
Received May 25, 2021, accepted June 21, 2021, date of publication June 25, 2021, date of current version July 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3092643

Nonlinear Exposure Intensity Based Modification
Histogram Equalization for Non-Uniform
Illumination Image Enhancement
NOR HIDAYAH SAAD 1,2, NOR ASHIDI MAT ISA 1, AND HARIYANTI MOHD SALEH 1,2
1Imaging and Intelligent Systems Research Team (ISRT), School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal 14300,
Malaysia
2Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis 02600, Malaysia

Corresponding author: Nor Ashidi Mat Isa (ashidi@usm.my)

This work was supported by the Universiti Sains Malaysia Research University (Individual) Research Grant Scheme under Grant
1001/PELECT/8014030 entitled ‘Development of Automatic Intelligent Karyotyping System of Classifying Abnormal Chromosome’.

This work did not involve human subjects or animals in its research.

ABSTRACT Non-uniform illumination image is often generated owing to various factors, such as an
improper setting in the image acquisition device and absorption or reflectance of the objects that results
in the existence of different exposure regions in the image. Although Histogram Equalization (HE) is well
known andwidely used in image enhancement, existingHE-basedmethods often generate washed-out effects
and show unnatural appearance due to the over-enhancement phenomenon, which limits the capabilities
of achieving illumination uniformity of an image. Therefore, this study proposes a modified HE method
for non-uniform illumination image, namely Nonlinear Exposure Intensity-Based Modification Histogram
Equalization (NEIMHE). The proposed NEIMHE method divides the non-uniform illumination image
into five sub-regions and modifies the histogram of each sub-region by setting a nonlinear weight into
their cumulative density function (CDF) of histogram in each sub-region. Each modified histogram is
then equalized using modified HE equations that provide the intensity expansion and different intensity
mapping directions for under-exposed and over-exposed sub-regions. A total of 354 non-uniform illuminated
sample images were used to evaluate the performance of the proposed NEIMHE method, qualitatively
and quantitatively. The proposed NEIMHE method was compared qualitatively with five state-of-the-art
methods: Backlit, Adaptive Fuzzy Exposure Local Contrast Enhancement (AFELCE), Visual Contrast
Enhancement Algorithm Based on Histogram Equalization (VCEA), Exposure Region-based Multi His-
togram Equalization (ERMHE); and Exposure based Sub-Image Histogram Equalization (ESIHE). The pro-
posed NEIMHEmethod produced an enhanced image with more uniform illumination, better preservation of
image details, and high capability of maintaining image naturalness. Quantitatively, the proposed NEIMHE
method achieved the highest scores in Discrete Entropy (DE), Measure of Enhancement (EME), Measure
of Enhancement by Entropy (EMEE), and Peak Signal to Noise Ratio (PSNR); it attained second-best
in Absolute Mean Brightness Error (AMBE) and Lightness Order Error (LOE). From both analyses,
the proposed NEIMHE method has shown its capability of enhancing different exposure regions that exist
in non-uniform illumination images.

INDEX TERMS Nonuniform illumination image, image enhancement, histogram equalization, nonlinear
histogram modification, exposure regions.

I. INTRODUCTION
During image acquisition, light sources such as the sun,
the moon and fluorescent light will radiate light to the object,
which is then captured by the acquisition device sensor
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that produces an image. However, certain conditions either
caused by the image acquisition device (i.e. inappropriate
adjustment and limitation of the device properties) or by
the condition of object itself (i.e. different absorption and
reflection properties of the object on light irradiated) can
result in uneven exposure to the object in an image [1], [2].
Hence, different illumination regions such as dark regions
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FIGURE 1. Non-uniform illumination image (a) Original image
(b) Greyscale image (c), (d) Degenerated details in UE and OE respectively
(e) Its Grey level distribution histogram.

(i.e. shadow region) and sometimes extreme bright regions
(i.e. bright sky) could be observed in an image. In such
condition, the image is said to have non-uniform illumination
as shown in Fig. 1(a). Generally, the non-uniform illumi-
nation image suffers from extremely dark and/or extremely
bright intensity regions termed as under-exposed (UE) and
over-exposed (OE) regions, respectively. Based on Fig. 1(a),
both UE and OE regions are not preferred in the image since
the details in both regions are invisible and unobservable as
shown by the magnified image in Fig. 1(c) and Fig. 1(d).
These conditions affect visual evaluation, hence may lead to
misinterpretation of information from the image and inac-
curacies in subsequent processes in image analysis [2], [3].
On the other hand, there is a third region type exists in
the image that has a good exposure and its details can be
clearly seen by human visual system which is known as
well-exposed (WE) region. TheWE regions normally provide
clear information, thus are preferable to be captured during
image acquisition.

In order to improve the visual quality or interpretabil-
ity of information in non-uniform illumination images for
the sake of human viewers as well as to provide bet-
ter input for subsequence image processing approaches,
a proper enhancement process is needed. The main con-
cern in non-uniform illumination image enhancement is to
improve the uniformity of the image’s illumination as well
as restoring the degenerated details. Various enhancement
methods have been published to address this concern, for
instance histogram equalization [4]–[9], Retinex based algo-
rithm [10]–[13], nonlinear mapping [3], [9], [14]–[16], and
fuzzy transform [17]–[19]. Among the aforementionedmeth-
ods, histogram based enhancement methods are commonly

used in image enhancement due to their simplicity thus satisfy
human visual system since they use luminance rather than
color [20]. The most popular method in histogram based
enhancement is histogram equalization (HE) that mapping
the input gray level based on the probability of pixels’ occur-
rences in each gray level.

Numerous HE works have shown excellent performance
in enhancing the uniform illumination images, but only
few works focused on enhancing non-uniform illumination
images such as in [4] and [5]. The detailed review will be
presented in Section II. There were HE-based enhancement
methods proposed by previous researchers that combined
between HE and another methods such as Retinex based and
nonlinear mapping for the same purpose [6]–[9]. Method
in [6] estimated the illumination and reflectance compo-
nents of an image and divided the image into dark and
bright regions using illumination component. Each region is
then enhanced using specific approaches, which are different
to each other. The enhanced images for both regions are
then combined together and further enhanced using modi-
fied clipped HE. In the clipped HE method, the clip limit
is set to be 50% of the total pixels. The remaining pixels
above the clip limit is redistributed to both dark and bright
regions. The clipped HE prevented over enhancement, thus
ensures uniform shifting of input gray levels. The combi-
nation of the enhancers and clipped HE successfully pro-
duced more uniform illumination and better contrast image.
In other works ( [7], [8]), Tian and Cohen proposed two con-
trast enhancement methods that combined the global linear
stretching and Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) in order to improve the contrast and reduce
saturation in non-uniform illumination color image. Both pro-
posed methods produced better contrast as a result of linear
stretching and were able to preserve the details which was
contributed by CLAHE. However, both methods did not con-
sider noise amplification effects. In addition, method in [7]
used optimization method that required complex computa-
tion, hence increase processing time. Nonlinear histogram
modification was proposed in [9], where the images were
modified using the modified image’s luminance. The nonlin-
ear properties were obtained by determination of pixel-wise
threshold parameter that represent local luminance strength
and assignment of different weightage on each bin based on
Just-Noticable-Different theory. The color image was then
reconstructed using original chromatic information and the
modified luminance. In order to improve the details, local
contrast was boosted via comparison between neighbors. This
method produced vivid color and proper contrast. For all
the abovementioned methods, the proposed method in [6]
performed histogram equalization on the global histogram
whilemethods in [7], [8], and [9] used local HE in the purpose
of details enhancement.

As mentioned, a non-uniform illumination image consists
of different types of exposure, therefore several researchers
specifically considered the exposure conditions in their pro-
posed enhancement methods. In general, the approaches used
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by those researchers applied different enhancement rates to
different exposure types. For example, higher enhancement
rate should be applied to UE or dark regions as compared
to OE or bright regions. Thus, the original histogram of
an image needs to be segmented into sub-histograms which
represent the exposure types of the image before appropri-
ate enhancement process is applied. Wharton et al. [4] first
explored the exposure based HE technique in enhancing
non-uniform illumination image by separating the original
image into three different illumination regions and then
equalized each region using conventional HE method. The
idea of separating the image into different regions enable dif-
ferent enhancement rates to be applied to each sub-histogram.
However, this method used the conventional HE which has
limited enhancement rate control. In some cases, this issue
has caused over enhancement in certain regions. This problem
gave big impact to OE region where over-saturated region
could be produced. The details could be washed-out. In order
to prevent over-enhancement in each sub-histogram, Expo-
sure Region-based Multi Histogram Equalization (ERMHE)
considered entropy to obtain new thresholds that will be
used to repartition the global histogram prior to HE pro-
cess [5]. Similar to [4], this method, at first, segmented the
histogram into three exposure regions named as UE, OE and
WE region. Each sub-histogram is then repartitioned based
on the optimum entropy determined for each sub-histogram.
The re-allocation of the grey level range has been proven to
prevent dominating bins from introducing unbalanced output
gray levels range. HE was performed to each modified sub-
histogram, which resulted in more uniform distribution of
gray levels output. However, ERMHE introduced artefacts to
the enhanced image. Since it only aimed to provide mean-
ingful partition based on entropy, this method neglected to
control the amount of grey level shifting, hence produced
artefacts to the enhanced image. In addition, ERMHE was
unable to reduce the high intensity of the OE region. The OE
region is represented by high frequency bins that occasionally
exist on the right end of the gray level histogram as shown by
red rectangle in Fig. 1(d). The corresponding gray image is
shown in Fig. 1(b). Similar to work in [4] that used the con-
ventional HE to equalize the image, high intensity of the OE
pixels as shown by red rectangle in Fig. 1(d) are unable to be
reduced since the grey level shifting in the conventional HE
was towards the right hand side. This conventional mapping
resulted in over-enhancement of OE region, therefore was
unable to enhance the details as well as to achieve uniformity
of image illumination.

Motivated by those aforementioned problems, this paper
aims to specifically enhance the UE, OE and WE regions by
first considering the level of exposure in each region and then
providing different and specific enhancement process to each
region. It is believed to prevent over enhancement problem,
over-saturated enhanced image, washed-out issue and exis-
tence of artefacts that experienced by the abovementioned
HE based methods. The proposed method adopts histogram
segmentation based on the actual exposure of the image as

a first step. Then, a new HE-based contrast enhancement
method will be introduced to perform different enhance-
ment rate for each determined region. In order to prevent
the over enhancement in each region, the proposed method
will consider clipping process while nonlinear elements are
introduced in equalization process to ensure the uniformity
of image illumination. In addition, level of exposure of each
region will be considered before nonlinear enhancement is
applied to ensure the gray levels shifting is commensurate to
the average exposure in the respective region.

II. RELATED WORKS
A. NON-UNIFORM ILLUMINATION IMAGE
ENHANCEMENT METHODS
The inconsistent illumination produced in non-uniform illu-
mination image has attracted many researchers to work
on enhancement of the image. The existing enhancement
works have produced enhanced images with more uniform
illumination [3], [15], [18], clear details [16], [21], pre-
served naturalness [10], [11], [18], and suppressed noise [17].
These methods can be divided into several domains which
are nonlinear mapping based algorithm, retinex based algo-
rithm, fuzzy transformed based algorithm, and histogram
based algorithm. Retinex based algorithm is inspired by
Retinex theory which insists on the fact that the human
perceived lightness is determined by its neighbor’s relative
lightness [22]. Thus, a difference between a pixel and its
neighbors is used for renewing each pixels’ strength in any
color channels. Due to local comparisons of neighboring
pixels, Retinex based algorithm can bring local luminance
closer to correct values and effectively increase local contrast.
Numerous image enhancement works have been done using
this domain. The main difference among the Retinex-based
methods lies on the technique used to decompose illumina-
tion and reflectance components of the image. This decom-
position process is important to generate proper illumination
and reflectance components for further enhancing the illumi-
nation component and also to avoid halo effect that normally
occurs at the edge of an image.

Wang et al. [10] is the first researcher that used Retinex
theory in enhancing non-uniform illumination image. They
proposed image decomposition into reflectance and illumi-
nation using a bright-pass filter which determined the details
and the naturalness of the image and at the same time lim-
ited the reflectance value to prevent over-enhancement [10].
Then, bi-log transformation was utilized to map the illu-
mination in order to balance between details and natural-
ness. However, this method did not consider different levels
of illumination, therefore it may introduce minor flickering
in case the scenes vary with different degrees of illumina-
tion [10]. Shin et al. focused to preserve the naturalness, sup-
press halo effect around the edges, improve the contrast and
brightness of non-uniform illumination images by propos-
ing retinex based naturalness preservation method [11]. The
image was decomposed into illumination and reflectance

VOLUME 9, 2021 93035



N. H. Saad et al.: NEIMHE for Non-Uniform Illumination Image Enhancement

components using image gradient component which can sup-
press the artefacts around edges. The illumination was then
enhanced using adaptive gamma correction to avoid over-
enhancement. To further enhance the contrast, the proposed
method adopted histogram based method by using specified
mapping curve. However, this method failed to limit illumina-
tion range, therefore the illuminationmay be under estimated.
Another illumination estimation algorithm was proposed by
Gao et al.which was based on the edge-preserving filter [12].
This method preserved the naturalness of the image instead
of exploits all constraints for another estimated illumina-
tion algorithm such as spatial smoothness, sharp edges on
illumination boundaries, and limited range of illumination.
In addition, the proposed method performed fast estimation
by using box filter. The illumination was then enhanced
usingmethod proposed by [10]. The abovementioned Retinex
based image enhancement methods, in some cases, produced
poor ambiance due to the loss of illumination in order to
boost the reflectance layer, hence resulted in extreme color
distortion and unnaturalness in the enhanced image [13].
This problem happened due to the uncertainty in the
boundary of image decomposition and illumination removal
estimation.

In order to cater the uncertainty condition, fuzzy based
image enhancement methods were studied. The fuzzy based
system is based on fuzzy set theory that holds the princi-
ples of uncertainty, ambiguity, and vagueness [17]. Since
non-uniform illumination images have no rigid boundaries
between their dark and bright regions, fuzzy based system
is useful in distinguishing these areas. Verma et al. [21] pro-
posed enhancement method for high dynamic range color
image using fuzzy logic. The method at first separated color
image into three exposure regions named as UE, OE and
mixed-exposed regions using exposure parameters. The lumi-
nance component of HSV color image in each region was
then fuzzified using Gaussian membership function. Differ-
ent sigmoid operators that emphasized on crossover points
and intensification parameters were used to enhance the
fuzzified luminance of UE and OE regions. These param-
eters were then optimized to get the enhanced image that
can recover the degenerated details and produced visually
pleasing image. Hasikin and Mat Isa [17] continued the
idea of dividing the non-uniform illumination image into
different exposure regions for further enhancing the image
using fuzzy set theory. They proposed new parameter named
as contrast factor which considered both global and local
information to divide the image into bright and dark regions.
Each determined region was then fuzzified separately using
modified Gaussian membership function before the fuzzified
image was enhanced using sigmoid function that consider
local contrast of each region in order to preserve the details.
By introducing the new parameter and associating local con-
trast during enhancement, the method was able to preserve
brightness and details without amplifying existing noises.
However, in some cases, the resultant images produced are
low in contrast.

Reshmalakshmi and Sasikumar [18] implemented para-
metric fuzzy transform into luminance layer of LUV color
space image. The parameters were obtained from the mean
value of intensity, V channel of HSV color space image.
In this method, RGB image was first converted to LUV
and HSV color space. In order to enhance the details,
a weighted V channel was implemented based on pixel
neighborhood property. This method successfully enhanced
the non-uniform illumination images and preserved the nat-
uralness of the image at low computational cost. In [19],
Mohammed Salih et al. enhanced the non-uniform illu-
mination image locally and regionally using fuzzy logic
approach. The image was first separated into three regions
known as UE, OE and WE regions before each region was
fuzzified using Gaussian membership function. The fuzzi-
fied image was then enhanced using different enhancement
algorithms for each region. The specific enhancement algo-
rithms however produced over-enhancement for some OE
regions. In summary,most fuzzy based enhancementmethods
segmented the non-uniform illumination image into differ-
ent exposure regions before fuzzification and enhancement
processes were applied to the image. The fuzzified process
that involves membership function indirectly contributed to
different enhancement rate, hence can suppress noise.

Nonlinear mapping was also widely used in enhancing
non-uniform illumination. This method mapped the image
luminance nonlinearly in which UE region was lightened
while OE region was dimmed, thus compressing the global
dynamic range [9]. Wang et al. [3] applied the nonlinear
modification method to image luminance using Symmetric
Naka Rushton Formula (SNRF) to increase the luminance
of UE pixels while decreasing the luminance of OE pixels.
SNRF curve shaped as convex at the low luminance level
while concave at the high luminance level with a control
parameter for the adaptation of the two shapes. The UE and
OE regions were determined locally using dynamic threshold
value. To reconstruct the color image, the luminance and
original chromaticity were combined together using expo-
nential technique before local contrast was performed using
local image exponential technique. Gupta and Agarwal [14]
proposed modified sigmoid function on the base layer of
luminance Y component of YCbCr image to enhance the con-
trast of dark region without affecting the mean brightness of
the image and color information of bright region. The sigmoid
function has specific inclination to consider the enhancement
rate needed. Wang et al. [15] proposed the enhancement
method that increased the intensity value in the excessive
dark regions and reduced the intensity value in the exces-
sive bright regions simultaneously as well as enhanced the
details in both the dark and bright regions using bilateral
Gamma Function. The non-uniform illumination panaromic
image was first decomposed into illumination component
and reflectance component using fast image guided filter
due to its excellent edge-preserving capabilities and con-
trolled computational complexity. Then, the illumination was
corrected using bilateral gamma function that considered
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the distribution illumination characteristics in both dark and
bright regions of the image which was determined by setting
threshold value to 128. In [16], Xiong and Yang worked
on improved gamma curve to correct the illumination adap-
tively in non-uniform illumination image. The illumination
component extracted by multi-scale weighted filtering was
enhanced by the dynamic gamma parameter that depends on
the mean illumination of the image and the illumination of
each pixel. This method overcame traditional gamma algo-
rithm that unable to enhance the dark area, thus failed to
properly enhance the details. Based on the literature review,
as a conclusion, the nonlinear based image enhancement
showed excellent performance in enhancing non-uniform
illumination images. However, several methods (i.e. Lumi-
nance Based Sigmoid Function in [14], Adaptive Correction
Algorithm Based On The Improved Bilateral Gamma Func-
tion in [15]) introduced predefined parameters that need to
be predetermined and in some cases may not be well-suited
to all types of images. In addition, a method such as in [15]
required long processing time because of iteration processes
to obtain the optimum parameters.

In order to reduce the constraints of the inappropri-
ate value of predefined parameters in the abovementioned
non-linear mapping methods, histogram based enhancement
methods especially Histogram Equalization (HE) provide
simplicity and effectiveness in enhancement. Several works
on HE in enhancing non-uniform illumination image have
been explained in previous section. Apart of HE, there are
several enhancement works that suggested the addition of
another processes after HE to be carried out to provide bet-
ter enhancement performance. Visual Contrast Enhancement
Algorithm Based on Histogram Equalization (VCEA) in [23]
was proposed to improve image quality in consideration of
the requirements of human visual perception. As HE resulted
in overstretched especially in the low contrast image, VCEA
adjusted the spaces between two adjacent gray level values by
devising a space adjustment function using Just Noticeable
Difference (JND) concept. In order to recover the lost details,
compressed pixel recovery used free spaces to recover as
many compressed gray values as possible in order to regain
the lost features in JND image. Details texture enhance-
ment was performed in the last stage to enhance the texture
details in the image using gradient and space adjustment
functions. The proposed method produced enhanced image
with clear details and higher contrast in UE region. This
work was extended in [24] with additional segmentation of
image histogram into dark and bright regions at the begin-
ning of the method using human visual perception element.
However, the proposed method did not emphasize in con-
trolling the enhancement in bright or OE regions, thus led to
over-enhancement problem.

Due to the properties of non-uniform illumination image
that consists of different exposure regions, it is important
to enhance the image properly based on the actual expo-
sure regions that appear in the image. In addition, the dif-
ferent enhancement rate of each region should also be

emphasized, therefore level of exposure in each region must
be considered during enhancement process. Lee et. al. pro-
posed adaptively partitioned block-based contrast enhance-
ment (Backlit) that performed contrast stretching based on
the determined fuzzy-based exposure region [25]. This low
computational complexity technique aimed to solve the over-
saturation problem that occur in the conventional contrast
stretching techniques. In Backlit, at first, the input image is
partitioned into blocks and then each block is classified into
different exposure regions known as dark, bright or ambigu-
ous region using two threshold values that are computed using
fuzzy C-means clustering (FCM). The ambiguous regions
are then being partitioned and reclassified until the block is
in 4× 4 size. Then, guided filter is applied to the dark region
and contrast stretching is performed in the dark region to
increase the contrast of that region. The final enhanced image
is generated by combining the contrast enhanced image and
the original image with refined dark region. Table 1 summa-
rizes the existing non-uniform illumination image enhance-
ment methods (i.e. nonlinear mapping based, retinex based
and fuzzy transformed based enhancement methods), which
consider these two criteria (i.e. determination of different
exposure regions and providing enhancement rate control in
each region) to provide proper enhancement. Advantages and
disadvantages of those methods are also tabulated. From the
table, 8 out of 17 reviewed enhancement methods consid-
ered these two criterion in their works. The findings were
promising. Unfortunately, these methods required manual
predefined optimum parameters values, which is subjective
and cause these methods to be inflexible yet unreliable to
all type of images. For the other methods, which applied
one or none of the criteria, although those methods were
able to enhance the details and preserve the lightness, but
several methods introduced over-enhancement such as in [4]
and [18]. These limitations have motivated researchers to
introduce histogram based enhancement methods especially
the HE-based enhancement methods, which provided the
simple yet reliable methods in enhancing the non-uniform
illumination image.

B. HISTOGRAM EQUALIZATION BASED IMAGE
ENHANCEMENT METHODS
Histogram modification, one of the popular approaches in
image enhancement, maps or redistributes the original gray
level of an image into new gray level to ensure a more
uniform resultant histogram than the original histogram. This
procedure, therefore, will increase the contrast of the image.
The most well-known enhancement method that applies his-
togram modification is HE. Generally, HE has four main
variants which are local HE, multi-histogram HE, histogram
modification HE, and exposure intensity based HE. The con-
ventional HE improves the contrast by flattening the input
histogram using probability of each histogram bins and their
cumulative value [26]. High probability pixels cause greater
shift of a grey level while low probability pixels tend to accu-
mulate to adjacent grey level. As a result, over enhancement
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TABLE 1. Summary of existing non-uniform illumination enhancement methods.
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is produced which lead to loss of details in enhanced image.
In order to preserve the details, local HE was proposed in
which each pixel is allowed to adapt to its local pixel intensity
distribution rather than global information [27]. Although this
method successfully enhanced the details of image, but the
computational time and complexity are also increased. In a
non-uniform illumination image, local HE can also produce
over enhancement and under enhancement in the extremely
bright and dark regions respectively if the local neighborhood
experienced these illumination regions [28].

In order to retain the local adaptability and contrast
stretching, multi-histogram based HE was proposed. This
method partitioned the input histogram into several seg-
ments and then the conventional HE was applied to each
sub-histogram, hence provided local contrast stretching and
adaptability compared to the conventional HE [4]. However,
multi-histogram HE often produced high dominant compo-
nents in a single sub-histogram due to the inappropriate
threshold value that was used to segment the histogram.
Hence, over enhancement might occur in the sub-histogram.
In order to overcome the inappropriate histogram segmenta-
tion and a better consideration of image naturality, exposure
intensity-based HE was proposed to provide proper expo-
sure regions, therefore produced more accurate histogram
segmentation [29]. As a solution to control the enhance-
ment rate in each sub-histogram, histogram modification
based HE was developed [30]. By modifying histogram bins,
the enhancement rate can be controlled, therefore can prevent
loss of details and over enhancement by amplifying the low
dominating bins and maintaining the high dominating bins
respectively. As this paper will introduce a new variant of
HE methods by integrating the third and fourth type of HE
variants (i.e., exposure intensity based HE and histogram
modification based HE), the following review will focus
on the state-of-the-art methods proposed under these two
variants.

Exposure intensity based HE deals with certain exposure
characteristics such as UE and OE regions for enhancing
an image. The existing methods emphasized on exposure
parameters to segment the histogram which was more proper
than using the conventional histogram statistics such as mean,
median etc. Singh and Kapoor [31] divided original image
into UE and OE sub-histograms by using different expo-
sure based intensity threshold. The sub-histograms were then
clipped using average number of gray level occurrences
before being equalized independently. Tang and Isa [29]
also used the same exposure threshold as in [31] except
the clipping method used mean and median values. These
two methods provided enhancement only for two exposure
regions, however in non-uniform illumination image, there
is the third region that has good contrast and clear details
known as WE region. Therefore, these methods often failed
to be applied to the WE region, in which they tend to
modify the contrast of WE region based on the enhance-
ment designed for the two exposure regions, namely UE and
OE regions. To solve this problem, Exposure Region-Based

Multi-Histogram Equalization (ERMHE) was proposed [5].
This method segmented the histogram into three regions,
which has been proven to provide more accurate image
enhancement. However, in this method, enhancement rate
control was less considered especially in the OE sub-
histogram, which could possibly lead to over-saturated and
washed-out problems.

Histogram modification based HE was proposed to elim-
inate the domination of higher histogram components in the
image histogram. This method shortened the dominant his-
togram bins before applying the equalization process [32].
In conventional HE, the transformation function forced the
gray levels in the lower bins to combine with the adja-
cent gray levels, therefore removed the details in the image.
By limiting the pixels in the dominating histogram bins,
the lower bins can have a chance to be separated. Refer-
ence [32] modified the accumulations in the histogram bins
by shortening the histogram bins that have pixels accumula-
tion higher than the mean of nonzero bins before equalized
the global histogram. This method was able to preserve the
small details in the image. In histogram modification based
HE, power law transformation function was occasionally
used after histogram clipping process. This process provided
apparent enhancement control. Wang and Ward [33] con-
trolled the increment of gray level in the middle region using
power law transformation function. This method, at first,
modified the histogram bins using three clipping levels;
upper threshold, lower threshold and middle threshold. The
clipped histogram avoided over enhancement at dominat-
ing bins. The power law index, r , controlled enhancement
rate in which as r increases, more weight is put on the
high dominating bins. Hence, this method provided an ade-
quate space for enhancing low dominating bins by setting
the index to be less than 1. However, this method required
two manual control parameters which are the enhancement
index, r and the upper clamping point. Recursive Sepa-
rated Weighted Histogram Equalization (RSWHE) proposed
in [30] also modified the sub-histograms using normalized
power law function before equalized each weighted sub-
histogram. This method segmented the global histogram into
two or more sub-histograms recursively based on the mean
or median of the image. This method effectively solved
mean-shift problem, preserved the image brightness and
enhanced the image contrast as well. However, RSWHE
tended to introduce over enhancement to the OE region.
Additionally, the user-defined selection of recursion level
prevented RSWHE to yield optimal enhancement perfor-
mance. Recursive weighted multi-plateau histogram equal-
ization for image enhancement (RWMPHE) [34] extended
the work in [30] by adding the histogram clipping process.
The image histogram was split into more than two parts
recursively based on mean or median values, therefore named
as RWMPHE-M and RWMPHE-D, respectively. The bins
were then clipped using six plateau limits based on the
maximum peak value of the input image. Weighting module
then modified the probability density of each sub-histogram
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FIGURE 2. Flow chart of the proposed NEIMHE method.

using normalized power law. Lastly, HE was applied on each
sub-histogram independently. This method produced image
with better contrast due to combination of power law his-
togram modification and histogram clipping as the enhance-
ment control. Both methods in [30] and [34] preserved the
image mean brightness since the increment of number of
histogram segmentation caused the output mean brightness
to converge to the input mean brightness.

The abovementioned methods shared some common lim-
itations in which these variants lack the element of image
exposure during histogram segmentation. In order to apply
these methods to the non-uniform illumination image that
consists of different exposure regions, it seems unrealistic
to segment the histogram using statistical method such as
mean or median. Besides that, the abovementioned methods
lack in controlling enhancement in high intensity region. The
high intensity pixels in the enhanced image are maintained at
the same intensity or slightly enhanced since the intensity is

shifted towards the right-hand side of the histogram, resulting
in over enhancement in the OE region. This condition will
become worst if the high intensity region dominates the his-
togram that tends to overwhelm the overall enhancement of
the image.

III. PROPOSED METHOD
Motivated by previous works discussed in Section II,
(i.e., [3], [5], and [33]), this work will propose a new vari-
ant of HE method by, first, differentiating the input image
into several exposure regions before histogram modification
based HE is applied as nonlinear enhancement in order to
provide different enhancement rates to each exposure region.
The proposed method named as Nonlinear Exposure Inten-
sity Modification Based Histogram Equalization (NEIMHE)
adopts the combination of exposure intensity and histogram
modification-based HE to enhance the image. Fig. 2 shows
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the flow chart of the proposed NEIMHE method. The pro-
posed NEIMHE method uses exposure region determination
method as introduced in [35] to divide the image into three
exposure regions named as UE, OE, and WE region. Based
on method in [35], the basic characteristics of an image
such as intensity, entropy, and contrast were determined from
locally defined non-overlapping windows to establish the
decisive rules in classifying the exposure region. Based on
the output of the method proposed in [35], the intensity
range of the determinedWE region distributes over the whole
range of intensity levels, which is [0, L − 1] where L is
the total number of intensities in WE regions. If one spe-
cific contrast enhancement method is applied to this WE
region, the region is still being implemented by global con-
trast enhancement because the contrast enhancement method
is applied to the whole range of intensity level (i.e. global
region) and not to a specific range (i.e. local region). This
is the limitation of the method proposed in [5] (i.e. which
applied contrast enhancement process to UE, OE and WE
regions detected by method in [35]), where, in some cases,
the contrast of the WE regions is still low without details
preservation. To reduce the problem, the proposed NEIMHE
methodwill further divide the determinedWE regions by [35]
into three sub-regions named as lower well-exposed (LWE),
mid well-exposed (MWE) and upper well-exposed (UWE)
regions, before histogram of these three new sub-regions are
generated. This pre-processing stage is done to allow differ-
ence enhancement rate to be applied to these WE sub-regions
to allow implementation of local contrast enhancement. The
intensity histograms of five regions (i.e. UE, OE, LWE,
MWE, and UWE) are then modified by limiting their bins
and applying the power law transformation function. This
stage, as shown by a pink block in Fig. 2, provides different
enhancement rates based on the average luminance in each
exposure region. As a result, the original histograms are
modified to nonlinear shape to facilitate the non-uniform
intensity mapping to be performed in the third stage. The
third stage of the proposed NEIMHE is a dynamic range
expansion and intensity mapping in which the dynamic range
of each region is expanded to certain values based on the
average intensity of each region. Each region is then equal-
ized using different HE equations (i.e. which is modified by
the proposed NEIMHE method). Dynamic range expansion
provides adequate space for the intensities shifting during
contrast enhancement process, while different equalization
process (i.e. different HE equations) controls the direction of
intensity mapping in each exposure region either the orig-
inal intensity is mapped to the higher intensity or to the
lower intensity. The equalized images produced non-linear
intensity shifting that caters different levels of exposure for
different region. All five HE equalized regions (i.e. UE, OE,
LWE, MWE and UWE regions) are then combined to gen-
erate an enhanced image. In order to further boost the local
details in the enhanced image, local contrast boosting method
adopted in [9] is performed in the last stage of the proposed
method.

A. WE SUB-REGIONS DETERMINATION
As mentioned above, the proposed method uses three sub-
images produced from method [35] that correspond to
different exposure levels for further enhancement. These
three sub-images contain local regions that are classified to
have under-exposure, over-exposure, and well-exposure illu-
mination. This approach is adopted in the proposed NEIMHE
method in order to enable targeted enhancement to be done
according to a predetermined level of exposure. As an exam-
ple, areas that are too dark should be lightened while areas
that are too bright should be slightly dimmed while WE
areas only need a little enhancement or are maintained as the
original regions. Since the input image is divided into three
regions, therefore three histograms are generated (i.e. one
histogram for each region). Compare to ERMHE in [5],
which uses the mean of each exposure region to segment
the original histogram, the proposed NEIMHE method con-
structs three new histograms by using information from
each region. The UE histogram usually contains information
about low-intensity pixels, while the OE histogram repre-
sents high-intensity pixels. The WE histogram stores infor-
mation about the pixels throughout the entire range of image’s
intensity, which in many cases will overlap with the pixels
in the UE and OE regions. Therefore, this histogram that
experienced intensity overlapping needs to be pre-processed
before enhancing the region. The pre-process involves divid-
ing the WE histogram into three new sub-histograms, named
as LWE, UWE, and MWE histograms as mentioned in the
introduction of Section III. The separation is done to enable
local contrast enhancement in these WE regions since these
regions normally occupy wide dynamic range. By separating
the region, difference enhancement rate can be applied to
these WE sub-regions. The proposed dynamic ranges for
LWE, MWE and UWE are tabulated in Table 2. Note that
ILWE , IMWE and IUWE are the intensities of LWE, MWE
and UWE regions, respectively. IminWE , ImaxWE , ImaxUE and
IminOE are the minimum intensity of WE region, maximum
intensity of WE region, maximum intensity of UE region,
and minimum intensity of OE region, respectively, which are
obtained from [35].

TABLE 2. Proposed dynamic ranges for WE sub-regions.

Consider the non-uniform illumination and the corre-
sponding histogram in Fig. 3. After performing the exposure
region determination process, the original histogram can be
separated into three exposure region histograms (i.e. UE,WE,
and OE) as shown in Fig. 3(a). WE histogram in Fig. 3(a)
that comprises of the wide dynamic range is then further
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FIGURE 3. WE sub-regions determination process (a) Histogram of
different exposure regions generated in [35] (b) Histogram of LWE region
(c) Histogram of MWE region (d) Histogram of UWE region.

separated into three regions (i.e. LWE, MWE and UWE)
as shown in Fig. 3(b)-(d) with the dynamic ranges of each
region as stated in Table 2. Note that, after applying the
abovementioned process, the proposed method constructs
five histograms (i.e. UE, LWE, MWE, UWE, OE) in which
the histogram modification process will be done separately
in each histogram that will be further explained in the next
section.

B. HISTOGRAM MODIFICATION
Histogrammodification involves altering the histogram’s nat-
ural properties such as the number of bin’s pixels or indirect
properties of histogram such as the cumulative sum of pixel’s
probability. In the proposed NEIMHE method, the conven-
tional cumulative density function (CDF) is replaced by
weighted CDF to perform controllable or adaptive enhance-
ment level during the intensity mapping process. At first, for
each sub-region, the number of pixels in each bin is limited
to the average number of pixels of each sub-region. Then,
the weighted CDF,CDFWR is computed by associating power
law transformation as represented in Eq. (1):

CDFWR (k) =



(
k∑
i=1

PDFR (i)

)r
for UE,LWE(

K∑
i=k

PDFR (i)

)r
for OE,UWE(

k∑
i=1

PDFR (i)

)
for MWE and

Iavg < 128(
K∑
i=k

PDFR (i)

)
for MWE and

Iavg ≥ 128

(1)

where R is one of the five sub-regions defined in the previous
step (i.e. UE, OE, LWE, MWE, and UWE), K is the total
number of bins in each sub-region, r is a power-law index, k is
the index of grey levels in each region, and Iavg is the average
intensity of an image. PDFR(i) is the modified probability
density function of each bin in sub-region R and is given by
the ratio of average number of pixels of each sub-region, navg
to the total pixels in each sub-region, nT as stated in Eq. (2):

PDFR(i) =
navg
nT

(2)

The power law index, r is devised to mimic the nonlinear
pattern that represents the perception of brightness in the
human visual system [36]. This power-law index, r is calcu-
lated by considering the average intensity of each sub-region
and is given by Eq. (3):

r =


0.5+

(
IavgR − IminR
ImaxR − IminR

)
× 0.5 for UE and LWE

0.5+
( ImaxR − IavgR
ImaxR − IminR

)
× 0.5 for OE and UWE

(3)

where IavgR , IminR and , ImaxR are the average intensity, min-
imum intensity, and maximum intensity in each sub-region,
respectively. In the proposed method, the level of exposure in
each sub-region is considered to ensure that enhancement is
done at the different and appropriate rates. The UE region
with a lower average intensity needs to be enhanced at a
higher rate than the UE region with higher average intensity.
It is because theoretically the UE with lower average of
intensity has lower visibility of image’s details. As an exam-
ple, consider two non-uniform illumination images namely
Sample1 and Sample2 as shown in Fig. 4(a). The intensities
of the UE region for Sample1 distribute almost at the middle
range of the histogram, while the intensities of the UE region
for Sample2 distribute to the left side of the histogram. The
average of intensity of UE region for Sample1 is higher than
that of Sample2. In addition, the details in the UE region of
Sample2 are more difficult to be observed as compared to
Sample1, which requires higher enhancement rate. An oppo-
site scenario is to be applied for the OE region. The OE
region with higher average of intensity should be enhanced
at higher rate as compared to the OE region with lower aver-
age of intensity. Based on this explanation and information
from Eq.(1) and Eq.(3), the relationship between the CDF,
intensities’ distribution and power law index, r , is illustrated
in Fig. 5.

In the proposed NEIMHE method, the r index is limited
from 0.5 to 1 in order to prevent the accumulation of the sim-
ilar CDFs at the higher intensity of UE and LWE regions as
well as lower intensity of OE and UWE regions. The similar
CDFs tend to accumulate the pixels from different intensities
into one intensity during intensity mapping process, hence
will cause loss of details in the image. This nonlinear CDF
also prevents the dominating bins in each region to have
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FIGURE 4. Examples of different UE histogram patterns produced by two
different images (i.e. Sample1 and Sample 2) (a) Original image
(b) Detected UE region (c) Histogram of UE region.

FIGURE 5. Effect of power-law index, r on CDF and image’s intensities for
different exposure regions.

greater intensity shifting during intensity mapping that indi-
rectly will prevent over-enhancement from being occurred.
In Eq.(1), note that the power-law index, r , is not applied
to the MWE region since this region is considered to have
proper exposure and only needs small enhancement that does
not require the enhancement rate control. However, the cal-
culation of CDF in MWE region considers the global mean
of the image in order to provide more appropriate intensity
mapping direction by taking into account the ideal average
intensity of an image which is 128.

C. DYNAMIC RANGE EXPANSION AND INTENSITY
MAPPING
As mentioned, histogram modification involves modifying
the histogram bins into a nonlinear pattern to control the
enhancement rate while the dynamic range expansion and
intensity mapping process then transforms the nonlinear pat-
tern bins into a certain intensity range. Inmost of the exposure
based HE techniques, the original intensities in a region are
mapped in the original dynamic range of the region; however,
in the proposed method, the ranges of UE and OE regions
are expanded to certain intensities based on a well-known
photographic technique known as Zone System as proposed
in [36]. This step is proposed to enable the pixels in the above-
mentioned regions having sufficient spaces to be mapped.
The expansion step also aims to prevent the accumulation of
pixels in limited spaces, hence no improvement of intensities
can be visualized. According to [24], the human visual system
can discern a wide gap in the luminance range’s bright and
dark areas; thus, the proposed method expands the intensities
of UE and OE regions to a new range using a new parameter
named Control Exposure. This step is summarized in Eq. (4)
and Eq. (5):

InewUE (i)

=


IminUE +


(
ImaxUE + (51− cR)
−IminUE

)
×CDFWR (i)

 for cR < 51

IminUE +

(
(ImaxUE − IminUE )
×CDFWR (i)

)
for cR ≥ 51

(4)

InewOE (i)

=


ImaxOE −


(
ImaxOE−
(IminOE − (cR − 204)

)
×CDFWR(i)

 for cR>204

ImaxOE −

(
(ImaxOE − IminOE )
×CDFWR(i)

)
for cR≤204

(5)

where control exposure intensity for UE and OE region, cR is
given by Eq. (6):

cR =

{
0.5 (ImaxUE ) for UE
IminOE + (0.5 (ImaxOE − IminOE )) for OE

(6)

IminUE , ImaxUE , are the minimum and maximum intensities
of UE region, respectively, while IminOE , ImaxOE are the min-
imum and maximum intensities of OE region, respectively.
As shown in Eq. (4), the original dynamic range of UE is
expanded to a certain range above the maximum intensity to
allow more distributions of intensities if the control exposure
is less than 51. While in Eq. (5) the original dynamic range is
also expanded to a certain range below theminimum intensity
of OE pixels if the control exposure is beyond 204. As men-
tioned above, values 51 and 204 are chosen by referring
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FIGURE 6. The 10 regions in the zone system [37].

to [37] in which the intensities that lied in Zone III to Zone
VIII are considered to have appropriate exposure. Referring
to the Zone system in [37], the grey levels of an image (0-255)
are divided into ten zones (i.e. Zone I to Zone X), as shown
in Fig. 6, therefore Zone III to Zone VIII consist of gray level
51 to 204.

By referring to Eq. (4), the new intensity values in the
UE region will have the non-uniform shifts in which the gap
between adjacent lower intensities being wider than the gap
between adjacent higher intensities. As a result, in this expo-
sure region, the darker region will be lightened more than
the lighter region. Meanwhile, Eq. (5) shows that in the OE
region, the gap between two adjacent intensities is larger at
higher intensities. As a result, the area with the higher inten-
sity in this OE histogram will have significantly reduced illu-
mination compared to the area with less brightness (i.e. less
intensity) located to the left of the histogram, which is adja-
cent to the WE intensities.

In order to enhance the WE region, the same hypothesis as
used in enhancing the UE and OE are used for the enhance-
ment of the LWE and UWE regions, respectively. However,
control exposure, cR is not applied to these processes. The
mapping function for sub-regions in WE are shown in Eq.(7).

InewWE (i)

=



IminLWE +

(
(InewUEu − IminLWE )
×CDFWR (i)

)
for LWE

ImaxUWE −

 (ImaxUE − InewOEl)
×CDFWR
(i)

 for UWE

InewUEl +

(
(InewOEl − InewUEl)
×CDFWR (i)

)
for MWE and

Iavg ≥ 128

InewOEl −

(
(InewOEl − InewUEu)
×CDFWR (i)

)
for MWE and

Iavg < 128
(7)

IminLWE is minimum intensity of LWE region, ImaxUWE
is maximum intensity of UWE region, InewUEu and InewUEl
are minimum and maximum intensity of the modified UE
region, respectively and InewOEl is minimum intensity of the
modified OE region. Eq. (7) shows the different direction of
intensity mapping between LWE and UWE regions. Similar
to the intensity mapping in the UE region, the intensity in
LWE region is mapped by allocating wider gaps at the lower
intensities compared to smaller gaps at the higher intensities

of LWE pixels. In addition, the pixels in the LWE region
are being mapped in the range of minimum intensity to the
maximum intensity of the modified UE region produced by
Eq. (4). The intensities in the UWE region, on the other hand,
are mapped with wider gaps at higher-intensity pixels and
smaller gaps at lower-intensity pixels. The minimum output
intensity is the same as the minimum intensity of the mapped
OE regions. For MWE region, the intensities are mapped in
the range of the maximum output intensity of UE to the mini-
mum output intensity of OE. Besides, the nonlinear mapping
process is also done in this sub-region but at a minimum rate
in which either the lower or higher intensities in MWE region
will havewider displacement depending on the average inten-
sity of the original image as shown in Eq. (7). The average
intensity of the original image is compared with the average
intensity of the ideally WE image which is 128 in order to
determine intensity shifting direction of this MWE region
either the original intensity is shifted to the right or left of
the histogram. If the average intensity of the original image
is less than 128, the intensities are shifted to the right where
the pixels will have a higher intensity while if the average
intensity of the original image is the opposite, the intensities
will be shifted to the left where the initially brighter intensity
will be reduced.

D. LOCAL CONTRAST BOOSTING
The image produced from histogram modification and equal-
ization process that discussed in Section IIIB, and IIIC has
lightened up low intensities and pulled down high intensities.
This condition compresses the dynamic range, and sometimes
the local contrast tends to be lost. In order to boost the local
contrast, the proposed NEIMHE method adopted local con-
trast enhancement in [3], which aims to increase or decrease
the intensity of a pixel by comparing with their neighboring
pixels’ intensities. Based on [3], a pixel’s intensity will be
increased if it is larger than its neighbors’ intensities and will
be decreased if it is smaller than its neighbors’ intensities,
as represented in Eq.(8):

IE_R (i, j)

=


InewR (i, j)

[ BF∗InewR (i,j)
InewR (i,j)

]2
if InewR (i, j) ≤
BF ∗ InewR

1−
(
1− InewR (i, j)

)[ 1−BF∗InewR (i,j)
1−InewR (i,j)

]2
otherwise

(8)

where, InewR is the luminance nonlinear HE image produced
from Section IIIB and Section IIIC and BF is a bilateral filter.
The proposed method applies Eq.(8) into a luminance image
in order to specifically boost the luminance compared to the
method in [3] that applies the filter to each color channel.

IV. DATA SAMPLE AND ASSESSMENT METRICS
In order to evaluate the performance of the proposed
method, 354 non-uniform illumination images consisting
of scenery and face images are used. All images are
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taken from the California Institute of Technology database,
namely Pasadena Houses 2000, and Faces 1999 (Front)
packages [38]. These non-uniform illumination images are
categorized into two types, namely close-up images and non-
close-up images with 266 and 88 images, respectively. This
study focuses onmanipulating and applyingHE variant meth-
ods on the grey level images and all processes are done in
the spatial domain only. For assessment of the compatibility
and capability of the proposed method, both qualitative and
quantitative analyses are conducted.

Qualitative analysis is performed to assess the visual
quality of the enhanced or resultant image. In this paper,
the image is visually examined for contrast enhancement,
detail preservation, and naturalness preservation. Each aspect
will be supported by its respective quantitative measurement.
In order to balance the subjective elements in the qualitative
evaluation, quantitative analysis is conducted to analyze the
enhanced image in terms of the widely used metrics. The
existing work in enhancing non-uniform illumination, such as
in [5] used Peak Signal to Noise Ratio (PSNR), Image Con-
trast Function (ICF), Discrete Entropy (DE), Absolute Mean
Brightness Error (AMBE), and Average Score to evaluate the
performance of HE based techniques. The work in [6] added
two evaluation metrics named as a Measure of Enhance-
ment (EME) and Natural Image Quality Evaluator (NIQE) to
evaluate the enhancement in terms of local contrast and nat-
uralness preservation, respectively. Another metrics known
as a Measure of Entropy Enhancement (EMEE), which is
an extension of EME, was used in [19] together with DE,
ICF, EME, and Universal Image Quality Index (UIQI). In this
study, only seven quantitative evaluation metrics are used
which are ICF, EME, DE, EMEE, PSNR, AMBE and LOE.
ICF and EME are used to evaluate the contrast of the output
image in a global way and in the local region, respectively
while DE and EMEE are used to evaluate the amount of
the details appear in the image globally and in the local
region, respectively. Meanwhile, PSNR, AMBE and LOE is
used to evaluate the naturalness of the image in terms of
noise presented, mean brightness change and additional light
introduced to the enhanced image.

The contrast enhancement is analyzed by visually exam-
ining the global contrast and local contrast of the enhanced
image. The global contrast is evaluated by globally visual-
ized the levels of different brightness of the whole (overall)
enhanced image. A resultant image with a good global con-
trast should provide clear visualized dark and bright regions,
which is able, as an example, to differentiate between shadow
regions (i.e. represented by dark regions) and sky regions
(i.e. represented by bright regions). However, in some cases,
with excessive global contrast enhancement implementation
(i.e. having extreme dark and bright regions), non-uniform
illumination resultant images could be still produced. As the
proposed NEIMHE method is specifically designed to pro-
duce uniform illumination resultant images, the production
of these extreme dark and bright regions should be avoided.
Based on [6], the illumination uniformity is evaluated by

inspecting the brightness difference between UE and OE
regions in which the lower the differences, the better the
illumination uniformity. In general, a good contrast enhance-
ment method should be able to improve the global contrast
with uniform illumination of resultant images. Meanwhile,
the local contrast is evaluated locally especially in OE and
UE regions to examine the performance of the enhancement
applied to these extreme regions. Similar to global contrast
enhancement, local contrast should be enhanced as well.
Both global and local contrast visual evaluation is further
associated with the corresponding quantitative measurements
which are ICF and EME. ICF is used to evaluate contrast
improvement in an image [5]. In mathematical, ICF is given
by Eq. (9) which represents the gray level deviation across the
whole image. In Eq. (9)W and H represent the width and the
height of the image, respectively, and Y (w, h) is the grey level
value of an image at (w, h). With higher value ofC , the image
is said to have better contrast [6]. Indirectly, it also implies
that more information is contained in the image. Normally,
ICF is represented in dB as in Eq.(10):

C =
1

W × H

∑W

w=1

∑H

h=1
Y 2 (w, h)

−

∣∣∣∣ 1
W × H

∑W

w=1

∑H

h=1
Y (w, h)

∣∣∣∣2 (9)

CdB = 10 log10 C (10)

In order to assess the enhancement locally, a measure
of enhancement, EME is used. EME which is proposed by
Agaian et al. [39], computes the ratio between the maximum
and minimum intensities in the defined small blocks in an
image as shown by Eq. (11):

EME =
1

k1k2

k1∑
l=1

k2∑
k=1

20 log
Iwmax;k,l

Iwmin;k,l + c
(11)

where k1k2 is the number of small blocks wk,l(i, j) in an
image, Iwmax;k,l and I

w
min;k,l are the maximum and minimum

intensity of wk,l(i, j), respectively. EME works by dividing
the image into 16× 16 blocks for evaluation. c is a small con-
stant at the denominator that equals 0.001 to avoid divisions
by 0. Since EME segments the image into numerous blocks
that involve evaluating maximum and minimum intensities in
each block, EME is suitable for measuring local contrast of
the image. Higher EME indicates a greater local contrast of
the enhanced image. Hence, to produce uniform illumination
enhanced image, low ICF and high EME are intended.

One of the criteria of the enhanced image is the abil-
ity to preserve the details. In order to evaluate the detail
preservation in the enhanced image, the image’s critical parts
(e.g., leaves, grass, and surface texture of walls) should suc-
cessfully be magnified to inspect for the observable details
in that region [6]. The resultant image with more observable
details shows better detail preservation. The visual analysis
will be further supported by measuring the DE and EMEE.
DE measures the information content of the simple 8-bit
image according to information theory [26]. The number of
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bits required to encode the pixel’s intensity in an image is
represented by entropy. An image can only achieve the maxi-
mum entropy value when the probability of each gray level is
the same. As a result, the intensity of the pixels is equitably
distributed across the gray levels in a histogram and the image
can be interpreted to have more details. Therefore, a higher
value of DE is desired to indicate an image provides more
information or details [26]. However, it may also indicate the
presence of noise [40], therefore visual assessment is vital
to be conducted in order to assess the noise levels. Discrete
Entropy is given by Eq. (12):

DE = −
L−1∑
l=0

p (l) .log2(p (l)) (12)

where p (l) is PDF of a histogram and l is the gray levels
exist in an image. DE normallymeasures the entropy globally,
therefore to evaluate the entropy locally, EMEE is used.
EMEE performs enhancement evaluation in small blocks and
uses concept of entropy as shown by Eq. (13):

EMEE =
1

k1k2

k1∑
l=1

k2∑
k=1

α

(
Iwmax;k,l

Iwmin;k,l + c

)α
log

Iwmax;k,l
Iwmin;k,l + c

(13)

where α is a constant and is equivalent to 0.8 as suggested
by the authors in [39]. Higher EMEE indicates that the image
has better quality [41]. Based on the above discussion, higher
DE as well as higher EMEE are intended to indicate better
details preservation.

Another aspect to be evaluated to analyze the performance
of enhanced image is the naturalness of the enhanced image.
The images’ naturalness is evaluated by examining the bright-
ness change between the enhanced image and the original
image [10]. The global intensity of the enhanced image can-
not significantly differ from the original image’s global inten-
sity. Besides that, based on [42], to indicate that the enhanced
image preserves the naturalness of the original image, no light
source should be introduced and no blocking effect should
be amplified in the enhanced image. The enhanced image
will be also visually examined to detect the presence of noise
which would affect the naturalness of the enhanced image.
In order to quantitively measure the naturalness preserved in
the enhanced image, LOE, AMBE, and PSNR are calculated.
LOE is used to measure lightness distortion of the enhanced
image and is calculated by using Eq. (14):

LOE =
1

W ∗ H

W∑
w=1

H∑
h=1

RD (w, h) (14)

where RD is the relative order of lightness difference between
original image and its enhanced image which is calculated as
Eq. (15):

RD (x, y) =
W∑
w=1

H∑
h=1

(U (L (x, y) ,L (w, h))

⊕U (Le (x, y) ,Le (w, h))) (15)

where W and H are the height and width of an image, ⊕ is
exclusive OR operator and U (x, y) is unit step function that
returns 1 if x > y and 0 for other conditions. Smaller
LOE is desired to have better lightness order. Meanwhile,
AMBE is computed by taking the difference of the mean
brightness between the input image and the enhanced image
as in Eq. (16). M (I ) and M (O) are the mean brightness of
the enhanced image and original image, which are given by
Eq. (17) and (18), respectively:

AMBE = |M (I )−M (O)| (16)

M (I ) =
1

W × H

W∑
w=1

H∑
h=1

I (w, h) (17)

M (O) =
1

W × H

W∑
w=1

H∑
h=1

O (w, h) (18)

A small AMBE is desired since it represents a small or
no difference on the mean brightness of original image [43].
Therefore, the brightness of the image is preserved. During
image enhancement, the degradation of signal commonly
occurs. To evaluate the degradation of enhanced image, Peak
Signal to Noise Ratio (PSNR) is used. PSNR is calculated by
the use of Mean Square Error (MSE) that shown in Eq. (19):

PSNR = 10 log10

(
(Max (Ii))2

MSE

)
(19)

where Max (Ii) is the maximum gray level value of the
input image Ii. MSE is given by Eq. (20) which represents
the mean intensities difference between output image and
the input image. W and H are the height and width of the
image, respectively, while Ii(w, h) and Io (w, h) are the pixel’s
gray level of the input image and output image, respectively.
Therefore, the smaller MSE is desired, indicating smaller
differences between output and input images that represent
less error or degradation in the enhanced image. Lower MSE
then produces greater PSNR, hence better image quality [26].

MSE =
1

W × H

W∑
w=1

H∑
h=1

[Ii (w, h)− Io (w, h)]2 (20)

V. RESULTS AND DISCUSSION
This section presents and analyses the enhanced images
produced by the proposed NEIMHE method. The images
used in the analysis were split into two types, namely
close-up and non-close-up images. The analyses exam-
ined the effects of the proposed NEIMHE method on
the characteristics of the tested images, and compared the
performance of the NEIMHE method with those of the
state-of-the-art contrast enhancement methods. The cho-
sen state-of-the-art methods for performance comparison
are Backlit [25], Adaptive Fuzzy Exposure Local Contrast
Enhancement (AFELCE) [19], Visual Contrast Enhancement
Algorithm (VCEA) [23], Exposure Region-Based Multi His-
togram Equalization (ERMHE) [5] and Exposure based Sub-
Image Histogram Equalization (ESIHE) [31].
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FIGURE 7. (a) Original CloseUp1 image and resultant images produced by (b) Backlit (c) AFELCE (d) VCEA (e) ERMHE (f) ESIHE
(g) proposed NEIMHE.

A. CLOSE-UP IMAGES
Fig. 7(a) shows an example of a non-uniform illumination
close-up image, labelled asCloseUp1. The originalCloseUp1

image suffered from uneven or non-uniform illumination.
The regions highlighted by the red rectangles in Fig. 7(a)
have been irradiated with an excessive amount of light,
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TABLE 3. Quantitative analysis results for CloseUp1 image.

representing OE regions. This excessive amount of light led
to excessive bright regions, in which their details are invisible
to the human eyes, e.g. the details of hair in the bigger
red rectangle region. On the other hand, the white rectangle
region in the same figure is overshadowed by tree branches;
hence, producing dark shades that obscure the texture of
the roof. This region is indicated as the UE region. The
original image in Fig. 7(a) was enhanced using six different
methods (i.e., Backlit, ALEFCE, VCEA, ERMHE, ESIHE
and NEIMHE) and the enhanced images are illustrated
in Fig. 7(b), (c), (d), (e), (f) and (g), respectively.

From the observation of the overall image’s contrast,
AFELCE, VCEA and ESIHE methods produced high con-
trast resultant images. However, these methods suffered from
over-enhancement problems in the OE region that can be seen
by the over-brightened regions, as highlighted by red rectan-
gles in Fig. 7(c), Fig. 7(d) and Fig. 7(f). Meanwhile, VCEA
and ESIHE failed to enhance the UE region, as the tree shade
in the white rectangle region became darker, whereas the
ALEFCE method maintained the original condition. Despite
having high contrast enhanced images, which were supported
by top three score for ICF values produced by VCEA, ESIHE
and ALEFCE, the large brightness difference between the
over-enhancedOE region and the under-enhancedUE regions
showed that these methods have not been capable of gener-
ating uniform illumination. In order to further investigate the
performance of the contrast enhancement, the local contrast
of the enhanced image was visually examined, yet AFELCE
failed to enhance the local contrast of the original image.
As can be seen in Fig. 7(c), almost all regions highlighted
by either a solid line or a dotted line rectangle, particularly
the red rectangle regions, have low contrast. This led to the
lowest EME produced by AFELCE. Meanwhile, VCEA and
ESIHE enhanced the contrast of WE region, as shown by
blue dotted rectangles in Fig. 7(d) and Fig. 7(f) respectively;
therefore, VCEA and ESIHE scored higher EME than that of
the original image. On the other hand, Backlit successfully
brightened the UE region, as shown by the white rectan-
gle area in Fig. 7(b). Therefore, the image appears brighter
and uniform in illumination compared to the original image.
More uniform illumination leads to a low global contrast of
an image. This has been proven by the lowest ICF value,
as recorded in Table 3. However, Backlit failed to produce

better contrast in the local region, as evidenced by the blue
dotted rectangle regions, where the plant and a portion of the
jaw have low grey level variations as compared to the original
image. As a result, the EME was relatively low.

ERMHE produced uniform illumination in the enhanced
image, with a smaller brightness difference between the OE
and UE regions than in the original image. ERMHE per-
formed minimal intensity enhancement for the OE regions,
while darkening the UE region, which could be observed
by the dark shade of a tree branch in the white rectangle
region, as shown in Fig. 7(e). As the UE region becomes
darker than the original region, the global contrast of ERMHE
becomes slightly higher than that of the original image.
This is consistent with the higher ICF obtained by ERMHE
compared to that of the original image. ERMHE failed to
improve the local contrast in the OE region, as evidenced by
the brighter and less intensity variations in the smaller red
rectangle, as depicted in Fig. 7(e). This problem has been
successfully solved by the proposed NEIMHEmethod, which
produced more variations of intensities; thus, generating bet-
ter contrast in the mentioned region as compared to other
methods. By comparison, ERMHE was only able to produce
good local contrast in theWE region (indicated by the smaller
blue dotted rectangle), while the proposed NEIMHE method
showed better local contrast for almost all regions. This was
proven quantitatively by the lower EME score obtained by
the ERMHE compared to the proposed NEIMHE method.
The proposed NEIMHE method in Fig. 7(g) has also suc-
cessfully dimmed the OE regions and brightened the UE
regions. This is shown by the presence ofmore noticeable hair
in the OE region, as highlighted by the large red rectangle,
as well as the presence of only smaller patches of sunlight.
Meanwhile, a weak shadow of the tree branches in the white
rectangle region highlights the details of the enhanced UE
region. In comparison to the original image, the enlightened
UE regions and the dimmed OE regions produced slightly
lower global contrast, resulting in a lower ICF than that of
the original image, as tabulated in Table 3. Although the
whole enhanced image has a low global contrast, the resultant
image has shown a high local contrast, implying that the
enhanced image produced by the proposed NEIMHEmethod
has a more uniform global illumination and a higher local
contrast.
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For details preservation capability, AFELCE and VCEA
failed to preserve the details in almost all OE regions and
UE regions. This is confirmed by the invisible facial skin
textures in the OE regions and less clear visible leaves in
the UE region, as shown by the red rectangles and white
dotted rectangle in Fig. 7(c) and Fig. 7(d), respectively. These
outputs led to the lowest DE score produced by both methods.
Both methods also failed to preserve the details in the local
region, as shown by the small red rectangle in the same
figures, inwhich thewrinkles below the left eye in the original
image are invisible. Therefore, EMEE produced by VCEA
and ALEFCE ranked as the bottom three amongst all tested
methods. Backlit was only able to preserve the details in
the UE region, as shown by the clearly seen leaves in the
white dotted rectangle region in Fig. 7(b); thus, producing
lower DE than that of the original image. Similar to Backlit,
ERMHE and ESIHE were also able to preserve the details
in most UE regions, but both methods failed to preserve
the details in the OE region as shown by the invisible skin
wrinkles in the small red rectangle. However, in the local
WE region, as shown by the blue dotted rectangle, ERMHE
and ESIHE were able to preserve the details as shown by the
black spots that resemble the fine hairs which can be seen in
the region. ERMHE and ESIHE scored lower DE than that
of the original image, which show that the details of several
regions (i.e., especially the OE regions) are washed out.
However, both methods obtained a higher score in EMEE,
where the details in the local regions can be better detected
in comparison to those of the original image. Amongst all
methods, the proposed NEIMHEmethodwas able to preserve
the details in all regions, including both OE and UE regions.
This is shown by the visible wrinkles on the face in the small
red rectangle OE region and the visible leaves in the white
dotted rectangle, as depicted in Fig. 7(g). For the details
in the local region, as shown in blue dotted rectangle area,
the proposed NEIMHE also successfully retrieved the black
spots. This is consistent with the second-best DE result and
the highest EMEE score obtained by the proposed NEIMHE
method. In conclusion, the proposed NEIMHEmethod better
enhanced the details of the original image as compared to the
other four tested methods.

The third important aspect in evaluating the quality of the
enhanced image is the naturalness of the image. Backlit failed
to preserve the naturalness of the image, as the enhanced
intensity for UE and OE regions showed unnatural boundary
artifacts between different exposure regions (i.e., OE and
UE regions), as shown by the blue rectangles in Fig. 7(b).
The enhanced image appears to be over-enhanced in the UE
region that generates the discontinued effect; thus, eliminat-
ing several meaningful features of the original image. The
enhanced image also generated noise, as indicated by the
red oval in Fig. 7(b) which is further proven quantitatively
by the lowest PSNR obtained. By looking at the image as
a whole, Backlit-enhanced image is brighter compared to
the original image, which shows that the light source is
introduced in the enhanced image. The introduction of this

light source is consistent with the highest value obtained for
LOE and AMBE measurements, indicating that the lightness
order error and the mean brightness between the enhanced
image and the original image are large. Meanwhile, AFELCE
produced a glowing effect on OE regions, as indicated by
the red rectangles regions in Fig. 7(c); hence, producing an
unnatural enhanced image. However, the UE region indicated
by the white rectangle is almost similar in brightness with the
original image. Since the lightness variation only occurred at
the OE region, AFELCE obtained the lowest LOE, indicating
that small lightness variations occurred in the enhanced image
compared to the original image. The over-enhancement in
OE regions caused the global image to appear brighter than
the original image; hence, producing the largest AMBE,
while the washed-out effect at OE regions, as shown by the
loss of wrinkles in the small red rectangles, obtained a low
PSNR. VCEA also produced an unnatural enhanced image,
since this method over-enhanced the OE and UE regions,
as shown by the brighter and darker regions in the red rect-
angles and white rectangles in Fig. 7(d), respectively; thus,
producing a larger LOE than that of the AFELCE method.
However, VCEA resultant image appears dimmer than that
of ALEFCE and Backlit. This is shown by the lower AMBE
obtained compared to those methods. VCEA also generated
a washed-out effect in the same OE regions, as experienced
by ALEFCE; hence, producing a low PSNR as that of the
AFELCE. On the other hand, the proposed NEIMHEmethod,
ERMHE and ESIHE produced almost similar global bright-
ness and resembled the original brightness; therefore, these
methods ranked the top AMBE score amongst other meth-
ods. Besides that, ESIHE, the proposed NEIMHE method
and ERMHE prevented the washed-out effect; thus, obtain-
ing the third-best, second-best and the highest PSNR score,
respectively. However, the resultant image produced by the
proposed NEIMHE method looks more natural compared
to that of the ERMHE and ESIHE in terms of lightness
order. NEIMHE successfully dimmed the OE regions and
brightened theUE regions, as shown by the less bright regions
in the red rectangles and the white rectangles in Fig. 7(g),
respectively. Thus, lightness order error has been reduced
compared to that of ERMHE and ESIHE, which minimally
lightened theOE region but darkened theUE region, as shown
by the similar regions mentioned above in Fig. 7(e) and
Fig. 7(f), respectively. The lower lightness order contributed
to a lower LOE for the proposed NEIMHE method. Even
though ALEFCE scored the lowest in LOE, it still suffered
from non-uniform illumination compared to the proposed
NEIMHE which has solved the non-uniform illumination
problem. Another example of enhancement result for close-
up image is shown by Fig. 11 in Appendix. The results are
similar to those of CloseUp1 image. The findings favour the
proposed NEIMHE method as the best method among all
tested methods.

In order to provide more comparative results, Table 4 tab-
ulates the average score of seven quantitative measure-
ments produced by all tested enhancement methods.
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TABLE 4. Average quantitative analysis results for 266 close-up images.
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All measurements were evaluated on 266 close-up images.
In general, the higher DE, EMEE, ICF, EME, and PSNR
are desired, indicating greater details preservation in a whole
image, better details preservation in the local region, better
global image contrast, better local image contrast, and less
degradation, respectively. Meanwhile, low AMBE and LOE
are desired to indicate that the enhanced image is better in
preserving themean brightness and naturalness of the original
image, respectively. By observing the EME, EMEE, and DE
scores in Table 4, AFELCE is seen to have produced the low-
est score, since the method tends to combine adjacent inten-
sities. This is proven by a visual observation of CloseUp1
image, in which the enhanced image by AFELCE suffered
from over-enhancement, especially on the OE regions. The
proposed NEIMHE method was able to preserve a similar
number of intensities held by the original image without
great suppression of the original intensities. This is proven
by the highest score obtained by the proposed method for
DE, EMEE, and PSNR, compared to those of other methods.
The minimal combination of original intensities into a single
intensity in the enhanced image ensures that the proposed
NEIMHE method was able to preserve the details, as shown
by the highest score in DE and EMEE. Although producing
a higher DE and EMEE might also represent the artefacts,
the resultant CloseUp1 image from the proposed method is
less likely to generate the artefacts. This is further supported
by the highest PSNR achieved by the proposed method.
High PSNR values indicate that the proposed method was
able to reduce image degradation of the original image. The
second-best EME value achieved by the proposed method
indicates that better contrast has been produced in the local
region of the image. Although ESIHE obtained the best
score in EME, however from visual evaluation, the proposed
NEIMHE method able to produce the similar performance
as ESIHE in terms of local contrast. Visual analysis for
CloseUp1 image as discussed above shows that the proposed
enhancement steps introduced by the proposed NEIMHE
method work individually in each exposure region, by suc-
cessfully producing a significant change in the intensities of
those regions, which indirectly contributes to the achievement
of high EME values. In terms of AMBE, ERMHE produced
the highest score, with only a slight change in the average
overall intensity of the enhanced image compared to that
of the original image. The proposed NEIMHE method also
showed a good achievement that is almost similar to ERMHE
in this measurement. In order to measure the preservation of
naturalness, LOE was used, and AFELCE showed the best
performance compared to other methods. This is because
AFELCE does not provide much enhancement, especially
in the UE region. Although the proposed NEIMHE method
scored the second-best LOE, unlike ALEFCE, a visual anal-
ysis of CloseUp1 image shows that the enhanced image pro-
duced by the proposed NEIMHEmethod is visually pleasing,
even though ambiances of certain regions, especially in the
UE and OE regions, are changed. In conclusion, based on the
qualitative and quantitative analyses, the proposed NEIMHE

method successfully outperformed the other tested state-of-
the-art methods.

In order to statistically evaluated the performance of the
proposed NEIMHE method, paired t-test is performed [44].
The paired t-test is performed for each quantitative measure-
ment (i.e., DE, EMEE, ICF, EME, PSNR, AMBE, and LOE)
between the proposed NEIMHE method and the comparison
methods as well as the input image. There are two types of
t-test that have been performed; two-tailed t-test and one-
tailed t-test. In both tests, 0.05 significance level was adopted.
The hypotheses for two-tailed t-test are stated as:
H0 : There is no difference between the mean score of

the proposed NEIMHE method and the mean score of the
comparison method.
H1 : There is a difference between the mean score of

the proposed NEIMHE method and the mean score of the
comparison method.

In this two-tailed test, the null hypothesis,H0 is accepted if
p-value is greater than 0.05. Otherwise, H0 is rejected. If H0
is rejected, one-tailed t-test will be performed by using two
sets of hypotheses. The first set of hypothesis is used for
evaluating DE, EMEE, ICF, EMEE and PSNR which is:
H0 : The mean score of the proposed NEIMHE method

is less than or equal to the mean score of the comparison
method.
H1 : The mean score of the proposed NEIMHE method is

greater than the mean score of the comparison method.
Meanwhile, in order to evaluate AMBE and LOE, second

set of hypotheses are used which stated as:
H0 : The mean score of the proposed NEIMHE method

is greater than or equal to the mean score of the comparison
method.
H1 : The mean score of the proposed NEIMHE method is

less than the mean score of the comparison method.
Similar to the two-tailed test, for one tailed test, if p-value

is greater than 0.05, then H0 is accepted. Otherwise, H0 is
rejected.

Based on results in Table 4, for DE, EMEE, ICF, EME,
LOE, and AMBE, the null hypothesis, H0 is rejected at
0.05 level of confidence for the pairwise comparison between
the proposed method and all comparison methods. In this
case, the alternate hypothesis, H1 is accepted i.e. the average
score of the proposed NEIMHE method is statistically dif-
ference than average score of the other methods. In order to
evaluate whether the proposed NEIMHE method performed
better than other methods statistically, p-values of one-tailed
test have been examined for each quantitative measurement.
Based on Table 4, all p-values of DE, EMEE, and AMBE are
less than 5 E-02 (or 0.05), thereforeH0 is rejected. These find-
ings interpret that for DE, EMEE and AMBE the proposed
NEIMHE method statistically outperform other methods
including the original image. Additionally, the highest mean
scores obtained by the proposed NEIMHE method for DE
and EMEE demonstrated these findings, while for AMBE,
even though the proposed NEIMHE method ranked second
for the mean score, however statistically it performed better
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than ERMHE. Meanwhile, for ICF, H0 for one-tailed test is
accepted for all methods except Backlit which means that
statistically the global contrast of the proposed NEIMHE
method is not as good as original image, ALEFCE, ERMHE,
VCEA and ESIHE enhanced image. However, visual eval-
uations as discussed previously shown that the proposed
method produced more uniform illumination compared to
other methods. For EME, H0 of one-tailed test is accepted
for pairwise comparison between the proposed NEIMHE
method and ESIHE. This shows that statistically, ESIHE
performed better than the proposed method in terms of EME
although the average EME score of the proposed method
is higher than ESIHE. For one-tailed test of LOE, the H0
is also accepted for pairwise comparison between the pro-
posed NEIMHE method and ALEFCE which indicate that
statistically, ALEFCE performed better than the proposed
NEIMHEmethod in naturalness. For other methods, p-values
in Table 4 statistically shown that the proposed NEIMHE
method has the best performance which are also supported
by the average score obtained.

Meanwhile, for PSNR, the proposed method has signifi-
cant mean with ERMHE since the p-value of two-tailed test is
greater than 0.05. This indicate that statistically, there are no
difference on the PSNR performance between the proposed
NEIMHE method and ERMHE. Therefore, statistically the
proposed NEIMHE method gives better PSNR performance
than other methods except ERMHE as being indicated by the
p-value of one-tailed test as shown in Table 4.

B. NON-CLOSE-UP IMAGES
Fig. 8(a) shows an example of a non-close-up image with
non-uniform illumination. As shown by the red rectangles
in Fig. 8(a), the house wall is irradiated by the sunlight that
causes a loss of the wall texture; thus, these regions are
categorised asOE regions. On the other hand, the house court-
yard, as shown by the white rectangle are scattered by lighting
obstacles during the image acquisition process; thus, creating
a relatively dark region without details visibility. This region
is the UE region. The magnified images of both UE and OE
regions are shown in Fig. 9(a) and Fig. 10(a), respectively.
All methods successfully lightened the UE region, as shown
by the white rectangle in Fig. 9(b)-(g). However, Backlit
over-enhanced this region, which is shown by the excessively
bright courtyard. In the OE region, Backlit failed to reduce
the brightness of the extreme illumination. The irradiated
regions are maintained as in the original image. As a result,
the Backlit resultant image looks brighter and low in contrast
compared to the original image. This is further supported
by the lowest ICF value obtained by Backlit, as tabulated in
Table 5. However, most local regions specified in the Backlit
image show better contrast than the original image, especially
in the UE regions highlighted by the white rectangle. The
plant and the grass in the courtyard are comprised of various
intensities, which highlight the details compared to the orig-
inal image, which is proven by the higher EME score than
that of the original image. Similar to Backlit, ALEFCE failed

to enhance OE regions; the OE region in Fig. 10(c) looks
brighter than that of the original image. However, ALEFCE
minimally brightened the UE region. This is shown by the
brighter intensity produced in the white rectangle region.
Therefore, the ICF value is almost similar to that of the
original image. In local contrast evaluation, ALEFCE showed
good local contrast but only in the UE region. However, since
almost half of the image is in high intensity (i.e., region) on
average, ALEFCE was unable to achieve a higher EME score
compared to the original image. ERMHE, VCEA, ESIHE and
the proposed NEIMHE method solved the unavailability of
enhancement in OE regions faced by Backlit and ALEFCE.
These methods successfully reduced the brightness of one of
the OE regions, as shown in Fig. 10(d)-(g). However, VCEA,
ERMHE and ESIHE showed inconsistent brightness changes
in UE regions, where some parts of the grass in the court-
yard are over-brightened, as shown in Fig. 8(d), Fig. 8(e),
and Fig. 8(f), respectively. The proposed NEIMHE method
was able to brighten the UE regions without introducing
any over-enhancement problem. Since these four methods
successfully brightened the UE regions, the ICF scores are
lower than that of the original image, and the images looks
more uniform compared to the resultant images produced by
other methods. VCEA, ERMHE, ESIHE and the proposed
NEIMHE method also provided a better local contrast both
in OE and UE regions than that of other methods. This can
be seen by various intensities produced in the highlighted
UE regions in Fig. 8(d)-(g). However, in several WE regions,
as shown by the blue dotted rectangle in Fig. 8(d) and
Fig. 8(e), VCEA and ERMHE, respectively over-enhanced
this region until the stairs are invisible. Meanwhile, ESIHE
under enhanced the OE region in which the wall looks darker,
therefore low in contrast. The proposed NEIMHE method
produced better contrast in this WE region. This is further
supported by the highest EME score in Table 5. In conclusion,
the proposed NEIMHE method successfully brightened the
UE regions, dimmed the OE regions, and preserved the WE
regions so that the enhanced image looks more uniform in
illumination.

The second criteria to be considered in evaluating image
enhancement is the preservation of details. By looking at the
image as a whole, ALEFCE lacked details preservation in
the bright regions due to over-enhancement. Since half of
the image is bright, the DE score obtained by ALEFCE is
lower than that of the original image. However, ALEFCE
produced better details preservation in the local UE region,
as highlighted in Fig. 9(c). The leaves are observed to be
more visible compared to the similar region of the original
image in Fig. 9(a). In the OE region, this method failed to
enhance the details, as illustrated in the Fig. 10(c), where
the region looks similar to the original image. VCEA faced a
similar problem in preserving the details in most OE regions,
as well as in the WE region highlighted by the blue rectangle
in Fig. 8(d). The illumination in both regions is over-dimmed
until the details are washed out. However, in certain OE
region, as shown in Fig. 10(d), the details of this local region
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FIGURE 8. (a) Original NonCloseUp1 image and resultant images produced by (b) Backlit; (c) AFELCE; (d) VCEA; (e) ERMHE; (f) ESIHE;
(g) proposed NEIMHE.
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TABLE 5. Quantitative analysis results for NonCloseUp1 image.

FIGURE 9. The magnified UE region of (a) original NonCloseUp1 image
and resultant images produced by (b) Backlit; (c) AFELCE; (d) VCEA;
(e) ERMHE; (f) ESIHE; (g) proposed NEIMHE.

(i.e., divider between the bricks) are observable compared to
those of the original image. In contrast, VCEA was unable to
produce better contrast for the UE region where parts of the
leaves in Fig. 9(d) are not clearly visible. These limitations
are further proven with the obtainment of low EMEE and

DE scores. On the other hand, Backlit was able to properly
enhance the details of the UE regions, but not of the OE
regions. This is shown by the clearly visible grass in the
white rectangle region and invisible details in red rectangle
region, respectively, as shown in Fig. 8(b). Similar findings
were obtained by evaluating the details in magnified UE and
OE regions, as shown by clearly visible leaves in Fig. 9(b)
and invisible details in Fig. 10(b), respectively. As tabulated
in Table 5, the average DE score obtained by Backlit, which is
almost similar to the DE score of the original image, whereas
a higher EMEE value further supports the findings that Back-
lit was able to preserve the details globally, as well as in the
local region. The ability to enhance the details in the local
region is also shown by ERMHE and ESIHE. As depicted
in Fig. 10(e) and Fig. 10(f), the enhanced image was able to
preserve details in certain OE regions, shown by the clearly
visible wall bricks. However, in certain UE regions, both
methods failed to preserve the details, as shown by several
washed-out details in Fig. 9(e) and Fig. 9(f). In contrast,
the proposed NEIMHE method was able to properly enhance
the details in similar UE region, as shown in Fig. 9(g). The
leaves are clearly visible compared to those in the original
image and other enhanced images. The proposed NEIMHE
method also successfully preserved the details in OE regions,
as illustrated in Fig. 10(g). By visually examining the whole
NEIMHE enhanced image, the details in the image are pre-
served better than in ERMHE. The details in OE, UE, and
WE regions, represented by the blue dotted rectangle region,
are still visible compared to those of ERMHE. The ability of
the proposed NEIMHE to enhance details either of the local
regions or generally of the whole image is measurably indi-
cated by DE and EMEE values, which recorded the highest
scores compared to other methods.

In image enhancement, the naturalness of the original
image is desired to be preserved. In NonCloseUp2 image,
Backlit failed to preserve the naturalness of the original
image. The enhanced Backlit image looks brighter, as an
additional light source has been introduced. The highest score
of LOE and AMBE supported the abovementioned addi-
tional light source problem produced by Backlit. Besides
that, Backlit produced noise, as shown by the red ovals
in Fig. 8(b), where unwanted white pixels appeared. There-
fore, this method obtained the lowest score for PSNR.
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FIGURE 10. The magnified OE region of (a) original NonCloseUp1 image and
resultant images produced by (b) Backlit; (c) AFELCE; (d) VCEA; (e) ERMHE;
(f) ESIHE; (g) proposed NEIMHE.

Meanwhile, VCEA produced brighter OE and WE regions,
where the sky and the house become brighter. This affected
the LOE and AMBE scores as high scores were recorded
in both measurements. Similar to Backlit, VCEA produced
noise as indicated by the blue oval region in Fig. 8(d), where
the sunlight patch is becomes wider. Thus, the PSNR score
for VCEA is low. ALEFCE showed better naturalness preser-
vation compared to Backlit and VCEA. However, the sky
region in Fig. 8(c) becomes slightly brighter; thus, producing
a slightly brighter enhanced image compared to the original
image. This is further proven by the lowest score obtained
in LOE amongst all methods and a lower score in AMBE
compared to VCEA and Backlit. In image degradation, the
over-bright OE regions, as highlighted in Fig. 10(c), produced
a washed-out effect that contributes to the low PSNR value.
Similar to ALEFCE, ERMHE also produced slightly brighter
sky and UE region; therefore, the enhanced image looks
brighter than the original image, which produced a higher
LOE than that of ALEFCE.

However, the slightly brighter intensities produced in the
UE region contributed to the slightly higher mean bright-
ness; thus, a lower AMBE score was obtained. ESIHE
over-dimmed the OE region while brightened the UE region,
therefore the mean brightness is low. Similar to VCEA,
ERMHE and ESIHE produced noise as shown by the blue
oval in Fig. 8(e) and Fig. 8(f), respectively. Besides that,

the shades in the blue dotted rectangle in Fig. 8(e) and
Fig. 8(f) are washed-out; hence, generating unnaturalness
of the enhanced image. The proposed NEIMHE method
produced an enhanced image without introducing noise and
washed-out effect. This can be seen by the well-preserved
sunlight region, represented by the blue oval in Fig. 8(g)
which did not wash-out any WE neighbouring pixel. There-
fore, the proposed NEIMHE method obtained the highest
PSNR amongst those of other methods. Similar to ERMHE
and ESIHE, the proposed NEIMHE method produced a
slightly brighter UE region; therefore, the mean brightness
of the enhanced image is slightly higher than that of the
original image, contributing to the second best AMBE. Com-
pare to ERMHE, no light source was introduced to the
sky region; therefore, the proposed NEIMHE method pro-
duced more natural image than ERMHE and ESIHE. This
is further supported by a lower LOE score than that of
ERMHE and ESIHE. Fig. 12 in the Appendix shows another
example of an enhanced result for a non-close-up image.
The results are comparable to the NonCloseUp1 image. The
findings demonstrate that the proposed NEIMHE method is
the best methods among all enhancement methods. In order
to observe the performance of the proposed NEIMHE and
state-of-the-art methods in enhancing non- close-up images,
Table 6 tabulates the average score of seven quantitative
measurements for 88 non-close-up images. The proposed
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TABLE 6. Average quantitative analysis results for 88 non-close-up images.

93056 VOLUME 9, 2021



N. H. Saad et al.: NEIMHE for Non-Uniform Illumination Image Enhancement

NEIMHE method scored the best performance in two mea-
surements; DE, and EMEE. As mentioned in the introduction
of this section, DE, and EMEE are related to the distribution
of the greyscale, either globally as represented by DE, or in
the local regions as represented by EMEE. Compared to
the original image, the proposed NEIMHE method, which
works based on region targeted enhancement, successfully
generated the best DE score of 7.56. Based on Table 6,
all methods show comparable performance in terms of DE;
however, different performances can be seen in terms of EME
and EMEE. In EME measurement, HE-based enhancement
methods, i.e., VCEA, ERMHE, ESIHE and the proposed
NEIMHE method, achieved better local contrast than that of
the original image and other enhancement methods. Mean-
while, for EMEE, only AFELCE was unable to preserve the
local entropy of the original image. This may be caused by
the over-enhancement problem faced by ALEFCE. The pro-
posed NEIMHE method scored the highest EMEE amongst
other methods, where the score gap between the proposed
NEIMHE method and the second-best method is quite big:
about half of the score obtained by the proposed NEIMHE
method. This finding shows that the proposed NEIMHE
method successfully enhanced the local entropy of the image.
The proposed NEIMHE method was also resilient against
image degradation and themean brightness shift of the image.
This is shown by the comparable scores with ERMHE, which
has the highest in PSNR and the lowest in AMBE. For
AMBE measurement, the exposure based HE method, such
as ERMHE, and the proposed NEIMHE method obtained
good scores (i.e., lower scores), while other methods obtained
higher scores; the gap between these two groups is very
large. This shows that segmented enhancement based on
exposure regions can control the mean brightness shift in
of the image. However, the proposed NEIMHE method was
unable to produce a low LOE score. Since two dominating
regions (i.e., UE and OE regions) were enhanced (UE was
brightened while OEwas slightly dimmed), the original light-
ness order was impossible to attain. However, as long as the
enhanced image shows appealing resultant images without
apparent additional light sources, it can be concluded that the
naturalness of the image is preserved.

To further analyse the performance of the proposed
NEIMHE method on non-close-up images, simple statistical
test has been performed as explained in Section V-A. The
similar hypotheses are used either in two-tailed or one-tailed
t-test as discussed in that section. Based on p-values of the
two-tailed test in Table 6, H0 is rejected for all pairwise
comparisons on EMEE, ICF, EME, LOE and PSNR since
all p-values obtained on those quantitative measurements are
less than 5 E-02 (0.05). Therefore, it can be concluded that
there are significant differences of performance in terms of
EMEE, ICF, EME, LOE and PSNR between the proposed
NEIMHE method and other methods. As being mentioned
in Section V-A, in order to further compare the perfor-
mance of the proposed NEIMHE method with other methods

statistically, one-tailed t-test is performed. Based on p-values
of one-tailed test on the abovementioned quantitative mea-
surements (i.e. EMEE, EME, LOE and PSNR) in Table 6,
H0 for all pairwise comparisons on EMEE, EME and PSNR
are accepted which indicate that statistically, the proposed
NEIMHE method has better performance than all methods in
terms of EMEE, EME and PSNR. For EME, although the pro-
posed NEIMHEmethod ranked second-best in average score,
however statistically the proposed NEIMHE method shows
the best performance. While for LOE, H0 is accepted only
for pairwise comparison between the proposed NEIMHE
method and ALEFCE which indicates that ALEFCE has
better LOE performance than the proposedNEIMHEmethod,
statistically. In other words, the proposed NEIMHE shows
better LOE performance than other comparison methods
(i.e Backlit, VCEA, ERMHE and ESIHE) except ALEFCE.
This is also supported by the average score obtained as shown
in Table 6 in which the proposed NEIMHE method ranked
second-best for LOE. Meanwhile, the proposed NEIMHE
method shows better ICF performance compared to Backlit,
statistically. Nevertheless, the proposed NEIMHE method
shows lower performance in statistically significant ICF eval-
uation when compared to other methods except the Backlit.
However, based on visual evaluation for NonCloseUp1, the
NEIMHE enhanced image as shown in Fig. 8(g) shows that
even though ICF score is low, but the image looks more
uniform in illumination and has appealing contrast.

In terms of DE and AMBE, H0 is accepted for the pair-
wise comparison between the proposed NEIMHE method
and original image as well as ERMHE, respectively. There-
fore, statistically, DE performance between the proposed
NEIMHE method and original image does not have signif-
icant difference. Similar finding is concluded for AMBE
performance between the proposed NEIMHE method and
ERMHE. As a conclusion, for both DE and AMBE, the pro-
posed NEIMHE method gives better performance than other
comparison methods except the original image for DE and
ERMHE for AMBE as explained previously.

VI. CONCLUSION
This study proposed a HE-based method called Nonlin-
ear Exposure Intensity Modification-Based HE (NEIMHE)
for enhancing non-uniform illumination image. The main
contributions of this method are the nonlinear histogram
bin modification, and the exposure-based intensity mapping
function. The non-uniform illumination image was enhanced
individually in five different exposure sub-regions, namely
UE, LWE, MWE, UWE, and OE regions. The nonlinear
histogram bin modification put weight on the cumulative
density function (CDF) in a nonlinear pattern based on each
region’s exposure level. These weighted CDFs helped to
prevent over-enhancement and under-enhancement problems
in each region, especially in the OE and UE regions respec-
tively, compared to the conventional HE. The exposure-based
intensity mapping functions extended the range of OE and
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FIGURE 11. (a) Original CloseUp2 image and resultant images produced by (b) Backlit (c) AFELCE (d) VCEA (e) ERMHE (f) ESIHE
(g) proposed NEIMHE.
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FIGURE 12. (a) Original NonCloseUp2 image and resultant images produced by (b) Backlit (c) AFELCE (d) VCEA (e) ERMHE
(f) ESIHE (g) proposed NEIMHE.
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UE regions based on the Zone system. The functions pro-
vided different intensity mapping directions on UE and
OE, in order to lighten or reduce the brightness, respec-
tively. To preserve details, the proposed method integrated
local contrast boosting for producing a uniform illumina-
tion and preserving details of the enhanced image. The
performance of the proposed NEIMHE method in improv-
ing the enhancement of original non-uniform illumination
images was studied qualitatively and quantitatively. It tested
266 close-up and 88 non-close-up non-uniform illumination
images, while evaluation was performed against four exist-
ing non-uniform illumination image enhancement methods,
i.e., Backlit, ERMHE, AFELCE, and VCEA. Unlike other
existing methods, the proposed NEIMHE method produced
enhanced images that are more uniform in illumination, pre-
serving the image details, and maintaining the naturalness
of the original image. The proposed NEIMHE method is
helpful to solve non uniform illumination on the enhanced
image of the existing enhancement methods (i.e. VCEA,
ESIHE) by performing enhancement individually on the dif-
ferent exposure regions. Based on literature review, there
are three methods that have been introduced the individual
enhancement on each separate exposure region (i.e. Back-
lit, ALEFCE, ERMHE), however, these methods lacked of
enhancement rate control on each exposure region, therefore
they suffered from under enhancement or over enhancement
problems. The amount of intensity shift is not controlled,
that may produce artifacts as can be seen in ERMHE. As a
solution, the proposed method solved the under and over
enhancement problems by adopting the nonlinear HE to con-
trol the enhancement rate of each exposure region. A good
visual performance of the proposed method was further sup-
ported quantitatively by the attainment of the highest scores
in DE, PSNR, EME, and EMEE, with AMBE and LOE being
second-best. From statistical analysis of the close-up images,
the proposed NEIMHE method outperformed all comparison
methods in all quantitative measurements except in some
cases namely on ICF in which all methods except Backlit
outperformed the proposed NEIMHE method. Meanwhile,
ESIHE, ALEFCE and ERMHE also outperformed the pro-
posed NEIMHE method on EME, LOE, and PSNR mea-
surement, respectively. Similar to the statistical analysis of
the close-up images, for non-close-up images, the proposed
NEIMHE method also outperformed most of comparison
methods on all quantitative measurements except on ICF,
in which all methods except Backlit outperformed the pro-
posed NEIMHE method. Besides that, the original image,
ERMHE, andALEFCE outperformed the proposedNEIMHE
method in terms of DE, AMBE, and LOE, respectively.
These findings prove that the proposed NEIMHE method:
(i) produces enhanced imageswith high information contents,
either on the whole image or on certain local regions in
the image; (ii) prone to degradation; (iii) produced a better
contrast in the local regions of the image; and (iv) pre-
served the mean brightness and naturalness of the original
image.

FUTURE WORKS
NEIMHE used certain grey level ranges based on the WE
region defined in the Zone System in order to map the inten-
sity. Therefore, the fixed ranges may not suitable for some
type of images such as underexposed image. In the future,
the optimization method could be adopted in order to find the
most suitable range for the dynamic range expansion of each
exposure region (i.e. UE, LWE, WE, UWE, and OE). This
optional method could also reduce under enhancement and
over enhancement problem. The proposed NEIMHE method
also sometimes generated slightly smaller dynamic range as
compared to the original dynamic range. Therefore, contrast
stretching can be considered to be done in order to maintain
the original dynamic range after intensity mapping is per-
formed. Besides that, the proposed method manipulates the
grey image processing in order to perform the enhancement,
as a result the final enhanced image is in a grey image.
Therefore, colour image processing can be adopted further
to obtain the colour enhanced image.

APPPENDIX
See Figures 11 and 12.
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