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ABSTRACT Recent studies have demonstrated microarray expression data can be used to identify gene
regulatory pathways. However, one of the major challenges is to utilize the large microarray data (genes
and micro-RNAs) to have an efficient computational model. Therefore, there is an urgent need to reduce the
dimensionality of these large sets using machine learning methods without compromising the accuracy. This
requires an appropriate machine learning algorithm to select the significant features from these large datasets.
Therefore, in this study, we use a supervised method based on a Random Forest to identify significant features
from three microarray datasets from prenatal nicotine, alcohol, and nicotine and alcohol exposure groups in
two different cell types (dopamine and non-dopamine neurons). Our approach was computationally efficient
to reduce the dimensionality of extremely large microarray datasets. Furthermore, our results indicated that
using only the top 20% of features was sufficient to confirm the genetic pathways previously identified when
using all of the features in the model.

INDEX TERMS Feature selection, microarray, random forest.

I. INTRODUCTION
Microarrays enable the global screening of gene expression
profiles by quantifying the changes in the regulation of thou-
sands of genes [1]. Recently, microarrays have been adopted
to identify the gene regulation pathways [2] using super-
vised or unsupervised machine learning methods. In practice,
the large number of features limits the model reliability and
in many cases, may cause overfitting [3]. To improve the effi-
ciency of the gene regulatory network modelling, the dimen-
sionality of the features including messenger RNAs (mRNA,
genes) and microRNAs (miRNAs) needs to be reduced [4].
There are two different approaches including unsupervised
and supervised methods to reduce the dimensionality of
complex datasets. In unsupervised learning, having a large
size data and features negatively affects the computational
performance of the underlying learning algorithm. The Hill
Climb (HC) unsupervised learning algorithm for dimension-
ally reduction has been widely used in practice to improve its
computational efficiency [5].
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Thus, a feature selection step is necessary before
modelling microarray data using machine learning algo-
rithms. Several feature selection methods have been pro-
posed to identify important genes using unsupervised
models including statistical clustering [6]-[9], consensus
group [10], particle swarm [6], [11], coefficient correla-
tion [6], [12], [13], and principal component analysis (PCA)
[14]-[16], with the classifiers such as support-vector machine
(SVM) [10], [17], [18], Neural Networks [13], k-nearest
neighbors (KNN) [9], [11], and K-means [14]. These methods
have been found to be successful in reducing the dimension-
ality features.

Biological systems are inherently complex and non-
linear [19], [20]. Therefore, the extraction of relevant fea-
tures and determining the related pathways using these large
datasets can be challenging. Furthermore, this requires the
use of non-linear modelling approaches since linear feature
selection methods are inadequate. One nonlinear approach
involves tree models [21], which are computationally fast
and have been widely adopted as an effective and efficient
feature selection solution in cancer diagnostics [22], [23],
cancer classification [24], [25], image-based medical
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FIGURE 1. Gini index estimation in random forest is based on representative features (i.e., differentially
expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs)). (a) Bayesian Network Running time
over various number of features using bnlearn. {Using 2500 features, a Bayesian Network cannot be built
within 24 hours (b) Running time of performing one iteration of impurity-based feature importance
algorithm with Random Forest. The feature importance algorithm was updated using variant random seeds
until the (c) standard deviation and (d) root-mean-square-error (RMSE) converges.

diagnostics [26], drunk-drive detection [27] and spectrometry
data analysis [28].

In this paper, we performed feature selection using the
supervised Random Forest classifier over a collection of
expression data (differentially expressed genes (DEGs) and
differentially expressed miRNAs (DEmiRs)) obtained from
13 microarrays. These data were previously generated by
our group to investigate perinatal exposure to alcohol, nico-
tine, and both nicotine and alcohol during rat gestational
development [29], [30]. This final dataset for this study
consisted of 5523 genes and miRNAs for the alcohol expo-
sure, 7863 for nicotine, and 5613 for co-exposure (i.e., nico-
tine and alcohol) dataset. To implement the Random Forest,
we assigned the data to three labels (i.e., nicotine/alcohol/
dopamine-cell (DA) as shown in Table 1). Among these
three labels, samples labelled as ““nicotine”” and/or ‘““alcohol”
identified whether the pup was prenatally exposed to nicotine
and/or alcohol, respectively. The DA label was used to iden-
tify dopamine cells. After feature selection, we performed
pathway enrichment analysis over both the feature-reduced
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datasets and the original datasets. We found comparable
genetic regulation pathways using both methods of modelling
the datasets.

Il. METHODS

A. ANIMAL EXPERIMENTS

The microarray data was collected from dopaminergic and
non-dopaminergic neurons obtained from the rat ventral
tegmental area (VTA). All experiments were performed in
accordance with the protocols approved by the Institutional
Animal Care and Use Committee (IACUC) and the Univer-
sity of Houston Animal Care Operations (ACO). The detailed
protocol has been published previously [29]-[32]. Briefly,
pregnant Sprague—Dawley (SD) rats (Charles River, Wilm-
ington, MA, USA) were maintained at standard conditions
and were given an ad libitum diet. Rats were implanted with a
subcutaneous osmotic minipump (Alzet, Cupertino, CA) con-
taining either nicotine (at levels to stimulate moderate smok-
ing CITE) or saline. A liquid diet of ethanol was gradually
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FIGURE 2. (a)-(c) Confusion matrix for Random Forest based feature importance selection
on the DEGs and DEmiRs from the perinatal alcohol exposure versus the negative control.
(a) sample from embryo related with perinatal alcohol exposure, (b) sample from embryo
related with perinatal nicotine exposure, and (c) sample from DA cells exposed to XX. The
test set consisted of 5000 data points randomly selected from the entire data set. Rows
correspond to predicted classes and columns correspond to actual classes. The overall
low-resolution classification of the algorithm is 0.68 + 0.15. (d) tracks the rank of ten
most important and ten least important features (DEGs and DEmiRs) from five machine
learning trials over the perinatal alcohol dataset, among more than 5000 features.

introduced to the pregnant mothers to produce blood alcohol
concentrations similar to what is observed in children with
fetal alcohol spectrum disorders [33].

The fetus was continuously exposed via the placenta to
nicotine and/or alcohol ingested by the mother from gesta-
tional day 6 (G6) to delivery (around G21-22). After birth,
the pups were still exposed to nicotine and/or alcohol via the
rat mother’s milk.

The brain tissue samples from the pups were pooled for
each litter for either the alcohol, nicotine, nicotine-alcohol,
and saline treated groups for a total n = 13 litter groups?.
The samples were then dissociated, pelleted, fixed, and
labelled with conjugated primary antibodies neuronal marker,
NeulN/Alexa Fluor 488 (NeuN/AF488, ab190195, Abcam,
Cambridge, MA, USA), and tyrosine hydroxylase/ phyco-
erythrin (TH/PE, ab209921, Abcam). The labelled cells were
sorted on an (LSR II) FACS Aria (BD Biosciences, San Jose,
CA, USA) flow cytometer to identify dopamine (DA) and
non-dopamine (NDA) neurons.
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Following sorting, the total RNA of the cells was extracted
using a miRNeasy Micro Kit (Qiagen, Hilden, Germany). The
expression level of mRNA and miRNA was accessed using
Agilent Sureprint mRNA and miRNA microarrays (Santa
Clara, CA, USA). The raw microarray dataset was then col-
lected from the resulting images using the Feature Extraction
Software v12.0.1.

B. RANDOM FOREST

One major challenge to perform feature selection over
microarray data is the inability to rely on a feature’s (e.g.,
gene or microRNA) expression level because is difficult to
determine its relevance. Therefore, when performing feature
selection, we selected a subset of features, which improved
the performance (in terms of running time or accuracy) of
the machine learning algorithm. This method is typically
considered a nondeterministic polynomial hard (NP-hard)
problem [34]. This challenge becomes even more pronounced
when analyzing microarray data, in part, due to the large
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TABLE 1. Representative structure of the data (X) and the multi-labelling (y) of the microarray samples used in this study. For the data, each column
represents the expression level (adjusted against negative control) of a differentially expressed gene or miRNA. For each sample set (i.e., AlvS, NivS, and
NiAlvS), 5523-7863 genes and microRNAs are included/evaluated. Each row represents a sample, which is named by their respective treatment method,
and the origin of the measured cell group. DA Cell: dopamine cells. ADA: dopamine cells exposed to alcohol; NADA: dopamine cells exposed to both
nicotine and alcohol. SDA: dopamine cells treated with saline (control). NAND: non-dopamine cells exposed to both nicotine and alcohol. SND:
non-dopamine cells treated with saline (control). NDA: dopamine cells exposed to nicotine. NND: non-dopamine cells exposed to nicotine.

Sample X J
Zfp521 Poubfl rmo-miR-99b-5p  rno-miR-9a-5p | Alcohol Nicotine DA Cell

ADALI 4438  8.378 5.488 9.731 1 0 1
ADA2 4401  8.125 5.559 9.713 1 0 1
NADAIL [ 3.558  6.579 5.463 9.390 1 1 1
NADA2 [ 3.441 6432 5.378 9.302 1 1 1
SDA1 1.041  2.657 5.767 11.378 0 0 1
NANDI | 4.628  7.273 5.025 8.503 1 1 0
NAND2 [ 3985  7.342 5.079 8.472 1 1 0
SND2 3.485 9.474 5.567 10.542 0 0 0
SND4 3.745  9.115 5.563 10.479 0 0 0
NDA3 3.526  6.605 5.864 12.353 0 1 1
NND3 3.297  7.946 5.569 10.897 0 1 0
NDA4 3309  6.485 5.874 12.183 0 1 1
NND2 3294 7979 5.549 10.828 0 1 0

dimensionality of the features, which can lead to overfitting
or lower efficiency. To overcome this challenge, one feature
selection method incorporates labels to the data, which then
converts the unsupervised feature selection process to a super-
vised one.

Herein, we propose a method that converts an unsupervised
feature selection to supervised using the Random Forest clas-
sifier to analyze microarray data. We combined 13 microar-
ray datasets and created labels that reflected their respective
experimental conditions. That is, whether the sample was
marked as exposed to alcohol, whether the sample has been
exposed to nicotine, and whether the sample was a dopamine
cell. We then calculated the Gini index as the feature impor-
tance in which p; represents the relative frequency of the
feature in the dataset, and c represents the number of classes.

c
Gini=1-Y_ (p)*
i=1
Using this supervised method, the Gini of each feature
(miRNA or gene) was used to quantify the likelihood of the
Random Forest classifier to branch the data into subgroups.

Ill. RESULTS

A. DATA MULTI-LABELING

The genes and miRNAs used in these datasets were the
DEGs and DEmiRs from Keller, et al. [32]. These DEGs
and DEmiRs were identified from microarray data which
compared gene and miRNA expression profiles of VTA
DA neurons between treatment groups and their respective
controls. This approach has been previously described in
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more detail [29], [32]. Briefly, this method is based on a g-
value <0.001 (adjusted p-value using Benjamini-Hochberg
(BH) correction) and absolute log2 fold change >1 (>1 for
upregulation, < —1 for downregulation) [32]. The treatment
groups were compared to the saline control and labeled as:
alcohol (AlvS), nicotine (NivS), or both nicotine and alcohol
(NiAlvS). This approach enabled us to identify large scale
gene and miRNA expression profiling in the target neurons
of the interested brain area (i.e., the VTA).

Table 1 demonstrates that we organized the samples using
three labels: 1) perinatal alcohol exposure, 2) perinatal nico-
tine exposure, and 3) DA cells to represent 4 different condi-
tions (nicotine, alcohol, co-exposure and saline) for each neu-
ron type (DA vs NDA). For each sample set, we performed
five trials using different random seeds. In each trial, we per-
formed 5000 iterations that calculated the feature importance
using the Random Forest classifier. The feature importance
was calculated as the average of all 5000 iterations. The
hyperparameter of the Random Forest classifier was opti-
mized using grid search. We used 5000 iterations for each
trial to ensure converge of the average feature importance.

B. SELECTING RELEVANT FEATURES EFFICIENTLY

We built a Bayesian network to represent the running-time
advantage of feature selection. The Bayesian network was
buit using bnlearn [35] and the expression levels of the fea-
tures as vertices in a directed acyclic graph (DAG); the rela-
tionships among the expression levels were predicted as arcs
that connected the vertices. A hill climbing (HC) algorithm
adds one arc per iteration and was used to learn the net-
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TABLE 2. KEGG pathways found using the top 20% important DEGs, and the corresponding genes identified in pathway analysis following perinatal
nicotine exposure, following perinatal alcohol exposure, and following perinatal nicotine and alcohol exposure. *: Pathways that have been reported in

our group’s previous publications.

Perinatal nicotine exposure Perinatal alcohol exposure Perinatal nicotine-alcohol exposure
Term p-value Term p-value Term p-value
rno03010:Ribosome 1.58E-10 rno03010:Ribosome 3.99E-09 rno03010:Ribosome 6.87E-05
m005034:Alcoholism 7 32F-04 rnoO4612:Ant'1gen processing 918E-04 rnoO4612:Ant'1gen processing 318E-03

and presentation and presentation
rno04141:Protein rno04961:Endocrine and rn004141:Protein processin
processing in endoplasmic 2.58E-03 other factor-regulated calcium | 1.63E-03 . _— p J 3.96E-03
reticulum * reabsorption in endoplasmic reticulum
Z‘r‘;&i ifjtgg’ jzem‘c lupus | 5 58503 ;‘éﬁ?i?j}}ﬁmph“amme 245E-03 | rno04145:Phagosome 5.57E-03
rno04612:Antigen . . :
processing and 4.12E-03 f:ggﬁ?t:ﬁi?gfﬁiﬁsmg 3.96E-03 | rno05416:Viral myocarditis 6.17E-03
presentation p
rno04022:cGMP-PKG 417E-03 | rno04144:Endocytosis * 5.75-03 | 'M004150:mTOR signaling 7.93E-03
signaling pathway pathway
rno00061:Fatty acid 4.67E-03 | rno05034:Alcoholism * 597g-03 | mo04713:Circadian 9.96E-03
biosynthesis entrainment
rno04360:Axon guidance * | 6.23E-03 | rno05416:Viral myocarditis 6.17E-03 S‘i’s"e(;i ng:Graft"’erS“S'hOSt 1.11E-02
rno04710:Circadian thythm | 1.77E-02 | T004260:Cardiac muscle 828E-03 | Mo0#92L:0xytocinsignaling | 4 45 oy
contraction pathway
rno01212:Fatty acid rno05332:Graft-versus-host rno04514:Cell adhesion
metabolism 2.04E-02 disease L11E-02 molecules (CAMs) L.19E-02
rno04921:0xytocin 2558-02 | ro04514:Cell adhesion 1.19E-02 | rno05034:Alcoholism * 1.42E-02
signaling pathway molecules (CAMs)
S‘i’f‘;gfeﬁggs;efda“ 3.46E-02 | rno05330:Allograft rejection | 1.50E-02 | rno04911:Insulin secretion 1.45E-02
rno05168:Herpes simplex -
rno04145:Phagosome 4.17E-02 infection 1.50E-02 rno05330:Allograft rejection 1.50E-02
rno04978:Mineral 490E-02 | rno04142:Lysosome 2.00E-02 | M004940:Type I diabetes 2.27E-02
absorption mellitus
rno00310:Lysine rno04940:Type I diabetes rno05320:Autoimmune
degradation 5.05E-02 mellitus 2.27E-02 thyroid disease 2.42E-02
rno04330:Notch signling rno05320:Autoimmune rno04260:Cardiac muscle
pathway 5.05E-02 thyroid disease 2.42E-02 contraction 2.58E-02
;‘i’s"e(;iglzzparkms"“ s 5.09E-02 Z‘r‘;&i ifjtgg’ jzem‘c lupus 2.54E-02 | rno04972:Pancreatic secretion | 2.65E-02
. . s . rno04961:Endocrine and
ZZ;’S,?)‘;}O(;H;’&Q”;’@&‘)C 5.40E-02 r‘;‘t’g422 L:Oxytocinssignaling | ) cop 07 | other factor-regulated calcium | 2.98E-02
fomyopathy pathway reabsorption
rno05168:Herpes simplex rno04713:Circadian rno05031:Amphetamine
infection 5-51E-02 entrainment * 2.79E-02 addiction 3.14E-02
rno05412:Arrhythmogenic . .
right ventricular 5.69E-02 | rno04145:Phagosome * 2.828-02 | Tmo04261:Adrenergic 3.32E-02
cardiomyopathy (ARVC) * signaling in cardiomyocytes
rno05203:Viral 6.12E-02 | rno00310:Lysine degradation | 4.35E-02 | 'M00>231:Choline metabolism | 5, p o)
carcinogenesis in cancer
. . . . rno05412:Arrhythmogenic
rno04514:Cell adhesion 6.16E-02 rr.1004964.Pr0x1mal tl'lbule 4.68E-02 right ventricular 3.81E-02
molecules (CAMs) bicarbonate reclamation .
cardiomyopathy (ARVC)
no04142:Lysosome 6.41E-02 | rno04360:Axon guidance * 4.94E-02 ;‘;‘t’}?:gii:CGMP'PKG signaling | 5 g5p 7

work structure.As illustrated in Figure 1a, the running time
after building a Bayesian Network increases exponentially
when the feature size (also described as number of vertices)
increases. This method will consume a PC (using 32.0 GB
RAM and Intel Core i7-10875H CPU) and take >24 hours to
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perform one iteration of Bayesian network prediction when
2500 features are used. We implemented impurity-based fea-
ture importance in Random Forest to calculate the relative
importance of the DEGs and the DEmiRs. When training a
decision tree using a Random Forest, the feature importance
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TABLE 2. (Continued.) KEGG pathways found using the top 20% important DEGs, and the corresponding genes identified in pathway analysis following
perinatal nicotine exposure, following perinatal alcohol exposure, and following perinatal nicotine and alcohol exposure. *: Pathways that have been

reported in our group’s previous publications.

Perinatal nicotine exposure Perinatal alcohol exposure Perinatal nicotine-alcohol exposure
Term p-value Term p-value Term p-value
rno05414:Dilated 6.81E-02 | TMo04380:0steoclast 5.15E-02 | rno03013:RNA transport 4.26E-02
cardiomyopathy differentiation
rno05166:HTLV- infection | 7.19E-02 Z;lggsz(ff:Dopammerglc 5.15E-02 | rno00310:Lysine degradation 4.35E-02
n004911:Insulin secretion 7 60E-02 £n005203:V1ral carcinogenesis | - .o o, rr.1004-964:Pr0x1ma1 tlebule 4.68E-02
bicarbonate reclamation
r.r1004-.919:Thyr01d hormone 7 71E-02 rno04010:MAPK signaling 5 73E-02 rno04142:Lysosome * 474E-02
signaling pathway pathway *
rno04024:cAMP signaling 8.00E-02 | rno04916:Melanogenesis * 7.60E-02 | TMo04380:0steoclast 5.15E-02
pathway * differentiation
rn003013:RNA transport 8.23E-02 rno04310:Wnt signaling 8.05E-02 rno04728:Dopaminergic 5 15E-02
pathway synapse*
rno05215:Prostate cancer 8.44E-02 | Mo0>414:Dilated 9.29E-02 | M004010:MAPK signaling 5.73E-02
cardiomyopathy pathway
rno05200:Pathways in 8.48E-02 rr.1000061:1.33tty acid 939E-02 rno04024:cAMP signaling 6.05E-02
cancer * biosynthesis pathway
no05416:Viral myocarditis | 9.33E-02 | rno04710:Circadian rhythm 9.96E-02 ir:f‘;(;tsiiﬁ&}{erpes simplex 6.06E-02
rno00071:Fatty acid 9.39E-02 rno04970:Salivary secretion 6.35E-02
degradation
rno05200:Pathways in cancer * 6.47E-02
rnoOSZES:Proteoglycans in 7 30E-02
cancer
rno05410:Hypertrophic
cardiomyopathy (HCM) 7.74E-02
rno05010:Alzheimer’s disease 7.78E-02
rno04144:Endocytosis * 8.00E-02
rn004270:Vascullar smooth 8.52F-02
muscle contraction
rn004723:R?tr9gr§de . 8.95E-02
endocannabinoid signaling
rno05210:Colorectal cancer 8.96E-02
rno04071:Sphingolipid signaling 915E-02
pathway
rn00.5414:Dllated 0.29E-02
cardiomyopathy
rno00061:Fatty acid biosynthesis | 9.39E-02

can be measured by how much the feature will decrease
the weighted impurity (or information entropy) over various
trees [36]. This process runs in polynomial time. As shown
in Figure 1b, the running time of calculating the feature
importance using the Random Forest model increases linearly
against the feature size. The short running time facilities the
generation of stable feature importance results. As shown in
Figure 1c and 1d, the standard deviation and root-mean-
square error (RMSE) of the importance of all features con-
verges after a large number of iterations. It takes typically
2500 and 1000 iterations for the standard deviation and the
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RMSE to plateau (which is defined as the slope of the moving
average of 1000 data points to approach 0), respectively.
To ensure a stable result and to reduce overfitting, we used
5000 iterations with 5-fold cross-validations in the feature
importance calculation for all samples.

C. SELECTING REPRODUCABLE FEATURES

Using the experimental conditions as the prediction
labels, we then performed a grid search over various
hyper-parameters in the Radom Forest model for each of
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the datasets (i.e. AlvS, NivS, and NiAlvS), to ensure precise
predictions. The details on the hyperparameter search can be
found in the Methods section. Figures 2a-2c illustrate the
confusion matrix for Random Forest based feature impor-
tance selection on the DEGs and DEmiRs from the AlvS
group. The hyperparameter-tuned model yielded a 93% true
positive rate and 100% true negative rate when predicting
whether a neuron had been perinatally exposed to alcohol.
For nicotine-treated neurons, the true positive rate was 83%
and the true negative rate was 99%. Finally, this model had
a 71% true positive rate and 65% true negative rate when
predicting on whether a neuron was a DA neuron. The subset
accuracy (i.e., the percentage rate of all three labels to be
correctly predicted) was 68 £ 15%. For the NiAlvS and the
NivS data group, the hyperparameter-tuned model yielded
similar classification accuracy (data not shown)

This method is rather stable. As shown in Figure 2d,
out of the 5000 features in this perinatal alcohol dataset,
we tracked the rank of the ten most important (i.e., highest
feature importance score) and the ten least important features
from five machine learning trials. The important features
obtained a high importance score in all five trials, while the
less-important features reproducibly obtained a lower score
in all five trials.

D. COMPARISON WITH EXISTING KEGG PATHWAYS

To examine the effectiveness of our feature selection method,
we selected the top 20% most important DEGs and DEmiRs
to estimate gene pathways using the Kyoto Encyclopaedia
of Genes and Genomes (KEGG) pathways. The results are
summarized in Table 2. Then, we compared the identified
pathways with those identified using the full DEGs and
DEmiRs data sets in [29], [31]. We noticed that we were
able to detect multiple pathways that have been identified
in our previous publications using this proposed method.
We identified enriched pathways including Protein pro-
cessing in endoplasmic reticulum, cGMP-PKG signaling,
Osteoclast differentiation, Axon guidance, Arrhythmogenic
right ventricular cardiomyopathy (ARVC), cAMP signaling,
and Pathways in cancer from the NivS dataset (p < 0.05),
similar to our group’s previous report which used all the
DEGs and DEmiRs [31]. We also identified enriched path-
ways including Endocytosis, Alcoholism, Oxytocin signal-
ing, Circadian entrainment, Phagosome, Axon guidance,
Dopaminergic synapse, Viral carcinogenesis, MAPK signal-
ing pathway and Melanogenesis from the AlvS dataset (p
< 0.05). Using the NiAlvS dataset, we identified enriched
pathways including Circadian entrainment, Oxytocin signal-
ing pathway, Dopaminergic synapse, Alcoholism, Choline
metabolism in cancer, cGMP-PKG signaling pathway, Lyso-
some, Pathways in cancer, Proteoglycans in cancer, and
Endocytosis (p < 0.05], in agreement with [29].

E. VALIDATION OF RESULTS WITH EXISTING MODELS
We also analzyed the same top 20% DEGs and DEmiRs
data sets in the NivS, AlvS and NiAlvS groups using the
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commonly used parametric (Pearson [12]) and nonparametric
(Spearman [36]) corellation methods and the Random KNN
method [37] to identify potential gene pathways as identified
using the KEGG pathways.

Using the top 20% DEGs and DEmiRs data sets in the NivS
group, the Pearson correlation method was able to identify
a few enriched pathways including cGMP-PKG signalling,
Osteoclast differentiation, Axon guidance, Arrhythmogenic
right ventricular cardiomyopathy (ARVC) and cAMP sig-
nalling (p < 0.05). However, the Random KNN was able
to identify protein processing in endoplasmic reticulum
(p < 0.05). The Spearman correlation method failed to iden-
tify any pathways.

Using the top 20% DEGs and DEmiRs data sets in the AlvS
group, the Pearson correlation method was able to identify
two pathways including alcoholism and viral carcinogenesis
(p < 0.05). Additionally, the Spearman correlation was able
to identify four pathways including Endocytosis, Phagosome,
axon guidance, and viral carcinogenesis (p < 0.05). The
Random KNN was unable to identify any pathways.

Using the top 20% DEGs and DEmiRs data sets
in the AINivS group, the Pearson correlation method
was able to identify three pathways including alcoholism
choline metabolism in cancer, and proteoglycans in can-
cer (p <0.05). The Spearman correlation was able to
identify four pathways including cGMP-PKG signalling
pathway, lysosome, proteoglycans in cancer, and endocy-
tosis (p < 0.05). Finally, the Random KNN identified two
pathways including pathways in cancer and proteoglycans in
cancer (p < 0.05).

These results indicate that the Random Forest method per-
formed better that the Pearson, Spearman and Random KNN
methods on the same top 20% DEGs and DEmiRS data sets
in the NivS, AlvS and the NiAlvS groups to estimate gene
pathways using the KEGG pathways. The Random Forest
method was able to identify more pathways identified using
the all DEGs and DEmiRS data sets in each group [29], [31].

IV. DISCUSSION

Building a mathematical model over a large set of features
could be a computationally-challenging problem. For exam-
ple, when building a Bayesian network, the expression level
of the DEGs and the DEmiRs are treated as vertices in a
Directed acyclic graph (DAG), and the relationships (to be
predicted) among the DEGs and the DEmiRs will be rep-
resented by arcs that connect the vertices. Assume that we
start to predict the Bayesian Network model with an empty
DAG (that is, a DAG that contains all the vertices but no
arcs), and that we use a hill climbing (HC) algorithm to add
one arc per iteration, this requires O(N?) model comparisons.
Thus, the overall time complexity of the HC algorithm is to
the scale of O(cN3) model comparisons [5]. The NP-hardness
of learning Bayesian networks have been generally accepted
by the researchers in the machine-learning community [39].
Similarly, in most machine learning studies using microarray
datasets, feature selection is needed.
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Other well-used methods to perform gene selection include
permutation-based feature selection, which randomly reshuf-
fles the data and balances the influence of each feature to the
model performance. Compared with the Gini-based feature
selection, the permutation algorithm is usually significantly
slower [40], [41]. The Gini-based method may not be effec-
tive when the potential predictor variables vary in their scale
of measurement or their number of categories [42]. However,
this may not be applicable to the analysis of microarray data,
which is homogeneous.

Notably, our methods have suggested several pathways
that were also previously identified by our group using the
enriched KEGG pathways (e.g., the Dopaminergic synapse
pathway from the AlvS and the NiAlvS dataset) [29]. The
Dopaminergic synapse pathway describes the release of
DA neurotransmitter. According to the major hypothesis
of drug reinforcement, the reinforcing effect of addiction
is believed to be conveyed through the activation of the
meso-corticolimbic DA system. Stimulation of VTA DA neu-
rons via alcohol and/or nicotine administration results in the
release of DA in the NAc, which is believed to describe
how the DA synapse pathway plays a role in the reinforcing
effect [29], [43]. The enrichment of this pathway in our
current results demonstrates that perinatal alcohol and/or
nicotine exposure leads to genetic alterations in VTA DA
neurons that are in accordance with addiction mechanisms.

Additionally, we found the Axon guidance pathway from
the NivS and the AlvS datasets, which was highlighted in
our group’s recent work [29]. Axon guidance is an important
pathway that regulates the migration of an axon is directed to
a specific target. Following perinatal alcohol and/or nicotine
exposure, we found Semaphorin 3F, 4A, 4D, 4G, and 6D,
which are genes that belong to the Semaphorin axon guidance
pathway [44].

V. SUMMARY

In this study, we proposed a fast and reproducible method
using a Random Forest classifier to perform impurity-based
feature selection over a microarray datasets with a large
dimensionality. Using our method, we successfully iden-
tified the Glutamatergic synapse and the Axon guid-
ance pathways, which were previously reported to be
enriched following perinatal nicotine or alcohol-nicotine
exposure. In the future, we are interested in perform-
ing additional unsupervised mathematical studies, such as
Bayesian Network analysis, over the selected important genes
and miRNAs.
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