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ABSTRACT Privacy of people is a key factor in surveillance systems. Video camera brings us well-off
color information. How would the privacy be secured then? Besides, privacy protection should not create
a hindrance for finding of objects or people under specific cases. Laser scanner takes way affluent color
information. It functions with eye-safe and invisible laser beam. Yet, it provides us robust object recognition
map. Images can be interpreted by humans, but laser-based systems need software applications to explain the
data. Camera-based surveillance system does not focus on the problem of private life conservation. On the
contrary, laser-based surveillance system ensures privacy of people inherently, as it does not record real world
videos except laser scanned data points. In this paper, first, the privacy issues of people for both surveillance
systems have been compared to realize their significance. Second, a qualitative performance comparison
between laser-based and RGB camera-based systems has been made to hint that laser-based algorithms
should be used instead of common RGB cameras. Third, a succinct survey of laser-based detection and
tracking algorithms of movers has been conducted. Final, a superiority measure of the leading laser-based
people-vehicles related algorithms has been performed on the basis of statistical test scores deeming the
ineffectualness metrics (e.g., errors and failures) of each algorithm.

INDEX TERMS Kalman filter, particle filter, people, privacy, laser scanner, SVM, tracking, vehicle.

I. INTRODUCTION
Detection and tracking movers (e.g., pedestrians, vehicles,
and etc.) should be an important issue for surveillance sys-
tems and traffic analysis in conurbations. Surveillance sys-
tems on both public and private spaces often expect to detect
and track unusual activities [1] or behaviour of movers [2]
to ensure high degree of security and safety. A nonauto-
mated and human functioned surveillance system is very
expensive and erroneous. But those existing problems can be
reduced by an automated surveillance system. Any kind of
automated surveillance system demands smart algorithms to
process data obtained by sensors and to prepare informative
information for making fruitful decisions. Due to algorithmic
assumptions and large amount of data processing, an existing
smart algorithm cannot attend to its all desire level of applica-
bilities. Thus, a smarter algorithm is developed. Henceforth,
the series of developing smarter algorithms to handle high
quality of surveillance keeps on continuing.
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Nowadays, like home automation [3]–[5], traffic automa-
tion became one of the key factors for a smart city [6]. The
sidewalk occupancy is a serious problem in the urban life [7],
[8]. If sidewalk occupancy will occur, then pedestrians will
tend to walk on the street which would lead many potential
traffic hazards. A civil engineer would like to realize how
the sidewalks along with streets can be built to give the
maximum comfort and safety to the dwellers. A smart city
planner would design roads for autonomous cars and fair
traffic flows. In smart cities, connected cars can pair with
automated traffic management systems to provide a flawless
driving experience for the commuters. Getting precise tra-
jectories of movers from the surveillance system is one of
the key requirements for the accomplishment of such tasks
smoothly. Indeed, it is a challenging effort to get the workable
quality of trajectories for individual person and vehicle with
a view to studying traffic and vision related activities from an
automated surveillance system with sundry video cameras or
laser (Light Amplification by Stimulated Emission of Radia-
tion) scanners. Images from video camera-based surveillance
system can be interpreted by any human. Nonetheless, this
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FIGURE 1. (a) LMS-511 and LD-MRS are ready for usage, (b) Schematic emission of laser beam that hits legs, (c) Data points group from real world objects.

option is missing in laser-based surveillance system, where
software applications are needed to explain the associated
data. Seemingly, a smart surveillance system with laser scan-
ners would be more competent and commodious than that of
video cameras.

In essence, surveillance requires proper identification and
searching of objects by law and enforcement agencies. A
crucial issue in a surveillance system is the privacy of people.
In principle, a surveillance system should be smart as well
as it should protect privacy of people. However, privacy
protection should not create a hindrance for the identification
of objects or people under specific conditions (e.g., crime
scenes, searching a stolen vehicle, and a missing person) by
the law and enforcement agencies. A camera is a popular
image sensor for recording visual images. In surveillance
many different kinds of cameras (e.g., action, infrared, and
so on) can be used. The human eye is tactful to red, green,
and blue (RGB) bands of light. Many surveillance cameras
can capture the same RGB bands as what our eyes see for
producing colorful images to be analyzed by human and/or
software. An RGB camera uses a standard CMOS (Comple-
mentary Metal Oxide Semiconductor) sensor through which
the colored images of persons and objects are obtained [9].
The majority of surveillance cameras today feature RGB and
infrared (IR) sensors as standard [10]. Surveillance cameras
mostly work on IP (Internet Protocol) networks, which can
link the cameras from the remote area to the assigned security
location. Beyond cameras and lasers, other sensors includ-
ing RADAR (RAdio Detection And Ranging) [11]–[14],
IMU (Inertial Measurement Unit) [15]–[17], GPS (Global
Positioning System) [18]–[20], GNSS-R (Global Navigation
Satellite System - Reflectometry) [21]–[23], SONAR (Sound
Navigation And Ranging) [24]–[26], DMC (DigitalMagnetic
Compass) [27], fiber optic [12], [28], [29], and temperature
measuring devices [30]–[32] are used in surveillance sys-
tems. Yet, based on the availability and adoption of movers
monitoring algorithms, the surveillance of crowds and/or
vehicles can be roughly divided into video camera-based and
laser-based surveillance systems.

Almost all video camera-based surveillance systems grant
us rich color information under a fixed condition of light

illumination alternations. How would the privacy of people
be secured from such systems? Intuitively speaking, such
systems contribute a very limited privacy of people using
so-called privacy masking. On the other hand, laser-based
surveillance systems hand over the solution of these exist-
ing problems in good way. The trademark of common laser
scanners includes SICK [33], Velodyne [34], IBEO [35], and
Hokuyo [36]. For example, Fig. 1 (a) shows two devices of
SICK namely LMS-511 and LD-MRS. The LD-MRS has
110◦ scanning range. It has 4 layers to scan with various
heights. Its maximum recognition-distance is 250 meters. Its
angular-resolution can be 0.125◦, 0.25◦ or 0.5◦ [33].
Laser scanner functions with eye-safe laser beam. Human

eyes are unable to see the laser beam. Fig. 1 (b) explains
hypothetically the emission of laser beam from two LMS-
511 devices and hits on human legs. Laser scanner does not
give color information as a camera does. Still, it equips solely
data points of objects from heads, chests, hands, legs, trees,
walls, vehicles (e.g., Fig. 1 (c)), bicycles, or other region
of interest (ROI). Hence, data processing becomes not only
quicker and easier as compared to video cameras but also it
shows special advantages in protecting privacy of people.

During the past two decades, an enormous amount of
research has been dedicated to propose sundry laser-based
algorithms for recognizing and/or tracking movers from laser
scanned data points using various laser scanners. Accord-
ingly, several short survey reports can be found in the liter-
ature. For examples, Zhao et al. [37] surveyed the suggested
rules for designing secure communication systems using
chaotic lasers; Bianchini et al. [38] compared between laser
scanner surveys and low-cost surveys; Wan et al. [39] fasci-
nated a survey adjustment method for laser tracker relocation;
Zhong et al. [40] addressed a combination of stop-and-go
and electro-tricycle laser scanning systems for rural cadastral
surveys; Barbarella et al. [41] focused on uncertainty in ter-
restrial laser scanner surveys of landslides; Deng et al. [42]
discussed a panorama image and three-dimensional (3D)
laser point cloud fusing method for railway surveying; and
Wang et al. [43] hinted a survey of mobile laser scanning
applications and key techniques over urban areas. Neverthe-
less, due to the prompt progress of the field such surveys are
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to a fixed extent outdated. Additionally, a developed algo-
rithm may function well for a specific surveillance plan, but
it might be dysfunctional for other applications. Henceforth,
it is extremely difficult to find a generic algorithm for solving
many problems in diverse applications. Still, a superiority
measure based on statistical tests of existing state-of-the-art
laser-based tracking algorithms can help to understand which
algorithms would be fitting better in ascending or descending
order of performance for solving certain kind of problems.
Be that as it may, the existing surveys in the literature do not
attract any attention to measure such superiority among the
available laser-based algorithms.

The aim of this paper, first, is to focus on privacy issues
of people for both video camera-based and laser-based
surveillance systems. Its second aim is to make a qualita-
tive performance comparison between laser-based and RGB
camera-based systems. Such comparison helps to establish
the fact that one system is conditionally superior to its alter-
native. Its third aim is to provide a thorough overview of the
advances of algorithms concerning the laser-based system
for detecting and tracking of movers. Its final aim is to
work out a superiority measure of the dominant-alternative
people-vehicles laser-based algorithms deeming statistical
tests by employing unfulfillment metrics (e.g., see TABLE 7
and Fig. 11) of algorithms. Errors of each selected algo-
rithm have been considered using identical dataset (explicitly
Galip et al. [7]), whereas the failure metrics have been ref-
erenced from the data analysis and the manuscript of each
selected algorithm. To conduct statistical tests, we have used
available statistical-software applications from University of
Granada [44].

The main scope of this paper is focused on applica-
tions that seek to smart cities [45], [46], urban environ-
ment monitoring [47], [48], autonomous vehicles [49], [50],
advanced driver assistance systems (so-called ADAS) [51],
[52], robotic vision systems [53], [54], visual sensor sys-
tems [55], risk analysis [56], [57], intelligent traffic flow and
analysis [6], [58].

This paper is designed as follows. Section II focusses on
significance of camera-based and laser-based surveillance
with privacy; Section III qualitatively compares the per-
formance of laser-based and RGB camera-based systems;
Section IV surveys briefly the state-of-the-art algorithms;
Section V qualitatively discusses selected people-vehicles
related algorithms; Section VI estimates ineffectualness met-
rics of those algorithms; Section VII makes superiority mea-
sure using statistical tests; Section VIII hints some future
works and challenges; and Section IX concludes the paper.

II. JUXTAPOSITION OF TWO SURVEILLANCE SYSTEMS
Surveillance, crowd control, and privacy are three key things
for crowd analysis [59]–[66]. The surveillance system should
be smart. It should protect privacy. Surveillance plays a huge
part in today’s society with cameras all around us. Our regular
lives are experiencing higher levels of security each day.

Roughly, surveillance systems of crowds and/or vehicles can
be classified into two elite groups: (i) Camera-based surveil-
lance and related privacy of people, and (ii) Laser-based
surveillance and associated privacy of people.

A. SIGNIFICANCE OF CAMERA-BASED SURVEILLANCE
An early-warning camera system could anticipate dangerous
situations as they arise when large crowds gather. Surveil-
lance cameras (e.g., CCTV, PTZ, etc.) have, and will prevent
many crimes. Nowadays, CCTV (closed circuit television)
is used as a generic term for a variety of video surveil-
lance technologies. Surveillance cameras keep our personal
property safe. CCTV system protects against property theft
and vandalism. It is very difficult to get away with stealing
something if there are cameras filming all times. So, the thief
will often get caught. CCTV system will catch the thief
before, or during the process of committing the crime. The
police can identify criminals recorded with cameras. Through
surveillance cameras, the police can both prevent crimes from
happening and can quickly solve criminal cases with mate-
rial evidence. CCTV system may reduce fear of crime and
increase public participation in public space. Other benefits,
beyond a reduction in crime, would be accrued from a CCTV
system, including aid to police investigations, provision of
medical assistance, place management, and information gath-
ering. Gips [67] and Hess [68] stated a trend toward local
jurisdictions legislating CCTV use. For example, in Chicago
and Milwaukee, bars and nightclubs are required to post
surveillance cameras on their premises. Baltimore County
has required all shopping centers to install CCTV. In El Cer-
rito, California, an ordinance has been proposed that would
require 73 local businesses, including liquor stores, conve-
nience stores, takeout restaurants, banks, shopping centers,
check cashing establishments, pawnshops, and secondhand
brokers and firearms dealers to install surveillance cameras
at all structural entrances and exits to park areas, customer
and employee parking areas, and entrances and exits to park-
ing areas [67], [68]. Moreover, the National Violent Death
Reporting System [69] shows that ‘‘in the United States more
than seven people per hour die a violent death’’. Usually,
CCTV system helps to reduce violence notably.

However, some people say that we should not have surveil-
lance cameras in public places because of the violation of
privacy. We should consider the impact of a CCTV system
from a societal point of view. It has been suggested that
ever-increasing surveillance can make the local environment
a less pleasant place to live [70]. Benjamin Franklin (17 Jan-
uary 1706 - 17 April 1790), one of the founding fathers of
the United States, once said [71]: ‘‘Those who would give
up Essential Liberty, to purchase a little temporary Safety,
deserve neither Liberty nor Safety.’’ This quote frequently
comes up in the context of new technology and concerns
about government surveillance. In the United States, privacy
issues related to the use of CCTV surveillance are first and
foremost in regard to the Fourth Amendment of the United
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States Constitution, which protects a citizen from unreason-
able searches and seizures by law enforcement and other
government agencies. Some possible solutions of this debt
include privacy masking and laser-based monitoring. The
privacy masking method concerns each surveillance camera
with privacy masking capability can selectively block por-
tions of the video image for the purpose of protecting privacy.
For example, PTZ (pan-tilt-zoom) cameras may be used to
monitor a parking lot adjacent to an apartment building with
the images of the windows in the building masked. This is a
feature of the system configuration (software or hardware)
and can be very complex and costly. Besides, in spite of
the primacies of employing cameras with variable (PTZ)
or large (omnidirectional) fields of view, cameras have still
restricted applicability on large-area surveillance as well as
they are still prone to the occlusion problem due to their fixed
optical centers [72].

B. SIGNIFICANCE OF LASER-BASED SURVEILLANCE
Although some problems of private life safekeeping can be
solved by CCTV systems after making appropriate masks,
there are several major problems remain: (a) Normally they
take photos of the whole objects (except masked regions if
applicable) and hence they need high speed processor for data
processing; (b) If light illumination changes, then the quality
of videos change dramatically; (c) Sometimes masking is
extremely difficult, and hence CCTV cannot be placed in
general everywhere to monitor activities of people.

On the other hand, laser-based monitoring systems admin-
ister the solution of these existing problems in good way.
Laser scanners hand over information of objects (e.g., heads,
hands, legs, trees, walls, vehicles, and etc.) such as distance
and angle between device and echo-pulse width. They scan
two dimensional (2D) area by sending beams and then each
beam hits objects. They return distances with angles that the
laser beams hit. We cannot see any laser beam with human
eyes. Laser beam is not harmful for our eyes. Laser scanners
do not record real world videos except scanned data points
and henceforth, data processing becomes faster and easier.
They also solve the problem of private life conservation. They
can be placed everywhere to monitor activities of people
and objects. For instance, we cannot monitor a heart dis-
ease affected person easily by putting a CCTV camera in
his/her bath room. But we can monitor such a patient by
using laser scanners. The most general argument proposed
against installing CCTV cameras in bars and clubs pertains
to privacy issues. Businesses cannot install CCTV cameras
in explicitly private areas (e.g., restrooms). Many people
feel that the entire bar or club should be deemed as private.
Patrons claim that they go out to have a drink and relax, and
they have trouble relaxing if CCTV camera is watching and
recording. Even so, a system with laser scanners can solve
this problem easily. Besides, a system with laser scanners is
more convenient and efficient than that of cameras.

III. QUALITATIVE PERFORMANCE OF LASER-BASED AND
RGB CAMERA-BASED SYSTEMS
A. BLINDNESS AND GHOST OBJECTS
A smart vision or surveillance system may consist of either
laser-based technology or RGB camera-based technology or
a hybrid. Ideally, such system should detect and track all
occurring events within its range. Basically, in two key ways
such system can go wrong namely false negatives (so-called
blindness) and false positives (also called ghost objects).
In case of false negative, the system cannot detect an event
or an item, but in reality that must be detected to keep away
from any potential hazard. For example, with a false negative
a self-driving car would be unable to safely avoid hitting an
obstacle in its way. In case of false positive, the system sees
an event or an item, but in reality that is totally absent there.
For example, a false positive may cause a self-driving car
to jab on the brakes or swerve. This is very annoying to its
occupants. It may cause some possible injurious conditions
of its occupants if they do not use seat belts. It may also
cause accidents if the vehicle swerves dangerously or brakes
very hard. Generally, these kinds of potential problems end
up the safety and reliability of the system. If they occur very
frequently, then its users give up on the system. Normally,
a good system should almost never get any false negative or
positive.

B. LOCALIZATION OF OBJECTS
The laser-based systems can work regardless of the natural
illumination. They can accurately localize objects via their
3D reflections. Routinely, they require vast data processing
in software to create images and identify objects. They are
monochromatic and cannot differentiate objects based on
color. Besides, for far-way objects the laser may have few
beams intersecting the object, thus creating reliable detec-
tion problematic. Unlike laser-based systems, standard RGB
camera-based systems can make detection decisions based
on texture, shape, and color. RGB stereo cameras can be
used to detect and estimate 3D positions of objects. Still,
stereo cameras need extensive processing and repeatedly have
problem for estimating depth if objects lack textural cues. The
most existing models to calibrate depth and the relative pose
between a depth camera and an RGB camera are not univer-
sally applicable for sundry RGB-D cameras [73]. Usually,
the RGB-D camera has awkwardness in getting depth data
of shiny and dark surfaces as IR rays reflected from these
surfaces are weak or scattered. This fact results in lost pixels
in a depth map [74]. In addition, RGB-IR cameras together
suffer from three common problems namely pixel multi-
plexing, channel crosstalk, and chromatic aberrations [75].
An RGB camera-based system can be used to accurately
localize objects in the image itself (e.g., find out bounding
boxes and categorize objects) [76]. Even so, the resulting
localization projected into 3D space is poor as compared to
the laser-based system [76].
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C. RELIABLE DETECTION
Lasers are not fooled by shadows, bright sunlight, the oncom-
ing lights of other sources, day, and night. The laser-based
systems have been hailed for being able to see objects even
in bad lighting conditions, but they may not always reliable.
As a laser scanner sees only parts of the object currently
facing the scanner, when the object moves it is usual to
get different moving point clouds from the same object for
detecting and tracking. This issue may lead to a significant
degradation of tracking performance. Besides, due to the laser
absorbtion by glass like surfaces or any occlusion, an object
can be divided into few segments. This matter makes object
detection and tracking much harder, specially when dealing
with objects merging and tracking groups [77]. A defined
shape of an object can keep down this problem, but that
can face limitations when applied on others [78], [79]. For
example, a defined geometric shape of an object (e.g., two
dots [78] as a pedestrian) may be detected correctly from a
pool of its shape-like objects, but it cannot workwell when the
shape is changed (e.g., three dots [78] as a car). Analogously,
if we employ the motion of laser point clouds (e.g., [80]) to
segment and track vehicles of various types, it does not work
well for pedestrians due to the slowly-moving pedestrians
which do not bestow enough motion cues. Wang [81] dis-
cussed an example that in case of a 2D laser scanner mounted
on a moving platform, occlusion and viewpoint alternations
give the appearance of dynamic behaviours even in a purely
static scene. This confusion creates the reliable detection of
the true dynamic objects arduous without giving high false
alarm rate [81], [82]. Mertz et al. [83] suggested that a good
prediction algorithm (e.g., Kalman filter or particle filter)
can solve any temporarily occlusion problem of an object.
On the other hand, pedestrian detection at night using an RGB
camera provides with insufficient information [84]. Numer-
ous surveillance systems take in applications of autonomous
vehicles, headcounters, search and rescue operations. Yet,
these systems freeze themselves in night surveillance due to
the use of RGB cameras [85].

D. COST AND PRIVACY CONCERNS
Interference and jamming are two potential problems with
laser-based systems. For example, in a smart city application
if a large number of autonomous vehicles would generate
laser beams simultaneously, it could cause interference and
potentially blind the vehicles. In consequence, manufactur-
ers will need an extra effort to prevent this latent inter-
ference. In addition, RGB camera-based systems are far
better suited for reading street signs and interpreting colors.
The laser-based systems are already getting cheap. Yet and
setting-aside, RGB cameras are much less expensive than
laser scanners. The laser-based systems are currently very
bulky as compared to the RGB camera-based systems. For
instance, to capture and share images and video of a crash or
other safety related incident with the automaker, the RGB
camera-based systems as implemented on current Tesla

vehicles are almost invisible. Nonetheless, Tesla’s in-car
cameras have heightened privacy concerns [86].

E. TECHNOLOGY FUSION
One feasible solution to the debate for the employment of
laser-based and RGB camera-based systems is to combine
both technologies. Such hybrid systems would cut back on
privacy concerns to some degree. To a certain extent, such
hybrid systemswould be helpful for specialized identification
of things including birds, traffic lights, traffic cones, and road
debris. For example, if a flock of birds will appear in the way
of a self-driving car, the car will not be immediately slowed
down. The laser will see the birds and the RGB camera will
give extra information about what to do.

Recently, hybrid systems that cooperatively use track-
ing along with semantics and soft computing have been
successfully proposed to support the data explanation and
help object detection and event interpretation. For examples,
Cavaliere et al. [87] built ontological knowledge on the track-
ing and environmental data to support the comprehension of
the video scenes, and Gomez-Romero et al. [88] improved
tracking results by exploiting ontology reasoning on contex-
tual information. Bozorgi et al. [89] integrated data obtained
from 2D laser and 3D camera for tracking human trajec-
tory. Zhao et al. [78] integrated a video camera with their
LMS291 laser scanner to evaluate their processing results for
tracking and classifyingmoving objects. Azim et al. [90] per-
formed detection and classification of moving objects from
3D laser data. They used images from their camera to manu-
ally label the data for training the classifiers. Mertz et al. [83]
applied both laser scanners and video cameras for moving
object detection. Their employed video cameras helped a
lot to analyze collected data. Even so, those cameras were
not involved in creating warnings (e.g., for the bus driver).
Besides, sometimes a malfunction of their retraction mecha-
nismmisaligned the laser scanner and resulted in hundreds of
false alarms. Kim et al. [91] installed an IBEOLUX2010 and
a camera on a Kia K900 car for object segmentation. They
aimed to compensate the drawbacks of the laser scanner and
also improve the recognition accuracy. On the average, they
confronted a failure rate of about 20%.

However, hybrid systems expect further efforts to reach
their high level of applicabilities. This is widely due to their
algorithmic assumptions, calculation of stable features, lofty
computational cost, higher hardware requirements, reasoning
about the geometry of occlusions, and fusing data from mul-
tiple sensors.

F. A DIFFICULT CHOICE BETWEEN TWO OPTIONS
It is interesting to note that the most used modalities, both
laser scanners and RGB cameras, are two completely con-
trasting sensors with their own strengths and weaknesses.
For example, laser-based cameras play an important role for
obstacle detection and tracking, but they are very sensitive
to heavy rain, snow, and fog; whereas RGB cameras are
often used to get a semantic interpretation of the scene, but
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they are immensely sensitive to ambient light, night, day,
clouds, shadows, sun, and sunlight. These issues can cause
significantly large potential false positives and/or false neg-
atives in both laser-based and RGB camera-based systems
with respect to their associated ground truths. Subsequently,
the installed algorithmic performances (e.g., time efficiency,
space efficiency, complexity theory, function dominance, and
asymptotic dominance) of both systems become the common
influential factors. Both systems can use artificial intelligence
techniques to analyze data with a high level of accuracy.
As the employed algorithms get better, the obtained results
show high accuracy and precision in object detection and
tracking. For example, with a smarter algorithm a self-driving
car can make better decisions to spell the difference between
an accident and safe driving. Based on the complexity of the
employed algorithms, such decision may be made faster in
the laser-based system as compared to the RGB camera-based
system. The car with surrounding information every moment
laser-based system requires huge data processing on-board
software to create 3D maps and identify objects. This pro-
vides a 360 degree view that helps the car-drive in any type
of condition. On the other hand, RGB camera-based systems
are identical to how our brain processes the stereo vision from
our eyes for calculating distance and location. Explicitly,
RGB camera-based systems should first ingest the images
and then analyze those images to calculate the distance and
speed of objects, demanding far more computational power.
Some smart surveillance systems are based on RGB cameras,
which can only cover a small area; however, due to the occlu-
sion occurred by their fixed optical centers [72], it is very
difficult for them to work robustly in real world exceptionally
crowded scenarios including subway stations, public squares,
and intersections [92]. Unlike a camera or a radar, a laser
scanner can be used as the sole sensor for some systems (e.g.,
ADAS) without being combined with other sensors [91].

One of the key supremacies of laser is its accuracy and
precision. Laser is extremely accurate as compared to RGB
cameras. In fact, RGB cameras provide all visual images,
and they do not rely on ranging and detection as the laser
does. Anyhow, critics say that RGB cameras still cannot see
well enough to avoid hazard, mainly when weather condi-
tions are demanded. RGB cameras should be able to exactly
see in any type of condition as a human does for avoiding
remarkably huge false positives and false negatives. In gen-
eral, laser-based algorithms have been proposed to avoid the
limited range and field of view of video cameras. Besides,
when the issue of privacy protection comes into the spot-
light, the laser-based algorithms gain an extra credit over
their alternative RGB camera-based algorithms. Therefore,
the laser-based algorithms should be used instead of the com-
mon video recording RGB cameras. In the same vein, nowa-
days the leading automotive manufacturers (e.g., Waymo,
Uber, and Toyota) are implementing laser-based systems in
their vehicles [93]. In the vein of defensive countermeasures,
laser-based technology revolutionized the entire paradigm of
destructive weapons by starting a wider range of airborne

and ground-based weapons with skills to precisely carry
large-scale destruction to electronic systems, combat troops,
optical devices, high-speed approaching missiles, and even
physical installations [94].

IV. REVIEW OF STATE-OF-THE-ART LASER-BASED
ALGORITHMS
Laser scanners are mostly eye-safe, compact, light-weighted,
and with full-circle fields of view. Mobile laser scan-
ning (MLS) systems can be mounted on vehicles, trolleys,
boats, robots, and backpacks [43], [95]. The main com-
ponents of such system include 3D laser scanners, global
navigation satellite system, inertial measurement unit, and
cameras. The SICK laser range measurement devices send
a laser beam every 0.25◦ within their respective scanning
planes, which yielded to 761 measurements in one time
frame since they scan between −5◦ and +185◦ [33], [96].
The sensors of Velodyne have a range of up to 300 meters.
They can be used for immediate object detection without
additional sensor fusion [97]. The IBEO LUX laser scanner
is a unique full-range sensor applied for object detection and
classification to support ADAS applications [98]. Mostly,
Hokuyo laser scanners are used in automated guided vehicle
(AGV), unmanned aerial vehicle (UAV), and mobile robot
applications [36].

However, the existing miscellaneous algorithms for detect-
ing and/or tracking objects from laser scanner data points can
be roughly categorized into four groups as shown in Fig. 2.
TABLEs 1, 2, 3, and 4 summarize them. The common
abbreviation of N/A in those tables elaborates to either not-
available or no-answer.

V. PROMINENT PEOPLE-VEHICLES RELATED
ALGORITHMS
A. SELECTED ALGORITHMS AND FLOW DIAGRAMS
Detection and tracking of moving vehicles with a laser
scanner is interesting for autonomous driving applica-
tions. Yet, people-vehicles detecting and/or tracking algo-
rithms are more interesting in wide range of surveillance
than solely either people or vehicles tracking algorithms.
In this subsection, we have focused on people-vehicles
related algorithms in TABLE 1 rather than TABLE 2
or TABLE 3, or TABLE 4. However, all algorithms in
TABLE 1 have not taken into account due to mainly three
problems: (i) Accuracy and precision [173] of algorithms
are not explicitly provided by the authors of associated
manuscripts (e.g., Wang et al. [100], Lindstrom et al. [103],
Asvadi et al. [105], and Kanaki et al. [106]); (ii) Implemen-
tation difficulties (e.g., Lehtomaki et al. [104]); and (iii) The
computational complexity of N ×N post-hoc nonparametric
procedures to calculate p-values will go with a comparatively
higher order polynomial for the augmentation of high num-
ber of algorithms and datasets. As a result, we have cho-
sen key eight algorithms related to the people-vehicles from
TABLE 1 for our results analysis and superiority measure.
Fig. 3 compares their simplified flowdiagrams. It is noted that
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FIGURE 2. Classification of laser-based detection and tracking algorithms.

TABLE 1. People-vehicles related algorithms.

interesting readers would get the detailed of each algorithm in
respective reference. As a sample, Fig. 4 views the graphical
abstract of the algorithm of Sharif [8]; where (a) points to
the laser scanner of LMS-511 and a real world video frame;
(b) depicts the obtained blobs (as colored in blue) for all laser
scanned data points per frame; (c) denotes the foreground data
points as colored in red; (d) hints the extracted movers as
marked by white points and the L-shaped structure belongs
to a vehicle, while others are most likely pedestrians; (e) dis-
plays recognized record of SVM; and (f) shows trajectories
of movers for several frames.

B. QUALITATIVE DESCRIPTION OF ALGORITHMS
Galip et al. [7] used Hungarian method [2], [174]–[176] and
Kalman filter [177] to get trajectories of movers from their

own laser scanned dataset. But detection of movers was done
based on various thresholds. Estimation of multiple thresh-
olds is often a daunting task. Azim et al. [90] suggested an
algorithm to detect moving objects (e.g., bus, car, bike, and
pedestrian). In spite of this, their algorithm cannot separate
individual pedestrians walking together in a group. Trees,
light poles, and street signs were often wrongly detected
as moving objects. To overcome the threshold estimation
problem of Galip et al. [7], Sharif et al. [99] relied on super-
vised learning based methods (e.g., SVM) along with Hun-
garian method and Kalman filter to recognize and get better
trajectories of movers from the dataset of Galip et al. [7].
Zhao et al. [78] tracked and classified moving objects at
intersection using spatially and temporally processing on
laser scanned data points. Moving objects are classified into
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TABLE 2. People tracking algorithms.
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TABLE 3. Vehicles tracking algorithms.

pedestrians (0-axis object), bicycles (1-axis object), vehicles
(2-axis object). They claimed that the performance of their
algorithm reached a successful ratio of above 95% for track-
ing and classification on a 10-minute laser data at an inter-
section. Through their experiment, it was reported that the
classification results of 1-axis objects are rather sensitive to
the definition of the likelihood measure. This problem should
be solved through further study. There are some reported fail-
ure cases. For example, when heavy vehicles run across the
intersection and pedestrians wait for signal blocked the mea-
surement to another vehicle. Mertz et al. [83] detected and
tracked successfully several movers from laser scanned data
points. Notwithstanding, the main errors of their algorithm
include over-segmentation and under-segmentation, associa-
tion problems, false and missed detections. Their algorithm
fails to detect a target if it is occluded, or if it has poor
reflectivity, or if objects are very close to each other and it is
not clear whether to segment the data as one or more objects.

Both Galip et al. [7] and Sharif et al. [99] used Kalman
filter and identical data set of Galip et al. [7]. Kalman
filter is a linear quadratic estimator. It may be the best to
estimate linear system having Gaussian noise. It has low
computational requirements. But if the system does not suit
nicely into a linear model or if the sensor uncertainty [4] does
not fit with Gaussian model, then performance degradation
occurs drastically. If the linearity or Gaussian conditions do
not exist, its variants (e.g., ExtendedKalman filter, Unscented
Kalman filter) can be used. However, those variants can-
not give a reasonable estimate for highly nonlinear and

non-Gaussian problems. Besides, movers data points of laser
scanners behave very differently in some regions than others.
In such case, Kalman filter is not a good choice. The particle
filter [178] is a better solution. Nonetheless, particle filter
gets exponentially worse if a model has many state variables.
Even so, a particle filter can handle almost any kind of
model by digitizing the underlaying problem into separate
particles. Each particle is one possible state of the model.
A sufficiently large number of particles can handle any kind
of probability distribution. Inspired by these facts, Sharif [8]
proposed SVM along with Hungarian method and particle
filter to get trajectories of movers. On the same dataset (e.g.,
Galip et al. [7]), the algorithm of Sharif [8] reported the best
minimization of error rates.

Wang et al. [82] formulated a unified framework that
jointly estimated the pose of the sensor with the focus
on detection and tracking of moving objects. They applied
EMST-EGBIS (Euclidean Minimum Spanning Tree - Effi-
cient Graph Based Image Segmentation) clustering technique
to produce perceptually coherent clusters. Only instanta-
neously moving objects (no parked or no instantaneously
stationary vehicles) can be detected and tracked by their sys-
tem. Two modes of failure can be reported in their algorithm.
A recoverable case, where despite initial tracking failure,
their system can recover from the incorrect states. An unre-
coverable case, where an object is erroneously tracked or
missed until it moves out of the field-of-view of the sensor.
If an unexpected object is observed or if the object class
would not be detected with confidence, then the system can
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TABLE 4. Algorithms for miscellaneous objects detection or tracking.

fall back to model-free tracking. Kim et al. [91] separated
objects using techniques of segmentation and outlier elimi-
nation. Their algorithm worked some how good under com-
plex urban road conditions. Still, when outliers happen (e.g.,
during raining, car goes uphill, etc.) frequently, the algorithm
can fail in eliminating them. The inlier survival ratio is a
sensitive factor of their algorithm. Because if an inlier is
accidently removed by the algorithm, then it will lead to a
serious accident.

VI. ESTIMATION OF INEFFECTUALNESS METRICS
A. LABELED DATASET
Galip et al. [7] used Ethernet cable for the connection
between laser scanners (both LMS-511 and LD-MRS) and
computer. Data were captured by SOPAS Engineering Tool,
which is a program developed by SICK AG (Aktienge-
sellschaft). There were more than one laser scanners, thus
those coordinates of points were changed by taking a laser
scanner as reference. Afterwards, those distances were con-
verted into X-Y coordinates [1] as well as their timestamps
using MATLAB. At the end, Galip et al. [7] employed a total

of 550 ground truth images to conduct their experiment.
A total of 258 pedestrians and 292 vehicles were leveled
properly.

B. CODING AND PARAMETERS
Algorithms were implemented by using MATLAB. An 8 GB
RAM HP 64-bit workstation with an Intel Core i5-7200U
CPU utilizing Windows 10 Pro was used throughout the
experimentation to evaluate various algorithms. Standard
parameters of each algorithms, if applicable, were employed.
For example, in case of Sharif [8], randomly 25 pedestrians
and 25 vehicles were selected for training and the rests for
testing purposes. Polynomial kernel with order 3, Gaussian
radial basis function kernel with a scaling factor of 1, and
multilayer perceptron kernel with scale [1 1] were deemed.

C. GROUND TRUTHS AND ALGORITHMIC OUTPUTS
The Listing 1 demonstrates sample tracking output of each
algorithm for pedestrians (Ped) and vehicles (Veh) with
respect to ground truths (GrdTrh) of each frame from the first
500 frames of Galip et al. [7] dataset. It describes the ground
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FIGURE 3. Comparison of simplified flow diagrams of eight people-vehicles related algorithms.

truths and the outputs of a frame for each algorithm starting
from the line 3 to the line 102 by taking a multiple of 5 frames
(i.e., frame 1 at line 3, frame 5 at line 4, frame 10 at line 5,
frame 15 at line 6, etc.). Thus, we may analyze and reduce
the result from 500 frames to (500/5 = ) 100 frames without
loosing significant performance. The data of the Listing 1
have been depicted in Fig. 5 for pedestrians and Fig. 6 for
vehicles. Basically, Figs. 5 and 6 portrait the outcomes of
the mainstream laser-based people-vehicles algorithms on
an identical ground. Seemingly, these algorithms failed to
correctly identify a number of objects as compared to ground
truth. The main reasons for this shortcoming include that the
existing laser-based algorithms usually use segmentation of
laser point clouds or use bounding-boxes of laser segments
to represent objects. It is noticeable that average algorithmic
performance of vehicles detection and/or tracking is better
than that of pedestrians. This might be a reason that vehicles
are rigid bodies and cannot be mixed up as human does.

TABLE 5. Qualitative and quantitative analysis of data in Listing 1.

TABLE 5 describes the qualitative and quantitative anal-
ysis of data in Listing 1, where number of true positive
movers (tp), number of false positive movers (fp), number of
false negative movers (fn), number of true negative movers
(tn) with tn = 0, recall rate (Rr ) with Rr = tp/(tp + fn),
precision rate (Pr ) with Pr = tp/(tp + fp), accuracy (ACC)
with ACC = (tp + tn)/(tp + fp + fn + tn), and the area
under the receiver operating characteristic curve (AUC) with
trapezoidal numerical integration method [179]. The val-
ues of Rr , Pr , ACC , AUC for pedestrians and vehicles are

92404 VOLUME 9, 2021



M. H. Sharif: Laser-Based Algorithms Meeting Privacy in Surveillance: A Survey

Listing 1. Ground truths and algorithmic tracking results.

presented by pairs pRr , vRr , pPr , vPr , pAc, vAc, pAu, and vAu,
respectively.

Figs. 7 and 8 plot the performance data from TABLE 5
for pedestrians and vehicles, respectively. The overall per-
formance of pedestrians and vehicles tracking algorithms
in Figs. 7 and 8 would be satisfactory and applicable for

TABLE 6. Estimation of errors from data in Figs. 5 and 6 with
Eqs. 1 and 2.

TABLE 7. Estimated ineffectualness metrics of various algorithms.

many laser-based applications including smart cities, ADAS,
and intelligent traffic analysis. Nonetheless, future devel-
opments would take into account their existing algorith-
mic assumptions and other shortcomings to propose smarter
algorithms.

D. ESTIMATION OF ALGORITHMIC ERRORS
AND FAILURES
To estimate conventional errors from Figs. 5 and 6, we have
performed several statistical measures, e.g., RMSE⇒ Root
Mean Squared Error, CV(RMSE)⇒ Coefficient of variation
of the root mean squared error, MAE ⇒ Mean Absolute
Error, and MAPE⇒Mean Absolute Percentage Error. Their
formulae are formulated in Eqs. 1 and 2 as:

RMSE =

√∑100
i=1(G(i)− A(i))2

100
;

CV (RMSE) =
RMSE

1
100

∑100
i=1G(i)

(1)

MAE =
1
100

100∑
i=1

|G(i)− A(i)|;

MAPE =
1
100

100∑
i=1

|G(i)− A(i)|
G(i)

(2)

whereG,A, and i indicate ground truth, algorithmic detection,
and number of frame, respectively. TABLE 6 demonstrates
various errors estimated from data in Figs. 5 and 6 using
Eqs. 1 and 2. The pairs pRMSE , vRMSE , pCV , vCV , pMAE ,
vMAE , pMAPE , and vMAPE indicate RMSE , CV (RMSE),
MAE , MAPE for pedestrians and vehicles, respectively.
Figs. 9 and 10 represent the plotting of the error data from
TABLE 6 for pedestrians and vehicles, respectively.

VOLUME 9, 2021 92405



M. H. Sharif: Laser-Based Algorithms Meeting Privacy in Surveillance: A Survey

FIGURE 4. Graphical abstract of the algorithm of Sharif [8].

TABLE 7 depicts the estimated ineffectualness metrics
of miscellaneous algorithms. The mean values of RMSE ,
CV (RMSE), MAE , and MAPE are defined as: Mrmse =

(pRMSE + vRMSE)/2, Mcv = (pCV + vCV )/2, Mmae =

(pMAE+vMAE)/2, andMmape = (pMAPE+vMAPE)/200,
respectively using data in TABLE 6. The failures of Rr , Prate,
ACC , andAUC achievements are defined as:Frr = 1−(pRr+
vRr )/2, Fpr = 1− (pPr + vPr )/2, Facc = 1− (pAc+ vAc)/2,
and Fauc = 1 − (pAu + vAu)/2, respectively using data in
TABLE 5. The failure of achievement of an algorithm (Faa) is
defined by dint of (3), as shown at the bottom of the page 17.

For example, the accuracy of the algorithm of
Azim et al. [90] is 86% (as the authors claimed), thus its Faa
will be (100% − 86%)/100 = 0.14 and so on. From data
in TABLE 7, it is extremely difficult to say accurately which
algorithm outperforms its alternative.

VII. SUPERIORITY MEASURE USING STATISTICAL TESTS
A. MULTIPLE COMPARISON WITH STATISTICAL TESTS
Fig. 11 depicts performance evaluation of various algorithms
deeming the numerical values of the ineffectualness metrics
from TABLE 7. From this graph, it is extremely hard to rank
each algorithm. How would it be possible to demonstrate
that one algorithm is superior to its alternative algorithms?

Statistically, it is possible to show that one algorithm is better
than its alternatives.

Usually, multiple comparisonswith a control algorithm can
be employed to statistically demonstrate that one algorithm
is better than its alternatives in areas related to computer
science and engineering [180]. The key concept of apply-
ing the non-parametric tests [181] includes that they can
deal with probabilistic and non-probabilistic methods without
imposing any circumscription. We have considered data from
TABLE 7 to conduct statistical tests for multiple comparisons
along with a set of post-hoc procedures to compare a control
algorithmwith others (i.e., 1×N comparisons) and to perform
all possible pairwise comparisons (i.e., N ×N comparisons).
For these purposes, we have used the open source statistical
software applications from University of Granada [44].

To conduct a statistical test of significance, the p-value of
test statistic and the level of significance α play an important
role. Both p-value and α might be misdirected. Because both
of them are indeed probabilities, i.e., values between zero
and one. The p-value states directly how extreme that statistic
should be by using data from TABLE 7. The α gives evidence
of how extreme observed results should be to reject the null
hypothesis of a significance test. A smaller p-value expresses
briefly that the observed sample is more unlikely. In statistical
significance testing, the p-value is the probability of obtaining
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FIGURE 5. Comparative plot of ground truths and outputs of algorithms deeming pedestrians.

a test statistic result minimum as drastic as the one that was in
effect observed by taking into account the null hypothesis is
not false [182]. Flacks of p-values say that the circumstances
employed to determine statistical significance is based on
any option of level (e.g., p = 0.05) [183]. If a significance
testing is applied to hypotheses that are known to be not-true
in advance, then a non-significant result will plainly cogitate
a deficient sample size. Any p-value remains in a certain
state exclusively on the information obtained from a fixed
experiment.

Friedman test [184] and its derivatives (e.g., Iman-
Davenport test [185]) are usually referred to as one of
the most well-known nonparametric tests for multiple com-
parisons. Consequently, we have performed the Friedman
test [184]. An available characteristics of the Friedman
test [184] is that it takes measures in preparation for ranking
of a set of algorithms with performance in descending order.
Notwithstanding, it can solely inform us about the appearance
of differences among all samples of results under comparison.
As a result, its alternatives e.g., Friedman’s aligned rank
test [186] and Quade test [187] can give us further infor-
mation. Thus, we have performed both Friedman’s aligned
rank test [186] and Quade test [187]. They express opposition
through rankings. They would provide a better results based
on the features of a given experimental study. After rejecting

null-hypotheses, we have continued to post-hoc procedures to
find the special pairs of algorithms which give idiosyncrasies.

In the case of 1 × N comparisons, the post-hoc proce-
dures make up of Bonferroni-Dunn’s [188], Holm’s [189],
Hochberg’s [190], Hommel’s [191], [192], Holland’s [193],
Rom’s [194], Finner’s [195], and Li’s [196], procedures;
whereas in the case of N × N comparisons, they consist
of Nemenyi’s [197], Shaffer’s [198], and Bergmann-
Hommel’s [199] procedures. In the case of Bonferroni-
Dunn’s procedure [188], the performance of two algorithms
is substantially divergent if the corresponding mean of rank-
ings is at least as large as its discriminating divergence.
A better one is Holm’s procedure [189]. It examines in
a sequential manner, where all hypotheses ordered based
on their p-values from inferior to superior. All hypotheses
for which p-value is less than α divided by the number
of algorithms minus the number of a successive step are
rejected. All hypotheses having larger p-values are upheld.
Holm’s procedure [189] adjusts α in a step-down manner.
Similarly, both Holland’s [193] and Finner’s [195] proce-
dures adjust α in a step-down method. But the Hochberg’s
procedure [190] works in the opposite direction of Holland’s
procedure [193]. It compares the largest p-value with α,
the next largest with α/2, and so on, until it encounters a
hypothesis that can be rejected. The Rom [194] suggested
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FIGURE 6. Comparative plot of ground truths and outputs of algorithms deeming vehicles.

FIGURE 7. Plotting of performance data for pedestrians from Table 5.

a modification to Hochberg’s step-up procedure [190] to
intensify its power. In turn, Li [196] recommended a two-step
rejection procedure.

The available statistical software applications [44] cal-
culate multiple comparison procedures: Friedman [184],
Iman et al. [185], Bonferroni et al. [188], Holm [189],
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FIGURE 8. Plotting of performance data for vehicles from Table 5.

FIGURE 9. Plotting of errors occurred for pedestrians in Table 6.

Hochberg [190], Holland [193], Rom [194], Finner [195],
Li [196], Shaffer [198], and Bergamnn et al. [199] tests as
well as adjusted p-values. The Nemenyi’s procedure [197]
is the easiest one for all possible pairwise comparisons.
It deliberates that the value of α is adjusted in a single

step by dividing it only by the number of comparisons per-
formed. It is easy but less practical. The Shaffer’s static
routine [198] adopts the Holm’s step-down method [189].
At a given stage, it rejects a hypothesis if the p-value is
less than α divided by the maximum number of hypotheses
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FIGURE 10. Plotting of errors occurred for vehicles in Table 6.

which can be true provided that all previous hypotheses are
false. The Bergmann et al.’s [199] procedure provides the
best performance, but it is very sophisticated and compu-
tationally expensive. It consists of finding all the possible
exhaustive sets of hypotheses for a certain comparison and all
elementary hypotheses which cannot be rejected. The details
of the procedure are described in Bergmann et al. [199],
Garcia et al. [200], and the rapid algorithm to conduct this
test in demonstrated in Hommel et al. [192].

B. AVERAGE RANKING OF ALGORITHMS
To achieve the test results, Friedman [184], Friedman’s
aligned rank test [186], and Quade [187] nonparametric sta-
tistical tests are applied to the obtained results of eight algo-
rithms in TABLE 7. Explicitly, statistical tests are applied to a
matrix of dimension 8× 9, where 8 belongs to the number of
algorithms and 9 corresponds to 9 parameters (as 9 datasets
while applied to the statistical software environment [44])
of each algorithm. TABLE 8 shows the average ranking
computed by using Friedman [184], Friedman’s aligned rank
test [186], and Quade [187] nonparametric statistical tests.
The aim to apply Friedman [184], Friedman’s aligned rank
test [186], and Quade [187] nonparametric tests is to deter-
mine whether there are significant differences among various

algorithms considering over the data in TABLE 7. These tests
provide ranking of the algorithms for each individual dataset,
i.e., the best performing algorithm receives the highest rank
of 1, the second best algorithm gets the rank of 2, and so
on. The mathematical equations and further explanation of
the nonparametric procedures of Friedman [184], Friedman’s
aligned rank test [186], and Quade [187] can be found in
Quade [187] and Westfall et al. [201].

Fig. 12 makes a visualization of the average rankings using
the data in TABLE 8. From Fig. 12, it is noticeable that the
algorithm of Sharif [8] became the best performing one, with
the longest bars of 0.6428, 0.0783, and 0.5844 for Friedman
test [184], Friedman’s aligned rank test [186], and Quade
test [187], respectively. This hints that algorithm of Sharif
[8] gives great performance for the solution of underlaying
problems of detecting and tracking both pedestrians and vehi-
cles from laser scanned data points. Friedman [184] statistic
considered reduction performance (distributed according to
chi-square with 7 degrees of freedom) of 40.861111. Aligned
Friedman [186] statistic considered reduction performance
(distributed according to F-distribution with 7 and 56 degrees
of freedom) of 34.336679. Iman-Davenport [185] statis-
tic considered reduction performance (distributed accord-
ing to F-distribution with 7 and 56 degrees of freedom)

Faa =
100%− (Accuracy of the corresponding algorithm in TABLE 1)

100
. (3)
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TABLE 8. Average ranking of each algorithm using nonparametric statistical tests. The best results are shown in bold.

FIGURE 11. Plotting of the numerical values of errors and failures using data from Table 7.

of 14.76537. Quade [187] statistic considered reduction per-
formance (distributed according to F-distribution with 7 and
56 degrees of freedom) of 7.848328. The p-values com-
puted through Friedman statistic, aligned Friedman statistic,
Iman-Daveport statistic, and Quade statistic are 0.000001,
0.00001489707, 0.000000000099, and 0.000001331163,
respectively. TABLE 9 demonstrates the results obtained on
post-hoc comparisons of adjusted p-values, α = 0.05, as well
as α = 0.10.

C. POST-HOC PROCEDURES FOR 1× N COMPARISONS
In the case of 1 × N comparisons, the post-hoc proce-
dures consist of Bonferroni-Dunn’s [188], Holm’s [189],
Hochberg’s [190], Hommel’s [191], [192], Holland’s [193],
Rom’s [194], Finner’s [195], and Li’s [196] procedures. In
these statistical analysis tests, multiple comparison post-hoc
procedures considered for comparing the control algorithm

of Sharif [8] with the others. The results are shown by
computing p-values for each comparison. TABLE 10 depicts
obtained p-values using the ranks computed by the Friedman
[184], Friedman’s aligned rank test [186], and Quade [187]
non-parametric tests, respectively. Based on the computed
results, all tests show significant improvements of Sharif
[8] over Zhao et al. [78], Kim et al. [91], Kim et al. [91],
Mertz et al. [83], Galip et al. [7], Wang et al. [82], and
Azim et al. [90] for all the post-hoc procedures considered.
Besides this, the Li’s [196] procedure does the greatest per-
formance, reaching the lowest p-values in the comparisons.

D. POST-HOC PROCEDURES FOR N × N COMPARISONS
In the case of N × N comparisons, the post-hoc proce-
dures consist of Nemenyi’s [197], Shaffer’s [198], as well as
Bergmann-Hommel’s [199] procedures. TABLE 11 presents
28 hypotheses of equality among 8 different algorithms and
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FIGURE 12. Plotting of average rankings data from Table 8; where each value x is plotted as 1/x to visualize the highest ranking with the tallest bar.

TABLE 9. Results achieved on post-hoc comparisons for adjusted p-values, α = 0.05, and α = 0.10.

p-values achieved. Using level of significance α = 0.05: (i)
Nemenyi’s [197] procedure rejects those hypotheses that have
an unadjusted p-value ≤ 0.001786, (ii) Holm’s [189] proce-
dure rejects those hypotheses that have an unadjusted p-value
≤ 0.002273, (iii) Shaffer’s [198] procedure rejects those
hypotheses that have an unadjusted p-value ≤ 0.001786,
and (iv) Bergmann’s [199] procedure rejects following
hypotheses: Galip et al. [7] vs Sharif [8], Galip et al. [7] vs
Zhao et al. [78], Sharif [8] vs Azim et al. [90], Sharif [8] vs
Wang et al. [82], Azim et al. [90] vs Zhao et al. [78], as well

as Zhao et al. [78] vs Wang et al. [82]. Similarly, using level
of significance α = 0.10: (i)Nemenyi’s [197] procedure
rejects those hypotheses that have an unadjusted p-value ≤
0.003571, (ii) Holm’s [189] procedure rejects those hypothe-
ses that have an unadjusted p-value ≤ 0.004545, (iii) Shaf-
fer’s [198] procedure rejects those hypotheses that have an
unadjusted p-value ≤ 0.003571, and (iv) Bergmann’s [199]
procedure rejects following hypotheses: Galip et al. [7] vs
Sharif [8], Galip et al. [7] vs Zhao et al. [78], Sharif [8] vs
Azim et al. [90], Sharif [8] vs Mertz et al. [83], Sharif [8]
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TABLE 10. Adjusted p-values for various tests considering Sharif [8] as control method.

TABLE 11. Adjusted p-values for tests for multiple comparisons among all methods.

vs Wang et al. [82], Azim et al. [90] vs Zhao et al. [78], and
Zhao et al. [78] vs Wang et al. [82].

E. WILCOXON SIGNED-RANK TEST
The Wilcoxon signed-rank test [202], named after Irish
American statistician Frank Wilcoxon (2 September 1892 –
18 November 1965), is a nonparametric statistical test that
compares two paired groups, and comes in two versions
the rank-sum test or the signed rank test. The goal of the
test is to determine if two or more sets of pairs are differ-
ent from one another in a statistically significant manner.
In short, the Wilcoxon signed-rank test [202] determines
whether two dependent samples are selected from popula-
tions having the same distribution. Considering Wilcoxon
signed-rank test [202] and open source statistical software

of [44], TABLE 12, TABLE 13, and TABLE 14 show rank-
ing of 8 algorithms, results of Sharif [8], and summary of
test, respectively. The symbol text-bullet • in TABLE 14
indicates the method in the row improves the method of
the column, whereas the symbol text-open-bullet ◦ hints the
method in the column improves the method of the row. Level
significance for upper and lower diagonals are 0.9 and 0.95,
respectively.

In sum and substance, based on the aforementioned exper-
imental and statistical results, it would be easy to make an
explicit conclusion that the algorithm of Sharif [8] outper-
forms over Zhao et al. [78], Kim et al. [91], Kim et al. [91],
Sharif et al. [99], Mertz et al. [83], Galip et al. [7],
Wang et al. [82], and Azim et al. [90]. The algorithm of
Zhao et al. [78] owned the second best positionwithmarginal
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TABLE 12. Ranks of various algorithms computed by Wilcoxon
signed-rank test [202].

TABLE 13. Results obtained by Wilcoxon signed-rank test [202] for the
algorithm of Sharif [8], where E. p-value⇒ Exact p-value, A. p-value⇒
Asymptotic p-value, Con. Int.⇒ Confidence interval, E. Con.⇒ Exact
confidence.

TABLE 14. Summary of the Wilcoxon test.

inferiority to Sharif et al. [99]. Intuitively speaking, algo-
rithms of Zhao et al. [78] and Sharif [8] can be applied inter-
changeably with minor performance degradation. However,
it is observed that the performance of the algorithm of Sharif
[8] (i.e., SVM and Hungarian method with particle filter)
surpassed those of its alternatives for detecting and tracking
pedestrians and vehicles using laser scanned datasets (e.g.,
Galip et al. [7] and others). In other words, statistically any
of other seven algorithms can be replaced with the algorithm
of Sharif [8] for either a better performance improvement or
without any performance degradation.

VIII. FUTURE WORKS AND CHALLENGES
Laser-based algorithms have been emerged as the alternatives
of camera-based algorithms. The solution of privacy problem
of people has been embedded into the laser-based detection
and tracking algorithms, whereas camera-based algorithms
need special masking to maintain privacy. In spite of those
facts, one of themajor challenges workingwith laser scanners
is the difficulty of recognizing any kind of objects using only
the relatively low information that essentially the laser scan-
ners provide. From TABLEs 1, 2, 3, and 4 as well as associ-
ated discussion, we can conclude that the detection of objects
has been done by clustering laser scanned data points in depth
images or 3D laser scans. Future work would go beyond this

behavior by proposing news algorithms using other technique
rather than clustering. To propose such algorithms is a real
challenge for the laser-vision research community.

The existing lased-based tracking algorithms take the brim-
ming benefits of Kalman filter along with its updated ver-
sions (e.g., extended and unscented). Accordingly, tracking
of movers using Kalman filter has been performed about
five times more than that of particle filter in the literature.
Particle filter has taken the second position among all filters
applied in lased-based tracking algorithms. This is due to
the fact that particle filter is generally more computationally
expensive than Kalman filter. Even so, particle filter can be
used to solve non-Gaussian related problems in a better way.
Besides, the most common variants of Kalman filters cannot
provide a level-headed estimation for highly nonlinear and
non-Gaussian problems. In consequence, additional particle
filter based algorithms would be proposed in the long run.

Heretofore, we have performed various nonparametric sta-
tistical tests for eight key algorithms of detecting and/or
tracking both people and vehicles from TABLE 1. But we
have not performed any statistical tests for the only-people
tracking algorithms in TABLE 2, the only-vehicle tracking
algorithms in TABLE 3, and the diverse-object detection or
tracking algorithms in TABLE 4. Therefore, a key question
still remains for these tables. Which algorithm would be
superior to its alternative algorithms? Our incapacities behind
this unworked out problem include mainly the unavailability
of common datasets and a lesser extent implementation diffi-
culties of multitude algorithms. Besides, it is not possible to
make statistical tests with a single parameter (e.g., accuracy).
Different authors used their own defined and suitable datasets
with diverse sizes and conditions. As a result, the obtained
accuracy of their own algorithms would vary widely based
on datasets. An available common data set can help to judge
algorithms on a common ground to measure algorithmic
performance. Unfortunately, there existed no such datasets
up until now. In general, it is a challenging task to build
common datasets for test many algorithms on the identical
basis. Future work would predominantly highlight this issue.
In addition, carefully optimized code can always give a better
performance [203]. But the codes of implemented algorithms
are not optimized. Consequently, code would be optimized
by using manual and software optimization techniques [204]
to obtain an optimal execution time of each algorithm.

IX. CONCLUSION
We provided an overview of methods to classify objects
using laser scanners instead of common video recording RGB
cameras. We pointed up a special feature of laser scanners
which cannot see or identify identifiable features of objects
and humans. Therefore, laser-based algorithms inherently
provide privacy protection, whereas RGB camera-based algo-
rithms await privacy masking. Privacy protection should
not make a hindrance for uncovering of objects or people
under specific circumstances. It has been suggested that
laser-based algorithms should be used instead of common
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RGB cameras. Kalman filter has been applied widely in
laser-based algorithms due to its lower computational cost.
We noticed that a common characteristic of the existing
laser-based algorithms is that the detection of objects has been
performed by clustering laser scanned data clouds in depth
images or 3D laser scans. We conducted a quite thorough and
exhaustive review of the laser-based detection and tracking
algorithms. Covering a variety of solution methods, we also
highlighted the comparative strengths and weaknesses of
existing approaches. Furthermore, the conducted rigorous
statistical analysis helped boosting confidence in the practical
results and confirmed their statistical significance. This anal-
ysis also helped interpreting the insights in a better way and
shed some light on why certain algorithms performed better
than others. Futureworkwouldwidely include proposing new
smarter algorithms for laser-based intelligent surveillance
and datasets for statistical tests.
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