 3.

for power exchanging between microgrids 1 and 2 as shown
in Fig. 10. Based on Fig. 11, the microgrids 1 and 3 settle
down on an effective agreement in order to transfer the
optimal power, which is 18.29 at time t = 8. With regards
to the trading process in the primary iteration, it is possible
that the power transaction can take the positive value for
both microgrids 1 and 3 due to the incompatible power set
point. Generally, the power transaction for each microgrid is
indicated in Fig. 12 during the 24 hours. Asmentioned before,
the proposed consensus algorithm is able to converge the
trading price among the microgrids, getting into an optimal
operation. For instance, let us to report the price exchanging
between microgrids 1 and 2, which is approximately

FIGURE 12. The power transaction for microgrids 1 to 3.

FIGURE 13. The price transaction between microgrids 1 and 2.

obtained 0.49 $. It is important to say that According to
equations (24)-(26), the last term of cost function related
to each microgrid includes the energy exchanged with the
other microgrids by considering the self-energy price. On the
other hand, the proposed p2p framework is able to make not
only the power transaction but also can calculate the trading
price between two microgrids at each time. In this regard,
each microgrid can transfer its energy to one which has
more suitable energy price than other microgrids with aim of
bringing the optimal energy management and cost reduction.
Moreover, the converging process of the total operation cost
corresponded to the power transaction curves takes 0.14×106

after the high fluctuations in iteration 114.
After the RCI algorithm description, it is important to

consider a close look at the effects of attack launching in
energy trading based on the proposed consensus method.
To this end, we launch an attack of FDIA type to the
peer to peer energy trading structure, which is equipped by
an IPS-RL based security platform, in order to manipulate
the power transaction between microgrids 1 and 2 and
microgrids 1 and 3 at times t = 10 and t = 13. The relevant
results are demonstrated in Figs. 15 and 16. By focusing on
Fig. 15, the hacker injected false data in a given iteration
that it causes to disturb the converging procedure of power
transaction for microgrids 1 and 3. As it can be shown,
the IPS-RL based security platform detected and alarmed
the FDIA with a slight detection delay in the next iteration
[57]–[59]. To ensure the proposed method performance,

92096 VOLUME 9, 2021



M. A. Mohamed et al.: Secured Advanced Management Architecture in P2P Energy Trading for Multi-Microgrid

FIGURE 14. The total operation cost.

FIGURE 15. The power transaction between microgrids 1 and 3 under
attack condition.

FIGURE 16. The power transaction between microgrids 1 and 2 under
attack condition.

the result related to the energy exchanging between the
microgrids 1 and 2 under attack condition is reported
in Fig. 16. Another goal of this paper is development of a
p2p based energy trading framework getting into a nearby
global solution based on p2p energy training compared
with the centralized. To do this, we valid and compare the
proposed energy trading structure to the centralized form of
the system in terms of the computing time, iteration number,
energy trading efficiency and the variable number as shown
in Table 4.

As mentioned before, increasing the cost pertaining to
each microgrid is considered as the main goal of hackers by
using injection of false data. On the other hand, the part of

TABLE 4. Computation time for proposed analysis.

cost function of each microgrid includes the cost of energy
transaction determined by the energy trading framework.
In this regard, attackers could manipulate data such that the
power transferred amongmicrogrids takes an increasing trend
which led to rise in the transaction cost for the targeted
microgrid. By focusing on these results, it may be concluded
that the proposed attack detection scheme can be considered
as appropriate and affective detection software, assuring the
energy market based on the peer to peer structure against
the malicious anomalies. Besides, in Table 4 is shown
computational time and number of iteration for the proposed
methods. According to Table 4, the total computing time
of the proposed method is almost %29 less than another
one which means that this method takes an acceptable
value in computational efficiency. In addition, the last row
in Table 4 indicates comparison of both the centralized and
proposed frameworks of this work. According to this Table,
the centralized and proposed methods obtained the total
operation cost of the studied system as 0.112 × 106 and
0.14 × 106, which are nearly equal. This proves the
effectiveness, validity and accuracy of the proposed model
in providing a proper P2P based energy trading framework.

C. ANALYZING THE EFFECT OF UNCERTAINTY ON THE
PROPOSED RCI METHOD
This part tries to investigate whether the uncertain output of
renewable energy resources can change the energy trading
performance or not. Hence, this section examinants the P2P
energy trading trend in uncertainty condition and highlights
the effects of uncertainty on the power transaction among
microgrids compared with the normal condition. To this
end, we implement UT model on the proposed consensus
algorithm and see the consequence related to the operation
cost of each microgrid and the total operation cost for
both the deterministic and stochastic conditions as indicated
in Figs. 17 and 18. As it is mentioned, each microgrid
should be responsible for supplying its load demands in
operation process. Since the load power of microgrid 2 is
more than the other microgrids, it is clear that this microgrid
needs to get more power generation through the energy
units and the power transaction to other microgrids. This
work leads to increase the cost of microgrid 2 (see Fig. 17).
It is possible that the uncertainty effect makes an increase
in the operation cost of each microgrid compared to the
normal condition. For instance, with regards to Fig. 17, the
operation cost of microgrid 2 has an increasing change from
$1.2 × 105 to $2.13 × 105 due to the uncertain output of
the renewable energy resources and load demand fluctuation
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FIGURE 17. The operation cost of each microgrid for both deterministic
and stochastic conditions.

FIGURE 18. The total operation cost for both deterministic and stochastic
conditions.

in the microgrid 2. Similar to the microgrid 2, this situation
is expanded for the operation cost of the other microgrids.
It is significant to say that the stochastic condition may alter
the converging process of the consensus algorithm as shown
in Fig. 18. It can be indicated that the iteration number and
the total cost under uncertainty condition are approximately
increased by 7.14% and 53% in comparison with the normal
operation.

VI. CONCLUSION
One of the key aspects of the peer to peer based energy
management is the issue of energy trading under attack
condition. The main topic of this research is to remove the
obstacles including the cyber-attacks for the realization of
a secured peer-to-peer energy market. The most important
impediment, which is a very significant and common cyber-
attack, is the FDIA which can disrupt the proper functioning
of the system, severely. The simulations results include
various sections, which show the accuracy of the proposed
method from different aspects. In the first part, a false data
injection attack (FDIA) is applied to the peer-to-peer energy
trading system among the microgrids, aiming to reach an
appropriate consensus based on the RCI approach. Also,
the proposed anomaly detection method based on adjusting
the α coefficient detects the amount of deviation of the
injected incorrect data with the aim of minimizing the

detection delay in the trading procedure. In the other part,
the improved detection method was compared with other
methods such as SVM, RL, PSO-RL and GA-RL, and the
time of detecting incorrect data intrusion by the proposed
method reinforced the claim that the online data intrusion can
be prevented online. In order to bring the simulation closer to
the reality, the load and production uncertainty are considered
which the UT method is used to simulate the uncertainty.
As a result, it becomes much more difficult to detect FDIA
in the uncertain environment. This makes it necessary for
the proposed method to be robust under stochastic condition
against FDIA. The obtained results clearly show the accuracy
of the proposed method. However, the result of this study
does not cover all smart city sections such as transportation
or energy hub systems, as well online and offline training can
be combined to improve the convergence. Future studies on
the current topic are therefore recommended.
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