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ABSTRACT In this work, we present two parallel algorithms for the large-scale discrete Fourier trans-
form (DFT) on Tensor Processing Unit (TPU) clusters. The two parallel algorithms are associated with
two DFT formulations: one formulation, denoted as KDFT, is based on the Kronecker product; the other
is based on the famous Cooley-Tukey algorithm and phase adjustment, denoted as FFT. Both KDFT and
FFT formulations take full advantage of TPU’s strength in matrix multiplications. The KDFT formulation
allows direct use of nonuniform inputs without additional step. In the two parallel algorithms, the same
strategy of data decomposition is applied to the input data. Through the data decomposition, the dense matrix
multiplications in KDFT and FFT are kept local within TPU cores, which can be performed completely in
parallel. The communication among TPU cores is achieved through the one-shuffle scheme in both parallel
algorithms, with which sending and receiving data takes place simultaneously between two neighboring
cores and along the same direction on the interconnect network. The one-shuffle scheme is designed for
the interconnect topology of TPU clusters, minimizing the time required by the communication among
TPU cores. Both KDFT and FFT are implemented in TensorFlow. The three-dimensional complex DFT
is performed on an example of dimension 8192×8192×8192 with a full TPU Pod: the run time of KDFT is
12.66 seconds and that of FFT is 8.3 seconds. Scaling analysis is provided to demonstrate the high parallel
efficiency of the two DFT implementations on TPUs.

INDEX TERMS Discrete fourier transform, fast fourier transform, parallel computing, tensorflow, tensor
processing unit.

I. INTRODUCTION
The discrete Fourier transform (DFT) is critical in many
scientific and engineering applications, including time series
and waveform analyses, convolution and correlation com-
putations, solutions to partial differential equations, density
function theory in first-principle calculations, spectrum ana-
lyzer, synthetic aperture radar, computed tomography, mag-
netic resonance imaging, and derivatives pricing [1]–[4].
However, the computation efficiency of DFT is often the
formidable bottleneck in handling large-scale problems due
to the large data size and real-time-processing requirement
[5], [6]. In general, efforts on enhancing the computation
efficiency of DFT fall into two categories: seeking fast algo-
rithms and adapting the fast algorithms to hardware accel-
erators. One breakthrough of the fast-algorithm category
is the Cooley-Tukey algorithm [7], also known as the fast
Fourier transform (FFT), which reduces the complexity of
N -point DFT from O(N 2) to O(N logN ). The Cooley-Tukey
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algorithm assuming that the number of data is a power of
two is known as the Radix-2 algorithm and followed by
Mixed-Radix [3] and Split-Radix [8] algorithms.

In addition to the fast algorithms, the performance of
hardware accelerators has been steadily driving the effi-
ciency enhancement of DFT computation: the first imple-
mentation of the FFT algorithm was realized on ILLIAC IV
parallel computer [9], [10]; over the years, the DFT com-
putation has been adapted to both shared-memory [11],
[12] and distributed-memory architectures [13]–[17]. The
advancement of hardware accelerators has enabled massive
parallelization for DFT computation. One such example is
deploying the FFT computation onmanycore processors [18].
Another example is implementing the FFT algorithm on clus-
ters of graphics processing units (GPUs) [19]. A GPU cluster
contains a number of nodes (machines) and within each
node, GPUs are connected through PCIe, a high-speed serial
interface. The Cooley-Tukey algorithm and its variants often
require a large number of memory accesses per arithmetic
operation such that the bandwidth limitation of PCIe becomes
the computation bottleneck of the overall performance of
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FFT on GPU clusters. Prior to the recent development of
novel high-speed interconnects such as NVLink [20], [21],
many efforts related to the GPU-accelerated DFT computa-
tion are spent on minimizing the PCIe transfer time [3], [22].
It is worth mentioning that the route of algorithm-hardware
co-design has also been taken with Field Programmable Gate
Arrays (FPGAs) to optimize the configurations of a cus-
tomized hardware accelerator for high-performance comput-
ing of DFT [23]–[25].

The recent success of machine learning (ML), or deep
learning (DL) in particular, has spurred a new wave of
hardware accelerators. In many ML applications, it becomes
increasingly challenging to balance the performance-
cost-energy of processors with the growth of data.
Domain-specific hardware is considered as a promis-
ing approach to achieve this [26]. One example of the
domain-specific hardware is Google’s Tensor Processing
Unit (TPU) [27]. As a reference, TPU v3 provides 420 ter-
aflops and 128 GiB high-bandwidth memory (HBM) [28]. In
witnessing how DFT computation benefits from the develop-
ment of hardware accelerators, it is tempting to ask whether
TPU can empower the large-scale DFT computation. It is
plausible with the following four reasons: (1) TPU is an
ML application-specific integrated circuit (ASIC), devised
for neural networks (NNs); NNs require massive amounts of
multiplications and additions between the data and param-
eters and TPU can handle these computations in terms of
matrix multiplications in a very efficient manner [29]; simi-
larly, DFT can also be formulated as matrix multiplications
between the input data and the Vandemonde matrix; (2) TPU
chips are connected directly to each other with dedicated,
high-speed, and low-latency interconnects, bypassing host
CPU or any networking resources; therefore, the large-scale
DFT computation can be distributed among multiple TPUs
with minimal communication time and hence very high
parallel efficiency; (3) the large capacity of the in-package
memory of TPU makes it possible to handle large-scale
DFT efficiently; and (4) TPU is programmable with software
front ends such as TensorFlow [30] and PyTorch [31], both
of which make it straightforward to implement the parallel
algorithms of DFT on TPUs. In fact, all the aforementioned
four reasons have been verified in the high-performance
Monte Carlo simulations on TPUs [32], [33].

In this work, we designed and implemented two parallel
algorithms for DFT on TPUs: one is based on the Kronecker
product, to be specific, dense matrix multiplications between
the input data and the Vandermondematrix, denoted as KDFT
in this work; and the other is based on the Cooley-Tukey
algorithm and phase adjustment, denoted as FFT in this work.
For a N -point DFT, the computation complexity of KDFT
is O(N 2), whereas that of FFT is O(N logN ). Both parallel
algorithms take full advantage of TPU’s strength in matrix
multiplications. It is worth mentioning that KDFT takes in
nonuniform input data without additional steps. The nonuni-
form Fourier transform has important applications in signal
processing, medical imaging, numerical solutions of partial

FIGURE 1. (a) TPU v3 has four chips on the same board and (b) each chip
contains two cores.

differential equations, and machine learning [34]–[37]. Both
KDFT and FFT use the same strategy of data decomposi-
tion over the input data, through which the dense matrix
multiplications are kept local within TPU cores and can be
performed completely in parallel. Because of the data decom-
position, each TPU core contains partial input data such that
communication is required to share the data among cores.
The communication among TPU cores is achieved through
the one-shuffle scheme in both parallel algorithms, with
which sending and receiving data takes place simultaneously
between two neighboring cores and along the same direc-
tion on the interconnect network. The one-shuffle scheme
is designed for the interconnect topology of TPU clusters,
minimizing the time required by the communication among
TPU cores. Scaling analysis is provided to demonstrate the
high parallel efficiency of the proposed two algorithms of
DFT on TPUs.

II. TPU SYSTEM ARCHITECTURE
In this section, we provide an overview of the TPU system
architecture on both the hardware and software components.

A. HARDWARE ARCHITECTURE
Figure 1 shows one TPU board or unit: there are four TPU
chips on the same board; each chip has two cores; and each
core contains the scalar, vector, and matrix units (MXU).
Structured as a 128 × 128 systolic array, MXU provides
the bulk of compute power of a TPU chip and handles
16 K multiply-accumulate (MAC) operations in one clock
cycle. The inputs and outputs of MXU are float32 and the
MAC operations on MXU are performed with bfloat16 [38].
However, one float32 number can be decomposed into
multiple bfloat16 numbers and with appropriate accumula-
tions, high-precision MAC operation can be achieved [39].
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FIGURE 2. TPU v3 Pod in a data center.

FIGURE 3. A computation graph of TensorFlow operations.

The implementation of both parallel algorithms in this work
leverages the strategy of decomposition and accumulation
and achieves the precision of float32. As shown in Fig. 1(b),
each TPU core has 16 GiB high-bandwidth memory (HBM).
The large capacity of in-packagememorymakes it possible to
solve large-scale problems in a highly efficient manner. TPU
is designed as a coprocessor on the I/O bus: each board shown
in Fig. 1(a) is paired with one host server consisting of CPU,
RAM, and hard disk; TPU executes the instructions sent from
CPU on the host server through PCIe.

Figure 2 shows a TPU v3 Pod in a data center where
a total number of 2048 cores are connected to each other.
In a Pod configuration, TPU chips are connected through
dedicated high-speed interconnects of very low latency. The
interconnect topology is a two-dimensional (2D) toroidal
mesh with each chip connected to its four nearest neighbors
such that the communication takes place in four directions.
These interconnects bypass the CPU networking resources
and go from chip to chip directly. In our implementations,
we have further optimized the communication strategy to take
advantage of the TPU interconnect topology.

B. SOFTWARE ARCHITECTURE
TensorFlow is used to program TPUs in this work. A Tensor-
Flow client converts the TensorFlow operations into a com-
putational graph. A sample computation graph performing
addition and convolution operations is shown in Fig. 3. The
TensorFlow client sends the graph to a TensorFlow server.
The TensorFlow server partitions the computational graph

into portions that run on TPU and CPU, respectively. If multi-
ple TPUs are to be employed, the graph is marked for replica-
tion. The TensorFlow server then compiles the sub-graph that
runs on TPUs into a high level optimizer (HLO) program and
invokes the accelerated linear algebra (XLA) compiler. The
XLA compiler takes in the HLO program and converts it into
a low level optimizer (LLO) program, which is effectively
the assembly code for TPUs. Both the generation and com-
pilation of the computational graph occur on the host server.
The compiled LLO code is loaded onto TPUs for execution
from the host server through PCIe.

Thememory usage of a TPU is determined at compile time.
Because both the hardware structure ofMXUand thememory
subsystem on a TPU core prefer certain shapes of a tensor
variable involved in an operation, the XLA compiler performs
the data layout transformations in order for the hardware to
efficiently process the operation. If a tensor variable does
not align with the preferred shape, the XLA compiler pads
zeros along one dimension to make it a multiple of eight
and the other dimension to a multiple of 128. Zero padding
under-utilizes the TPU core and leads to sub-optimal perfor-
mance, which should be taken into account in the implemen-
tation of the parallel algorithms on TPUs.

III. DFT FORMULATIONS
In this section, we provide the detailed formulations for both
KDFT and FFT.

A. KDFT FORMULATION
The KDFT formulation starts from the general form of DFT,
which is defined as

Xk , X (zk ) =
N−1∑
n=0

xnz
−n
k , (1)

where, denotes ‘‘defined to be’’, xn represents the input, and
{zk}

N−1
k=0 are N distinctly and arbitrarily sampled points on the

z-plane. Equation (1) can be rewritten into the matrix form

{X} = [V ] {x} , (2)

where

{X} = (X (z0),X (z1), · · · ,X (zN−1))T ,

{x} = (x0, x1, · · · , xN−1)T ,

and

[V ] =


1 z−10 z−20 · · · z−(N−1)0
1 z−11 z−21 · · · z−(N−1)1
...

...
...

. . .
...

1 z−1N−1 z
−2
N−1 · · · z

−(N−1)
N−1

 . (3)

Note that [V ] is the Vandermondematrix of dimensionN×N .
Computing the inverse DFT is equivalent to solving the linear
system in Equation (2). In the situation when {zk}

N−1
k=0 are

uniformly sampled on the z-plane, the Vandermonde matrix
[V ] becomes unitary and contains the roots of unity.
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The general form of a 2D DFT can be written as

X (z1k , z2k ) =
N1−1∑
n1=0

N2−1∑
n2=0

x(n1, n2)z
−n1
1k z−n22k , (4)

where [x] has the dimension ofN1×N2 and {(z1k , z2k)}
N1N2−1
k=0

represents the set of distinctly and arbitrarily sampled points
in (z1, z2) space. It is worthmentioning that the samplingwith
(z1k , z2k) has to ensure the existence of the inverse DFT. If the
sampling is performed on rectangular grids, Equation (4) can
be rewritten into the matrix form as

[X ] = [V1] [x] [V2]T , (5)

where

[X ]

=


X (z10, z20) X (z10, z21) · · · X (z10, z2,N2−1)
X (z11, z20) X (z11, z21) · · · X (z11, z2,N2−1)

...
...

. . .
...

X (z1,N1−1, z20) X (z1,N1−1, z21) · · · X (z1,N1−1, z2,N2−1)

,
(6)

[x]

=


x(0, 0) x(0, 1) · · · x(0,N2 − 1)
x(1, 0) x(1, 1) · · · x(1,N2 − 1)
...

...
. . .

...

x(N1−1, 0) x(N1−1, 1) · · · x(N1−1,N2−1)

, (7)

[V1]

=


1 z−110 z−210 · · · z−(N1−1)

10
1 z−111 z−211 · · · z−(N1−1)

11
...

...
...

. . .
...

1 z−11,N1−1
z−21,N1−1

· · · z−(N1−1)
1,N1−1

 , (8)

and

[V2] =


1 z−120 z−220 · · · z−(N2−1)

20
1 z−121 z−221 · · · z−(N2−1)

21
...

...
...

. . .
...

1 z−12,N2−1
z−22,N2−1

· · · z−(N2−1)
2,N2−1

 . (9)

Note that both [V1] and [V2] are Vandermonde matrices of
dimensionsN1×N1 andN2×N2, respectively. One can further
lump [x] into a vector such that Equation (5) can be written
into the same matrix form as Equation (2), in which [V ] for
the 2D DFT is expressed as

[V ] = [V1]⊗ [V2] , (10)

where ⊗ denotes the Kronecker product [40].
Similarly, the three-dimensional (3D) DFT defined by

X (z1k , z2k , z3k ) =
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0

x(n1, n2, n3)z
−n1
1k z−n22k z−n33k

(11)

can be rewritten into the matrix form as

{X} = [V1]⊗ [V2]⊗ [V3] {x} , (12)

where

[
Vj
]
=


1 z−1j0 z−2j0 · · · z

−(Nj−1)
j0

1 z−1j1 z−2j1 · · · z
−(Nj−1)
j1

...
...

...
. . .

...

1 z−1j,Nj−1 z
−2
j,Nj−1

· · · z
−(Nj−1)
j,Nj−1

, j ∈ {1, 2, 3} .(13)

For the 3D DFT defined in Equation (12), the sampling is
performed on rectangular grids in (z1, z2, z3) space and the
Vandermonde matrix [V3] has the dimension of N3 × N3.
It can be seen that the Kronecker product bridges the gap
between the matrix and tensor operations, through which the
contraction between a rank-2 tensor and another rank-3 tensor
in the 3D DFT can be formulated as matrix multiplications.
The KDFT formulation can be easily extended to higher
dimensions.

B. FFT FORMULATION
The FFT formulation starts with

Xk ,
N−1∑
n=0

xne
−j2π

nk
N , (14)

in which xn represents the input data and the frequency sam-
pling has to be uniform. The global index n in Equation (14)
can be expressed as

n = Pl + β, (15)

where l = 0, 1, · · · , NP − 1 and β = 0, 1, · · · ,P − 1. With
Equation (15), Equation (14) can be rewritten as

Xk ,
N−1∑
n=0

x(Pl+β)e
−j2π

(Pl + β)k
N (16)

=

P−1∑
β=0

e
−j2π

βk
N


N
P−1∑
l=0

x(Pl+β)e
−j2π

lk
N
P

 . (17)

In Equation (17),

X̃k =

N
P−1∑
l=0

x(Pl+β)e
−j2π

lk
N
P (18)

is computed with the famous Cooley-Tukey algorithm locally
on individual cores. Prior to the local transform, the gathering
of the input among the cores is required, which arises from the
global indexing in Equation (15). After the local transform,
the phase adjustment needs to applied, which is formulated
as matrix multiplications similar to that in Equation (2).
Higher dimensional FFT such as 2D and 3D can be achieved
by repeating this one-dimensional (1D) scheme along the
corresponding dimensions.
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FIGURE 4. Through the data decomposition with the TPU computation shape
(
P1, P2, P3

)
, each TPU core contains (a) the Vandermonde matrix of

dimension
Ni
Pi
× Ni , i = 1, 2, 3 and (b) the block of input data of dimension

N1
P1
×

N2
P2
×

N3
P3

for a 3D DFT. The core index is denoted by
p = 0, 1, · · · , Pi − 1, i = 1, 2, 3. The Fourier transform along the third dimension requires shuffling the blocks of the input data among the cores
that are grouped by the third dimension of the computation shape P3.

IV. IMPLEMENTATION OF THE PARALLEL ALGORITHMS
In this section, we provide details for implementing both
KDFT and FFT on TPUs, including the data decomposition
and the one-shuffle scheme.

A. DATA DECOMPOSITION
The data decomposition applied to the input data localizes the
matrix multiplications on individual cores, which is critical
to achieve high parallel efficiency on TPUs. For a 3D DFT,
the data decomposition is applied to the input data along
all three dimensions. The decomposition is based on a TPU
computation shape (P1,P2,P3) where P1, P2, and P3 denote
the number of TPU cores along the first, the second, and the
third dimension, respectively. Given the TPU computation
shape (P1,P2,P3) and the input data of dimension N1 ×

N2 × N3, each TPU core contains a data block of dimension
N1
P1
×

N2
P2
×

N3
P3

as shown in Fig. 4(a). The data decomposition
is also applied to the Vandermonde matrix and is along the
frequency domain. As shown in Fig. 4(b), each core has a
slice of the Vandermonde matrix with dimension Ni

Pi
× Ni,

i = 1, 2, 3. It is also shown in Fig. 4 that each core is assigned
an index p along each dimension and pi = 0, 1, · · · ,Pi − 1,
where i = 1, 2, 3. With the proposed data decomposition,
the dense matrix multiplications of both KDFT and FFT
are kept local within individual TPU cores and performed
completely in parallel.

B. ONE-SHUFFLE SCHEME
The one-shuffle scheme described in Algorithm 1 is used
by both KDFT and FFT. We use KDFT to illustrate the

one-shuffle scheme. There are two major operations in
KDFT: the tensor contraction between the Vandermonde
matrix and the input data; and the communication among
TPU cores to send and receive the data. The tensor contraction
is based on einsum and the communication among TPU
cores is with collective_permute. After one operation
of tensor contraction, the block of the input data initially
assigned on a TPU core is shuffled once with its neighboring
core. The one-time shuffling takes place along the same
direction on the interconnect network. As shown in Fig. 4(b),
the DFT along the third dimension requires shuffling the
blocks of the input data among the cores that are grouped
by the third dimension of the computation shape P3. In FFT,
the one-shuffle scheme is used for applying the phase adjust-
ment, in which the Vandermonde matrix in Fig. 4(a) contains
the phase-shift information.

With the one-shuffle scheme, sending and receiving data
takes place simultaneously between two neighboring cores
and along the same direction on the 2D toroidal network.
The one-shuffle scheme minimizes the communication time
and leads to high parallel efficiency, which will be demon-
strated through the parallel efficiency analysis in the follow-
ing sections.

C. IMPLEMENTATION OF THE PARALLEL ALGORITHM FOR
KDFT
Figure 5 illustrates the one-shuffle scheme in the parallel
algorithm based on KDFT with a 3D example. We use c0,
c1, and c2 to denote three adjacent TPU cores, the opera-
tions on which are highlighted with three different colors
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FIGURE 5. The one-shuffle scheme in the parallel algorithm based on
KDFT is illustrated with a 3D example. We use c0, c1, and c2 to denote
three adjacent cores, the operations on which are highlighted with blue,
yellow, and green, respectively. The data decomposition results in the
block of the input data x01 and the slice of the Vandermonde matrix
[V00, V01, V02] on core c0, x11 and [V10, V11, V12] on core c1, and x21 and
[V20, V21, V22] on core c2. The steps involved in the one-shuffle scheme
are: (a) computing V00 · x01 on core c0, V11 · x11 on core c1, and V22 · x21
on core c2 with · representing the operation of tensor contraction;
(b) collectively permuting the inputs between two neighboring cores such
that x11 on core c0, x21 on core c1, and x01 on core c2 and computing
V01 · x11 on core c0, V12 · x21 on core c1, and V20 · x01 on core c2;
(c) collectively permuting the inputs such that x21 on core c0, x01 on core
c1, and x11 on core c2 and computing V02 · x21 on core c0, V10 · x01 on
core c1, and V21 · x11 on core c2. The collective_permute operation in
shuffling the input between neighboring TPU cores is with source-target
pairs (c1, c0), (c2, c1), and (c0, c2) in the form of (source, target).

accordingly in Fig. 5. After the data decomposition, core
c0 contains a block of the input data x01 and a slice of the
Vandermondematrix [V00,V01,V02], core c1 contains x11 and
[V10,V11,V12], and core c2 contains x21 and [V20,V21,V22].
Note that the subscripts appearing in the block of the input
data xp1,p2,p3 are core indices. For simplicity, we ignore
the core index on the third dimension, which is the same

Algorithm 1 The One-Shuffle Scheme
1: function one_shuffle(v, x, core_idx, num_cores,

src_tgt_pairs)
2: iteration_idx← 0
3: slice_idx← core_idx
4: x_out← einsum(v[slice_idx], x)
5: slice_idx← mod(slice_idx+ 1, num_cores)
6: while iteration_idx < num_cores− 1 do
7: x←collective_permute(x, src_tgt_pairs)
8: x_out← x_out + einsum(v[slice_idx], x)
9: slice_idx← mod(slice_idx+ 1, num_cores)
10: iteration_idx← iteration_idx + 1
11: return x_out

across cores c0, c1, and c2. With three einsum and two
collective_permute operations, one obtains the partial
DFTwritten as V00 ·x01+V01 ·x11+V02 ·x21 on core c0, where
· represents the tensor contraction. The steps taken by the
partial DFT computation along one dimension are as follows:
1. apply einsum to compute V00 · x01 on core c0, V11 · x11

on core c1, and V22 ·x21 on core c2 as shown in Fig. 5(a);
2. apply collective_permute to shuffle the input

between neighboring TPU cores with source-target
pairs (c1, c0), (c2, c1), and (c0, c2) in the form of
(source, target) such that core c0 contains x11, core
c1 contains x21, and core c2 contains x01 as shown
in Fig. 5(b);

3. apply einsum to compute V01 · x11 on core c0, V12 · x21
on core c1, and V20 · x01 on core c2 and add the results
from step 1;

4. apply collective_permute with source-target
pairs (c1, c0), (c2, c1), (c0, c2), after which core c0 con-
tains x21, core c1 contains x01, and core c2 contains x11
as shown in Fig. 5(c);

5. apply einsum to compute V02 · x21 on core c0, V10 · x01
on core c1, and V21 · x11 on core c2 and add the results
from step 3.

D. IMPLEMENTATION OF THE PARALLEL ALGORITHM
FOR FFT
Figure 6 illustrates the four steps of a 1D FFT on TPUs:
the data decomposition, the gathering of the input, the local
transform, and the phase adjustment. Figure 6(a) shows the
input assigned to individual cores after the data decomposi-
tion. In order to achieve an in-order transform, to be specific,
the ordering of the obtained results in the transform domain
remains the same as that in the input, it requires a local
re-ordering of the input prior to the transform, which can
be achieved through einsum. The re-ordering operation is
local within individual TPU cores. The gathering of the input
as shown in Fig. 6(b) is implemented with all_to_all.
After the gathering, the Cooley-Tukey-algorithm-based trans-
form is performed locally on individual cores, which is
implemented with tf.signal.fft as shown in Fig. 6(c).
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FIGURE 6. Four steps for a 1D FFT on TPUs: (a) the data decomposition,
(b) the gathering of the input, (c) the transform performed locally on
individual cores, and (d) the phase adjustment through the one-shuffle
scheme. The pair of the indices in (d) represents the source and target
pairs used by collective_permute. A 3D FFT consists of three 1D FFT
operations along each of the three dimensions: for each 1D FFT, it follows
the same steps; and the only difference is that the blocks of
input/transformed data highlighted by color are 3D tensors..

At last, the locally-obtained transform results are summed
over all the cores with phase adjustment, which is achieved
through the one-shuffle scheme. It can be seen that in the 1D
FFT on TPUs, the communication is required in gathering the
input and applying the phase adjustment.

Higher dimensional FFT such as 2D and 3D consists of
multiple 1D FFT operations along the corresponding dimen-
sions. For example, a 3D FFT consists of three 1D FFT
operations along each of the three dimensions: for each 1D
FFT, it follows the same steps illustrated in Fig. 6; and the
only difference is that the blocks of input/transformed data
highlighted by color are 3D tensors.

V. PARALLEL EFFICIENCY ANALYSIS
In this section, both the strong and weak scaling analyses
are provided to demonstrate the efficiency of the proposed

two DFT parallel algorithms on TPUs. For the strong scaling
analysis, the problem size is kept the same as proportionally
more TPU cores are employed. For the weak scaling analysis,
the number of TPU cores remains the same as the problem
size increases. The TPU profiling tool [28], which provides
information on the utilization of the hardware and the effi-
ciency of individual operations at the program level is used
to analyze the performance of DFT on TPUs. A screenshot
of the trace viewer from the TPU profiling tool is shown
in Fig. 7. With the profiling tool, one can breakdown the
operations at the HLO level, which is quite helpful in iden-
tifying the bottleneck of the parallel efficiency and making
improvements to the algorithm designs.

A. STRONG SCALING ANALYSIS OF 2D KDFT
Figure 8 shows the computation time of the 2DKDFTwith up
to 128 TPU cores on an example of dimension 8192× 8192.
It can be seen from Fig. 8 that a close-to-linear scaling of the
computation time with respect to the number of TPU cores is
achieved. As a reference, the ideal computation time from the
linear scaling is provided in Fig. 8, which is defined by

ideal time =
T2
Ncore
2

, (19)

where T2 denotes the total computation time with two TPU
cores and Ncore is the total number of TPU cores being
used. As mentioned in the parallel implementation, the total
computation time consists of two parts: the time of matrix
multiplications, or einsum to be specific, and the communi-
cation time of sending and receiving the block of input data
across TPU cores. It can be seen from Fig. 8 that the time
of matrix multiplications scales linearly with respect to the
total number of TPU cores. This is because the matrix multi-
plications are kept completely local within individual cores.
The computation time of the 2D KDFT scales approximately
linearly with respect to the number of TPU cores, with the
gap between the actual and the ideal computation time arising
from the communication among TPU cores.

B. STRONG SCALING ANALYSIS OF 3D KDFT
The parallel efficiency of the 3D KDFT is demonstrated
through an example of dimension 2048×2048×2048. Similar
to the 2D case, the problem size is also fixed as proportionally
more TPU cores are employed. The total computation time
is depicted in Fig. 9. As a reference, the ideal computation
time from linear scaling is provided in Fig. 9, which is
defined by

ideal time =
T32
Ncore
32

, (20)

where T32 denotes the total computation time with 32 TPU
cores. It can be seen from Fig. 9 that the computation time
scales approximately linearly with respect to the number of
TPU cores.

The gap between the actual and the ideal computation time
in the 3D case also results from the communication among
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FIGURE 7. A screenshot of the trace viewer from the TPU profiling tool.

FIGURE 8. The computation time of the 2D KDFT with up to 128 TPU
cores on an example of dimension 8192× 8192.

TPU cores. As mentioned in the parallel implementation,
the data decomposition is applied to the input data along all
the three dimensions with a TPU computation shape. The
computation shape in this example has the form of (4, 4, n2)
with four TPU cores along the first dimension, four along
the second dimension, and n2 along the third dimension. It
is indeed the number of TPU cores along the third dimen-
sion that varies in Fig. 9. For example, the computation
shapes (4, 4, 8) and (4, 4, 16) are corresponding to 128 and
256 TPU cores, respectively. As the number of TPU cores
along the third dimension doubles itself, the size of the input
data contained on each core is reduced by half. As a result,
the computation time associated with a single operation of
collective_permute or einsum is also reduced by
half, which is shown in Fig. 10. However, as more cores are
being used, the total number of collective_permute
operations increases. For example, it requires a total num-
ber of 15 collective_permute operations in the
Fourier transform along the third dimension in the case
of 256 TPU cores or with the TPU computation shape
(4, 4, 16), whereas only 7 collective_permute oper-
ations are required in the case of 128 TPU cores or

FIGURE 9. The computation time of the 3D KDFT with up to 256 TPU
cores on an example of dimension 2048× 2048× 2048.

with the TPU computation shape (4, 4, 8). It can be seen
that even though the time associated with one single
collective_permute operation decreases when more
TPU cores are used, the total communication time for
the DFT along the third dimension does not change. This
explains the gap between the total and the ideal computation
time in Fig. 9.

C. STRONG SCALING ANALYSIS OF 3D FFT
The parallel efficiency of the 3DFFT is demonstrated through
an example of dimension 2048× 2048× 2048. The problem
size is fixed as proportionally more TPU cores are employed.
The total computation time is depicted in Fig. 11. As a
reference, the ideal computation time from linear scaling is
provided in Fig. 11, which is defined by

ideal time =
T16
Ncore
16

, (21)

where T16 denotes the total computation time with 16 TPU
cores. As shown in Fig. 11 that close-to-linear scaling is
observed in the 3D FFT computation on TPUs. The example
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FIGURE 10. The computation time of one single operation of
collective_permute and einsum, respectively, in the 3D KDFT along
the third dimension with respect to the number of TPU cores.

FIGURE 11. The computation time of the 3D FFT with up to 128 TPU cores
on an example of dimension 2048× 2048× 2048.

FIGURE 12. The breakdown of the computation time with the TPU
profiling tool for the 3D FFT with 256 TPU cores on an example of
dimension 2048× 2048× 2048.

of size 2048 × 2048 × 2048 is considered small for more
than 128 cores. The breakdown of the total computation
time from the TPU profiling tool is provided in Fig. 12. It
can be seen that the communication time consisting of both

all_to_all and collective_permute starts domi-
nating the total computation time.

D. 3D KDFT AND FFT ON A FULL TPU POD
In addition to the strong scaling analysis, the computa-
tion time of a few 3D DFT and FFT examples on a full
TPU Pod with 2048 cores is provided in Table 1. The run-
times reported in this work are for complex transforms.
As a reference, the runtime of a real FFT for the prob-
lem size 8192 × 8192 × 8192 on 2048 nodes of Fujitsu
PRIMERGY CX1640 M1 cluster is 5.36 seconds (converted
from 10 TFlops) [41].

TABLE 1. Computation time of the 3D KDFT and FFT on a full TPU Pod
with 2048 TPU cores.

In Table 1, as the problem size increases from 2048 ×
2048 × 2048 to 4096 × 4096 × 4096, the computation time
of DFT increases 9.7 times. Similarly, the computation time
of DFT increases 11.8 times when the problem size increases
from 4096×4096×4096 to 8192×8192×8192. As a compar-
ison, the computation time of FFT scales up approximately
eight times as the problem size increases by eight times. For
the two problems of sizes 2048 × 2048 × 2048 and 4096 ×
4096 × 4096, the total computation time of KDFT is about
the same as that of FFT. Given the computation complexity
difference between KFDFT and FFT, it demonstrates TPU’s
strength in matrix multiplications.

VI. CONCLUSION AND DISCUSSION
In this work, we proposed and implemented two parallel
algorithms of DFT on TPUs, to be specific, KDFT and FFT.
The formulation of KDFT is based on the Kronecker prod-
uct. The formulation of FFT is based on the Cooley-Tukey
algorithm and the phase adjustment. Both formulations take
full advantage of TPU’s strength in matrix multiplications.
The implementation is in TensorFlow. Through implement-
ing the two parallel algorithms, TPU—the domain-specific
hardware accelerator for machine learning applications—
is employed in the parallel computing of large-scale DFT.
The data decomposition adopted in both parallel algorithms
enables the localization of the dense matrix multiplications
on individual TPU cores, which can be performed com-
pletely in parallel. As for the communication among TPU
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cores, the one-shuffle scheme is designed based on the TPU
interconnect topology, with which sending and receiving
data takes place simultaneously between two neighboring
cores and along the same direction on the interconnect net-
work. The one-shuffle scheme requires minimal commu-
nication time among TPU cores and achieves very high
parallel efficiency. Scaling analysis is provided to under-
stand the parallel efficiency of the proposed DFT algorithms
on TPUs.

With the demonstrated computation efficiency, the
large-scale DFT on TPUs opens an array of opportunities for
scientific computing. One possible future work is to integrate
the DFT on TPUs with medical image reconstruction, where
nonuniform Fourier transform is extensively used. Another
future work is to extend the two proposed algorithms into
a framework and address large-scale DFT of higher dimen-
sions. Finally, the precision of matrix multiplications in this
work can be improved from float32 to float64.
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