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ABSTRACT Over the coming years, the foresighted enormous increase in smart devices supporting Internet-
of-Things (IoT) applications demand novelty in network design. A promising solution to the ever-increasing
low-latency requirement of IoT applications is the development of fog network architecture. However,
the presence of an enormous number of smart devices in fog networks affects the performance of the
network. To harvest the benefits of fog networking necessitates finding optimal cloudlet selection strategies.
This article formulates a mixed-integer non-linear programming (MINLP) problem that has the objective of
latency minimization. An exhaustive search on our cache-enabled (CE) fog architecture cannot be applied
because of the problem’s combinatorial and NP-hard nature. Similarly, the genetic algorithm (GA) cannot be
used to find the solution because of the calculation of the number of generations. The increase in the number
of IoT and fog nodes increases the solution search space, hence an Outer Approximation Algorithm (OAA) is
proposed to arrive at the solution. Low complexity, convergence, and effectiveness of the proposed algorithm
ensures the ε-optimal solution = 10−3, obtained through standard problem solvers.

INDEX TERMS Cache, cloudlet selection, fog networks, Internet of Things (IoT), MINLP.

I. INTRODUCTION
Exponential industrial development in all fields expected to
result in an enormous number of smart devices deployment.
Prediction is that more than 50 billion smart devices will be
deployed which results in the production of 13 times more
data than non-smart devices, by 2020 [1]. Deployment of IoT
nodes supporting latency-sensitive applications is challeng-
ing because of their stringent ultra-reliable, low-latency com-
munication (URLLC) and different quality-of-service (QoS)
requirements. This scalability and low-latency requirement
of IoT nodes results in the inefficiency of cloud computing.
Computation/processing of many different applications at
the same time on the cloud server results in added delays.
Propagation delays are also added because of cloud place-
ment at the further place. Because of these latency-sensitive
applications running on the user’s end, an extension of
cloud computing named as fog computing has emerged.
It will act as a key enabling technology to support the
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future 5th Generation (5G) IoT applications [2], [3]. For
the fourth industrial revolution, fog computing will be an
enabling technology because it supports mobility, location-
awareness, heterogeneous IoT smart devices, realtime and
secure communication [3], [4], [5]. Fog computing is
a decentralized solution for latency-sensitive applications,
which involves the computation and storage resources of data
near the edge of the network, near to the IoT nodes. Cloudlet
nodes are an extension of a cloud server placed close to the
IoT nodes. In comparison, cloudlet nodes have limited data
storage capacity and computation/processing capability than
the cloud server.

To access, process, and forward information between
cloudlet and cloud server, the backhaul link’s burden
increases. This burden results in propagation and processing
delays. Similarly, throughput increases due to sharing a single
spectrum and heavy traffic burden between cloudlet node
and IoT devices. This results in the fronthaul link’s burden,
resulting in a transmission delay. Because of the burden
limitations of these links, the concept of caching at cloudlet
nodes has been proposed. The presence of cache on cloudlet
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nodes in fog networks will result in the minimization of the
overall network’s latency [6]. As the requested data available
in close vicinity of users at the cloudlet node, there will be
no computation and propagation delays. Cache-enabled (CE)
cloudlet nodes in fog network will support latency-sensitive
IoT applications.

Fog computing as an enabler for industry 4.0 applications
has some serious implementation challenges of cache-
placement, resource management, network deployment,
network modeling, energy consumption, and user associa-
tion. For minimizing the overall network latency, efficient
cloudlet-selection and user-association techniques for CE-fog
networks are required. Recently researchers have done some
work on resource management aiming different objective
functions of maximizing energy efficiency, minimizing
latency, and maximizing network utility in fog networks.
Section II provides a detailed literature survey on existing
relevant work on the cloudlet selection, mentioning their
limitations in Table 1. System model and the problem
formulation is explained in the Section III. Section IV
discusses the proposed algorithm followed by algorithm’s
convergence proof and its complexity analysis. Numerical
results that are observed under the proposed algorithm are
presented in Section V. Finally, we conclude this work in the
last Section VI.

II. LITERATURE REVIEW
Globally, many researchers and industrial assemblies have
noticed the need for new research techniques for real-time
communication supporting IoT applications. In the upcoming
future, new techniques for the deployment of networks,
management of resources, and energy will be under con-
sideration to minimize the latency for IoT applications.
The fog computing paradigm causes the upcoming shift
in network architecture that supports reliable, economical,
and real-time communication for future IoT applications.
Cacheable Small Cell Base Stations (SCBs) are widely
deployed in small cell networks (SCNs) for managing traffic
load across the network. Network Utility Aware (NUA)
load balancing scheme was proposed by authors in [7].
Offloading, buffering, and resource allocation are three
parallel algorithms proposed by authors to propose an optimal
resource allocation on the basis of throughput, balancing,
and delay [8]. A graph-based caching approach with less
complexity was proposed in comparison with the brute-force
approach in [9]. The proposed approach gives remarkable
improvements in terms of traffic offloading parameters.
Authors have formulated a 0-1 integer programming problem
for fog radio access network (F-RAN) under constraints of
maximum distance and maximum traffic load threshold.

A new bio-inspired optimization algorithm named as Bees
Life Algorithm (BLA) was proposed by authors in [10]. Their
objective function is to distribute tasks among fog nodes
optimally. They proposed better results after studying an opti-
mal trade-off between execution time and memory. In [11],
authors have proposed an optimal resource allocation scheme

among fog nodes (FNs) and data service operators (DSOs).
First Stackelberg game was proposed to analyze the pricing
problem and then a many-to-many matching algorithm is
used for FN-DSS (data service subscribers) pricing problem.
For the joint optimization problem of cloudlet selection and
bandwidth allocation, an iterative algorithm was proposed
by authors in [12] for a triple-stage Stackelberg game.
To achieve maximum utility by minimizing latency during
association authors have proposed the Boltzmann-Gibbs
learning algorithm [13]. User clustering was done based on
the user’s request and using the proposed algorithm was
used to choose a cache-enabled cloudlet. Similarity-Aware
popularity-based Caching (SAPoC) is proposed in [14] to
improve the performance of the network in terms of the cache
hit ratio and energy consumption. The arrival and departure
of mobile devices are considered for the wireless edge
computing network. If the requested file is already stored
at the edge of the network, the cache hit ratio is triggered,
otherwise, the request is sent to the cloud for processing.
The freshness of stored content, similarity, and frequency of
request is determined by content popularity prediction. The
performance of the proposed algorithm is compared with
other caching algorithms, in terms of energy consumption
and cache hit ratio. In [15], authors have proposed a
solution for new emerging Mobile Edge Computing (MEC)
systems using the GNU Linear Program kit (GPLK) for the
formulated problem. User association and admission control
were studied under delay and cloudlet’s storage capacity.
A tradeoff between queue delay and power consumption
was investigated for the proposed F-RAN scenario. The
stochastic-based mixed-integer, joint optimization on mode
selection and resource allocation problem is formulated.
Authors have studied two reinforcement learning-based (RL)
algorithms and solved the problem using the Lyapunov
optimization [16].

For resource management, in [17] authors have proposed
an energy-aware algorithm. and an evolutionary algorithm
for less energy consumption respectively. A tradeoff between
power consumption and delay was studied in [18]. The
authors consider the power and delay constraints for F-RAN
architecture. They proposed a delay-aware energy-efficient
computation offloading scheme for minimizing the con-
sumption of grid energy [19]. A power control algorithm
and Greedy algorithm (GA) was studied with the aim
of energy-efficient resource allocation in [20] and [21]
respectively. To identify a suitable node for caching in a
distributed way, a content-placement algorithm named as
Content-Based Centrality (CBC) was proposed in [22] for
information-centric fog computing. Authors have formulated
a non-convex optimization problem aiming maximization of
content at fog nodes subjected to buffer size threshold.

To maximize the overall delivery rate for cache-enabled
F-RANs architecture, a convex approximation method was
studied by authors in [23]. The joint optimization problem
was formulated under fronthaul capacity, file size, and
transmit power for user association to fog node. In [24],
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FIGURE 1. System Model - Downlink in fog network with IoT nodes.

two different (maximum data rate and minimum latency)
optimization problems were studied. A distributed algorithm
is proposed for solving the first joint problem of caching
placement and association strategy. Optimal power allocation
is derived in a closed-form expression for the second
joint problem of mode selection and subchannel assign-
ment. Resource management under storage capacity and
bounded delay constraints to minimize latency were studied
in [25] and [26]. The optimal workload allocation problem
under optimal tradeoff between latency and power was
studied in [27]. Authors have proposed two distributed
algorithms supporting novel fog node cooperation strategy.
A self-organized many-to-one matching game approach was
used in [28], [29], and [30] to minimize the latency during
cloudlet selection. Computational caching algorithm and
Regret-Based algorithm were proposed by authors in [31]
and [32] respectively, to a latency minimization problem
under a storage size constraint. For load balancing, user
association in [33], [34], [35], authors have studied cloud-fog
integrated Industrial Internet of Things (CF-IIoT) network to
get ultra-low latency. For this objective, they have proposed
a real-coded genetic algorithm for constrained optimization
problem (RCGA-CO) algorithm. They have formulated a
min-max optimization problem for resource management.
Table. I summarize the mentioned related work mentioning
respective contributions.

A. CONTRIBUTIONS
The key motivation of our work is that none of the previous
work considered joint resource selection, admission control,
and power allocation scheme for a cache-enabled (CE)-fog
network that minimizes the overall network latency. This
work is the first attempt that provides a solution for the
future upcoming industrial revolutionized era which will be
composed of real-time low latency IoT applications. To the

best of our knowledge and comparison of some previouswork
mentioned in Table 1, our contributions in this article are:

1) We propose a mathematical framework for latency
minimization in the CE-fog network.

2) A joint optimization problem is presented, which is
of mixed-integer non-linear programming type. The
formulated problem jointly takes into account cloudlet
selection, admission control, and power allocation
parameters.

3) Due to the combinatorial and NP-hard nature of
the problem, problem complexity will increase as
the number of integer variables increases. In this
article, with finite convergence, an ε-optimal solution
is achieved using the outer approximation algorithm
(OAA).

4) We also compared the performance of OAA algorithm
with the genetic algorithm (GA) and the exhaustive
search algorithm (ESA). The results show OAA gives
better results than both.

5) Extensive simulations have been done to find ε-optimal
solution using the low-complex OAA, which means
that an optimal solution is just only ε = 10−3 away.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A proposed fog network is shown in Fig. 1 in which
there are g number of cloudlets or fog nodes such that
g ∈ G = {1, 2, . . . ,G} and a single cloud is deployed.
There is n number of IoT nodes in the network such that
n ∈ N = {1, 2, . . . ,N }, connected to cloudlets via
a wireless link. To share load and information, cloudlet
nodes have dedicated links among each other. To mitigate
the interference between cloudlet-to-cloudlet link and IoT
node-to-cloudlet node, the frequency bands are chosen that
are different or non-overlapping. Dedicated backhaul links
with high-speed capability are used for the connection of
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TABLE 1. Previous work (U.A=User Association, P.A=Power Allocation, C.E=Cache Enabled, A.C=Admission Control, MILP=Mixed Integer Linear
Programming, NLP=Non-Linear Programming, MINLP=Mixed Integer Non-Linear Programming).
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TABLE 2. Notations.

cloudlets with the cloud server. The same frequency band is
used for communication between cloudlets and IoT nodes,
hence, there is interference experienced by IoT nodes from
other close vicinity cloudlets. Each cloudlet g with a limited
capacity of Sg bits is equipped with a set of data files given
as c ∈ C = {1, 2, . . . ,C}. IoT node n requests a file
content c with the size of dc bits, this request arrival rate has
a Poisson distribution. This distribution has a mean of λn,c
where a higher mean arrival rate of a file shows that it is
more popular in the system. If requested file c is available
at the cloudlet’s cache, it is directly delivered to the node,
otherwise, the request will be handled by the cloud itself. This
cloud request will increase in latency and overall system cost.

At a particular time, a cloudlet can serve multiple IoT
nodes but a node can only be connected to only one cloudlet
g. Let an IoT node n ∈ N be present in the coverage of
multiple cloudlets and intend to download some files. Let
xng = {0, 1} ∀n ∈ N , g ∈ G be the binary indicator
representing association of node with a cloudlet. It has value
1 when there is a connection between the node and a cloudlet,
otherwise its value will be 0. Let yng = {0, 1} ∀n ∈ N , g ∈ G

be the binary indicator, which decides whether a node is
admissible for connection or not, such that, xng ≤ yng. IoT
node admission will be done based on QoS requirements,
given by a cloudlet to a user node. Variable yng, represents
admission control on cloudlet nodes, while xng is a node
association variable which ensures that a user node will be
transmitting data with only one selected cloudlet. If an IoT
node is admissible on a particular cloudlet node it has value 1,
otherwise, if rate and latency constraints are not satisfied its
value will be 0. Let zng = {0, 1} ∀n ∈ N , g ∈ G be the binary
indicator that shows the availability of requested file c in the
cache memory of a cloudlet g. The proposed system model
is shown in Fig. 1. We define total communication latency
experienced by node n to get the requested content c from
cloudlet g as lng that can be stated as:

lng = lTg,n + l
B
g,n, (1)

where lTg,n and l
B
g,n are wireless transmission delay and back-

haul delay, respectively. These are the delays experienced
by an IoT node n after requesting files from the associated
cloudlet node g. During transmission of a file c with size dc
from cloudlet g to IoT node n, the transmission delay of the
wireless link can be calculated as:

lTg,n =
dc
rng

(2)

In practice, traffic load and average link distance are related
to backhaul delay, which is greater than the value of the
transmission delay. lBg,n is a combination of fog processing
delay lPg,n and propagation delay lDg,n. Here, for simplicity,
we assume that processing delay for all fog nodes has a
fixed value. If the IoT node received the requested files from
the CE-associated cloudlet node, there will be no backhaul
delay. However, if the requested file is not available in the
cache memory of the cloudlet, the IoT node will experience
both the delays as mentioned in Eq. (1). First, there will
be a transmission delay and then there will be a backhaul
delay, as the cloudlet has to fetch the requested files from the
cloud via backhaul links. These delays will cause an overall
increase in latency experienced by an IoT node. In Eq. (1),
the backhaul delay lBg,n experienced in fetching files from the
cloud can be calculated as [25]:

lBg,n =
(
1− zng

) (
lPg,n + l

D
g,n

)
(3)

The propagation delay lDg,n is dependent on the Db, which
is the distance between the fog node and cloud. We have
assumed that fog nodes are placed at different distances from
cloud causes different propagation delays, which is given as
Db
v . Using Eq. (2) and Eq. (3), Eq.(1) can be updated as
follows:

lng =
dc
rng
+

(
1− zng

) (
lPg,n + l

D
g,n

)
, (4)

where rng is the downlink (DL) transmission rate that is given
by Shannon’s capacity formula as:

rng = bnglog2
(
1+ SINRnDL,g

)
, (5)
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here bng is the assigned bandwidth by cloudlet to the
node and SINRnDL,g is the signal-to-interference plus noise
ratio experienced by IoT node given as SINRnDL,g =

xng
pngh

n
g∑

g′ 6=g∈G p′ng h
′n
g +No

; png and hng are the assigned power and

channel gain, respectively. While power and channel gain
received by other interfering IoT nodes are given as p

′n
g

and h
′n
g , respectively. Channel gain is defined as hng =

h̄ngζGo

(
do
dg

)α
, where other parameters are antenna gain

(Go), log-normal shadowing (ζ10ζ/2), the distance between
cloudlet and IoT node (dg), the antenna far-field reference
distance (do), path loss exponent (α), Rayleigh random
variable (h̄ng) and ζ is given as the zero-mean Gaussian
random variable with standard deviation σ [36]. A summary
of the symbol notation used in this article is given in Table 2.

For downlink transmission under cache-storage capacity,
power allocation and QoS constraints, the formulated prob-
lem of joint cloudlet selection and latency minimization
for CE-fog network, with objective function J , can be
mathematically stated as:

J(x,y,z,p) = min
∑
g∈G

∑
n∈N

xng l
n
g

subject to constraints C1 to C9:

C1 :
∑
g∈G

xng ≤ 1; ∀n ∈ N

C2 : rng ≥ y
n
g
dc
L
∀n ∈ N

where

xng ≤ y
n
g; ∀n ∈ N , g ∈ G

C3 :
∑
n∈N

png ≤ Pg; ∀g ∈ G

C4 : png ≤ y
n
gPg; ∀n ∈ N , g ∈ G

C5 :
∑
n∈N

zngdc ≤ Sg; ∀g ∈ G

C6 : lng ≤ y
n
gL; ∀n ∈ N

C7 : rng ≥ y
n
gR; ∀n ∈ N

C8 : png ≥ 0; ∀n ∈ N
C9 : xng , z

n
g ∈ {0, 1}; ∀n ∈ N , g ∈ G (6)

At a time, user association constraint as C1 ensures that any
node n can be connected to only one cloudlet. QoS constraint
as C2 ensuring the user admission to a cloudlet that whether
the user gets services from the associated cloudlet or not,
based on minimum data rate and latency. C3 is the maximum
power constraint that power assigned to all connected nodes
must not exceed the maximum transmit power of the cloudlet
(Pg). If the node is not connected to any cloudlet its power
will not be considered, this is given in C4. C5 is the file
caching constraint in terms of the limited storage capacity
of a cloudlet (Sg). The total data sent by all users associated
with a particular cloudlet must not increase the total storage

capacity. Latency constraint as C6 ensures that latency must
not exceed the threshold upper bound latency value (L).
Constraint C7 is the minimum data rate threshold constraint,
ensuring that the associated cloudlet provides a minimum
data rate (R) to its admitted user node. Constraint C8 ensures
that the power of a particular user that is connected to a single
cloudlet must be greater than 0. C9 is the constraint that limits
the value of node association and cache placement indicator
to binary values of 0 and 1.

The formulated problem falls in a class of mixed-integer
non-linear programming (MINLP) problem that is NP-hard.
It is impossible to find an optimal solution in polynomial time
because of the NP-hard nature. As the number of IoT and
cloudlet nodes increases, the search space to find a solution
increases exponentially. For a global optimal solution,
an exhaustive search algorithm (ESA) can be used, but the
search on binary variables results in high complexity. It gives
search space having an order of 2|n|, which means there are
2|n| optimization problems that need to be solved. Because
of the exponential increase in search space, ESA cannot be
applied to find a solution. Therefore, we propose the outer
approximation algorithm (OAA), which requires relatively
low computations to find a near-optimal solution [37]. In the
literature, there are some other algorithms to solve the
MINLP problem used in literature namely the branch and
reduce (BR) algorithm [38], and the method by Lawler and
Bell [39].

IV. PROPOSED TECHNIQUE
The Eq. (6) is very complex as it is a combination of binary,
continuous, and integer variables. This combination makes
a big challenge to solve this problem. With the increase in
the number of IoT and cloudlet nodes, many variables need
handling which makes it NP-hard. To solve the non-linearity
and integrality of MINLP, OAA is applied, which works with
the convergence of upper and lower bounds. MINLP is solved
after decomposition in the primal problem (NLP) and master
problem (MILP). An upper bound is achieved after fixing the
binary variables (xng , y

n
g, z

n
g) which is further used to find a

lower bound. The detailed implementation of OAA for the
proposed latency minimization problem is given in the next
section.

A. OAA DESCRIPTION
In Eq. (6), let the constraints from C1 to C9 that are subject
to objective function J , be denoted by a set as Fc1−c9,
P = {png} as a set of continuous variables and � = ϕ ∪ P
as set of discrete variables. It is observed that the following
four propositions are satisfied by the formulated problem:

1) P is a compact set of variables having properties of
non-emptiness and convex.

2) J and Fc1−c9 are continually differentiable for making
P convex.

3) The NL problem can be obtained after fixing the value
of �.
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4) After fixing the values of all discrete variables,
the solution of continuous primal problem satisfies all
the constraints.

OAA will converge in an infinite number of iterations with
convergence capability ε [37]. OAA follows a non-decreasing
lower bound and a non-increasing upper bound. After
solving the primal-subproblem, the upper-bound sequence is
calculated, whereas the lower-bound sequence is calculated
after solving the master problem. According to proposition 4,
the primal problem is formed using fixed values of �. The
primal problem with �n integer values, at the nth iteration of
the algorithm, can be written as:

min
P

− J (�n,P)

subject to : Fc1−c9(�n,P) ≤ 0 (7)

The master problem is formed by the solution (Pn) of the
above primal problem. After applying OAA on the Eq. (6),
the solution of the primal problem sets the upper bound while
the solution of the master problem sets the lower bound. This
results in the linearity of both functions [40], [41]. Every
next iteration uses integer variables �(n+1) i.e solution of
master problem. After the result of every iteration, the bounds
get close to each other. A point comes where the difference
between bounds remains less than ε, the algorithm stops.
We can rewrite the problem as:

min
�

min
P

− J (�n,P)

subject to : Fc1−c9(�n,P) ≤ 0 (8)

or

min
�

− γ (�) (9)

here

γ (�) = min
P

− J (�n,P)

subject to : Fc1−c9(�n,P) ≤ 0 (10)

The master problem in Eq. (9) is the projection of our
formulated optimization problem in Eq. (6) on � space
discrete variables. There is a constraint qualification for every
primal problem solution�n, which implies that the projected
problem will have a similar solution written as:

min
�

min
P

− J (�n,Pn)−∇J (�n,Pn)(P−P
n

�−�n )

subject to : Fc1−c9(�n,Pn)−∇Fc1−c9(�n,Pn)(P−P
n

�−�n )≤0

(11)

Equivalent minimization problem with new variable W can
be written as:

min
�,P,W

W

subject to : W ≥ −J (�n,Pn)−∇J (�n,Pn)(P−P
n

�−�n )

Fc1−c9(�n,Pn)−∇Fc1−c9(�n,Pn)(P−P
n

�−�n )≤0

(12)

Lower bounds are calculated using the solution of the
master problem Eq. (12). This master problem is equal to
the formulated problem in Eq. (6), only if all the mentioned
propositions are satisfied. The Eq. (12) is of MILP type and
can be solved using an iterative approach. The pseudo-code
of the proposed OAA is given in Algorithm 1.

B. ALGORITHM CONVERGENCE AND OPTIMALITY
Proof of linear convergence rate of OAA is given in
mixed-integer programming literature [41]. The branch and
bound architecture make OAA optimal in ε = 10−3.
In this procedure, discrete values of � are fixed which
means that any combination of nodes and cloudlets will
never be used twice. If all the four propositions are satisfied
and there are a limited number of discrete variables �,
then Algorithm 1 terminates with the optimal solution in
finite steps [37]. The solution is guaranteed using ε-optimal
algorithms within the ε of the optimal solution for any ε > 0.
The guaranteed accurate value of the solution is given by
lower values of ε. For a specific choice of discrete variables
�n, the optimality of P in master problem Eq. (12) might be:
1. ifW ≥ J (�n,Pn)→ feasible solution
2. otherwiseW ≤ J (�n,Pn)→ not − feasible solution
The algorithm eliminates such values of�n for which there

is no feasible solution that exists for the master problem. This
results in finite algorithm convergence. For any fixed values
of �, the algorithm optimality follows from the convexity of
the objective and constraint function. A detailed convergence
proof of the OAA algorithm is given in [42]. Using ESA for
Eq. (6), a globally optimal solution can be calculated, but
there is an exponential computational load increase as it has
to enumerate all nodes and fog selection options. Denoting
CESA as complexity and k as the number of nodes (in our case:
fog+IoT) in the network, the computational complexity of
the ESA will be given as:

CESA = 22k (13)

Similarly, the stochastic nature of GA makes it more
complex. Its complexity depends on the operators and their
implementation. The CGA, complexity of GA will be given
as:

CGA = σk, (14)

here σ is the number of generations [43]. Space complexity
is twice the population size (in our case fog+IoT nodes).
But in an infinite number of iterations using OAA, an ε-
optimal solution can be found [37]. In a generalized way,
the complexity COAA, for OAA will be given by:

COAA =
k2ρ
γ
, (15)

where ρ is the number of constraints and error tolerance
of ε-optimal solution from the global optimal solution is
given by γ . One more advantage of OAA over ESA is
that it ensures to provide an ε-optimal solution. In this
paper, we compare OAA results with the results obtained
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FIGURE 2. Computational complexity of ESA and OAA vs number of IoT
nodes.

from GA. After benchmarking GA results, it can be seen
that the performance of OAA is better than GA. GA could
not perform well, as it cannot guarantee any optimal or
ε-optimal solution. Also, there is no convergence proof for
GA. The computational complexity trend of ESA and OAA
is presented in Fig. 2. The calculation of the number of
iterations for GA is not possible because of the statistic nature
which depends on the number of generations (Eq. (14)).

Algorithm 1 Outer Approximation Algorithm
1: n← 1
2: Initialize �n

3: ε ← 10−3

4:Convergence← FALSE
5:While Convergence == FALSE do

6: Pn←
{
arg min, −J (�n,P);
subject to, Fc1−c9(�n,P) ≤ 0

7: Upper_Bound ← J (�n,P∗)

8: (�∗,P∗,W∗)←



arg minW
�,P,W

,

subject to,
W ≥ −J (�n,Pn),
−∇J (�n,Pn)(P−P

n

0 ),
Fc1−c9(�n,Pn),
−∇Fc1−c9(�n,Pn)(P−P

n

0 ) ≤ 0
9: Lower_Bound ←W
10: if Upper_Bound − Lower_Bound ≤ ε then
11: Convergence← TRUE
12: else
13: n← n+ 1
14: �n

← �∗

15: end_if
16: end_while

C. ALGORITHM COMPLEXITY FOR THE PROPOSED
PROBLEM
In this subsection, we will be calculating OAA complexity
more specifically for our formulated problem. The total

number of flops F gives the complexity of an algorithm.
In [44], a real floating-point operation is used to represent a
flop. Every operation has its corresponding number of flops
such as one flop for the operations of addition, multiplication,
or division; one flop for additive and removal operator;
one flop for a logical operator (e.g. comparison etc.) and
assignment operator; two flops for complex addition, four
flops for complex multiplication, and 2mno flops for matrix
multiplication having mxn and nxo dimension. To find the
complexity of the proposed algorithm for our scenario,
we have to count the number of flops. In our proposed algo-
rithm, the first five statements take one flop each. Statement 6
takes two flops as 2NG, statement 7 and 8 take 4NGβ flops
each, statement 9 takes 2NGβ, statement 10 takes two flops,
statement 11 takes one flop, and statement 13 takes two flops.
The total flop count FOAA for our system having N number
of IoT nodes, G number of fog/cloudlet nodes and β is a
constraint count for each node, mathematically given as:

FOAA = 5+ 2NG+ 4NGβ + 4NGβ + 2NGβ + 1+ 2+ 1

FOAA ≈ 2NG+ 10NGβ (16)

V. SIMULATION AND RESULTS
To solve Eq. (6) and calculate the overall latency of the
network, experimental validation is done for the proposed
system model. The experimental results portray the perfor-
mance of the OAA approach. The results also give some
insight into the convergence of the proposed algorithm.
To implement the outer approximation linearization tech-
nique, basic open-source nonlinear mixed integer program-
ming (BONMIN) [45] solver is used.

A. SIMULATION SETUP
The simulation assumptions of parameters are summarized
in Table 3. For all the simulation maximum coverage distance
for each fog is set to 50m. The maximum transmitted power
for a fog/cloudlet nodePg is set as 41dBm. Theminimumdata
rate and latency requirement for any node is set to 200kbps
and 1ms, respectively. Reference distance as per antenna
far-field do is set to 5m and dg is always greater than do.
Path loss exponent α is set to 2 and zero mean gaussian
variable for shadowing ζ is set to 10dB. The minimum IoT
nodes allowed are 2 in the network, whereas the maximum
IoT nodes allowed are 18 with an increment of 2. IoT nodes
are supposed to be uniformly distributed in the network.
Minimum fog nodes are 3, whereas maximum fog nodes
allowed are 5, with an increment of 1. These fog nodes are
at different distances from the cloud, resulting in different
propagation delays. The processing delay at the fog node
is set as 0.1ms. The storage capacity for cached data is
set as 40MB.

B. DISCUSSION ON RESULTS
In this work effect of power, cache size, and QoS require-
ments were evaluated using system-level simulations. In the
end, we compare the performance of OAA with the ESA
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TABLE 3. System assumptions [29], [32], [46].

FIGURE 3. User association with five fog nodes vs number of IoT nodes.

and standard continuous GA [47]. OAA algorithm is used to
calculate network latency under constraints. Fig. 3 shows the
association when there are five patches of fog nodes available
in the system. The number of associated IoT nodes with fog
nodes versus total nodes in the fog-IoT network is observed.
Node gets associated with a particular fog node based on
the best channel which gives the minimum latency. If an
IoT node doesn’t receive the minimum QoS requirements
based on constraint C2, it is not admitted by any fog node
for transmission, and hence such nodes do not contribute in
the calculation of overall network latency. With an increase
in IoT nodes in the network, user association is maximized
while keeping the QoS constraints (C4, C6, and C7) into
consideration. The admission of nodes at fog nodes is a
random pattern, depending on QoS (power, latency, and rate)
requirements. The user association is done with an aim of
latency minimization objective (Eq. (6)).

Fig. 4 depicts network latency relation with the number of
IoT nodes, in presence of different numbers {3-5} of cloudlet
nodes in the network. The total system latency is calculated
using Eq. (4) and Eq. (6) considering all the constraints.

FIGURE 4. Total system latency vs number of IoT nodes.

For a fixed number of fog nodes present in the network,
the increasing number of IoT nodes increases total system
latency, which is obvious as more time is required to serve
all nodes. Observing the effect of the number of fog nodes on
latency, at the start, the number of fog nodes in a system has
no effect on latency as the number of IoT nodes in the network
is less. But as the number of IoT nodes increases, the presence
of more fog nodes depicts effects on the total latency. For
three fog nodes, all nodes have to be served with only these
available three fog nodes, resulting in more latency. However,
if there are five fog nodes in the system, a positive effect
can be seen. The total network latency decreases as there are
more resources available for downloading the requested files.
For three fog nodes, 2 IoT nodes will incur 0.01ms latency,
while for 18 IoT nodes will incur 0.2ms (around 95% of the
increase in latency). This proofs the fact of increasing latency
with an increase in the number of nodes in the system. The
calculated latency values show that the proposed network
model can be used to support real-life applications in the
future, for example, smart city, healthcare, and industrial
floor. The typical QoS (delay) requirements of internet traffic
are: RT data (1ms-1s), image(1s), audio and video (0.25s).
Similarly based on the application scenario the forecast
QoS delay requirements are: industry 4.0 (≤5ms), internet
of energy (≤200ms), big data streaming (≤100ms), smart
city(≤10ms), factory automation (0.25-10ms), healthcare
(1-10ms), robotics, and virtual reality (1ms). Similar more
use cases with delay and data rate requirements can be
seen in [48], [49]. Table 2 in [3] also summarized the
use of fog computing to support the application case
studies.

Fig. 5 depicts the relation between the number of IoT
nodes and mean user throughput. For a specific node,
the throughput is almost the same satisfying the minimum
rate requirement. As the number of fog nodes increases, it is
observed that there is an increase in instantaneous power
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TABLE 4. Percentage reduction in the latency for various cache capacity with respect to no cache.

FIGURE 5. Mean user throughput vs number of IoT nodes.

FIGURE 6. Total system throughput vs number of IoT nodes.

which gives more throughput to the user. The user will get
more options for receiving the required files, hence the mean
user throughput increases with more resources available.
This relation i.e., Eq. (5) depicts the direct relation between
capacity and power. Figure shows the relation between the
number of IoT nodes in the system and the mean user
throughput of an IoT node. The graph shows that the mean
user throughput is almost the same satisfying constraint C7 of
the problem (Eq. 6). The increasing total system throughput
can be evident from Fig. 6 in relation to increasing IoT nodes
in the system. More IoT nodes will generate more data as
compared to less number of nodes. Similarly, the system
throughput is maximum for five patches of fog nodes as there

FIGURE 7. Latency vs cache memory size.

will be more resources available for allocation. IoT nodes
have more options to fetch their requested files. The sum
of the data rate received by all associated IoT nodes in the
system gives the total system throughput. The data rate of a
single user is calculated using Eq. (5). Precisely, we could
say that by increasing the number of IoT or fog nodes into
the network, the overall system throughput increases. But
there will be a point comes, when any further increase in
the number of IoT nodes will not affect the total system
throughput, at this point the system’s throughput reaches
its maximum capacity limit. After this point, the system
throughput will be constant.

Fig. 7 shows the effects of cache size on total latency.
Total system latency is calculated using the objective function
of the formulated problem (Eq. (6)), under different sizes
of the storage capacity of fog nodes given in constraint C5.
The figure depicts that if the number of IoT nodes increases
in the network there will be an increase in system latency.
As more number of IoT nodes need more time to fulfill their
requirements which causes more delay, hence increasing the
overall system latency. To observe the effect of cache size
in the figure, it is evident that if there is no cache available
at the fog node, the system experiences maximum latency.
A node has to experience all the delays namely; transmission,
processing, and propagation. A fog node will have to send
the request to the cloud server using backhaul links. The sum
of all delays results in a maximum latency calculation that
does not satisfy the maximum delay threshold for an IoT
node. The presence of cache at the fog node has clear positive
effects on latency, resulting in the efficient performance of
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FIGURE 8. Latency comparison of OAA with ESA and GA algorithm.

the network. For 20MB capacity, latency is minimum as
compared to no− cache, as some demanded files from nodes
are available at fog. As we increase the size of the cache at
the fog, overall system latency decreases. Table 4 shows the
percentage reduction of latency for various cache memory
sizes in relation to no-cache. The percentage reduction is
more for 60MB size capacity as compared to 20MB. This is
because more number of files are present near the vicinity
of IoT nodes. At first latency reduction increases, but as the
number of IoT nodes increases in the network, the latency
reduction decreases. This is due to the fact of being served at
the same time, more IoT nodes in the system will take more
time.

In Fig. 8, the performance of the network in terms of
latency calculation is observed under different algorithms;
namely OAA, GA, and ESA. For all algorithms, the parame-
ter assumptions are the same, and latency is calculated using
Eq. (6). We can see the performance comparison of the OAA
with ESA and GA, for five patches of fog nodes. OAA
performs better because of its ε-optimal nature over GA. The
GA can give good results, but there is no guaranteed optimal
solution and convergence proof because of the stochastic
nature of GA. When there is a fewer number of IoT nodes
are present in the network, the performance of all algorithms
is almost the same. But with the increase of IoT nodes,
the algorithm’s behavior starts some different behavior. ESA
is the most complex and the time taken algorithm gives more
latency than OAA and GA. In comparison with ESA, OAA is
less complex and converges in a finite number of iterations.
ESA might give the best optimal solution with a trade-off of
the algorithm’s complexity. Complexity comparisons of all
algorithms in a theoretical way are previously discussed in
Section IV-B. The choice of the algorithm also has effects on
latency calculations, ESA and GA take more time in finding
the optimal solution. This behavior can be numerically
observed using equations (Eq. (13), Eq.(14), Eq. (15)).

VI. CONCLUSION AND FUTURE DIRECTIONS
In the very dense IoT application scenario, an extraordinary
burden is on the cloud every time. In this paper, CE cloudlet

nodes are integrated into the system to reduce the overall
latency of the network. A joint MINLP optimization problem
is formulated which considers resource association, IoT
node admission, power allocation, and cache-availability
constraints. The IoT-CE cloudlet system was studied for the
minimization of latency. A less complex, branch and bound
OAA technique is used to find an ε − optimal solution.
Extensive evaluation results show the effectiveness of the
proposed approach for our system. A comparison is made
in terms of storage capacity at fog nodes and the total
number of fog nodes. An increase in intelligently placed
data storage at fog node and overall fog nodes in a system
deployment results in the minimization of system latency.
Designing and optimization of future networks with low
latency, more energy-efficient attributes is a vast area of
research and many questions need to be answered. For future
work, we will find an energy-efficient resource allocation
strategy for the proposed system model. We will upgrade
the current problem with the reliability factor. For future,
mission-critical IoT applications, this ultra-low latency and
reliable communication (URLLC) is the major requirement.
In this work we have used the standard optimization
technique (OAA) to solve the problem, for the future,
a heuristic approach can also be used.
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