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ABSTRACT Two-dimensional (2D) arrays are fundamental to localization applications. Specifically, sparse
arrays can provide superior direction-of-arrival (DoA) estimation performance with limited number of
sensors. There has been increased interest in the research community in designing 2D sparse arrays with
performance improvement and complexity reduction. The research efforts are uncoordinated resulting in
some repetitions and sometimes conflicting claims. After introducing 2D sparse arrays and their importance,
this paper establishes the 2D-DoA estimation model and consolidates the performance metrics. An extensive
literature overview of sparse arrays for 2D-DoA estimation is presented with an attempt to categorize
existing works. The examined arrays include parallel arrays, L-shaped, V-shaped, hourglass, thermos, nested
planer, and coprime planner, to name a few. Existing designs are compared in terms of required number of
sensors, degrees of freedom (DOF), algorithm used, associated complexity and aperture size. The focus is
on describing the sparse arrays, yet some specific details on DoA estimation algorithms are provided for
selected array geometries. Fundamental problems of 2D-DoA estimation are outlined and existing solutions
to alleviate these problems are discussed. This should be useful in predicting the estimation performance
and required complexity; thus, aiding the decision of selecting a sensor geometry for DoA estimation. This
review serves as a starting point for researchers interested in exploring or designing new 2D sparse arrays.
It also helps to identify the gaps in the field and avoids unnecessary minor design modifications.

INDEX TERMS Antenna arrays, array signal processing, direction-of-arrival estimation, 2D-DoA estima-
tion, planar arrays, sensor arrays, sparse arrays.

I. INTRODUCTION
direction-of-arrival (DoA) estimation is an important appli-
cation of array signal processing that has received increasing
interest in the past decades.

It is widely used in radio frequency and acoustics domains
with similar array design and processing concepts. The per-
formance and accuracy of the estimation algorithms are
usually affected by some factors such as the coherence of
sources, distribution of noise, signal-to-noise ratio (SNR),
and the geometry of the sensor array. DoA estimation
has proved useful in applications like sonar and radar [1].
It is also finding many applications in new generations of
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wireless communications and multiple input multiple output
systems [2]–[4].

Various sensor arrays have been studied previously for
DoA estimation like one-dimensional (1D) linear arrays
(LAs), and two-dimensional (2D) planar arrays. An essential
property of a sensor array is its resolution capacity, i.e. the
maximum number of resolvable waves impinging on the
array [5], [6]. For many years, the linear equispaced array
(LES) [7], more commonly known as the uniform linear array
(ULA) was paramount for the development of DoA estima-
tion algorithms. For aULAwithNt omnidirectional elements,
and with the assumptions of narrow-band sources, having
the same carrier frequency, with full-rank sample correlation
matrix (of sources amplitudes), a full-rank correlation matrix
of sensor outputs, and inter-sensor spacing less than or equal
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to half signal wavelength (λ), it was known thatNt−1 sources
can be resolved [6]. This limit, however, was exceeded using
methods employing higher order statistics like the fourth
order cumulants (FOC), which has the capability of elim-
inating Gaussian noise, but obviously, cannot work if the
sources are also Gaussian [8], [9]. A different approach for
increasing the resolution capacity of linear arrays focused
on reducing the redundancy of inter-sensor1 spacing, which
opened the realm of sparse sensor arrays, i.e. arrays that have
non-uniform inter-sensor spacings but are integer multiple of
a fundamental distance, d = λ/2.
For linear arrays, it is known that only four arrays exhibit

zero-redundancy, i.e. each inter-sensor spacing occurs once
for all elements in the array, and the largest zero-redundancy
array has only four sensors [10]. An easy way to list these
four arrays is on a number line, thus the first zero-redundancy
array has sensors at {0}, the second at {0, 1}, the third
at {0, 1, 3}, and the fourth at {0, 1, 4, 6}. Due to the limited
number of sensors with zero-redundancy, researchers focused
on finding minimum redundancy arrays (MRAs), previously
called linear minimum redundancy (LMR) arrays [10]. Find-
ing and using MRAs for direction finding is a challenging
task, since locations of antenna elements does not have a
closed-form expression, and are found using complicated
approaches [5], [11], [12]. Other sensor arrays were devel-
oped over the last few decades including Wichmann [13],
coprime [14], [15], multi-level prime [16], nested [17], super
nested [18], and cantor [19] arrays, among others.

In terms of space and power budget, sparse arrays are
valuable as they can reduce the cost, or increase the per-
formance for the same cost. The array geometry plays a
key role in the direction finding performance and capability.
In the literature, 1D antenna arrays have been used exten-
sively. A nice comparison for the three linear sparse arrays:
Wichmann [13], nested [17], and super nested [18] arrays was
published in 2017 by Rajamäki and Koivunen [20]. The arti-
cle focused on deriving expressions for the maximum aper-
ture, and comparing the performance of these arrays with the
optimal MRA. Another work by Alawsh and Muqaibel [16]
compared the coprime [14], [15], Nested [17], and Super
nested [18] arrays with multi-level prime array, which is
an extension of the coprime array, and they also compared
with a compressed multi-level prime array in terms of DoA
estimation performance under mutual coupling considering
multiple signal classification (MUSIC) algorithm and sparse
reconstruction algorithms. However, the two studies above
are limited to 1D arrays.

There is a growing interest in 2D and three-dimensional
(3D) arrays that usually result in a much finer location reso-
lution. Mazlout et al. [21] presented a comparison between
the uniform rectangular array (URA) and the L-shaped
array (made up of two orthogonal ULAs sharing a single
sensor). Nonetheless, they considered only two arrays that

1In this article, the word sensor refers to the element of the array; thus,
sensors and array elements are used interchangeably.

are not sparse (refer to the discussion in Section III-B1).
Another very thorough review for 1D and 2D-DoA estimation
was published in 2010 by Gershman et al. [22]. It cov-
ered the fundamental concepts and focused on search-free
techniques, and algorithms that work for arbitrary arrays,
which include uniform and sparse arrays. On the general
topic of estimation in signal processing, Zoubir et al. [23]
presented a tutorial which includes valuable information
on DoA estimation, but does not describe specific array
geometries. There are also less related comparison studies by
Adhikari and Drozdenko [24]–[27], and reviews in other
areas related to DoA estimation [28], [29].

Most of the published work is generally concerned with
DoA estimation of sources in the far-field. That is, sources
far away from the Fresnel region of the antenna array. There
is also 3D-DoA estimation, which is concerned with finding
DoA and range for sources in the near-field of the array.
In fact, the far-field regime can be considered as an extension
of the near-field one, with infinite range.

In the last decade, there has been a growing interest in
designing specific 2D array geometries and developing spe-
cific 2D-DoA estimation algorithms for them, which tend
to show superior performance compared to algorithms that
work with arbitrary sensor array geometries. There is no clear
structures in the development strategies as more and more
structure appear. This manuscript aims to put all previous
work in perspective and provides an overview of 2D sparse
sensor geometries that go in tandemwith special DoA estima-
tion algorithms, which can therefore surpass the performance
of arbitrary sparse sensor geometries with generic DoA esti-
mation algorithms. This review helps to identify the gaps
in the field and to avoid unnecessary minor modifications.
To the best of the authors’ knowledge, the considered focus
and geometries were not collectively presented in a single
work before. The rest of this manuscript is organized as
follows: the essentials of 2D-DoA estimation are explored
in Section II. Then, Section III describes notable 2D sparse
geometries [30]–[64] for DoA estimation, and some details
on the DoA estimation algorithm are outlined for selected
arrays. Concluding remarks are drawn in Section V.

The following mathematical notations are used: for a
matrix A, A∗ is its complex conjugate, AT is its transpose,
and AH is its Hermitian. The operator E is the expectation
operator, ⊗ is the Kronecker product, � is the Khatri-Rao
product, bxc is the floor of x, bold-face lower-case letters
(e.g., a) stand for vectors, bold-face upper-case letters
(e.g., A) stand for matrices, and the overhead hat (as in θ̂ )
denotes the estimated version of the variable below it.

II. TWO-DIMENSIONAL DoA ESTIMATION ESSENTIALS
A 2D-DoA estimation problem can be decomposed into
two separate 1D-DoA estimation problems, where some 1D
algorithms can be utilized. When the 2D estimation problem
is decomposed into two linear problems, automatic pairing of
angles is an advantage, as this usually means less complexity
and better estimates [65], [66]. In the research literature,
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several well-established algorithms for 1D direction
finding are used such as MUSIC [67] and
estimation of signal parameters via rotational invariance
techniques (ESPRIT) [68]. However, real-time analysis
often requires faster algorithms that do not require either
singular-value decomposition (SVD) or eigen-value decom-
position (EVD). Usually, search-free algorithms are faster
than subspace methods [22]. An example of an algorithm
that does not require SVD or EVD is the propagator method
(PM)which employs least-squares on the received covariance
matrix [69]. The use of extended versions of these algorithms
can be found in many works. For example, 2D MUSIC was
reported in [70], 2D ESPRIT in [66], [71], [72], and the PM
in [73]–[76]. The following general questions are important
in characterizing any 2D-DoA estimation algorithm, some of
them are borrowed from the 1D case:

• Can the method resolve more signals than the number
of physical sensors? which is valuable in numerous
cases [77].

• Are the available physical sensors fully utilized?
That is, sensors are not underutilized or non-
essential [19], [78]. For instance, algorithms based on
PM usually only resolve sources less than half the
number of physical sensors [30].

• What are the ranges of angles the 2D algorithm success-
fully covers? For instance, some algorithms fail for high
elevation angles [74].

• Can the sensor array perform well in real conditions?
for example in presence of mutual coupling [54] and
model mismatch [79], [80]. Also is it robust to sensor
failure? [81], [82]

Generally, the aperture of the array is directly related
to the maximum number of resolvable sources, and the
inter-sensor spacing is related to possible aliasing of
some angle estimates; more details in [27] and refer-
ences therein. If the linear sparse array can provide the
same main lobe beamwidth as a ULA, then it should be
able to resolve the same number of sources as the ULA.
Alternatively, if the linear sparse array has a continuous
(hole-free) coarray (i.e. the coarray is a ULA), then it
should be able to resolve the same number of sources as
a ULA similar to the coarray [27]. Similar ideas are used for
2D-DoA estimation, where it is preferred to get as close as
possible to uniform rectangular coarray. The next subsections
briefly mention the system model for 2D-DoA estimation,
then explore the coarray concept, a useful mathematical prop-
erty that is utilized in many DoA estimation algorithms.

A. 2D SYSTEM MODEL
The 2D systemmodel describes the signals emerging from the
sources to be localized, the antenna array, and the employed
signal processing to extract features of interest. The signals
can be in the far-field or the near-field, polarized or non-
polarized, coherent or incoherent, correlated or uncorrelated.
The sensor array could be 1D, 2D, or 3D, uniform or sparse or

neither (see Section III). The sensors can be omnidirectional
or directional, polarized or non-polarized. The features to be
estimated could be the 1D-DoA, or 2D-DoA, polarization,
or range (distance to the source). The previous scenarios
are certainly not comprehensive and extra considerations are
required for practical implementations. For instance, mutual
coupling, sensor failure, array calibration, and sensor charac-
teristics mismatch are some physical hindrances for success-
ful deployment of a functioning system.

An example of nine-element URA is shown in the x − y
plane of Fig. 1 to illustrate important geometrical variables.
The following symbols are used across this document, and the
meaning mentioned here is assumed unless otherwise noted.

FIGURE 1. A nine-element URA example to illustrate important
geometrical variables.

• T is the number of snapshots,
• K is the number of narrow-band impinging sources and
k is used for the kth source (i.e. k = 1, 2, . . . ,K ),

• Ni and Mi are used for the number of antenna elements
in the linear subarray i (the exact meaning is clarified for
each antenna array geometry),

• Nt is the total number of physical sensors in the array,
• dx is the fundamental spacing along the x-axis, dy is the
fundamental spacing along the y-axis, often dx = dy,

• φk ∈ [0, 2π ] is the azimuth angle of the kth source
(measured from the positive x-axis), θk ∈ [0, π] is
the elevation angle (measured from the positive z-axis);
these angles are illustrated in Fig. 1,

• αk ∈ [0, π] is the angle between the line connect-
ing kth source with the origin and the positive y-axis,
βk ∈ [0, π] is the angle between the line connecting
kth source with the origin and the positive x-axis.

In addition, the following direction cosines are used by some
authors to simplify expressions

uk := cos(βk ) := sin(θk ) cos(φk ), (1)

vk := cos(αk ) := sin(θk ) sin(φk ), (2)
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where αk and βk are called electric angles, and they simplify
many analytical expressions since they can be separated from
each other. Other used geometrical variables are [54]

θ̄k :=
d
λ
sin(θk ) cos(φk ), (3)

φ̄k :=
d
λ
sin(θk ) sin(φk ). (4)

Apart from variables that depend on the sensor array geom-
etry (Ni,Mi, dx and dy), the rest of the variables are shown
in Fig. 1. While this work tries to unify the notation in
the majority of existing works, several differences remain
present, and Table 1 shows some differences comparing other
works to the selected notation.

TABLE 1. Mapping between some symbols in cited papers and their
equivalent in this document.

Consider a system for estimating the 2D-DoA of far-field
non-polarized signals. When a single source is considered,
the sampled output of the sensor array at a time instant t can
be written as [54], [67], [83]

x(t) = a(θk , φk )s(t)+ n(t), (5)

where a(θk , φk ) ∈ CNt×1 is the array manifold (or steering
vector) with entries ej2π (θ̄kpx+φ̄kpy) for all (px , py) ∈ S and
S is the set of sensor locations, s(t) is the transmitted signal,
x(t) ∈ CNt×1 for Nt sensors, and n(t) ∈ CNt×1 is the
additive noise vector, that is often assumed to be spatially
and temporally white Gaussian noise and uncorrelated at each
array element, that is E[n(t)nH (t)] = σ 2I, where σ 2 is the
noise power and I is the identity matrix.

When more sources are considered, the model can be
written as
x1(t)
x2(t)
x3(t)
...

xNt (t)

 =
a(θ1, φ1) . . . a(θK , φK )



×


s1(t)
s2(t)
...

sK (t)

+

n1(t)
n2(t)
n3(t)
...

nNt (t)

 (6)

Then taking T time samples (snapshots), the model can be
written compactly as

X = AS+ N (7)

where X ∈ CNt×T , A ∈ CNt×K , S ∈ CK×T , N ∈ CNt×T .

The source is considered in the far-field if it lies beyond
the Fraunhofer distance, 2D2/λ, where D is the aperture
of the array, and λ is the wavelength of the source [53], [84].
If the source range is less than this limit, it is considered in
the near-field.

B. TERMINOLOGY OF 2D ARRAYS
This section is a necessary extension to the previous one.
It explains the set of array elements S and how mutual cou-
pling is modeled. Since this work considers 2D sensor arrays
which can be represented in a rectangular grid (except the
V-shaped array, Section III-B3), it is convenient to describe
the sensor locations as integers, where it is understood that
the fundamental unit is d : the fundamental (minimum) dis-
tance between any pair of sensors, which is often chosen as
d = λ/2. The set of sensor elements is denoted by S in this
work. Note that other authors using this set might call it L for
example [31], [32], as noted in Table 1.

Mutual coupling is usually modeled by a mutual cou-
pling matrix (MCM) C ∈ CNt×Nt that is multiplied
by the array manifold matrix (AMM) A ∈ CNt×K .
Technically, the MCM should be specific to each set of
antennas, taking into consideration the physical dimen-
sions of the antennas and feeding points [79]. Usually,
antenna spacing is the dominant factor. In fact, it was
empirically observed that the behavior of the MCM is
approximately a function of sensor separations only [18].
In two dimensions, the MCM can be assumed to be a
B-banded symmetric Toeplitz matrix [54], [63], [85]

〈C〉p1,p2 =

{
c
(
‖p1 − p2‖2

)
, if ‖p1 − p2‖2 < B

0, otherwise
(8)

where 〈C〉p1,p2 denotes the value of C at a sensor pair p1,
p2 ∈ S, ‖·‖2 is the `2-norm, B is the maximum separation
between coupled sensors, and c(·) denotes the mutual cou-
pling coefficient. In addition, it is assumed that

c(0) = 1, &

∣∣∣∣c(k)c(`)

∣∣∣∣ = `

k
, for k, ` > 0 (9)

C. COARRAY
An essential step employed in most DoA estimation algo-
rithmswith sparse arrays is finding the coarray of the physical
array. For the case of non-coherent sources, the difference
coarray is of interest, and is defined as follows [77].
Definition 1 (Difference Coarray): If a set S denotes the

set of ordered pairs of points representing the coordinates of
physical sensors in a sensor array, then the difference coarray
set is given by

D = {m|m = p1 − p2,∀p1,p2 ∈ S}. (10)

Alternatively, p1 and p2 can be considered as vectors
in R2×1 denoting physical sensor locations. The maximum
number of virtual sensor elements in the coarray is Nt (Nt −
1)+ 1, regardless of the array geometry [17]. The difference
coarray sensors are symmetric with respect to the origin, and
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it is important since it appears naturally in the cross correla-
tion between two sensors in the array, i.e. when second order
statistics (SOS) are used, which is an equivalent representa-
tion of virtual sensors at the locations of the differences [59].
Another widely used term for the coarray is the holes, which
can be defined as follows
Definition 2 (Hole-Free Coarray): If a set D denotes a

coarray on a rectangular integer grid, and the minimum
and maximum elements are denoted as minD and maxD.
If all possible combinations of pairs in [minD,maxD] exist
in the coarray, then the coarray is hole-free. Alternatively,
if U denotes a URA which includes the origin, and D = U,
then D is hole-free.

This definition implies that any element in U but not‘
in D is a hole. It is often desirable to get a continuous
(hole-free) coarray, i.e. a ULA for linear arrays or a URA
for planar arrays. Reasons include: Better identifiability of
DoAs using estimation algorithms like MUSIC with spacial
smoothing [15], [17] ; and O(N 2

t ) uncorrelated DoAs can
be identified with a coarray of O(N 2

t ) sensors. In 2D, this
holds only almost surely [54], [86]. In general, if the ele-
ments of a coarray are continuous on a uniform rectangular
grid, then the coarray is hole-free. It is possible to extend
the hole-free definition to the 3D arrays [54]. An important
definition for the coarray is the weight function, which gives
an insight on the significance of mutual coupling on DoA
estimation [18], [54].
Definition 3 (Weight Function): If a set S denotes the set

of physical sensors’ positions in a sensor array, andD denotes
the difference coarray, then

w(m) = w(mx ,my) =
∣∣∣{(p1,p2) ∈ S2|p1 − p2 = m}

∣∣∣ (11)

denotes the number of sensor pairs with separation m ∈ D.
Note that m = (mx ,my) is a two-component vector, and
| · | denotes the cardinality.

For example, the most significant weights are w(0, 1),
w(1, 0), and then w(1, 1), w(1,−1), since the first two count
the elements with unity inter-sensor spacing, and the other
two for

√
2 inter-sensor spacing (of course scaling factors dx

and dy are neglected). The first two weights mean the number
of sensors having inter-element spacing of unity, which is
the smallest possible inter-sensor spacing. The difference is
just which axis this weight is calculated across. An array
geometry with the less value for w(0, 1), w(1, 0), w(1, 1),
and w(1,−1) is usually less susceptible to mutual coupling
degradation in DoA performance.

D. PERFORMANCE METRICS
Many performance metrics have been utilized to assess the
performance of 2D-DoA estimation algorithms. This includes
computing the deviation (error) from the known DoA; where
the root mean square error (RMSE) is the most widely
used metric [31]–[38], [40]–[58], [60]–[63]. However, other
metrics can be used like the mean square angular error
(MSAE) [87], mean square error (MSE) [88], and maximum

root mean square error (MRMSE) [89]. In addition, when
the 2D-DoA algorithm is expected to work in the underde-
termined case, i.e. when estimating more sources than the
available sensors, it is insightful to compare the degrees
of freedom (DOF) offered by the 2D-DoA estimation algo-
rithms, the coarray, and the aperture. Furthermore, the com-
putational complexity or running time and probability mea-
sures for success (correct resolution) or failure can be
employed. This subsection highlights some performancemet-
rics that are commonly utilized.

1) ROOT MEAN SQUARE ERROR (RMSE)
For 2D-DoA estimation, the RMSE usually considers both
azimuth and elevation angles [44], [47], [61], [62], [90]

RMSE=

√√√√ 1
HK

H∑
h=1

K∑
k=1

(
(θk − θ̂k,h)

2
+(φk − φ̂k,h)

2
)

(12)

where H is the number of Monte-Carlo trials. However,
some authors still compute separate errors for azimuth and
elevation angles [35], [50]

RMSEθ =

√√√√ 1
HK

H∑
h=1

K∑
k=1

(
(θk − θ̂k,h)

2
)

(13)

RMSEφ =

√√√√ 1
HK

H∑
h=1

K∑
k=1

(
(φk − φ̂k,h)

2
)

(14)

The RMSE can also be calculated based on the electrical
angles αk and βk . Note that many variations exist in the
literature like dividing by K outside the square root instead of
inside [32], dividing by 2HK instead of HK [43], [49], [52],
keeping the averaging over sources outside the square
root [45], or defining the RMSE keeping only the averag-
ing over sources inside the square root and then average
Monte-Carlo trials [54], [63].

2) COARRAY PROPERTIES
As discussed earlier, the coarray is preferred to be hole-free,
that is, all virtual elements in the coarray are contiguous.
If this is not the case, then some properties are considered
like the number of unique lags, nul

nul = |D| (15)

In addition, the contiguous URA portion of a coarray can
be determined by finding the longest contiguous ULA on
the x-axis DxULA and the longest contiguous ULA on the
y-axis DyULA, then multiplying the number of elements
in DxULA and DyULA to find the number of consecutive
lags, ncl

ncl = |DxULA| × |DyULA| (16)

Note that the two virtual ULAs DxULA and DyULA are
symmetric about the origin since the coarray is. It is
possible, however, to consider consecutive lags on other
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contiguous URAs (if they exist), but those are usually smaller
than the consecutiveURA that includes the origin. Theweight
function is another coarray property that is also considered for
evaluating a sensor array.

3) REDUNDANCY
When all elements in the coarray appear exactly once, the sen-
sor array is said to have unity redundancy, i.e. R = 1. Usu-
ally, sensor arrays with contiguous (hole-free) coarrays have
R > 1. The asymptotic redundancy R∞ = limNt→∞ can be
used to compare sparse sensor arrays [64].

4) SPARSENESS
Unlike the weight function, sparseness (S) counts the sensor
pairs separated by a positive distance d̃ [64]

S(d̃) =
1
2

∑
m∈D

v1(m) · 1
(
‖m‖2 = d̃

)
(17)

where v1(m) =
∑

p1,p2∈S 1 (m = p1 − p2) is the mul-
tiplicity function (analogous to the weight function) for
the difference coarray and 1(·) is the indicator func-
tion. For instance, for a sensor array on a uniform grid,
d̃ ∈ {1,

√
2, 2,
√
5,
√
8, 3, . . . }. Alternatively, sparseness can

be viewed as the summation of essential weight function
pairs with the same absolute distance. For example, S(1) =
w(1, 0)+ w(0, 1), S(

√
2) = w(1, 1)+ w(1,−1), etc. In other

words, sparseness abstracts dimension-specific weight
values.

5) COUPLING LEAKAGE
Coupling leakage, L ∈ [0, 1] quantifies the mutual coupling
of a sensor array [18]

L =
‖C− diag(C)‖F
‖C‖F

(18)

where ‖·‖F is the Frobenius norm, and
[
diag(C)

]
i,j =

[C]i,j δi,j, where [C]i,j it the (i, j)th entry of the matrix C.
Note that lower L is often preferred, to have lower degrada-
tion effect on DoA estimation algorithms.

E. 2D-DoA ESTIMATION ALGORITHMS
Many algorithms are used for 2D-DoA estimation with uni-
form or sparse planar arrays. For example, MUSIC, ESPRIT,
PM, DoA matrix method (DMM) and others have been used
with sparse arrays. This section gives a brief introduction to
MUSIC with two variants and DMM.

1) MUSIC
MUSIC algorithm does not assume anything about the array
geometry [67]. However, the maximum number of resolv-
able sources is limited by the number of physical sensors in
the array, since it is required to find the noise subspace of
the autocorrelation matrix. This algorithm is called direct-
MUSIC, to distinguish it from other MUSIC variants dis-
cussed later in this section. For direct-MUSIC, if x(t) denotes

the output of all Nt physical sensors, the covariance matrix is

RS = E
[
x(t)xH (t)

]
∈ CNt×Nt (19)

where the subscript S denotes the set of physical array ele-
ments. The next steps are finding the eigenvalue decomposi-
tion and searching for the peaks in the pseudospectrum [22],
[67], [91]

PMUSIC(θ, φ) =
1

aH (θ, φ)ENEHN a(θ, φ)
(20)

which means minimizing the distance from a(θk , φk ) to the
signal subspace. Note that a(θk , φk ) in (20) does not depend
on the data, and EN ∈ CNt×(Nt−K ) denotes the noise sub-
space. Again, Nt > K is assumed.

2) DA-MUSIC AND SS-MUSIC
Direct augmentation MUSIC (DA-MUSIC) and spatial
smoothing MUSIC (SS-MUSIC) are two MUSIC variants
that utilize the coarray model of the physical array. There-
fore, DA-MUSIC and SS-MUSIC can, in many cases,
resolve more sources than the number of physical sensors.
Both DA-MUSIC and SS-MUSIC start from the covariance
matrix in (19) and vectorize it (i.e. stack columns one below
the other) to yield

r = vec(RS) (21)

Next, a new covariance matrix can be formed for each
of DA-MUSIC and SS-MUSIC. Note that there are other
possible ways to manipulate the vectorized covariance in (21)
for use with DoA estimation algorithms (not necessarily
MUSIC). For instance, correlating r with itself [53].

It is worth mentioning that spatial smoothing can be used
to decorrelate correlated sources [92], or to exploit the dif-
ference coarray to achieve high DOF [14], [17], [60]. Many
2D-DoA estimation algorithms use it in the second regime,
since this allows for resolving more sources than the number
of sensors. However, spatial smoothing does not fully exploit
all possible DOF.

3) DoA MATRIX METHOD
Yin et al. [93] proposed the DMM for two parallel lin-
ear arrays. Yin et al. [94] also explained the relation of
their method to ESPRIT, and how ESPRIT can be con-
sidered a special case of the DoA matrix method. Later,
Dai et al. [95] proposed an extended DMM (EDMM) which
utilizes the sensors of both parallel linear arrays more
effectively. This method first estimates the auto- and cross-
correlations of both linear arrays, then performs eigen-
value decomposition to estimate the noise by averaging the
Nt − K smallest eigenvalues, then it forms the DoA matrix,
which is used to get the azimuth and elevation estimates.

III. SPARSE ARRAY GEOMETRIES FOR 2D-DoA
ESTIMATION
This section presents a comprehensive overview of the
sparse array geometries employed for 2D-DoA estimation.
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FIGURE 2. Classification of sparse 2D geometries based on the constituent arrays and the associated literature.

The geometries are classified, as shown in Fig. 2, into four
broad categories: 1) arrays constructed using parallel linear
arrays, 2) arrays constructed using non-parallel linear arrays,
3) arrays constructed using planar arrays, and 4) other geome-
tries. In addition, a timeline of the usage of arrays from
each category is shown in Fig. 3. Note that some papers
may deal with more than one geometry such as the work of
Liu and Vaidyanathan [54]. Another important note is that
some of these geometries are named slightly differently by
some authors. For instance, the parallel coprime array (PCA)
is called coprime parallel array by two papers [31], [32], yet
the rest of the authors use the name used in this work [30],
[33]–[35]. This name also avoids confusing the PCA with the
coprime planar array (CPA). The knowledge of sparse linear
arrays, especially the nested array (NA) and the coprime
array (CA) is important since many 2D sensor arrangements
are constructed using a combination of these and possibly the
uniform linear array (ULA).
This section describes the sensor arrays shown in Fig. 2

from left to right. The adopted classification categories based
on the building blocks of the 2D array are:

1) Parallel linear arrays, which include PCA, parallel
nested array (PNA), and other parallel structures. These
are discussed in Section III-A.

2) Non-parallel linear arrays, which include various
sparse L-shaped arrays, sparse cross-shaped array,
sparse V-shaped arrays, billboard array, and open box
array (OBA). These are discussed in Section III-B.

3) Planar arrays, which include CPA, generalized coprime
planar array (GCPA), nested planar array (NPA),
unfolded coprime planar array (UCPA), and nested
coprime planar array (NCPA). These are discussed in
Section III-C.

4) Other arrays, which include half open box array with
two layers (HOBA-2), hourglass array, thermos array,
and concentric rectangular array (CcRA). These are
discussed in Section III-D.

FIGURE 3. Timeline of papers using 2D sparse array geometries [30]–[64].

Since this work deals with sparse array geometries, it is
useful to mention that the term sparse can have different
appearances in the context of DoA estimation:

1) Sparse sensor array: where sensors are placed on some
intersections of a uniform grid. This is equivalent
to having some sensors with inter-element spacing
of unity and the rest greater than unity (assuming a
normalized fundamental inter-sensor spacing d). Put
another way: the inter-element spacing is a positive
integer (normalized). Another name that is sometimes
used for this meaning is thinned array. This meaning is
used throughout this manuscript.

2) Uniform sparse sensor array: where the spacing of all
sensor elements are identical and greater than unity.
This is a special case of the previous one, and essen-
tially the resultant array is a uniform array. In case of
linear arrays, that resultant array is referred to as sparse
ULA, some examples of this usage are [96], [97].
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3) Sparse recovery: a method from the compressive
sensing framework used in some DoA estimation
algorithms.

The next subsection starts with parallel arrays as building
blocks for 2D arrays. Then, non-parallel, planar, and other
arrays follow.

A. PARALLEL ARRAYS
This section describes 2D arrays made of two, or more, par-
allel arrays. In particular, the parallel coprime array (PCA),
the three parallel coprime array (TPCA), and the parallel
nested array (PNA) are considered. In addition, other reported
parallel arrays that does not fall under any of these categories
are also mentioned. Note that 2D arrays made of two parallel
ULAs are not considered in this survey.

1) PARALLEL COPRIME ARRAY (PCA)
This section presents an overview of parallel coprime array
(PCA) geometry [30]–[33]. The structure of PCA is shown
in Fig. 4a, where two uniform linear arrays (ULAs) are in par-
allel (spaced by dx). One of them hasM1 elements withM2dy
inter-element spacing (shown in blue boxes), and the other
has M2 elements with M1dy inter-element spacing (shown
in black circles). In this geometry, M1 and M2 are coprime
integers, and the example of Fig. 4a assumes M1 = 3 and
M2 = 4. Note that often M1 < M2 is assumed without loss
of generality. The set of array elements is [32]

S = {(0,mM2dy)|0 ≤ m ≤ M1 − 1}

∪{(dx , nM1dy)|0 ≤ n ≤ M2 − 1}. (22)

The work in [33] finds the cross covariance between the
two arrays as a first step in estimating 2D-DoA, then decou-
ples the angles αk and βk , finds αk using least spectral search
(1D-MUSIC over each subarray), and presents a least squares
solution for automatic pairing of βk . A variant of PCA using
two symmetric parallel coprime arrays was also reported [31].

2) THREE PARALLEL COPRIME ARRAY (TPCA)
This section presents an extension to the PCA of the previous
section using a third parallel linear array (LA) [34], [35].
A modified version of the PCA is the three parallel coprime
structure presented in [35], where the third LA starts after
the end of the other two LAs as shown in Fig. 4b, where
the first ULA has M2 elements with inter-element spacing
M1dy (shown in blue boxes) and the other two ULAs have
inter-element spacing M2dy (shown in black circles). The
example shown in Fig. 4b assumes M1 = 3, M2 = 4, and
L = 3. In addition, the second ULA is spaced by dx from the
y-axis and hasM1 elements, whereas the third ULA is spaced
by Ldx ,L > dx from the second ULA and has M1 elements.
The set of elements is [35]

S = {(0,mM1dy)|0 ≤ m ≤ M2 − 1}

∪ {(dx , nM2dy)|1 ≤ n ≤ M1 − 1}

∪ {(Ldx + dx , pM2dy +M1M2dy)|0 ≤ p ≤ M1 − 1}. (23)

FIGURE 4. Examples of 2D sparse arrays constructing using parallel linear
arrays. (a) PCA. (b) Three parallel coprime array. (c) PNA. (d) Two
parallel sparse ULAs with extra sensor (shown by a red diamond).

Another work presented three parallel coprime array where
an extra LA can be added on the negative x-axis of the PCA
in (22) to form the three parallel coprime array [34]. The
middle array has 2M1 elements with inter-element spacing
of M2dy, and the outer coprime LAs has M2 elements with
inter-element spacing of M1dy, where dy ≤ λ/2, M1 and M2
are coprime integers withM1 < M2. In addition, the LAs are
spaced by dx ≤ λ/2.

3) PARALLEL NESTED ARRAY (PNA)
Parallel nested arrays (PNAs) were reported in [36]–[38]. All
three papers utilized two identical parallel nested linear arrays
(NLAs) [17] (shown in Fig. 4c withN1 = N2 = 3). Assuming
each linear array hasN elements, the total number of elements
is 2N . The set of antenna elements is

S = {(0,mdy)|m ∈ g} ∪ {(dx ,mdy)|m ∈ g}, g = {0, 1,
. . . ,N1 − 1,N1, 2(N1 + 1)− 1, . . . ,N2(N1 + 1)− 1}

(24)

Li et al. [36] utilized a DMM (see Section II-E3) which
allows getting paired estimates for uk and vk . He et al. [38]
proposed an algorithm using FOC for enhancing the DOF,
and reported a maximum DOF of 6N2(N1 + 1)− 3.

4) OTHER PARALLEL ARRAYS
Other than the PCA or the PNA, Zheng et al. [39] proposed
two parallel ULAs with an extra sensor. The two ULAs are
spaced by λ/2, and each of the two ULAs has inter-sensor
spacing of λ, and the extra sensor is placed at λ/2 from
the start of the first ULA, as shown in Fig. 4d, where
the first ULA (denoted subarray Y) has N + 1 elements
and is represented by blue squares, the extra sensor by a
red square, and the second ULA (denoted subarray Z) has
N elements and is represented by black circles. The first linear
array that is made up of subarray Y and the extra sensor is
denoted Subarray X. Therefore, the set of array elements can
be written as

S = {(0, 2mdy)|0 ≤ m ≤ N } ∪ {(0, dy)}
∪{(dx , 2ndy)|0 ≤ n ≤ N − 1}. (25)

where dy = dx = λ/2.
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Zheng et al. [39] proposed this array assuming the number
of sources is less than the number of elements in subarray Z.
They estimate a propagator matrix, which yields estimates of
uk and vk . An important step in the algorithm is to exclude
the ambiguous estimates of uk which relies on the fact that
the unambiguous uk will be orthogonal to the noise subspace
of subarray X.

B. NON-PARALLEL ARRAYS
This section describes 2D arrays made of non-parallel linear
arrays, namely: the L-shaped, cross-shaped, and V-shaped
arrays. In addition, the billboard array and open box array
(OBA) are also mentioned for a more complete big picture.

1) L-SHAPED ARRAY
The L-shaped array is arguably the most straightforward
extension from 1D to 2D arrays, since it requires two orthog-
onal ULAs. Many works were published utilizing this struc-
ture like Hua et al. [98] and Liang and Liu [66]. However,
the focus here is on works utilizing orthogonal sparse linear
arrays like [40]–[51]. It can be argued that the L-shaped array
is sparse when compared to the URA, but since it is composed
of ULAs, they can be treated as non-sparse in this survey.
Note that many works on L-shaped and cross-shaped arrays
use the x-z plane for the placement of the sensor array, and
this is hinted by showing an example in Fig. 5a.

One approach of constructing sparse L-shaped
arrays [44], [45] (shown in Fig. 5a) used two orthogo-
nal two-level nested arrays [17] along the x- and z-axes.
As shown in Fig. 5a, the first (dense) ULA of each nested
array has inter-element spacing d1 = dx = dy and the
other ULA has the wider d2 = (N1 + 1)d1 inter-element
spacing. Dong et al. [44] used signal subspace joint diagonal-
ization (SSJD) for automatic pairing of azimuth and elevation
angles.

Another approach uses a ULA along the x-axis with
inter-element spacing dx = λ/2, and a simple sparse linear
array along the z-axis made up of a ULA with dz = λ

with an extra sensor at a distance λ/2 from the origin [50].
After computing the cross correlation between the two sub-
arrays (along the x- and z-axes), the ambiguous elevation
estimates are obtained. Next, the ambiguity is removed, then
the estimated elevation angles are utilized to estimate the
azimuth [50].

Another work utilized sparse LAs along each axis. Each
sparse LA is made up of two interleaved ULAs [49], and
the largest contiguous ULA in the difference coarray is used
for estimation. The estimation of azimuth and elevation are
done separately using MUSIC, and cross covariance is used
to pair the azimuth and elevation estimates. Coprime arrays
were also utilized in the legs of the L-shaped array [42], [43].
For instance, the work by Elbir [43] showed the possibility
of resolving M1M2 sources while having 2M1 + M2 − 1
sensors in each leg. According to Elbir [43], this requirement
of 4M1+ 2M2− 3 sensors is less than CPA and GCPA which
are discussed in Section III-C1.

2) CROSS-SHAPED ARRAY
Wu and Zhu [53] considered a uniform cross array, and
a sparse symmetric cross array for the estimation of three
parameters: azimuth, elevation, and range of a single source
in the near-field or far-field. For the uniform cross array,
two orthogonal ULAs are used with Nx := 2Mx + 1 and
Ny := 2My + 1 elements on the x- and y-axes, respectively.
The set of array elements can be written as

S = {(md, 0)| −Mx ≤ m ≤ Mx}

∪{(0, nd)| −My ≤ n ≤ My}, (26)

where d is the fundamental spacing. To construct the sparse
symmetric cross array, each ULA is replaced by a symmetric
sparse linear array. In this case, the set of elements becomes

S = {(md, 0)|m ∈ Gx} ∪ {(0, nd)|n ∈ Gy}, (27)

whereGx is a symmetric set (about the origin) and is a subset
of {−Mx ,−Mx+1, . . . ,−1, 0, 1, . . . ,Mx−1,Mx} andGy is
a subset of {−My,−My + 1, . . . ,−1, 0, 1, . . . ,My − 1,My}.
An example of this structure when Mx = My = 3 and
Gx = Gy = {−3,−2, 0, 2, 3} is shown in Fig. 5b where blue
boxes resemble Gx and black circles resemble Gy. Note that
the two linear arrays share a common element at the origin,
the blue boxes denote the first linear array, the black circles
denote the second linear array, and the crosses denote empty
locations.

The algorithm proposed by Wu and Zhu [53] has two main
steps. The first step is finding the 2D-DoA by computing the
cross correlation matrix, vectorizing it, and correlating the
resultant vectors. The authors chose to apply atomic norm
minimization to get the angle estimates, and justified why this
is better than some other methods like 2D-MUSIC, and the
fact that they avoided the grid mismatch issue. They further
mentioned why their method can work for sparse linear arrays
without spatial smoothing which causes aperture loss as was
done in oblique projection (OP)-MUSIC [99]. While this
suffices for 2D-DoA estimation in the far-field, the authors
also described the second step for the near-field case, which
is estimating the range.

3) V-SHAPED ARRAY
A generalization to the L-shaped array is the V-shaped array,
where the ninety-degrees angle between the two LAs of
the L-shaped array becomes � < 90 deg. Elbir [52] pro-
posed V-shaped coprime array (VCA) and V-shaped nested
array (VNA). An example of VCA is shown in Fig. 5c
with M1 = 2, M2 = 5, and � = 53.28 deg. The value
of � is selected such that the estimation of azimuth and
elevation is uncoupled [52]. The author reports that the
V-shaped array can resolve the same number of sources with
less number of sensors when compared to CPA or GCPA
(discussed in Section III-C1).

4) BILLBOARD ARRAY
The billboard array is constructed using an L-shaped array
with an extra linear array at 45 degrees from both legs of the
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FIGURE 5. Examples of 2D sparse arrays constructed using non-parallel linear arrays. (a) L-shaped sparse array using two ULAs with an extra
sensor. (b) Cross-shaped sparse array. (c) V-shaped coprime array. (d) Billboard array. (e) Open box array (OBA).

L-shaped array. An example of such array is shown in Fig. 5d.
This array enjoys a hole-free difference coarray [54].

5) OPEN BOX ARRAY
The open box array (OBA) is also formed using three LAs,
orthogonal to each other, which are the three edges of rectan-
gle. The OBA can also be considered as two L-shaped arrays
sharing a LA. An example OBA when Nx = 15 and Ny = 10
is shown in Fig. 5e where blue boxes represent G, black
circles represent H1 and H2, and red diamonds represent F.
For two integers Nx and Ny, the set of sensor locations for the
OBA can be written as [54]

S = G1 ∪H1 ∪H2 ∪ F (28)

where

G1 = {(lx , 0)|lx ∈ g1}, g1 = {1, 2, . . . ,Nx − 2} (29)

H1 = {(0, ly)|ly ∈ h1}, h1 = {1, 2, . . . ,Ny − 2} (30)

H2 = {(Nx − 1, ly)|ly ∈ h2}, h2 = {1, 2, . . . ,Ny − 2} (31)

F = {(0, 0), (Nx − 1, 0), (0,Ny − 1), (Nx − 1,Ny − 1)}

(32)

The difference coarray is given by

D = {(mx ,my) ∈ Z2
|

− Nx + 1 ≤ mx≤Nx − 1,−Ny + 1 ≤ my≤Ny − 1}

(33)

which is a uniform rectangular array. Generalizations of OBA
are discussed in Section III-D1. In particular, the general-
izations will ensure the same continuous difference coarray
in (33) while increasing inter-sensor spacing, thus reducing
mutual coupling effects.

The two arrays (billboard, and OBA) are constructed using
ULAs, and the performance of both is generally exceeded
by three newly-developed arrays which are: HOBA-2 [54],
the hourglass array [54], and the thermos array [63], discussed
in Sections III-D1, III-D2, and III-D3, respectively. There-
fore, billboard and OBAs are not discussed further.

C. PLANAR ARRAYS
This section describes 2D arrays made by interleaving two
planar arrays like the coprime planar array (CPA), and the
unfolded coprime planar array (UCPA). In addition, other
planar structures like the nested planar array (NPA) or the
nested coprime planar array (NCPA) are examined.

1) COPRIME PLANAR ARRAY (CPA)
Coprime planar array (CPA) results from interleaving two
uniform planar arrays, which results from interleaving two
uniform planar arrays, which are denoted as subarrays. The
CPA [55], [57], [58] is described first. Then, the general way
of interleaving the subarrays, the generalized oprime planar
array (GCPA) [56] is described. The latter is just a general-
ization of the former where the number of elements along the
x- and y-axes need not be equal. Next, some details of
2D-DoA estimation algorithms using these arrays are
outlined.

ACPA is constructed using two interleaved uniform square
arrays. Denoting each uniform square array as a subarray,
there are M1 × M1 and M2 × M2 elements in subarrays 1
and 2, respectively. Since the two subarrays share a common
element at the origin, the total number of elements is M2

1 +

M2
2 − 1. The set of antenna elements is [55], [57], [58]

S = {(md1, nd1)|0 ≤ m, n ≤ M1 − 1}

∪{(pd2, qd2)|0 ≤ p, q ≤ M2 − 1} (34)

where d1 = M2d , d2 = M1d , d = λ/2, and m, n, p, q are
integers.

The GCPA structure, proposed by Zheng et al. [56], has
more DOF and yields better DoA estimates for the same num-
ber of sensors as CPA. GCPA relaxes the condition of using
uniform square subarrays, and allows uniform rectangular
subarrays. An example of GCPA is shown in Fig. 6a. GCPA is
made up using two interleaved URAs having the dimensions
of M1 × N1 and M2 × N2 whereas CPA is constructed from
two interleaved uniform square arrays. Here, M1 (M2) is the
number of elements of the first (second) URA along the
x-axis, N1 (N2) is the number of elements of the first (second)
URA along the y-axis, and N1 = M1, N2 = M2 in the case
of restricting URAs to become uniform square arrays. In the
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FIGURE 6. Examples of sparse arrays constructed using planar subarrays. Blue squares represent subarray 1. Black circles
represent subarray 2. Red diamonds represent common elements. (a) Generalized coprime planar array (GCPA); CPA is a special
case. (b) Nested planar array (NPA). (c) Unfolded coprime planar array (UCPA). (d) Nested coprime planar array (NCPA).

case of GCPA, the set of array elements becomes

S = {(mM2dx , n N2dy)|0 ≤ m ≤ M1 − 1, 0 ≤ n ≤ N1 − 1}

∪ {(pM1dx , q N1dy)|0 ≤ p ≤ M2 − 1, 0 ≤ q ≤ N2 − 1}

(35)

where dx (dy) is the fundamental distance along the x- (y-)
axis, and is often chosen to be λ/2.

Algorithms for arbitrary arrays do not utilize the uniform
nature of subarrays, and they tend to be more complex than
specially tailored algorithms. Therefore, a special efficient
method for CPAs was developed that utilizes uniformity of
subarrays [55]. The proposed method essentially limits the
2D-MUSIC search requirement to a small subset; hence,
the method is named the partial spectral search (PSS). The
first two steps are to estimate the covariance matrix of each
subarray, and detail how to choose an arbitrary small sector
to find some ambiguous peaks, which they prove to be related
to ambiguous peaks in other sectors. To pick the true peaks,
defining the difference between the two subarrays allows for
selecting the K values closest to the true peaks which yield
the estimate (ûk , v̂k ) and consequently (φ̂k , θ̂k ).
Another work utilized the signal subspace in addition to

the noise subspace to avoid any spectral search [57]; rather,
a double polynomial rooting algorithm is utilized. Further-
more, a study on the separation of coherent and uncorrelated
signals was reported [58], where unitary ESPRIT is used for
the planar geometry and root-MUSIC for a linear coprime
array.

2) NESTED PLANAR ARRAY (NPA)
The nested planar array (NPA) was proposed by Pal and
Vaidyanathan [59], [60] as an extension to the 1D nested
array, and it can provideO(MN ) virtual sensors continuously
in the difference coarray while only having O(M + N ) sen-
sors. Here M denotes the number of sensors in a dense grid,
and N is the physical sensors in a sparse grid. For instance,
using two linear nested arrays with N1 = N2 = 3, the nested
planar array looks like Fig. 6b, where N1 is the number of
elements in the dense LA, and N2 is the number of elements

in the sparse LA. The authors also show that with effective
selection ofM and N ,O(N 2

t ) sources can be identified using
the difference coarray. To achieve that, they explain how to
build a covariance-like matrix of dimensionsO(N 2

t )×O(N 2
t ),

which corresponds to virtual sensors, from only the estimated
covariance matrix of size Nt × Nt .

3) UNFOLDED COPRIME PLANAR ARRAY (UCPA)
Instead of interleaving two uniform square arrays (subar-
rays) to construct the CPA in Section III-C1, one of the
uniform square arrays is unfolded, that is, flipped across
the x-axis or the y-axis. Therefore, the two subarrays lie in
different quadrants. Fixing one subarray at the first quadrant,
Zheng et al. [61] investigated the performance of 2D-DoA
estimation when the other subarray is in the three other
quadrants. They also proposed an ambiguity-free MUSIC
algorithm, and further utilized a successive method of imple-
menting it to relief the computational burden. They concluded
that when one subarray is flipped across the line y = −x (so it
lies in the third quadrant), the performance is better than other
flipped structures and the traditional CPA. Fig. 6c shows this
case where the first (second) subarray hasM1×M1 (M2×M2)
sensor elements, and the set of array elements is

S = {(md1, nd1)|0 ≤ m, n ≤ M1 − 1}

∪{(pd2, qd2)| − (M2 − 1) ≤ p, q ≤ 0} (36)

where d1 = M2d , d2 = M1d , and d = λ/2.

4) NESTED COPRIME PLANAR ARRAY (NCPA)
The structure of nested coprime planar array (NCPA) is quite
involved to describe, despite being simple in design. Among
the motivations reported by Si et al. [62] is that their NCPA
can outperform all other CPAs, namelyGCPA [56], CPA [55],
[57], [58], and UCPA [61] in terms of being able to detect
more sources than the number of sensor elements. The NCPA
also produces two virtual coprime planar arrays that are used
to obtain two sets of DoA estimation that are linked together
to get the unique directions of arrival. Note that Si et al. [62]
did not use the NCPA term.
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FIGURE 7. Additional examples of 2D sparse arrays. (a) Half open box array with two layers (HOBA-2). (b) Hourglass array.
(c) Thermos array. (d) Concentric rectangular array.

The NCPA is constructed from two sparse planar arrays,
unlike the other types: GCPA, CPA, and UCPA which are
constructed from uniform planar arrays. Each sparse planar
array is made up of a nested planar array (NPA). Each NPA
is composed of a dense subarray and a sparse subarray. The
example of this structure is shown in Fig. 6d. In this example,
M1 = 2, and M2 = L = 3. The NPA is constructed from the
elements of two orthogonal nested linear arrays (NLAs) and
the elements at the intersections of lines, in the first quadrant,
emerging from each sensor element and orthogonal to the
nested linear array. Mathematically, the set of array elements
is

S = {(m, n)|m, n ∈ SNPA1} ∪ {(m, n)|m, n ∈ SNPA2}. (37)

This equation just describes the fact that the subarrays of
the NCPA are made up of NPAs. Now the NPAs are made up
of two orthogonal NLAs and other sensors, all of them are
described by

SNPA1 = {−L + 1,−L + 2, . . . , 0} ×M1M2d

∪{0, 1, . . . ,M1 − 1} ×M2d, (38)

SNPA2 = {−L + 1,−L + 2, . . . , 0} ×M1M2d

∪{0, 1, . . . ,M2 − 1} ×M1d, (39)

where M1,M2 are coprime positive integers, and L is an
integer.

D. OTHER 2D ARRAYS
This section describes four more 2D sparse arrays that
does not readily fall under any of the previous three cate-
gories. In particular, the half open box array with two layers
(HOBA-2), the hourglass array, the thermos array, and the
concentric rectangular array (CcRA) are considered.

1) HALF OPEN BOX ARRAY-2 (HOBA-2)
The half open box array with two layers (HOBA-2) is an
extension of the half open box array (HOBA) which is a
special case of the partial open box array (POBA). The partial
open box array (POBA) is a systematic redistribution of ele-
ments in the OBA (Section III-B5) to reduce closely-spaced

elements which reduces mutual coupling. An example of this
array with Nx = 16 and Ny = 12 is shown in Fig. 7a, where
black circles stand forH1,H2, blue squares stand forG1,G2,
and red diamonds stand for F. If some elements of G1 of the
OBA (28) are redistributed on the opposite (empty) side of
the OBA, the elements of POBA can be written as [54]

S = G1 ∪G2 ∪H1 ∪H2 ∪ F (40)

where

G1 = {(`x , 0)|`x ∈ g1}, g1 = {1, 2, . . . ,Nx − 2} (41)

G2 = {(`x ,Ny − 1)|`x ∈ g2}, g2 = {1, 2, . . . ,Nx − 2} (42)

where g1 and g2 are subsets of {1, 2, . . . ,Nx − 2} with |g1|+
|g2| = Nx − 2. Note that POBA is still defined using Nx and
Ny as the OBA, andH1,H2, and F are as defined in (30), (31),
and (32), respectively.

If g1 and g2 are chosen to be of the following form,
the array is called half open box array (HOBA)

g1 = {1+ 2` | 0 ≤ ` ≤ b(Nx − 3)/2c}, (43)

g2 = {Nx − 1− 2` | 1 ≤ ` ≤ b(Nx − 2)/2c}. (44)

Similar argument can be applied to the other ULAs (on the
right and left) of the OBA, which results in the partial open
box array with L levels (POBA-L)

S = G1 ∪G2 ∪

(
L⋃
`=1

H1,` ∪H2,`

)
∪ F (45)

where each of g1 and g2 is a partition of {1, 2, . . . ,Nx − 2},
{h1,`}

L
`=1 is a partition of {1, 2, . . . ,Ny−2}, and h2,` = Ny−

1 − h1,` for ` = 1, . . . ,L. Note that a third positive integer
L ≤ Nx/2 is required to design partial open box array with L
levels (POBA-L). If L is chosen to be 2, g1 and g2 as in (43),
(44), and

h1,1 = {1+ 2` | 0 ≤ ` ≤ b(Ny − 3)/2c} ∪ {Ny − 2}, (46)

h1,2 = {2` | 1 ≤ ` ≤ b(Ny − 3)/2c}, (47)

the array is called half open box array with two layers
(HOBA-2). The next subsection describes the hourglass array,
which is a POBA-L array.
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2) HOURGLASS ARRAY
Hourglass array is a special case of POBA, which was pre-
sented by Liu and Vaidyanathan [54]. The virtues of hour-
glass arrays include 1) having the same coarray as the OBA
(using the same aperture), 2) having a hole-free difference
coarray (based on the previous virtue), and 3) reduced mutual
coupling compared with the OBA. Following the notation in
Section III-D1, and for positive integers Nx and Ny, and L
layers, the element locations of the array can be described by

g1 = {1+ 2 p | 0 ≤ p ≤ b(Nx − 3)/2c}, (48)

g2 = {Nx − 1− 2p | 1 ≤ p ≤ b(Nx − 2)/2c}. (49)

and h1,` as in (50), as shown at the bottom of the page, where

L =

{⌊
(Ny + 1)/4

⌋
, if Ny is odd,⌊

Ny/8+ 1
⌋
, if Ny is even.

(51)

An example for hourglass array is shown in Fig. 7b with
Nx = 15 and Ny = 27.

To demonstrate the robustness of HOBA-2 and hourglass
arrays in presence of mutual coupling, the authors compared
the arrays with billboard, OBA, and URA using 2D unitary
ESPRIT without modifications to account for mutual cou-
pling. It was shown that hourglass performs best compared
to other arrays, especially with low snapshots [54].

3) THERMOS ARRAY
Sun et al. [63] proposed the thermos array as an improve-
ment to the hourglass array in terms of reducing mutual cou-
pling. Since the elements with vertical inter-element spacing
of d were about five times larger than the horizontal ones,
they proposed the thermos array which reduces these vertical
spacings. Two parameters are enough to design a thermos
array: Nx ∈ Z+ and Ny ∈ Z+ which yield the total number
of sensors as Nx + 2 Ny − 2. An example of a thermos array
is shown in Fig. 7c with Nx = 15 and Ny = 27. In Fig. 7c,
black circles represent S1,S2,R1,R2, blue boxes represent
B,T, and red diamonds represent F. The thermos array has
a rectangular shape and is designed using six ULAs with
inter-sensor spacing of 2d plus four or ten more elements
at the corners depending on the number of elements in the
y direction, Ny. If Ny is even, ten elements are needed, and
four if Ny is odd. The set of array elements S can be written
as a union of a top, bottom, two left, and two right ULAs plus
the extra sensors at the corner denoted by F. Thus,

S = B ∪ T ∪ S1 ∪ S2 ∪ R1 ∪ R2 ∪ F (52)

where

B = {(−1+ 2`, 0)|0 ≤ ` ≤ (Nx + Nxmod2)/2} (53)

T = {(2`+ 1+ Nxmod2,Ny − 2)|

0 ≤ ` ≤ (Nx − Nxmod2)/2− 2} (54)

S1 = {(−2, 2`)|1 ≤ ` ≤ (Ny − Nymod2)/2− 2} (55)

S2 = {(0, 1+ 2`)|

1 ≤ ` ≤ (Ny − Nymod2)/2− 1− Nymod2} (56)

R1 = {(Nx − 1,−1+ 2`)|

1 ≤ ` ≤ (Ny − Nymod2)/2− 1− Nymod2} (57)

R2 = {(Nx + 1, 2`)|1 ≤ ` ≤ (Ny − Nymod2)/2− 2} (58)

and

F = {(−1,Ny − 2), (0,Ny − 2),

(Nx − 1,Ny − 2), (Nx ,Ny − 2)} (59)

when Ny is even, or

F = {(−1,Ny − 2), (0,Ny − 2), (Nx − 1,Ny − 2),

(Nx ,Ny − 2), (−1, 2), (Nx , 2), (−1,Ny − 4),

(0,Ny − 3), (Nx − 1,Ny − 3), (Nx ,Ny − 4)} (60)

when Ny is odd. Note that Nxmod2 = 0 if Nx is even, and
Nxmod2 = 1 if Nx is odd.

4) CONCENTRIC RECTANGULAR ARRAY (CcRA)
Rajamäki and Koivunen [64] proposed the CcRA which
can be thought of as a modification of the boundary
array. An example of the CcRA is shown in Fig. 7d with
Nx = Ny = 12, blue squares for Go, and black cir-
cles for Gi. The total number of sensors is 2(Nx + Ny).
Although the paper does not directly implement this array for
2D-DoA estimation, it is cited as it proposes a sparse
2D array. In general, for even Nx ,Ny ≥ 2, the CcRA is given
by

S = Go ∪Gm ∪Gi

where

Go =
{
(px , py)|px ∈ P0(Nx), py ∈

{
0,Ny

}}
∪
{
(px , py)|px ∈ {0,Nx} , py ∈ P0(Ny)

}
(61)

Gm =
{
(px , py)|px ∈ P1(Nx), py ∈

{
1,Ny − 1

}}
∪
{
(px , py)|px ∈ {1,Nx − 1} , py ∈ P1(Ny)

}
(62)

Gi =
{
(px , py)|px ∈ P2(Nx), py ∈

{
2,Ny − 2

}}
∪
{
(px , py)|px ∈ {2,Nx − 2} , py ∈ P2(Ny)

}
(63)

and

P0(N ) = {0,N } ∪ {1 : 2 : N − 1}

P1(N ) = {0, 1,N − 1,N }

P2(N ) = {2 : 2 : N − 2}

h1,` =


{
2p, Ny − 1− 2p | 1 ≤ p ≤ b(Ny − 1)/4c

}
∪
{
1, Ny − 2

}
, if ` = 1,{

2`− 1, Ny − 2`
}
, if Ny is odd and 0 ≤ ` ≤ L,

{2`− 1, 2bNy/4c − 2`+ 3, 2dNy/4e + 2`− 4, Ny − 2`}, if Ny is even and 2 ≤ ` ≤ L,

(50)
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TABLE 2. Comparison between physical sensors and achievable degrees of freedom for sparse array geometries.

where {1 : 2 : N − 1} = {1, 1 + 2, 1 + 4, . . . ,N − 1} is
an interval of integers with a step size of 2. The hourglass
array is sparser than the CcRA, and both have a contiguous
difference coarray. However, the CcRA has a contiguous sum
coarray, unlike the hourglass array [64]. In addition, all the
elements in the CcRA are essential [19].

IV. COMPARATIVE EVALUATION
This section presents a general comparison of the men-
tioned arrays and highlights some important differences.

This should be useful in predicting the estimation per-
formance and required complexity of a sensor geometry;
thus, aiding the decision of selecting a sensor geometry for
2D-DoA estimation. It can also serve as a starting point for
researchers interested in exploring or designing new sparse
planar arrays in more detail. The comparative evaluation
presented in this section is organized in a table split over
two pages due to limited space. In other words, Table 2 and
Table 3 share the same rows, the same ‘Array’ and ‘Ref.’
columns, but have the rest of columns different.
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TABLE 3. Comparison between array geometries in terms of computational complexity, mutual coupling, and aperture.

Table 2 lists the number of elements in each array
geometry and the achievable DOF. For instance, the three
papers [36]–[38] that used parallel nested arrays are eas-
ily comparable, and the latest one [38] using fourth order
cumulants (FOC) has higher DOF as expected. It is not
straight forward to compare all types of arrays since many
sparse planar arrays are based on coprime, nested, or other
linear arrays. In addition, some array geometries have dif-
ferent DOF when the parameters specifying the array are

even or odd. In Table 2, a dash signifies that the value is
not mentioned directly in the paper, or not easily verifiable.
For example, Jian et al. [40] uses MRAs which do not have
a closed form expression for the physical sensor locations;
yet the expression shown for the number of sensors is a
mere summation of the elements in the two subarrays (linear
arrays). For other works, this could indicate that the work
is focused on reducing computational complexity or other
improvements apart from increasing DOF.

VOLUME 9, 2021 93013



I. Aboumahmoud et al.: Review of Sparse Sensor Arrays for 2D DoA Estimation

The arrays are listed in Table 2 based on the classifica-
tion that was presented in Section III, then chronologically.
As such, it is generally expected that, within each cat-
egory, later papers achieve higher DOF than older ones.
As an example, Zheng et al. [61] state that their UCPA can
exceed the DOF of the earlier works by Wu et al. [55] and
Zheng et al. [56]. Similarly, Si et al. [62] show that their
NCPA can exceed the DOF of the previous CPA variants:
CPA [55], GCPA [56] and UCPA [61]. Another example is
the thermos array [63] which can exceed the DOF of the
hourglass array when Ny > Nx + 1. Furthermore, another
interesting note might be the equal DOF of the arrays: OBA,
HOBA-2, and hourglass [54]. In this case, this is an advantage
for the newer arrays (HOBA-2 and hourglass), since these
arrays retain the hole-free difference coarray of the OBA, yet
they reduce mutual coupling.

Table 3 shows a comparison of the same arrays in Table 2,
but now shows the aperture, the estimated mutual cou-
pling sensitivity based on the number of sensors with close
inter-sensor spacing (MC-1), andwhether the paper uses peak
search (PS) or FOC which give an indication of the com-
putational complexity. Only three papers considered FOC in
the algorithm [38], [40], [46]. This can be explained by the
computational complexity of FOC, and the condition that
the sources must not be Gaussian. Despite the fact that it
theoretically eliminates the Gaussian noise, and usually leads
to much larger DOF compared to methods based on order
statistics (SOS). However, one paper showed that it is possible
to exceed the performance of some FOC-based methods [58].
Further, it can be noted that, in general, array geometries
utilizing nested arrays have higher number of sensors closely-
spaced, and as such, are more susceptible to mutual coupling
degradation. In addition, some of the recent arrays like hour-
glass or thermos arrays have low mutual coupling sensitivity.
Other notes on Table 3 include:
• The column PS only describes the existence of a step in
the cited paper. For instance, Qin et al. [35] only employ
1D search in the case of having sources less than sensors,
while exploiting sparse learning techniques when the
number of sources exceeds the physical sensors.

• It is worth mentioning that comparing the DOF offered
by a method using FOC to another method using SOS
may not be fair. However, since not all arrays are
expected to work well with FOC, and because of the low
number of papers using FOC, the papers using FOC are
also listed in the same table.

• Not having PS does not mean having lower computa-
tional time. For example, Wu and Zhu [53] use atomic
norm minimization (ANM) for 2D-DoA estimation, yet
they report relatively higher computational time than
some other methods. They still, however, employ a
MUSIC-like method for range estimation.

• In many cases, it is possible to use different estimation
methods. Hence, for some of the works that utilize 2D
PS, it could be possible to try a less complicated method.
However, the use of such 2D peak searching methods

can be justified when the main contribution of the paper
is in a different direction, and a baseline comparison
is seeked. For example, Sun et al. [63] presented the
thermos array trying mainly to reduce mutual coupling
by spacing some sensors further apart from each other,
based on ideas from the hourglass array proposed earlier
by Liu and Vaidyanathan [54]. Another example is the
work of Zheng et al. [56] which mainly presents the
GCPA structure that is a generalization of the CPA.

• Using 2D PS is not always the worst in terms of compu-
tational complexity. For example, Wu et al. [55] used a
limited 2D spectral search that is having less complexity
than the full 2D search.

• The last two columns show the aperture of the array in
the x and y directions. While in general, arrays based
on coprime linear arrays for example have the same
aperture; some differences exist if authors use different
definitions of the coprime linear array, or if the linear
array on the x and y directions are different. Similar argu-
ments apply to other linear arrays. Note that it is not easy
to write an expression for the aperture if the linear array
(LA) is a minimum redundancy array (MRA). In addi-
tion, sometimes Nx − 1 is the aperture of the array by
design like hourglass and HOBA-2. In addition, if ULAs
are used, the table shows the number of elements in
the ULA on that axis. In many cases, the aperture is
square and the same expression appear in both columns.
However, for the work by Wu et al. [49], the expression
is made to span both columns to save space.

V. CONCLUDING REMARKS
The increased number of location-based services and appli-
cations has led to increased interest in 2D sparse arrays
which enable localization with minimum number of sensors.
Published research efforts are not fully aligned and do not fall
under clear framework. In this paper, we presented a compre-
hensive and structured literature overview of sparse arrays
for 2D-DoA estimation. Popular designs like L-shaped,
V-shaped, hourglass, thermos, nested planar, and coprime
planar were classified into parallel arrays, non-parallel arrays,
and other planar arrays. Existing designs were compared in
terms of the required number of sensors, DOF, algorithm
used, complexity and aperture size. A fair comparison should
not overlook the aperture size associated with the improved
estimation performance. L-shaped sparse arrays received the
largest attention in the literature. However, other new struc-
tures seem promising. Arrays with rectangular aperture tend
to show large DOF, like the hourglass or thermos arrays.
Also, GCPA show large DOF compared to CPA. Arrays with
relatively more complicated closed-form expressions seem to
enjoy more DOF, like the hourglass or thermos arrays.

While the emphasis was on the 2D sparse arrays’ structure,
some designs require modified DoA estimation algorithms.
Many algorithms for 2D-DoA estimation employ vectoriza-
tion of cross correlation matrix, and then progress by vari-
ous minimization methods. Some do spatial smoothing, and
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others avoid it to evade reduction in available DOF. Per-
formance metrics of 2D-DoA estimation were outlined and
existing solutions to alleviate problems were discussed. The
presented structured review should help in predicting the
DoA estimation performance and required complexity; thus,
facilitating design and selection of sensor array geometry for
2D-DoA estimation.

REFERENCES
[1] H. Krim and M. Viberg, ‘‘Two decades of array signal processing

research: The parametric approach,’’ IEEE Signal Process. Mag., vol. 13,
no. 4, pp. 67–94, Jul. 1996.

[2] M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou,
G. K. Karagiannidis, E. Björnson, K. Yang, C.-L. I, and A. Ghosh, ‘‘Mil-
limeter wave communications for future mobile networks,’’ IEEE J. Sel.
Areas Commun., vol. 35, no. 9, pp. 1909–1935, Sep. 2017.

[3] E. Björnson, L. Sanguinetti, H.Wymeersch, J. Hoydis, and T. L.Marzetta,
‘‘Massive MIMO is a reality—What is next?: Five promising research
directions for antenna arrays,’’ Digit. Signal Process., vol. 94, pp. 3–20,
Nov. 2019.

[4] A. Fascista, A. Coluccia, H. Wymeersch, and G. Seco-Granados,
‘‘Millimeter-wave downlink positioning with a single-antenna receiver,’’
IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4479–4490, Sep. 2019.

[5] S. DeGraaf and D. Johnson, ‘‘Optimal linear arrays for narrow-band
beamforming,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), vol. 9, Mar. 1984, pp. 214–217.

[6] Y. Bresler and A. Macovski, ‘‘On the number of signals resolvable by
a uniform linear array,’’ IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-34, no. 6, pp. 1361–1375, Dec. 1986.

[7] M. P. Wylie, S. Roy, and H. Messer, ‘‘Joint DOA estimation and phase
calibration of linear equispaced (LES) arrays,’’ IEEE Trans. Signal Pro-
cess., vol. 42, no. 12, pp. 3449–3459, Dec. 1994.

[8] B. Porat and B. Friedlander, ‘‘Direction finding algorithms based on
high-order statistics,’’ IEEE Trans. Signal Process., vol. 39, no. 9,
pp. 2016–2024, Sep. 1991.

[9] A. Swami and J. M. Mendel, ‘‘Cumulant-based approach to harmonic
retrieval and related problems,’’ IEEE Trans. Signal Process., vol. 39,
no. 5, pp. 1099–1109, May 1991.

[10] A. Moffet, ‘‘Minimum-redundancy linear arrays,’’ IEEE Trans. Antennas
Propag., vol. AP-16, no. 2, pp. 172–175, Mar. 1968.

[11] D. A. Linebarger, ‘‘A fast method for computing the coarray of sparse lin-
ear arrays,’’ IEEE Trans. Antennas Propag., vol. 40, no. 9, pp. 1109–1112,
Sep. 1992.

[12] S. D. Bedrosian, ‘‘Nonuniform linear arrays: Graph-theoretic approach
to minimum redundancy,’’ Proc. IEEE, vol. 74, no. 7, pp. 1040–1043,
Jul. 1986.

[13] D. A. Linebarger, I. H. Sudborough, and I. G. Tollis, ‘‘Difference bases
and sparse sensor arrays,’’ IEEE Trans. Inf. Theory, vol. 39, no. 2,
pp. 716–721, Mar. 1993.

[14] P. Pal and P. P. Vaidyanathan, ‘‘Coprime sampling and the music algo-
rithm,’’ in Proc. Digit. Signal Process. Signal Process. Educ. Meeting
(DSP/SPE), Jan. 2011, pp. 289–294.

[15] S. Qin, Y. D. Zhang, and M. G. Amin, ‘‘Generalized coprime array
configurations for direction-of-arrival estimation,’’ IEEE Trans. Signal
Process., vol. 63, no. 6, pp. 1377–1390, Mar. 2015.

[16] S. A. Alawsh and A. H. Muqaibel, ‘‘Sparse DOA estimation based
on multi-level prime array with compression,’’ IEEE Access, vol. 7,
pp. 70828–70841, 2019.

[17] P. Pal and P. P. Vaidyanathan, ‘‘Nested arrays: A novel approach to
array processing with enhanced degrees of freedom,’’ IEEE Trans. Signal
Process., vol. 58, no. 8, pp. 4167–4181, Aug. 2010.

[18] C.-L. Liu and P. P. Vaidyanathan, ‘‘Super nested arrays: Linear sparse
arrays with reduced mutual coupling—Part I: Fundamentals,’’ IEEE
Trans. Signal Process., vol. 64, no. 15, pp. 3997–4012, Aug. 2016.

[19] C.-L. Liu and P. P. Vaidyanathan, ‘‘Maximally economic sparse arrays
and cantor arrays,’’ in Proc. IEEE 7th Int. Workshop Comput. Adv. Multi-
Sensor Adapt. Process. (CAMSAP), Dec. 2017, pp. 1–5.

[20] R. Rajamäki and V. Koivunen, ‘‘Comparison of sparse sensor array
configurations with constrained aperture for passive sensing,’’ in Proc.
IEEE Radar Conf. (RadarConf), May 2017, pp. 0797–0802.

[21] S. Mazlout, M. B. Ben Salah, and A. Samet, ‘‘Comparative study of two
array configurations for 2D-DOA estimation in LS-MIMO systems,’’ in
Proc. 6th Int. Conf. Commun. Netw. (ComNet), Mar. 2017, pp. 1–6.

[22] A. B. Gershman, M. Rübsamen, and M. Pesavento, ‘‘One- and two-
dimensional direction-of-arrival estimation: An overview of search-free
techniques,’’ Signal Process., vol. 90, no. 5, pp. 1338–1349, May 2010.

[23] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, ‘‘Robust
estimation in signal processing: A tutorial-style treatment of fundamen-
tal concepts,’’ IEEE Signal Process. Mag., vol. 29, no. 4, pp. 61–80,
Jul. 2012.

[24] S. Kiani and A. M. Pezeshk, ‘‘A comparative study of several array
geometries for 2D DOA estimation,’’ Procedia Comput. Sci., vol. 58,
pp. 18–25, Jan. 2015.

[25] S. Khedekar and M. Mukhopadhyay, ‘‘Analysis of estimation of direction
of arrival by comparative study,’’ Mater. Today, Proc., vol. 5, no. 1,
pp. 1696–1703, 2018.

[26] A. Ahmed, S. A. Hamza, and M. Tufail, ‘‘Comparative analysis of fourth
order cumulant based ESPRIT algorithms,’’ in Proc. 12th Int. Conf.
Frontiers Inf. Technol., Dec. 2014, pp. 133–138.

[27] K. Adhikari and B. Drozdenko, ‘‘Comparison of MUSIC variants for
sparse arrays,’’ in Proc. IEEE Nat. Aerosp. Electron. Conf. (NAECON),
Jul. 2019, pp. 398–405.

[28] Q. Shen, W. Liu, W. Cui, and S. Wu, ‘‘Underdetermined DOA estimation
under the compressive sensing framework: A review,’’ IEEE Access,
vol. 4, pp. 8865–8878, 2016.

[29] Y. Liang, W. Liu, Q. Shen, W. Cui, and S. Wu, ‘‘A review of
closed-form Cramér-Rao bounds for DOA estimation in the presence
of Gaussian noise under a unified framework,’’ IEEE Access, vol. 8,
pp. 175101–175124, 2020.

[30] S. Qin, Y. D. Zhang, andM.G.Amin, ‘‘Two-dimensional DOA estimation
using parallel coprime subarrays,’’ in Proc. IEEE Sensor Array Multi-
channel Signal Process. Workshop (SAM), Jul. 2016, pp. 1–4.

[31] J. Shi, G. Hu, X. Zhang, and P. Gong, ‘‘Sum and difference coarrays
based 2-D DOA estimation with co-prime parallel arrays,’’ in Proc. 9th
Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2017, pp. 1–4.

[32] F. Sun, P. Lan, B. Gao, and G. Zhang, ‘‘An efficient dictionary learning-
based 2-D DOA estimation without pair matching for co-prime parallel
arrays,’’ IEEE Access, vol. 6, pp. 8510–8518, 2018.

[33] F. Sun, S. Ouyang, P. Lan, and F. Li, ‘‘Reduced dimensional 2-D DOA
estimation via least partial search with automatic pairing for parallel co-
prime arrays,’’ in Proc. IEEE 11th Sensor Array Multichannel Signal
Process. Workshop (SAM), Jun. 2020, pp. 1–5.

[34] P. Gong, X. Zhang, J. Shi, and W. Zheng, ‘‘Three-parallel co-prime array
configuration for two-dimensional DOA estimation,’’ in Proc. 9th Int.
Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2017, pp. 1–5.

[35] S. Qin, Y. D. Zhang, and M. G. Amin, ‘‘Improved two-dimensional
DOA estimation using parallel coprime arrays,’’ Signal Process., vol. 172,
Jul. 2020, Art. no. 107428.

[36] X. Li, W. Zhang, T. Shu, and J. He, ‘‘Two-dimensional direction finding
with parallel nested arrays using DOA matrix method,’’ IEEE Sensors
Lett., vol. 3, no. 7, pp. 1–4, Jul. 2019.

[37] Z. Zheng and S. Mu, ‘‘Two-dimensional DOA estimation using two
parallel nested arrays,’’ IEEE Commun. Lett., vol. 24, no. 3, pp. 568–571,
Mar. 2020.

[38] J. He, L. Li, and T. Shu, ‘‘2-D direction finding using parallel nested
arrays with full co-array aperture extension,’’ Signal Process., vol. 178,
Jan. 2021, Art. no. 107795.

[39] Z. Zheng, Y. Yang, W.-Q. Wang, and S. Zhang, ‘‘Two-dimensional direc-
tion estimation ofmultiple signals using two parallel sparse linear arrays,’’
Signal Process., vol. 143, pp. 112–121, Feb. 2018.

[40] C. Jian, S. Wang, and L. Lin, ‘‘2-D DOA estimation by
minimum-redundancy linear array,’’ in Proc. 8th Int. Conf.
Signal Process., vol. 1, Nov. 2006. [Online]. Available:
https://ieeexplore.ieee.org/document/4128862

[41] J. He and Z. Liu, ‘‘Extended aperture 2-D direction finding with a two-
parallel-shape-array using propagator method,’’ IEEE Antennas Wireless
Propag. Lett., vol. 8, pp. 323–327, 2009.

[42] Q. Liu, X. Yi, L. Jin, and W. Chen, ‘‘Two dimensional direction of
arrival estimation for co-prime L-shaped array using sparse reconstruc-
tion,’’ in Proc. 8th Int. Congr. Image Signal Process. (CISP), Oct. 2015,
pp. 1499–1503.

[43] A. M. Elbir, ‘‘L-shaped coprime array structures for DOA estimation,’’
Multidimensional Syst. Signal Process., vol. 31, no. 1, pp. 205–219,
Jan. 2020.

VOLUME 9, 2021 93015



I. Aboumahmoud et al.: Review of Sparse Sensor Arrays for 2D DoA Estimation

[44] Y.-Y. Dong, C.-X. Dong, Y.-T. Zhu, G.-Q. Zhao, and S.-Y. Liu, ‘‘Two-
dimensional DOA estimation for L-shaped array with nested subarrays
without pair matching,’’ IET Signal Process., vol. 10, pp. 1112–11175,
Dec. 2016.

[45] C. Niu, Y. Zhang, and J. Guo, ‘‘Interlaced double-precision 2-D angle
estimation algorithm using L-shaped nested arrays,’’ IEEE Signal Pro-
cess. Lett., vol. 23, no. 4, pp. 522–526, Apr. 2016.

[46] X. Li, S. Ren, J. Liu, and W. Wang, ‘‘Augmented L-shaped nested
array based on the fourth-order difference co-array concept,’’ in Proc.
IEEE 10th Sensor Array Multichannel Signal Process. Workshop (SAM),
Jul. 2018, pp. 31–35.

[47] X. Gao, X. Hao, P. Li, and G. Li, ‘‘An improved two-dimensional
direction-of-arrival estimation algorithm for L-shaped nested arrays with
small sample sizes,’’ Sensors, vol. 19, no. 9, p. 2176, May 2019.

[48] Y. Yang, X. Mao, Y. Hou, and G. Jiang, ‘‘2-D DOA estimation via cor-
relation matrix reconstruction for nested L-shaped array,’’ Digit. Signal
Process., vol. 98, Mar. 2020, Art. no. 102623.

[49] F. Wu, F. Cao, X. Ni, C. Chen, Y. Zhang, and J. Xu, ‘‘L-shaped
sparse array structure for 2-D DOA estimation,’’ IEEE Access, vol. 8,
pp. 140030–140037, 2020.

[50] Y. Yang, Z. Zheng, H. Yang, J. Yang, and Y. Ge, ‘‘A novel 2-D DOA
estimation method via sparse L-shaped array,’’ in Proc. 2nd IEEE Int.
Conf. Comput. Commun. (ICCC), Oct. 2016, pp. 1865–1869.

[51] J.-F. Gu, W.-P. Zhu, and M. N. S. Swamy, ‘‘Joint 2-D DOA estimation
via sparse L-shaped array,’’ IEEE Trans. Signal Process., vol. 63, no. 5,
pp. 1171–1182, Mar. 2015.

[52] A. M. Elbir, ‘‘V-shaped sparse arrays for 2-D DOA estimation,’’
Circuits, Syst., Signal Process., vol. 38, no. 6, pp. 2792–2809,
Jun. 2019.

[53] X. Wu and W.-P. Zhu, ‘‘Single far-field or near-field source localization
with sparse or uniform cross array,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 8, pp. 9135–9139, Aug. 2020.

[54] C.-L. Liu and P. P. Vaidyanathan, ‘‘Hourglass arrays and other novel
2-D sparse arrays with reduced mutual coupling,’’ IEEE Trans. Signal
Process., vol. 65, no. 13, pp. 3369–3383, Jul. 2017.

[55] Q. Wu, F. Sun, P. Lan, G. Ding, and X. Zhang, ‘‘Two-dimensional
direction-of-arrival estimation for co-prime planar arrays: A partial spec-
tral search approach,’’ IEEE Sensors J., vol. 16, no. 14, pp. 5660–5670,
Jul. 2016.

[56] W. Zheng, X. Zhang, and H. Zhai, ‘‘Generalized coprime planar array
geometry for 2-D DOA estimation,’’ IEEE Commun. Lett., vol. 21, no. 5,
pp. 1075–1078, May 2017.

[57] D. Zhang, Y. Zhang, G. Zheng, B. Deng, C. Feng, and J. Tang,
‘‘Two-dimensional direction of arrival estimation for coprime planar
arrays via polynomial root finding technique,’’ IEEE Access, vol. 6,
pp. 19540–19549, 2018.

[58] H. Xu, D. Wang, B. Ba, W. Cui, and Y. Zhang, ‘‘Direction-of-arrival
estimation for both uncorrelated and coherent signals in coprime array,’’
IEEE Access, vol. 7, pp. 18590–18600, 2019.

[59] P. Pal and P. P. Vaidyanathan, ‘‘Nested arrays in two dimensions, Part I:
Geometrical considerations,’’ IEEE Trans. Signal Process., vol. 60, no. 9,
pp. 4694–4705, Sep. 2012.

[60] P. Pal and P. P. Vaidyanathan, ‘‘Nested arrays in two dimensions, Part II:
Application in two dimensional array processing,’’ IEEE Trans. Signal
Process., vol. 60, no. 9, pp. 4706–4718, Sep. 2012.

[61] W. Zheng, X. Zhang, L. Xu, and J. Zhou, ‘‘Unfolded coprime planar array
for 2D direction of arrival estimation: An aperture-augmented perspec-
tive,’’ IEEE Access, vol. 6, pp. 22744–22753, 2018.

[62] W. Si, F. Zeng, Z. Qu, and Z. Peng, ‘‘Two-dimensional DOA esti-
mation via a novel sparse array consisting of coprime and nested
subarrays,’’ IEEE Commun. Lett., vol. 24, no. 6, pp. 1266–1270,
Jun. 2020.

[63] L. Sun, M. Yang, and B. Chen, ‘‘Thermos array: Two-dimensional sparse
array with reduced mutual coupling,’’ Int. J. Antennas Propag., vol. 2018,
pp. 1–8, Jan. 2018.

[64] R. Rajamäki and V. Koivunen, ‘‘Sparse active rectangular array with few
closely spaced elements,’’ IEEE Signal Process. Lett., vol. 25, no. 12,
pp. 1820–1824, Dec. 2018.

[65] A. J. van der Veen, P. B. Ober, and E. F. Deprettere, ‘‘Azimuth and
elevation computation in high resolution DOA estimation,’’ IEEE Trans.
Signal Process., vol. 40, no. 7, pp. 1828–1832, Jul. 1992.

[66] J. Liang and D. Liu, ‘‘Joint elevation and azimuth direction finding
using L-shaped array,’’ IEEE Trans. Antennas Propag., vol. 58, no. 6,
pp. 2136–2141, Jun. 2010.

[67] R. Schmidt, ‘‘Multiple emitter location and signal parameter estima-
tion,’’ IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
Mar. 1986.

[68] R. Roy and T. Kailath, ‘‘ESPRIT-estimation of signal parameters via
rotational invariance techniques,’’ IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[69] S. Marcos, A. Marsal, and M. Benidir, ‘‘The propagator method for
source bearing estimation,’’ Signal Process., vol. 42, no. 2, pp. 121–138,
Mar. 1995.

[70] Z. Ye and C. Liu, ‘‘2-D DOA estimation in the presence of mutual cou-
pling,’’ IEEE Trans. Antennas Propag., vol. 56, no. 10, pp. 3150–3158,
Oct. 2008.

[71] H. Chen, C. Hou, W.-P. Zhu, W. Liu, Y.-Y. Dong, Z. Peng, and Q. Wang,
‘‘ESPRIT-like two-dimensional direction finding for mixed circular and
strictly noncircular sources based on joint diagonalization,’’ Signal Pro-
cess., vol. 141, pp. 48–56, Dec. 2017.

[72] C.-H. Lin, W.-H. Fang, J.-D. Lin, and K.-H. Wu, ‘‘A fast algorithm for
joint two-dimensional direction of arrival and frequency estimation via
hierarchical space–time decomposition,’’ Signal Process., vol. 90, no. 1,
pp. 207–216, Jan. 2010.

[73] Y. Wu, G. Liao, and H. C. So, ‘‘A fast algorithm for 2-D direction-
of-arrival estimation,’’ Signal Process., vol. 83, no. 8, pp. 1827–1831,
Aug. 2003.

[74] J. Li, X. Zhang, and H. Chen, ‘‘Improved two-dimensional DOA esti-
mation algorithm for two-parallel uniform linear arrays using propagator
method,’’ Signal Process., vol. 92, no. 12, pp. 3032–3038, Dec. 2012.

[75] P. Li, B. Yu, and J. Sun, ‘‘A new method for two-dimensional array signal
processing in unknown noise environments,’’ Signal Process., vol. 47,
no. 3, pp. 319–327, Dec. 1995.

[76] Y. Zhang, X. Xu, Y. A. Sheikh, and Z. Ye, ‘‘A rank-reduction based 2-
D DOA estimation algorithm for three parallel uniform linear arrays,’’
Signal Process., vol. 120, pp. 305–310, Mar. 2016.

[77] R. T. Hoctor and S. A. Kassam, ‘‘The unifying role of the coarray in
aperture synthesis for coherent and incoherent imaging,’’ Proc. IEEE,
vol. 78, no. 4, pp. 735–752, Apr. 1990.

[78] C. Zhu, W.-Q. Wang, H. Chen, and H. C. So, ‘‘Impaired sensor diagnosis,
beamforming, and DOA estimation with difference co-array processing,’’
IEEE Sensors J., vol. 15, no. 7, pp. 3773–3780, Jul. 2015.

[79] B. Friedlander, ‘‘Antenna array manifolds for high-resolution direction
finding,’’ IEEE Trans. Signal Process., vol. 66, no. 4, pp. 923–932,
Feb. 2018.

[80] H. Huang, M. Fauß, and A. M. Zoubir, ‘‘Block sparsity-based DOA
estimation with sensor gain and phase uncertainties,’’ in Proc. 27th Eur.
Signal Process. Conf. (EUSIPCO), Sep. 2019, pp. 1–5.

[81] C.-L. Liu and P. P. Vaidyanathan, ‘‘Robustness of difference coarrays of
sparse arrays to sensor failures—Part I: A theory motivated by coarray
MUSIC,’’ IEEE Trans. Signal Process., vol. 67, no. 12, pp. 3213–3226,
Jun. 2019.

[82] C.-L. Liu and P. P. Vaidyanathan, ‘‘Robustness of difference coarrays of
sparse arrays to sensor failures—Part II: Array geometries,’’ IEEE Trans.
Signal Process., vol. 67, no. 12, pp. 3227–3242, Jun. 2019.

[83] Y. I. Abramovich, D. A. Gray, A. Y. Gorokhov, and N. K. Spencer,
‘‘Positive-definite Toeplitz completion in DOA estimation for nonuni-
form linear antenna arrays. I. Fully augmentable arrays,’’ IEEE Trans.
Signal Process., vol. 46, no. 9, pp. 2458–2471, Sep. 1998.

[84] S. Orfanidis, Electromagnetic Waves and Antennas. 2016. [Online].
Available: https://www.ece.rutgers.edu/~orfanidi/ewa/

[85] B. Friedlander and A. J. Weiss, ‘‘Direction finding in the presence
of mutual coupling,’’ IEEE Trans. Antennas Propag., vol. 39, no. 3,
pp. 273–284, Mar. 1991.

[86] T. Jiang, N. D. Sidiropoulos, and J. M. F. ten Berge, ‘‘Almost-sure iden-
tifiability of multidimensional harmonic retrieval,’’ IEEE Trans. Signal
Process., vol. 49, no. 9, pp. 1849–1859, Sep. 2001.

[87] A. Agarwal, M. Agrawal, and A. Kumar, ‘‘Higher-order-statistics-based
direction-of-arrival estimation of multiple wideband sources with sin-
gle acoustic vector sensor,’’ IEEE J. Ocean. Eng., vol. 45, no. 4,
pp. 1439–1449, Oct. 2020.

[88] K. Adhikari and B. Drozdenko, ‘‘Symmetry-imposed rectangular
coprime and nested arrays for direction of arrival estimation with multiple
signal classification,’’ IEEE Access, vol. 7, pp. 153217–153229, 2019.

[89] H. Chen, C.-P. Hou, Q. Wang, L. Huang, and W.-Q. Yan, ‘‘Cumulants-
based Toeplitz matrices reconstruction method for 2-D coherent DOA
estimation,’’ IEEE Sensors J., vol. 14, no. 8, pp. 2824–2832, Aug. 2014.

93016 VOLUME 9, 2021



I. Aboumahmoud et al.: Review of Sparse Sensor Arrays for 2D DoA Estimation

[90] S. Liu, L. S. Yang, D. C. Wu, and J. H. Huang, ‘‘Two-dimensional DOA
estimation using a co-prime symmetric cross array,’’ PIER C, vol. 54,
pp. 67–74, Oct. 2014, doi: 10.2528/PIERC14081005.

[91] S. Sekizawa, ‘‘Estimation of arrival directions using MUSIC algorithm
with a planar array,’’ in Proc. IEEE Int. Conf. Universal Pers. Commun.
Conf. (ICUPC), vol. 1, Oct. 1998, pp. 555–559.

[92] T.-J. Shan, M. Wax, and T. Kailath, ‘‘On spatial smoothing for direction-
of-arrival estimation of coherent signals,’’ IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-33, no. 4, pp. 806–811, Aug. 1985.

[93] Q. Y. Yin, R. W. Newcomb, and L. H. Zou, ‘‘Estimating 2-D angles of
arrival via two parallel linear arrays,’’ in Proc. Int. Conf. Acoust., Speech,
Signal Process., vol. 4, May 1989, pp. 2803–2806.

[94] Q.-Y. Yin, R.W. Newcomb, S.Munjal, and L.-H. Zou, ‘‘Relation between
the DOA matrix method and the ESPRIT method,’’ in Proc. IEEE Int.
Symp. Circuits Syst., vol. 2, May 1990, pp. 1561–1564.

[95] X. Dai, X. Zhang, andY.Wang, ‘‘ExtendedDOA-matrixmethod for DOA
estimation via two parallel linear arrays,’’ IEEE Commun. Lett., vol. 23,
no. 11, pp. 1981–1984, Nov. 2019.

[96] P. P. Vaidyanathan and P. Pal, ‘‘Sparse sensing with coprime arrays,’’ in
Proc. Conf. Rec. 44th Asilomar Conf. Signals, Syst. Comput., Nov. 2010,
pp. 1405–1409.

[97] P. P. Vaidyanathan and P. Pal, ‘‘Direct-MUSIC on sparse arrays,’’ in Proc.
Int. Conf. Signal Process. Commun. (SPCOM), Jul. 2012, pp. 1–5.

[98] Y. Hua, T. K. Sarkar, and D. D.Weiner, ‘‘An L-shaped array for estimating
2-D directions of wave arrival,’’ IEEE Trans. Antennas Propag., vol. 39,
no. 2, pp. 143–146, Feb. 1991.

[99] J. He, M. N. S. Swamy, and M. O. Ahmad, ‘‘Efficient application
of MUSIC algorithm under the coexistence of far-field and near-field
sources,’’ IEEE Trans. Signal Process., vol. 60, no. 4, pp. 2066–2070,
Apr. 2012.

IBRAHIM ABOUMAHMOUD received the B.Sc. and M.Sc. degrees from
the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran,
Saudi Arabia, in 2019 and 2021, respectively. His main research interests
include signal processing and direction-of-arrival estimation.

ALI MUQAIBEL (SeniorMember, IEEE) received
the B.Sc. and M.Sc. degrees from the King Fahd
University of Petroleum and Minerals (KFUPM),
Dhahran, Saudi Arabia, in 1996 and 1999, respec-
tively, and the Ph.D. degree from theVirginia Poly-
technic Institute and State University, Blacksburg,
VA, USA, in 2003. During his study at Virginia
Tech, he was with the Time Domain and RF Mea-
surements Laboratory and theMobile and Portable
Radio Research Group. He was a Visiting Asso-

ciate Professor with the Center of Advanced Communications, Villanova
University, Villanova, PA, USA, in 2013, a Visiting Professor with the
Georgia Institute of Technology, in 2015, and a Visiting Scholar with the
King Abdullah University for Science and Technology (KAUST), Thuwal,
Saudi Arabia, from 2018 to 2019. He is currently a Professor with the
Electrical Engineering Department, KFUPM. He is also the Director of the
Center for Communication Systems and Sensing. He has authored two book
chapters and over 130 articles. His research interests include direction of
arrival estimation, through-wall-imaging, localization, channel characteri-
zation, and ultra-wideband signal processing. He was a recipient of many
awards in the excellence in teaching, advising, and instructional technology.

MOHAMMAD ALHASSOUN (Member, IEEE)
received the B.Sc. degree in electrical engineering
from the King Fahd University of Petroleum and
Minerals (KFUPM), Saudi Arabia, in 2013, and
theM.S. and Ph.D. degrees from the Georgia Insti-
tute of Technology, Atlanta, GA,USA, in 2015 and
2019, respectively. He has worked at Nokia Bell
Labs as an EMCD Intern and a Graduate Assistant
at KFUPM, where he was awarded the Best Labo-
ratory Instructor with the Department of Electrical

Engineering. He is currently an Assistant Professor with KFUPM. His
research interests include radio-channel modeling, retrodirective backscatter
communications, spectrally efficient backscatter systems, and physical-layer
applications of machine learning. He was a recipient of both the 2018 and
2019 IEEE International Conference on RFID Best Paper Award. He was
also awarded the Tech to Teaching Certificate from the College Teaching,
Georgia Institute of Technology, and the Associate Level Certificate from
the Center of the Integration of Research, Teaching, and Learning.

SALEH ALAWSH (Member, IEEE) received the
B.Sc. degree in electronic and communications
from Hadhramout University, Al Mukalla, Yemen,
in 2007, and the M.Sc. degree in telecommuni-
cation and the Ph.D. degree from the King Fahd
University of Petroleum and Minerals (KFUPM),
Dhahran, Saudi Arabia, in 2013 and 2018,
respectively. He joined the Electrical Engineering
Department, KFUPM, as a Lecturer, in 2013. His
research interests include ultra-wideband systems,

narrow band interference mitigation, direction-of-arrival estimation, local-
ization, and compressive sensing.

VOLUME 9, 2021 93017

http://dx.doi.org/10.2528/PIERC14081005

