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ABSTRACT The retina is a part of the ocular system responsible for vision. In the central region of the
retina is the macula, that enables detailed view. There is a distinct macular disease called Macular Hole (MH).
It causes a condition of low vision related to the weakening of the fovea, high myopia, eye trauma and severe
exposure to the sun. A surgery depends of the size and shape of the MH. A macular hole can be identified
in Optical Coherence Tomography (OCT) images through the top boundaries of the Internal Limiting
Membrane (ILM) and the Retinal Pigment Epithelium (RPE). Manual segmentation of OCT images is time
consuming whereas automatic segmentation is fast and has a low computational cost, and consequently of
interest to specialists. Thus, the main objective of this work is to develop an algorithm that automatically
segments the ILM boundary layer and the area of the MH in OCT images. Another objective that was also
pursued included the automatic acquisition of MH measurements. The segmentation was performed through
a set of techniques involving shortest distance from a point to a curve (Euclidean Distance), Flood Fill and
Border Following algorithms. The proposed method reached satisfactory results for all applications made.
The automatic segmentation of MH and the extraction of its measures is a significant contribution to aid the

medical diagnosis of the macular hole pathology.

INDEX TERMS
segmentation.

I. INTRODUCTION

The retina is a part of the ocular system responsible for vision,
and in its central region is the macula, that is responsible
for sharp vision [1]. Among the various possible abnormal
conditions of the macula, the macular hole (MH) is the less
commonly encountered [2]. The incidence of this pathol-
ogy relates to age, occurring usually in people over the age
of 50 years and mostly in women [3]. Still, for people under
40 years, the MH can affect about 1 in 500 people [4].
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Macular hole is a condition of low vision related to the
weakening of the fovea, high myopia, eye trauma and severe
exposure to the sun, in which the rupture of the Internal Lim-
iting Membrane (ILM) layer creates a hole in the retina [5].
Age is the most common cause of MH. With advancing age,
the vitreous shrinks in size and separates from the retina.
The problem is that sometimes it pulls the retina together,
causing the macula to rupture. Eye damage or swelling of the
macula due to other pathologies can also bring on the macular
hole [6].

If a patient has a macula hole in only one eye, he/she will
not usually complain until a significant decrease in vision
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occurs. However, if the presence of the hole is bilateral,
the complaints will come sooner. Among the symptoms com-
monly reported are loss of distant vision, difficulty in reading
and gray spot in the central region of vision. Furthermore,
some people report image distortion [7].

The MH format and measurements are necessary to deter-
mine the type of treatment. Some important metrics for the
volume of the hole are areas, diameters and height. The
measurement of these metrics are important to assess if it is
possible to close the hole [8]-[10]. The identification of MH
in Optical Coherence Tomography (OCT) images is possible
through the top boundaries of the ILM and the Retinal Pig-
ment Epithelium (RPE) [11]-[13].

OCT is the device most used as a way to map and deter-
mine the internal structure of the eye through images. This
technique stands out for not causing any discomfort to the
patient, as there is no physical contact [14]-[16]. This tool
produces high quality retinal images. Although, it was first
introduced in 1991 [17]-[19], it only appeared commercially
in 1996 [20]. Now it is standard practice for medical retinal
analysis [21]. Various A-scans (1D) build a B-scan (2D)
image [22], and an aggregation of B-scans constructs a 3D
structure [23]-[25].

Automatic segmentation and diagnosis of pathologies
using OCT is not an easy task. More than one pathology in
the same image may affect the results negatively. The same
pathology may have different characteristics, and MH is one
example. The guaranty of an identical comparison between
regions is not possible in some studies using more than one
dataset from different devices [26], [27].

The acquisition of information and the execution of tasks
can be made through automatic techniques in images [28].
Countless preprocessing techniques can be applied for seg-
mentation of images. Using medical images to make diag-
noses has become both popular and reliable. Millions
of images are produced by hospitals each year. These
images have features that allow specialists to diagnose
pathologies [29].

Although manual segmentation of OCT devices is carried
out by specialists [30], this technique is time consuming
which makes it disadvantageous for studies of segmentation
and classification [31]-[35]. On the other hand, manual seg-
mentation is still the major segmentation technique for OCT
images due to the lack of reliable automated methods [36].
Thus, a fast and low computational cost segmentation tech-
nique would be of great interest to help specialists to ana-
lyze retinal layers. Furthermore, the advances in research
involving this area can contribute to the acceptance of this
technology in medical practices [37]. Therefore, The main
objective of this work is the development of an algorithm that
automatically segments the ILM boundary layer and the area
of a MH pathology in OCT images.

The importance of understanding the clinical case and
all its variables is fundamental for the development of this
work. Health and technology are areas that complement
each other. Health provides the necessary elements for the
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methodological basis of new technologies. While technology
benefits health with improved and robust equipment and
procedures that improve the quality of life for society as a
whole.

Il. RELATED WORKS

A limited number of works have been made in the
field of automatic segmentation of MH in OCT images.
Keller et al. [38] created an algorithm to segment the MH
boundary layer. A comparison between the shortest path and
length-adaptive segmentation techniques aims to prove that
length-adaptive segmentation reaches better results. How-
ever, this work did not acquire the MH measures, which are
important in the diagnosis decision.

Nasrulloh er al. [39] created a technique that allows the
3D segmentation of the macular hole through image cuts.
Through this approach it was possible to acquire bi and
three-dimensional measurements. A set of images of the same
eye is needed to assemble the three-dimensional mosaic,
forming the MH volume.

Xu et al. [40] suggested a method to segment the MH vol-
ume through the segmentation of two boundary layers, ILM
and RPE. Through the graph cuts technique, for each frame
there is an independent segmentation. The last two methods
require a large amount of computational resources because
the use of a large number of images. A simple methodology
should be developed for automatic segmentation and extrac-
tion of measures of MH in OCT images.

ill. METHODOLOGY

Medicine has evolved considerably with devices that allow
the acquisition of increasingly clear digital images. However,
inaccurate diagnosis can occur through the use of some med-
ical images. Some factors can be responsible for it, such as
the presence of noise or difference in the contrast in some
parts of the image. Suitable algorithms for image processing
are necessary in order to obtain better results. Two types of
segmentation are implemented in this work: distance-based
segmentation and area-based segmentation. A flowchart of
the methodology is shown in Figure 1.

The proposed method is a set of techniques, including
shortest distance from a point to a curve, Flood Fill and
Border Following algorithms that work together. They are
applied throughout the development of the proposed work.

The algorithm was implemented using Python language.
The computer is equipped with Windows 10 platform with
an Intel Core i7 CPU at 2.5 GHz and 8 GB RAM. The
OCT images used in this work all came from a public
source called Optical Coherence Tomography Image Reti-
nal Database (OCTID) [41], [42]. The high-resolution JPEG
images have 2 mm scan length and 500 x 750 pixel size
(1 pixel ~ 3.9 um). A Cirrus HD-OCT machine was used.
The OCTID database contains more than 500 images classi-
fied in different conditions. For this work, only images with
MH were necessary (102 B-scan OCT images).
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FIGURE 1. Flowchart of the methodology.

A specialist from Escola Cearense de Oftalmologia (For-
taleza, Brazil) contributed to the work by creating the
ground-truth (GT) of the ILM and MH area contours segmen-
tations. In addition, MH measurements were also extracted
for further evaluation. Images that were not a full-thickness
MH were excluded by the specialist. Among the 37 discarded
images were conditions related to macular edema, macular
pseudo hole, lamellar macular hole, epiretinal membrane,
vitreomacular traction syndrome and MH with retinal detach-
ment. There were also normal macula images in the MH
image dataset. A total of 65 MH images were used.

Only one public database was found in the academic com-
munity containing OCT images with the macular hole pathol-
ogy. Although 67 OCT images appear to be a small amount
of samples, they are sufficient to confirm the performance of
the method, as machine learning techniques are not used and
consequently there is no need to train and test the algorithm
using a large number of images.

A. IMAGE PREPROCESSING
The purpose of preprocessing is to improve the image qual-
ity, correcting defects and highlighting important details for
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the desired application. This step is important to provide
satisfactory results in segmentation. Various preprocessing
techniques can be used, such as: brightness and contrast
adjustment, noise reduction, correction of irregular lighting,
edge enhancement, among others [1], [43].

The database has images taken with different settings. Con-
sequently, the images had varying levels of brightness, which
hindered the development processes. Therefore, all images
were adjusted to normalize brightness by taking the bright-
ness of one image as a reference for the others. Considering
the influence of the brightness level (BL) in the final segmen-
tation through experiment with images of different brightness
intensities, the image MHS5 obtained the best performance
(BL of 0.1336). So, this image was used as the reference.
Therefore, the BL of 0.1336 was considered to be optimal
and adjustment conditions were employed. For example, if an
image has a BL of 0.25, its BL is multiplied by 0.65, so that
it is within the optimum BL margin (0.11 < BL < 0.15) that
can be seen in Table 1. If brightness level is between 0.11 and
0.15 no adjustment is necessary.

TABLE 1. Brightness level adjustment.

Brightness Level (BL) |Alpha
BL > 0.23 0.65
0.15<BL <0.23 0.85
0.11 <BL <0.15 1.00
0.08 < BL <0.11 1.30
BL <0.08 1.60

It is important to understand that just the value 0.1336 is
necessary, the image MHS5 served only in the development
of the methodology. It is not necessary to use any reference
image whenever the algorithm runs.

A small area was used to measure the brightness level of
the images. Its pixel location in any image is (10:50,350:390).
An example of OCT image with this small area is shown
in Figure 2. This area position was chosen because it is the
vitreous body of the eye for all the images. This position does
not contain any type of layer of the human eye. The images
must be in the gray scale mode.

FIGURE 2. OCT image with an area marked in red to measure the
brightness level.

OCT images have noise, especially Gaussian noise.
Smoothing (blurring) techniques help reduce it. A Gaussian
filter with a kernel size of pixel of 11 x 11 is used.
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B. THRESHOLDING

In medical images, the separation of regions with the objects
of interest from the background is an useful task. Threshold-
ing is a good option for this. Since it performs segmentation
based on pixel intensity [44]. The cutoff point of 45 is applied
to all pixels, ranging from 0 to 255 in shades of gray. This
cutoff was chosen as it best suits a good segmentation for a
pattern of images processed following the applied methodol-
ogy. A thresholding result is shown in Figure 3.

FIGURE 3. (a) Gaussian Blur filtered image and (b) thresholded image.

If the image used as a reference for brightness level normal-
ization was a different one, perhaps another threshold value
would be chosen. The alignment between the parameters of
all applied techniques is necessary for the good performance
of the algorithm.

C. MORPHOLOGICAL OPERATIONS

Examples of morphological operations used in this work
are erosion and dilation. Removing pixels at the edge of
objects is accomplished by erosion. Dilation does the inverse,
it adds pixels. Some parameters must be set before starting
the technique. They are the choice of the shape and size of
the structuring element [45].

The kernel used in both dilation and erosion is 3 x 3.
Two erosions and two dilations are applied alternately. This
approach removes small white objects, preserving the con-
tours of the boundaries that are essential to perform a satis-
factory segmentation. After the series of two erosions and two
dilations have been performed, the bottom half of the image
becomes a black space, as can be seen in Figure 4(a).

FIGURE 4. (a) A series of erosions and dilations and (b) Flood Fill
application.

As it is essentially a work on image processing, the pro-
posed methodology include morphological operations. These
techniques have implications for a large number of initial
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adjustments while moving from one data to other, but this
is performed in the development of the algorithm. When
everything is ready, it is no longer necessary to keep adjusting
parameters, the methodology works automatically.

D. FLOOD FILL ALGORITHM

The Flood Fill algorithm is most commonly used to fill the
holes in the given input image. For binary images, it changes
the background pixels to foreground pixels until it reaches
the object boundaries [46]. The Flood Fill algorithm is
represented by:

sre(x’, y)—loD < src(x,y) < sre(x’,y") + upD, )]

where src(x,y) is the coordinate value of the pixel under
evaluation; src(x’, y’) is the neighbor pixel connected com-
ponent; loD and upD are the maximal lower and the maximal
upper brightness differences between the observed pixel and
its neighbors that are already connected component, or a seed
pixel being added to the component, respectively. Summariz-
ing, a Flood Fill algorithm may be divided into the following
steps:
1) definition of the position of the starting point (seed
point);
2) choice of the neighboring pixels method (kernel);
3) decision of a replacement color and a target color;
4) definition of the path and directions that will be taken
by the seed point;
5) analyze each pixel found and define whether or not to
replace its color;
6) repetition of step 5 until the algorithm has covered all
the pixels within the boundaries.

The Flood Fill algorithm is the first step in the set of tech-
niques applied. The chosen kernel or neighboring pixels uses
the 8-connected method. This kernel includes the diagonal
pixels. Hence, it would correctly fill any format. A specified
seed point is chosen (550,470) and reassign all pixel values
until reaches the object boundary. The chosen coordinates are
at the position close to the bottom of the image because the
objective of this step is to separate the image into two regions
(black and white).

The objective is to make the bottom space white
(Figure 4(b)). Thereby, the ILM boundary layer is well
defined, separated by the forward and background regions,
so that it can be segmented.

E. BORDER FOLLOWING ALGORITHM
After the Flood Fill application, the ILM boundary layer is
differentiated, therefore being segmented. This segmentation
step is performed by finding the largest contour between
the white object and the background; this is done because
the binary image has small black holes that also form small
contours.

Then, the second step of the set of techniques is performed,
that is the Border Following algorithm. It extract the topology
of a binary image. This technique starts through the choice of
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FIGURE 5. Border Following algorithm.

the starting point, which is usually the top left corner pixel in
the image. When the algorithm finds a pixel (i, j) that satisfies
an edge condition, a label is assigned to it. All pixels that are
part of this identified border will receive the same label.

After completing the first scan, the next step is to look for
edges within the borders already found. The algorithm does
the same process, but in smaller search spaces delimited by
the borders, which can form closed areas. Each pixel found
with a border condition that is not part of the previous bor-
ders receives a different identification label. When the scan
reaches the bottom right corner of the image, the algorithm
stops. At the final of the process all borders will be obtained
and have a unique identification label [47]. The Border fol-
lowing algorithm is shown in Figure 5. This technique allows
to know the number of borders in an image and also it allows
to choose the largest contour, for example.

(a) (b)

FIGURE 6. (a) ILM boundary layer segmentation on the original image,
and (b) on the background.

Three components are necessary: the first is the source
image, the binarized image after the Flood Fill algorithm;
the second is the contour retrieval mode, the approach
retrieves only the largest contour, and the side and bottom
cuts in the image eliminate unwanted parts of the contour;
the third is the contour approximation method, it compresses
horizontal, vertical, and diagonal segments and leaves only
their end points. The contour method generates an array of
(x, ¥) coordinates from the largest contour related to the black
background. The result is the ILM boundary layer segmenta-
tion that is represented in Figure 6.
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F. SHORTEST DISTANCE FROM A POINT TO A CURVE

The segmentation of a MH area is obtained by applying the
third step of the set of techniques. The extreme top left and
top right pixels of the MH must be located. The shortest
distance from a point to a curve (Euclidean Distance (ED))
is used to find these pixels. This technique will be explained
based on the theory used to compare the prediction of an ILM
boundary layer segmentation with its respective ground-truth.
This same method is used to obtain the segmentation results
and it is also used in the third step of the methodology to
obtain specific pixels that are used to close the macular hole
through the top diameter. The theory of shortest distance from
a point to a curve is represented in Figure 7.

Pixel A

¥

Curve A

Pixel B Curve B

FIGURE 7. Shortest distance from a point to a curve.

For each pixel of the curve B (prediction), the ED calcu-
lation is performed with all pixels of curve A (ground-truth).
Then, the shortest pixel of A will be chosen to calculate the
distance error at that local pixel of B. The process is carried
out from pixel to pixel of curve B with all pixels of curve A
until all the pixels of curve B are performed. At the end of the
process, there will be a shortest distance error for each pixel
of B related to curve A. Then, the calculation of the main and
standard deviation (SD) error between the two curves, predic-
tion and GT, can be performed. In image analysis the space is
two-dimensional and the Euclidean Distance is expressed by:

ED =\ (Xyeg — Xet? + (Yrag — Yoo @)

where X, and X, are the coordinates of each pixel in
the automatic segmented image, and X, and Y, are the
coordinates of each pixel in the ground-truth image.

The objective of using ED is to find the shortest pixel of the
curve related to each of two seed pixels fixed on the top left
and top right at a certain distance from the center top of the
image. These pixels will be the top left and top right points
of a MH.

Four green cross marks are used to find each of the extreme
pixels of the top diameter. The two pixels on the ILM contour
that are shortest to the relationship between the four seed
points will be the desired ones. The two sets of green cross
marks (Figure 8(a)) were chosen empirically based on the
pattern of MH contour in OCT images. They are located in
the shortest region of the extreme pixels necessary to obtain
the line that forms the top diameter. The two sets of green
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(a) (b) G

FIGURE 8. (a) Euclidean distance to find the shortest points (white)
through the seeds (cross marks), (b) three regions and the seed points to
apply the Flood Fill to, (c) MH area in black, (d) MH area after inversion of
colors.

{d)

cross mark pixel locations are: (Tpixel + 25,235), (Tpixel
— 25,295), (Tpixel + 25,355) and (Tpixel + 75,285) for the
left set of pixels and (Tpixel + 25,365), (Tpixel — 25,425),
(Tpixel + 25,485) and (Tpixel + 75,435) for the right set of
pixels. Where Tpixel is the pixel of the ILM contour closest
to the top of the image.

Having found these extreme pixels, the next step is to draw
a straight line between them, closing the hole. Now with the
closed area, the image can be separated into three regions,
a bottom region, a top region and the one bounded by the
macular hole. The Flood Fill technique is again applied to
the upper and lower delimited regions of the image, leav-
ing only the area of the macular hole in black. The seed
points locations are (5,370) for the upper delimited region and
(470,370) for the lower delimited region. Finally, the colors
of the pixels are inverted, so the MH area becomes white and
background becomes black. The process to obtain the MH
area is summarized in Figure 8.

1) EVALUATION METRICS

In the case of the area-based segmentation, true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN) are commonly used to classify pixels. A better under-
standing of this classification can be seen in the table 2
through a confusion matrix.

TABLE 2. Confusion matrix for MH area segmentation.

Ground-truth
MH | Non-MH
Prediction MH P Fp
Non-MH | FN | TN
Some adopted evaluation metrics are: Accuracy,

Intersection over Union (IoU) or Jaccard Index, Dice Similar-
ity Coefficient (DSC) or F1 score and Matthews Correlation
Coefficient (MCC). Accuracy simply calculates the percent-
age of pixels in the image correctly classified, but it can
provide misleading results. There may be class imbalance,
as TP and TN pixels can dominate the image. The amount of
FP and FN pixels neglected can affect the reliability of the
result [48]. Accuracy is defined by:

TP + TN
TP+ FP+TN +FN’

3)

Accuracy =

96492

In MCQC, the higher the correlation between the predicted
and GT values, the better the prediction. This metric is also
perfectly symmetric, no class is more important than another.
The MCC calculation is:

(TP-TN) — (FP - FN)
~ J(TP¥FP)- (TP+FN)-(IN+FP) - (IN+FN)’
“)

The IoU and DSC are related to intersection of areas A
(prediction) and B (GT). The IoU is the area of overlap
between prediction and ground-truth divided by the area of
union between them. The IoU calculation is described by:

ANB
IoU= ——— . (5)

mMcc

The DSC is similar to IoU. The area of overlap images
is multiplied by 2 and divided by all the pixels in both
images [48]. The DSC is expressed by:

2-(ANB)
DSC ="~
A+B

(6)
G. MEASUREMENTS OF THE MACULAR HOLE

Macular hole measurements are fundamental for the surgeon
to decide whether or not a hole closure surgery is feasible.
An important metric to decide a hole closure surgery is the
Macular Hole Index (MHI). The MHI is the division between
the height and the bottom diameter of a macular hole [49].
Patients are classified into two groups. If the MHI is greater
than 0.5 the surgery can be performed without problems,
however, if the MHI is less than 0.5 the possibility of clos-
ing the macular hole is less, so the surgery is less likely
to be successful. The MHI is calculated based on the MH
measurements:

- helgflt . (7)

ottomdiameter

Independent of the MHI, the most important measures for
specialists at the time of analysis are: top diameter, bottom
diameter, minimum diameter and height. To obtain these
measures, some steps are necessary. The first step is to obtain
the contour of the MH area. The Border Following algorithm
that is applied to find the ILM boundary layer contour is also
applied here.

Four seeds are used to find each of the extreme points
of the MH area contour (top left, top right, bottom left and
bottom right). The pixel on the MH area contour that is
the shortest to the relationship between the four seed points
will be the desired extreme point. These measurements of a
shortest distance to a curve are calculated using the Euclidean
Distance. Once again, the set of techniques is used. Figure 9
shows the sixteen seed points used to find the four extreme
points of the MH area.

The four sets of pixel locations are: (Tpixel + 25,235),
(Tpixel — 25,295), (Tpixel + 25,355) and (Tpixel 4 75,285)
for the top left set of pixels and (Tpixel + 25,365), (Tpixel
— 25,425), (Tpixel + 25,485) and (Tpixel + 75435)
for the top right set of pixels, (Bpixel,180), (Bpixel,300),

MHI
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FIGURE 9. Seed points used to find the extreme points of the MH area.

(b) (c)

FIGURE 10. Seed points of extreme areas in (b) and (c) to obtain the
minimum diameter.

(Bpixel — 50,230) and (Bpixel + 50,240) for the bottom
left set of pixels and (Bpixel,440), (Bpixel,560), (Bpixel +
50,500) and (Bpixel — 50,510) for the bottom top right set
of pixels. Where Bpixel is the pixel of the MH area contour
closest to the bottom of the image.

The top diameter is the distance between the top left and
top right pixels of the MH area previously obtained. The
bottom diameter is obtained in the same way as the top diam-
eter, through the shortest distance using the ED method. The
height is then determined using the midpoint of the bottom
diameter and the midpoint of the top diameter and tracing a
line between them.

The minimum diameter is obtained through the ED and
Flood Fill algorithms. A straight line is drawn from the left
pixel of the top diameter to the top left pixel of the image
and another straight line is drawn from the left pixel of the
base diameter to the bottom left pixel of the image, creating
an area on the left side, which is filled through the Flood Fill.
The most extreme right pixel in this area is the left pixel of
the minimum diameter. The same process is carried out on the
right side, finding the right pixel of the minimum diameter.
Once the pixels are found, a line is drawn between them;
this line is the minimum diameter. The process to find the
minimum diameter is shown in Figure 10 and all the measures
of a MH are represented in Figure 11.

The proposed methodology is a set of techniques that
work together: shortest distance from a point to a curve,
Flood Fill and Border Following algorithms. To facilitate the
understanding of the work, the algorithm summarizing the
methodology is divided into the following steps:

1) Load Libraries (cv2, numpy, imutils, skimage, math,

matplotlib, warnings, imageio, PIL, sklearn, seaborn,
pandas and time);

VOLUME 9, 2021

(a) (b

FIGURE 11. Measures of the MH in (a) background and (b) original image.

2) Analyze each image at a time (“‘for” loop);

3) Start counting time process;

4) Brightness adjustment normalization (Table 1);

5) Gaussian Blur filter to remove noise and enhance qual-
ity of image (kernel 11 x 11 pixel size);

6) Thresholding to binarize the image (cutoff point of 45);

7) Series of two erosions and two dilations alternately
(kernel 3 x 3 pixel size);

8) Flood Fill algorithm at inferior background of image
(seed at 550 x 470 coordinate and kernel using the
8-connected method);

9) Border Following algorithm to find the ILM boundary
layer segmentation (contour retrieval mode chosen to
get the longest contour; choice of contour approxi-
mation method; side and bottom cuts in the image to
eliminate unwanted parts of the contour);

10) Compare prediction and ground-truth contours and get
mean and standard deviation of distance error through
the shortest distance from a point to a curve (Euclidean
Distance);

11) Find the coordinates of the two top pixels of the curve
to close the MH (shortest distance from a point to a
curve);

12) Get MH area using Flood Fill algorithm at the inferior
and superior areas of the image, isolating the macular
hole;

13) Invert image colors to compare prediction and
ground-truth through the confusion matrix of the pixels
(evaluation metrics: accuracy, loU, DSC and MCC);

14) Border Following algorithm to find MH area contour
(same as step 9);

15) Get the six extreme points of the contour (shortest dis-
tance from a point to a curve and Flood Fill algorithm);

16) Evaluate the measurements of MH prediction through
the comparison with the ground-truth measures.

IV. RESULTS AND DISCUSSIONS

The OCTID has 102 OCT images with MH, of which 65 were
used. The 37 discarded images by the physician specialist
contain examples of other conditions. Although these classes
of holes are in the database, they do not fall within the
scope of this study, as they are not interesting for physicians
in terms of surgical analysis. Figure 12 shows some examples
of the discarded images.
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FIGURE 12. Examples of discarded images.

From left to right, top to bottom are examples of:

1) Macular pseudo hole, that is attributable to the cen-
tripetal contraction of an epiretinal membrane. ERM
is always present in pseudo holes. It has the round
and reddish appearance of a macula [50]. It is called
a pseudo hole because the ILM and ERM layers do not
touch each other, as in the case of a full-thickness MH.

2) Vitreomacular traction syndromeoccurs, that occurs
because the posterior cortical vitreous begins to sepa-
rate from the retina rapidly. Sometimes, the separation
may be incomplete, resulting in persistent vitreous trac-
tion on the posterior retina [51].

3) Lamelar macular hole, that results from an interrupted
formation of MH or may be a complication of a chronic
macular cystoid edema [50]. As in the case of macular
pseudo hole, the ILM and RPE layers do not touch each
other, as in the case of a full-thickness MH.

4) Normal macula, where all layers are healthy. There is
no presence of pathologies.

A. RESULTS FOR ILM BOUNDARY LAYER SEGMENTATION
The segmentation of the ILM boundary layer is part of
the first step of the algorithm. A good segmentation of the
MH area is only possible if this previous step has satis-
factory results. As already mentioned, this step is part of
the distance-based segmentation. The distance error of the
shortest points to the curve has to be calculated by applying
the Euclidean Distance. The evaluation metrics used are mean
and standard deviation (SD) of the unsigned error (UE), and
the medium processing time (MPT) per image. Boxplots with
results are shown in Figure 13. The boxplot is important
because it shows the median, the 50 % of the most likely
values, and where the extreme values are located. It shows
whether the algorithm is working in a standard way for all
OCT images.

Outliers are the individual points distant from the median
box. The few outliers in the boxplots may have been due
to some points outside the curve that were not completely
eliminated by the preprocessing techniques.
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FIGURE 13. (a) Mean and (b) SD of unsigned error (pixel), and (c) MPT
per image (s) of ILM boundary layer segmentation.

TABLE 3. Mean and SD of unsigned error comparison (pixel) and medium
processing time per image (s) of ILM boundary layer segmentation.

Method Mean and SD | MPT per image | Quant. images
Keller et al. (2016) | 3.4+5.74 2.65 50
Proposed method 2.72+1.91 0.24 65

The proposed work is compared with a state-of-the-art
method in order to validate and prove its effectiveness.
A comparison of mean and standard deviation of unsigned
error in pixels for the two methods is described in Table 3,
as well the comparison between the MPT per image and the
number of images used for both methods. Keller et al. [38]
used a private database, while the proposed method used a
public one. However, the images are similar and have the
same characteristics, and thus do not affect the veracity of
the comparison. The OCT images for both database were
acquired using spectral domain optical coherence tomogra-
phy (SD-OCT) technology. Furthermore, the images have the
same pixel resolution (1 pixel ~ 3.9 um axially).

Keller et al. [38] is the only one of the three related works
that evaluates the segmentation results of the ILM boundary
layer. The other two approaches focus on area segmentation.

The mean and SD errors of distance between each pixel
location of the ground-truth and the prediction contours seg-
mentation were performed for both methods. The mean and
SD of unsigned error were better in the proposed method.
In the state-of-the-art method, the SD was greater than the
mean; possibly this was because the algorithm confused
objects outside the contour, and these objects appear due to
a failure in the noise removal techniques. This was one of
the difficulties found during the development of the proposed
algorithm and motivated us to spend more time processing
images before the segmentation.

The proposed method had a MPT per image of 0.24s (mini-
mum and maximum processing time per image, respectively:
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0.17s and 0.37s). The number of pixels that go through the
mathematical operation of finding the shortest point to a curve
can influence the variation in the processing time per image.
That is, the longer the contour, the longer the processing time.

Although the proposed method uses more preprocessing
techniques than the state-of-the-art method being compared,
the processing time is shorter. Moreover, the computer used
by Keller et al. [38] (Intel Core i7-4930K 3.4 GHz CPU) has
a slight processing advantage over the one used in this work.

Another advantage of the proposed work is that MH mea-
surements were made. Keller ef al. [38] mentioned that the
data obtained could be used to estimate measurements of MH.
However, they did not perform any such calculations.

Therefore, the proposed work has significant importance
to the scientific community in ILM boundary layer seg-
mentation of OCT images with MH pathology due to the
satisfactory results. These results are better than the state-of-
the-art method with which it was compared. In addition, in the
literature, as far as the author know, there is only one work
based in ILM segmentation of OCT images that is directly
focused on MH pathology.

B. RESULTS FOR MH AREA SEGMENTATION

Macular hole area segmentation is important as it can provide
the shape and the measures of the hole. The different features
in the shapes can be used in other applications, such as classi-
fication algorithms. Some of these features are the measures
of diameters and height.

The MH area segmentation is only possible after a correct
ILM boundary layer segmentation. This type of segmentation
reinforces the effectiveness of the algorithm, since other eval-
uation metrics, such as accuracy, IoU, DSC and MCC can be
applied.

The qualitative information given by the confusion matrix
is another way to observe how well the algorithm is working.
The confusion matrix for these related and unrelated areas
is represented in Figure 14. The evaluation is performed by
analyzing pixel by pixel of the predicted and ground truth MH
areas.

(a) (b)

FIGURE 14. Confusion matrix of MH area segmentation for (a) related
areas and (b) unrelated areas.

The green color (7P) occurs when the automatic area seg-
mentation is correctly predicted. The red color (FP) occurs
when the automatic area segmentation is incorrectly pre-
dicted. The shades of gray (TN) occur when the background
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area segmentation.
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FIGURE 16. (a) MCC (%), and (b) MPT per image (s) for the evaluation of
MH area segmentation.

is correctly predicted. The yellow color (FN) occurs when the
GT is incorrectly predicted. Boxplots with the results of the
evaluated metrics for all MH images are shown in Figure 15
and Figure 16.

There are few outliers, and they are acceptable, since the
algorithm deals with various formats of area. These variations
can generate more discrepancies in some results. Overall,
the results are satisfactory.

There is an image with zero in the evaluation for IoU,
DSC and MCC, which means that the algorithm was probably
unable to segment the MH area for that image. Even so,
the lowest accuracy value, which is probably of the image
with failed area segmentation, has a value of 0.925. This
high value explains why accuracy is not a robust form of
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assessment for segmenting areas of images. The large amount
of TN disguise the fact that the algorithm did not perform
well. Therefore, for comparison accuracy was not taken into
account.

Despite performing 3D segmentation, Nasrulloh ez al. [39]
is the only one of the three related works that evaluates the
results of MH area segmentation in 2D images using the same
metrics as the proposed method. This work approach a vol-
umetric segmentation, requiring a larger number of images.
These images must be of the same retina in order to form the
volumetric segmentation. This is a favorable factor, since all
images contain the same settings. However, there is no public
database providing images of this type, especially for MH
pathology.

Therefore, a comparison between this method and the
proposed one requires some clarification. First of all the
comparison is possible because to perform a volumetric seg-
mentation it is necessary to perform several segmentations
of area and then join them. However, the number of images
is considerably greater for volumetric segmentations. The
proposed work used only a public database that does not
contain a large number of images. Thus, the processing time
cannot be compared.

Although the databases are different the images are similar
and have the same characteristics, which does not affect the
veracity of the comparison. A comparison of IoU, and DSC
for the methods is described in Table 4. The MCC metric was
used for the proposed method, however, it was not used for
the one being compared.

TABLE 4. loU, DSC and MCC comparison (%) of MH area segmentation.

Method ToU DSC MCC
Nasrulloh e al. (2017) 76.34+£10.31 | 86.19+7.55 |-
Proposed method 78.61 86.98 87

The methods achieved equivalent results. The MCC
method, despite being considered one of the most appropriate
and fair metrics to evaluate the effectiveness of an area seg-
mentation algorithm, was not used by the compared state-of-
the-art method. The MPT per image in the proposed method
was of 19.95s (minimum and maximum processing time per
image, respectively: 12.7s and 45.5s). The size of the MH area
can influence the variation in processing time per image.

C. RESULTS FOR MEASUREMENTS OF MACULAR HOLES
Macular hole measurements are of fundamental importance
for the specialists. These professionals need to take these
measurements manually to calculate the possibilities of
surgery. Automatic methods for that approach have been little
explored by the scientific community. Despite the objective
of this work was the contour and area segmentation of MH,
an extension of the algorithm was performed in order to
obtain these measurements. The mean and SD of unsigned
error in micrometers for each measure prediction compared
to the GT is shown in Table 5.
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TABLE 5. Mean and SD of unsigned error (xm) for measurements of MH.

Top diameter | Bottom diameter | Height Minimum
diameter
Proposed | 95.2+79.2 106.8 +83.2 44.6+554 | 419+£83
method

TABLE 6. Evaluation metric results for MHI classification in percentage.

IoU
92.98

Accuracy
87.69

Proposed method

The comparison between studies regarding macular hole
measurements was not possible, as only Nasrulloh ez al. [39]
performs these measurements, however using a different form
from the proposed method to evaluate the results. Despite the
work of Xu et al. [40] be directly related to the proposed
work, its results evaluation techniques are only focused on
3D segmentation. It is not possible to make any comparison
with the proposed methodology.

The Bland-Altman method was used to calculate the mean
and SD of the unsigned errors in micrometers for each
measurement. There are three horizontal lines in the graph,
the center line is the mean error, and the other two are the
maximum deviations given as references. The Bland-Altman
graphs for the MH measurement errors are shown in Figure 17
to Figure 20.
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FIGURE 17. Mean and SD of signed error of MH top diameter (xm).

In order to generate a classification result by comparing
the MHI of the GT measures and the MHI of the predictive
measures, values of MHI above 0.5 receive the number 1,
which will identify the possibility to perform a hole closure
surgery, otherwise, the value O will be assigned, informing
that surgery is not possible.

The confusion matrix in Figure 21 shows where the algo-
rithm went right and wrong more clearly. Knowing the trend
of the results of the proposed method is important. In order
to evaluate the MHI, two metrics are used: accuracy and IoU.
Table 6 shows the evaluation metric results.

The results for the mean and SD of signed error for the
MH measurements show satisfactory values. This proves
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that in addition to performing two types of segmentation,
the algorithm is also able to take measurements effectively.
No measurement mean error was greater than 107 um. The
coherence of the results for the Bland-Altman graphics is also
a good tool to analyze the capacity of the algorithm to stay
within the standards results for all images.

Another important parameter is the Macular Hole Index.
The results were satisfactory and showed that the algorithm
can also be evaluated through an equation that relates the
ability of the algorithm to perform a simple classification,
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without the need for more robust techniques, such as machine
learning applications.

D. LIMITATIONS OF THE PROPOSED METHOD

The results of the proposed work were satisfactory, reaching
both the main and specific objectives defined in the intro-
duction through the validation techniques adopted. However,
there are also some limitations. As an example, in image
MH 14, the algorithm was unable to complete the MH
area segmentation, which compromised the measurements.
The area segmentation error of image MH 14 can be seen
in Figure 22, where the pixels with color yellow are the
FN, and the pixels with color red (almost imperceptible) are
the FP.

FIGURE 22. Contour segmentation (left) and confusion matrix of
pixels (right) show a discrepancy between the prediction (red) and
ground-truth (yellow).

The explanation for the error is that the contour of the ILM
boundary layer is quite curved making the execution of the
shortest distance from a point to a curve (trying to find the
two points at the top of the image to close the area) to find
points not consistent with the closing of the MH.

It is important to mention that the results of the automatic
segmentation depend on the comparison with the ground-
truth. In this work, only a single specialist performed the
manual segmentations. The use of more than one specialist,
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considering there are variances even among them, is relevant
to reinforce the accuracy of the proposed methodology.

V. CONCLUSION

The main objective of this work, which is the development of
an algorithm that automatically segmented the ILM boundary
layer and the area of the MH pathology in OCT images, was
reached. In addition, another objective was also achieved: the
automatic acquisition of MH measurements.

The differential of the proposed work are: the set of tech-
niques, the mathematical simplicity involved, and the ease of
application. The proposed model is capable of performing
the same function as a more complex technique, a machine
learning method for example, with lower computational cost.
The shortest distance from a point to a curve, Flood Fill and
Border Following algorithms used in this work are consoli-
dated tools, which can be implemented in any programming
language.

The segmentation of an ILM boundary layer with a MH
pathology is part of the first step of the algorithm. The pro-
posed work was compared with a state-of-the-art method in
order to validate and prove its effectiveness. The proposed
method reached better results. For macular hole area segmen-
tation the proposed method and the compared one achieved
equivalent results.

The algorithm also obtained the measurements of MH.
The results were satisfactory, thus proving that in addition to
performing two types of segmentation the algorithm is also
capable of taking measurements effectively.

The main contribution of this work is the importance of an
automatic method to segment MH contour and area in OCT
images and help the specialists. Furthermore, advances in
research involving this area can contribute to the acceptance
of automatic techniques in medical practices. This work may
be a study source for researchers, clinicians and engineers
wishing to delve into segmentation techniques.

Future prospects that will encourage the use of MH seg-
mentation systems as proposed here in daily medical prac-
tices, are: the development of a classification algorithm with
classes of MH and normal macula; the creation of a pub-
licly database of OCT images with MH pathology contain-
ing ILM contour and MH area ground-truths; the use of
more than a single specialist for the manual segmentation
to reinforce the accuracy of the automatic segmentation; the
design of an algorithm having the capability of discarding
automatically abnormalities or data which are not related to
MH pathology; the application of an embedded system in a
mobile device; and the application of the approach to slices of
B-scan images from the same MH, allowing 3D segmentation
representation.
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