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ABSTRACT Deadlock control of automated manufacturing systems has been widely investigated in recent
decades. According to classical Coffman theory, resource circular wait (RW) is viewed as a necessary
condition for deadlocks to occur. However, the fact is not as simple as so. Counterexamples are presented to
show that RWs do not necessarily appear together with deadlocks. Event circular waits (EWs) are proposed
as an alternative to represent a fundamental necessary condition of deadlocks. First, we present the formal
definitions of EWs in a type of Petri nets, i.e., weighted augmented marked graphs (WAMGs), and show that
EWs are more general and essential than RWs in describing the cause of deadlocks. Second, we show a new
classification of siphons, i.e., types I, II, III, and IV, and illustrate the relationship between undermarked
siphons and EWs in the WAMGs. Third, we show that EWs are more efficient than RWs for deadlock
avoidance since deadlocks can be avoided earlier at a specified marking by using EWs rather than RWs.
Several examples are given to clarify the theory throughout this paper.

INDEX TERMS Event circular waits, Petri nets, siphons, deadlock avoidance.

I. INTRODUCTION
Due to the continuous improvement of requirements for prod-
ucts, automated manufacturing systems (AMSs) emerge with
the assistance of computer science and automatic control
technologies. AMSs are widely used in industrial field since
they not only facilitate industry automation but also promote
diversified production.With the gradual realization of elec-
tronization and informatization, the potential for AMSs is
enormous.

Deadlocks are particularly important problems in
large-scale AMSs because they may destroy the sta-
ble performance of AMSs [4], [16], [17], [20], [21],
[28], [29]. Deadlocks can lead some processes to indef-
initely wait, which prevents them from moving for-
ward and directly cause a sharp decline in productivity
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[1], [7], [8], [10], [16]–[18], [20], [38]. Moreover, a process
unnecessarily using the scrambled resources can be blocked
by these processes in stagnation. In the worst case, a whole
system may fall into a deadlock [5], [23], [24], [34]–[36],
[39]–[41]. Therefore, deadlock problems should be solved in
both design and application of AMSs.

Resource circular wait (RW) refers to a circular chain con-
sisting of several processes, where each of these processes is
waiting for resources held by the next process in this circular
chain. Based on Coffman theory, RW is treated as one of four
necessary conditions for deadlocks to occur. In accordance
with this statement, there must be an RW if there exists a
deadlock. Conversely, there will be no deadlock if no RW
appears. Hence, the most widely used method for deadlock
prevention is to break RWs through manual intervention.
Specifically, the phenomenon that a process is waiting for
resources is allowed to appear, while the circular chain of
these waiting processes is prevented by establishing the
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priority of resource allocation. However, almost all existing
works assume default RW conditions [2], [21] are the cause
of deadlocks, namely, some processes require some resources
held by others that will never be released. This claim is
certainly true in most resource-sharing systems due to the
competition for limited resources among multiple processes.
However, in some concrete systems, e.g., non-resource allo-
cation systems, such behavior cannot be found. This implies
that RWs are not always suitable for describing the cause of
deadlocks. This motivates us to explore a more general and
essential cause of deadlocks.

In this paper, we propose a different kind of circular wait,
namely, event circular waits (EWs). EWs can substitute RWs
as an alternative necessary condition for a deadlock to occur.
Our approach and its main contributions are elaborated as
follows.

First, we propose the definition of EWs in weighted aug-
mentedmarked graphs (WAMGs). An EW is an event circular
chain where each event waits for the next event in the chain
to execute. EWs are more general than RWs since EWs can
describe some situations causing deadlocks that cannot be
explained by RWs. Furthermore, we illustrate under what
conditions an EW can occur in a net system.

Second, we explore the relationship between undermarked
siphons and EWs since both siphons and EWs in PNs are
employed as the structural characteristics of deadlock. Before
that, we show a new classification of siphons in the WAMGs.
We illustrate the characteristic of four types of siphons of
WAMGs. A necessary and sufficient condition is established
between undermarked siphons and EWs.

Third, we investigate the application of EWs for deadlock
avoidance. We show that EWs occur before RWs starting
from a specified state; and EWs and RWs are generated
simultaneously only in a few cases. Based on this fact,
we show that deadlocks can be avoided earlier at a specified
state by using EWs rather than RWs. Then, an effective
approach to avoiding deadlocks is proposed based on EWs.

The remainder of this paper is organized as follows.
Section II introduces the definitions of PNs. Section III
proposes the definition of EWs and a new classification of
siphons, and illustrates the relationship between undermarked
siphons and EWs in the WAMGs. Section IV presents a
method based on EWs to avoid deadlocks. Section V sum-
marizes this paper and elaborates future work.

II. PRELIMINARIES
Let N = {0, 1, 2, . . .} be the set of non-negative integers and
N+ = {1, 2, . . .} be the set of positive integers. Given n ∈N+,
then let Nn = {1, 2, . . ., n} be the set of integers from 1 to n.

A. PNs DEFINITIONS
A PN is N = (P, T , F , W ) where P is a set of places, T is a
set of transitions, F ⊆ (P × T ) ∪ (T × P) is a set of directed
arcs, and W : (P × T ) ∪ (T × P) → N = {1, 2, . . .}, such
that P ∪ T 6= ∅, P ∩ T = ∅, and W (x, y) = 0 if (x, y) 6∈ F .
W (x, y) is undefined if x, y ∈ P or x, y ∈ T . A marking of N

is a mapping M : P→ N|P|. It can be represented by tokens
located at various places. M (p) (resp., M0(p)) indicates the
number of tokens in p atM (resp.,M0).M0 denotes the initial
marking. (N ,M0) is a net system with an initial markingM0.

The preset of a node x ∈ P ∪ T is defined as •x = {y ∈
P ∪ T | (y, x) ∈ F}. Its postset x• = {y ∈ P ∪ T | (x, y)
∈ F}. 〈n〉x (resp., x〈n〉) is the n-order preset (resp., n order
postset) of x. N is a marked graph ifW : F→{1} and ∀p ∈ P,
|
•p| = |p•| = 1. N is strongly connected if there exists a
directed path from every node to every other node in P ∪ T .
t is enabled at M , denoted by M [t〉, if ∀p ∈ •t , M (p) ≥

W (p, t). Given a marking M , t can fire if it is enabled at M .
M ′ is reachable fromM , denoted byM [σ 〉M ′, if there exists
a firing sequence σ = 〈t1, t2, . . ., tn〉 such that M [t1〉 M1
. . . [tn〉M ′.

−→σ is a |T |-dimensional firing count vector where
−→σ (t) states the number of t’s appearances in σ . Precisely,
this evolution can be described by M ′ = M + [N ] · −→σ .
The set of all markings reachable from M0 is denoted by
R(N , M0). It follows a necessary reachability condition, i.e.,
M = M0 + [N ] · −→σ . When |σ | = 1, we have M [t〉 M ′,
implying t’s firing at M can lead to M ′. t ∈ T is live under
M0 if ∀M ∈ R(N , M0), ∃M ′ ∈ R(N , M ), M ′ [t〉 holds. t is
dead at M ∈ R(N , M0) if @M ′ ∈ R(N , M ) so that M ′ [t〉
holds. Deadlock markings include partially and totally dead
ones. M ∈ R(N ,M0) is a totally deadlock marking if ∀M ′

∈ R(N ,M ), ∀t ∈ T , ¬M ′ [t〉, where M 6= M0. (N , M0) is
deadlock-free if ∀M ∈ R(N ,M0), ∃t ∈ T ,M [t〉. It is livelock
if it is deadlock-free and ∃t ∈ T so that t is dead atM ∈ R(N ,
M0). The marking M which indicates a livelock is said to be
a partially deadlock marking.

A nonempty set S ⊆ P (resp., Q ⊆ P) is a siphon (resp.,
trap) if •S ⊆ S• (resp., Q• ⊆ •Q). A strict minimal siphon
is a siphon containing neither other siphons nor traps except
itself. A siphon is undermarked atM if ∃t ∈ S• such that t is
dead at M .

A P- (resp., T -) vector is a column vector I : P (resp., J : T )
→ Z indexed by P (resp., T ), where Z is the set of integers.
A P-vector I 6= 0 becomes a P-invariant if [N ]T · I = 0, where
0means a vector of zeros. By I ≥ 0, wemean that ∀p∈P, I (p)
≥ 0 and ∃p∈P, I (p)> 0. A P-invariant is called aP-semiflow
if I ≥ 0. ‖I‖ = {p ∈ P | I (p) 6= 0} is called the support of I .
A P-semiflow I (resp., T -semiflow J ) is said to be minimal
if there exists no other P-semiflow I ′ (resp., T -semiflow J ′)
such that ‖I‖ ⊃ ‖I ′‖ (resp., ‖J‖ ⊃ ‖J ′‖).

B. WAMGs
Definition 1: A WAMG is a PN N = (P,T ,F,W ) such

that:

1) P = P0 ∪ PA ∪ PR, in which P0 is a set of idle places
such that P0 =

⋃
i∈NK {p0i}; PA is a set of activity places

such that PA =
⋃

i∈NK {PAi}. ∀i, j ∈NK , i 6= j, PAi ∩ PAj
= ∅; and PR =

⋃
i∈NL {ri} is a set of resource places. ∀p

∈ P0 ∪ PA, |p•| = |•p| = 1;
2) T = TA =

⋃
i∈NK {Ti}, ∀i ∈ NK , Ti 6= ∅, and ∀i, j ∈ NK ,

i 6= j, Ti ∩ Tj = ∅;
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FIGURE 1. A WAMG.

3) F =
⋃

i∈NK {Fi} = F0 ∪ FA ∪ FR, in which F0 ⊆ (P0
× TA) ∪ (TA × P0), FA ⊆ (PA × TA) ∪ (TA × PA), and
FR ⊆ (PR × TA) ∪ (TA × PR);

4) For each i ∈ NK , N i = N | ({p0i} ∪ PAi , Ti, Fi) is
a strongly connected marked graph such that every
circuit includes p0i ;

5) ∀r ∈PR, ∃ a uniqueminimalP-semiflowXr ∈N|P| such
that {r} = ‖Xr‖ ∩ PR, P0 ∩ ‖Xr‖ = ∅, PA ∩ ‖Xr‖ 6= ∅,
and Xr (r) = 1; and

6) Xr (p) is not necessarily binary, i.e., ∃f ∈ FR ⊆ (PR ×
TA) ∪ (TA × PR) such that w(f ) ≥ 1.

Definition 2: M0 is said to be an acceptable initial marking
of N such that:

1) ∀p0 ∈ P0, M0(p0) ≥ 1;
2) ∀p ∈ PA, M0(p) = 0;
3) ∀r ∈ PR, ∀p ∈ PA, M0(r) ≥ Xr (p), where Xr is r’s

minimal P-semiflow; and
4) M0(r) ≥

∑
p∈P6Xr (r), where all p in P6 can use r

simultaneously at a state.
Fig.1 exemplifies an acceptably markedWAMG, where P0
= {p1, p12}, PA1 = {p2 – p11}, PA2 = {p13 – p15}, PR = {p16
– p20}, T1 = {t1 – t9}, and T2 = {t10 – t13}. There are 5 P-
semiflows corresponding to the resource places, i.e., Xp16 =
p2 + p3 + p15 + p16, Xp17 = p2 + 3 · p4 + 3 · p7 + p14 +
p17, Xp18 = p5 + p6 + p10 + p14 + p18, Xp19 = p8 + p9 +
p13 + p19, and Xp20 = p8 + p11 + p20.
Definition 3: A transition t ∈ T is resource disabled at M
∈ R(N ,M0) iff •t ∩ PR 6= ∅ and ∃r ∈ •t ∩ PR such thatM (r)<
W (r, t). A transition t is process disabled at M ∈ R(N , M0)
iff •t ∩ (P0 ∪ PA) 6= ∅ and ∃p ∈ •t ∩ (P0 ∪ PA) such that
M (p) = 0.
Definition 4: If a transition t ∈ T can be fired by r ∈ PR

and the resources in r are occupied after t is fired, then t holds
the resources in r .
Definition 5: ∀i ∈Nn−1, 〈x1, x2, . . ., xn〉 is said to be a path

in PNs such that xi+1 ∈ x•i , where ∀x ∈ {x1, x2, . . ., xn}, x ∈ P
∪ T . The path from x1 to xn is said to be an elementary path.

Definition 6: 〈x1, x2, . . ., xn〉 is a circuit if: 1) all nodes
except x1 and xn are different; and 2) it is an elementary path
and x1 = xn. The circuit is generally represented by C , while
the circuit containing node x is denoted as C(x). The support
of the circuit C is denoted as ‖C‖.
Definition 7: Let U represent a T -invariant. If ∃ an ele-

mentary circuit CU such that ‖U‖ = ‖CU‖ ∩ T , CU is called
a circuit derived from a T -invariant U . A T -invariant U can
derive multiple circuits.
Definition 8: The set of holders of r ∈ PR is the support of

a P-semiflow Xr without r , i.e., H (r) = ‖X (r)‖ \ {r}.
Definition 9: A process connector (PC) refers to the activ-

ity places between two consecutive transitions in the same
process, if ∃p ∈ t• ∩ •t ′ such that p ∈ PA, then p is said to be
a process connector between t and t ′, denoted as PC(t , t ′).

III. EVENT CIRCULAR WAITS AND NEW CLASSIFICATION
OF SIPHONS IN WAMGs
In this section, two novel definitions are introduced, i.e., event
circular waits and new classification of siphons in the
WAMGs. Further, the relationship between undemarked
siphons and EWs is illustrated in the WAMGs.

A. EVENT CIRCULAR WAITS
Generally speaking, circular waits considered in existing lit-
erature refer to RWs from a process perspective. The stag-
nation of several processes in a circular state is attributed to
the improper resource allocation among processes. However,
this claim is not always true. In this paper, event circular
waits (EWs) are proposed as an alternative to represent the
necessary condition of deadlock.
Definition 10: An event path (EP) is an ordered transition

sequence 〈t1, t2, . . ., tn〉 such that: 1) {t1, t2, . . ., tn} ⊆ T ; and
2) ∀i ∈ Nn−1 = {1, 2, . . ., n − 1}, •ti ∩ t•i+1 6= ∅.
Definition 11: An event circuit (EC) is an EP 〈t1, t2, . . .,

tn〉, where all nodes are different except t1 = tn.
Definition 12: Given a WAMG N = (P,T ,F,W ),

a resource circular wait (RW) atM ∈ R(N ,M0) is an ordered
resource place sequence 〈r1, r2, . . ., rn〉 such that:

1) r1, r2, . . ., rn ∈ PR, and r1 = rn;
2) ∀i ∈ Nn−1 = {1, 2, . . ., n − 1}, •ri+1 ∩ r•i 6= ∅; and
3) ∀i ∈ {1, 2, . . ., n}, ∃t ∈ T such that ri ∈ •t ∩ PR and

M (ri) < W (ri, t).

Definition 13: Given a WAMG N = (P,T ,F,W ),
an event circular wait (EW) at M ∈ R(N , M0) is an
EP 〈t1, t2, . . ., tn〉, such that:

1) t1 ∈ ECx (the xth EC in an EW) and tn ∈ ECy, x, y ∈
N+;

2) ∀i ∈ {1, 2, . . ., n}, ti is disabled atM ; and
3) ∀i ∈ {1, 2, . . ., n}, @EP′ 〈ta, tb, . . ., tc, ti〉 such that

M (•ta) 6= 0, 3 M [ta, . . ., tb, . . ., tc〉 M ′ andM ′ [ti〉.

Remark 1: According to Definition 13, the existence of a
circular chain can be explained from the view of transitions.
Each transition in an EC is waiting for the execution of its
previous transition. Although EWs are defined in WAMGs,
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FIGURE 2. Three types of EWs. (a) An EWA, (b) an EWB, and (c) an EWC .

the applicable scope of EWs is larger than WAMGs. In other
words, EWs can not only explain the deadlocks in WAMGs,
but also explain the deadlocks in other PNs.
Definition 14: There are three types of EWs in terms of

structure as follows:

• Type A: ∃〈t1, t2, . . ., tn〉 such that 〈t1, t2, . . ., tn, t1〉 =
EC . This case is denoted as EWA.

• Type B: ∃〈t1, t2, . . ., tn〉 such that 〈t1, t2, . . ., tn〉 ⊇ EC1
∪ EC2 ∪ . . . ∪ ECm, m ∈ N+, and ∀x, y ∈ {1, 2, . . ., m},
ECx ∩ ECy = ∅. This case is denoted as EWB.

• Type C : ∃〈t1, t2, . . ., tn〉 such that 〈t1, t2, . . ., tn〉 ⊇ EC1
∪ EC2 ∪ . . . ∪ ECm, m ∈ N+, and ∃x, y ∈ {1, 2, . . ., m},
ECx ∩ ECy 6= ∅. This case is denoted as EWC .

Fig. 2 depicts the examples of three types of EWs, respec-
tively. Fig. 2(a) shows an EWA including 4 transitions and
all transitions belong to the same EC 〈t1, t2, t3, t4, t1〉;
Fig. 2(b) illustrates an EWB also including 4 transitions but
these transitions belong to two different ECs 〈t1, t2, t1〉 and
〈t3, t4, t3〉, and there are no common transitions between these
two ECs; and Fig. 2(c) shows an EWC including 8 transitions
and these transitions belong to three different ECs 〈t1, t2, t3,
t4, t1〉, 〈t3, t4, t5, t3〉, and 〈t5, t6, t7, t8, t5〉, and there exist
common transitions among these ECs, namely, these ECs are
intersecting or adjacent from the structure perspective.
Next, we show that EWs are more general and essential

than RWs in describing the cause of deadlocks via several
examples.
First, we illustrate that the deadlocks in some systems

can be explained only by EWs, rather than by RWs, via the
examples in Figs. 3(a) and (b).
Example 1: As shown in Fig. 3(a), a partial deadlock can

occur since the token in the place p1 can only transfer either
from the place p1 to the place p2 or from the place p2 to the
place p1, while the other parts of this system are blocked.
From the perspective of EWs, two EWs 〈t4, t5〉 and 〈t3, t5〉
exist. t5, which cannot be fired owing to the insufficient
tokens of p2, is waiting for t4 to fire, while t4 is waiting
for t5 to fire. Similar, t5, which cannot be fired due to the
insufficient tokens of p1, is waiting for t3 to fire, while t3
is waiting for t5 to fire. However, RWs fail to describe the
cause of the partial deadlock in Fig. 3(a) due to this net system
is a non-resource allocation system. We specify the process
in Fig. 3(a) as 〈p1, t2, p2, t1, p1〉, 〈p1, t5, p3, t3, p1〉, and

FIGURE 3. Four example PNs.

〈p2, t5, p4, t4, p2〉. It is clear that RWs are inadequate
to describe the deadlock in Fig. 3(a) since there exists no
resource place.
Example 2: Fig. 3(b) shows a separate process that con-

tains two subprocesses 〈t1, p2, t2, p3, t4, p5, t5〉, and 〈t1, p2,
t3, p4, t4, p5, t5〉. Under the assumption that there is only one
token in p1, only one transition between t2 and t3 possesses
the ability to fire after the firing of t1 since there exists a
conflict between t2 and t3. However, no matter which one
fires, the system will eventually fall into a deadlock since t4
can never be enabled. Since there is only one independent
process in this example and no competition for resources
exists, the cause of deadlock cannot be explained by RWs.
However, an EW 〈t5, t4, t2, t1〉 exists. Thus, we can easily
describe the deadlock via EWs.
Then, we show that although both RWs and EWs can be

used to describe the cause of deadlocks, EWs are much more
essential than RWs via the examples in Figs. 3(c) and (d).
Example 3: In Fig. 3(c), t2 is dead after the firings of t1

and t4 due to the lack of resources in p6. In this case, p2 and
p5 hold the resources required by each other and wait for each
other to release. From the perspective of RWs, an RW 〈p5, p6〉
causes the deadlock. From the perspective of EWs, an EW 〈t2,
t5〉 results in the same deadlock in which t2 and t5 are resource
disabled.
Example 4: Fig. 3(d) shows the similar example as

Fig. 3(c) except that its resource allocation logic ismuchmore
complex than that of Fig. 3(c). In Fig. 3(d), t2 is also dead
after the firings of t1 and t4 due to the lack of resources in
p6. From the view of RWs, the deadlock is caused by the RW
〈p5, p6〉. It can be observed that the above conclusion is the
same as that in Fig. 3(c) from the RWs perspective. Although
the structures of the PNs in Figs. 3(c) and (d) are different,
the deadlocks can be explained by the same RW. However,
from the perspective of EWs, the EW 〈t2, t6, t5, t3〉 causes the
deadlock in Fig. 3(d) in which t2 and t5 are resource disabled
while t3 and t6 are process disabled. This is different from
the cause of deadlock in Fig. 3(c) from the EWs perspective.
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FIGURE 4. Different views of circular waits causing deadlocks.

In contrast to RWs, EWs can illustrate the causes of deadlocks
more concretely and accurately. In other words, EWs provide
a more essential and specific description of deadlocks than
RWs do.

The main difference between RWs and EWs in describing
circular waits causing deadlocks are depicted in Fig. 4. From
a high-level view, i.e., from the RWs perspective, deadlocks
occur because of the circular waits among resources shared
by different processes. In contrast, from a low-level view,
i.e., from the EWs perspective, deadlocks are caused by the
circular waits among transitions in the processes. On the one
hand, RWs show a superficial cause of a deadlock, while EWs
illustrate the fundamental reason for each deadlock. On the
other hand, EWs are more general than RWs since EWs can
describe some situations causing deadlocks that cannot be
explained by RWs. Therefore, EWs are more general and
essential than RWs in describing deadlocks.

Based on the above discussions, two important lemmas are
presented as follows to show the relationship between RWs
and EWs. If there exists an RW, then there must be an EW;
however, an EW does not necessarily correspond to an RW.
Lemma 1: If there exists an RW, then there must be an EW.
Proof: Let N = (P,T ,F,W ) be a WAMG. Suppose that

there exists an RW 〈r1, r2, . . ., rK 〉 among N 1, N 2, . . ., NK .
N 1 holds the resources in r1 while waiting for r2, and N 2
holds the resources in r2 while waiting for r3, . . ., NK holds
the resources in rK while waiting for r1, where r1, r2, . . ., rK ∈
PR. From the EWs perspective, this situation can be described
as follows: ∃t1x ∈ T1, x ∈ N|T1|, such that t1x waits for t2y ∈
T2, y ∈ N|T2|, ∃t2y ∈ T2 such that t2y waits for t3z ∈ T3, z ∈
N|T3|, . . ., ∃tK−1m ∈ TK−1,m ∈N|TK−1|, such that tK−1m waits
for tKn ∈ TK , n ∈ N|TK |, and ∃tKn ∈ TK such that tKn waits for
t1x ∈ T1. Namely, an EW 〈t1x , t2y, . . ., tKn〉 exists. Therefore,
if there exists an RW, then there must be an EW.
Lemma 2: If there exists an EW, then there does not nec-

essarily exist an RW.
Proof:LetN = (P,T ,F,M0) be aWAMG. Suppose that

∃tix , tix+1 ∈ Ti, x ∈ N|Ti|, ∃r ∈ PR such that r ∈ •tix ∩ •tix+1.
tix fires several times with the aid of the resources in r but

tix+1 cannot fire owing to M (r) < W (r, ti+1) after the firing
of tix . ∃tix+2 ∈ Ti such that tix+2 ∈ t•ix+1, . . ., ∃tix+n−1 ∈ Ti
such that tix+n−1 ∈ t

〈n−2〉
ix+1 , ∃tix+n ∈ Ti such that tix+n ∈ •r ∩

t〈n−1〉ix+1 , where {x, x+1, . . ., x+n−1, x+n} ∈N|Ti|. ∀j ∈ {1, 2,
. . .,K }, j 6= i, ∀tjy ∈ Tj, y ∈N|Tj|, tjy is live underM0. Based on
the assumption, there exists an EW 〈tix+n, tix+n−1, . . ., tix+2,
tix+1〉 in N i. However, there exists no RW since an RW must
occur among different processes. Therefore, if there exists an
EW, then there does not necessarily exist an RW.

Based on Lemmas 1 and 2, we present the following theo-
rem to illustrate the relationship between EWs and deadlocks.
Theorem 1: Let N = (P,T ,F,M0) be a WAMG. ∃ an EW

at M ∈ R(N , M0) iff ∃ a deadlock atM .
Proof: Given a WAMG, we prove that there exists an

EW atM iff there exists at least one dead transition atM .
• Necessity. Suppose that there exists an EW 〈t1, t2, . . .,
tn〉, ∀i ∈ {1, 2, . . ., n}, ti is disabled at M and @EP′ 〈ta,
tb, . . ., tc, ti〉 such that M (•ta) 6= 0, 3 M [ta, . . ., tb, . . .,
tc〉M ′ andM ′ [ti〉. According to Definition 13, each EW
consists of several ECs. It can be indicated that each
transition in an EC is vainly waiting for the execution
of its previous transition. ∀t ∈ {t1, t2, . . ., tn} such that t
is dead atM . Hence, a deadlock occurs atM .

• Sufficiency. Suppose that t1 ∈ T is a dead transition at
M , which implies that ∃p ∈ •t1 ∩ P such that M (p) <
W (p, t1). Furthermore, ∃t2 ∈ •p∩ T such that t2 is a dead
transition. Owing to the strong connectivity of WAMGs,
there exist paths between transitions t1 and t2 that can
reach each other. Repeat the above steps. A circular
chain of dead transitions can be obtained when ∃tn ∈ t•1

•

∩ T such that tn is a dead transition, where {1, 2, . . .,
n} ∈ N|T |. Namely, ∀i ∈ {1, 2, . . ., n}, ti is disabled at
M and @M ′ ∈ R(N , M ) such that M ′ [ti〉, which implies
that @EP′ 〈ta, tb, . . ., tc, ti〉 such that M (•ta) 6= 0, 3 M
[ta, . . ., tb, . . ., tc〉M ′ andM ′ [ti〉. Hence, an EW 〈t1, t2,
. . ., tn〉 can be constructed.

Next, we show that under what conditions can an EWoccur
in a WAMG.
Lemma 3: Let M0 [σ 〉 M . −→σ is a T -invariant of N , then

M = M0.
Proof: Trivial, see [26].

Theorem 2: Let N = (P,T ,F,M0) be a WAMG. ∃ an EW
at M ∈ R(N , M0) iff N is irreversible.

Proof:We prove that ∃ an EW atM iff M0 /∈ R(N , M ).
• Necessity. Since there exists an EW atM , there is at least
one dead transition atM in accordance with Theorem 1.
Suppose t ∈ Ti, i ∈ {1, 2, . . ., K }, is a dead transition at
M , and N is reversible, i.e., ∀M ∈ R(N ,M0),M0 ∈ R(N ,
M ). Since N is a WAMG, ∀i ∈ {1, 2, . . ., K }, N i is a
strongly connected marked graph such that every circuit
includes p0i . This indicates that a path from p0i to t can
be obtained. Since N is acceptably marked, there exists
no disabled transition atM0 and there is a firing sequence
σ , containing the transitions in the path from p0i to t , that
can reach a newmarkingM ′ ∈R(N ,M0) such thatM ′ [t〉.
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Since M0 ∈ R(N , M ), t is enabled at M . This is in
contradiction with the hypothesis [29].

• Sufficiency. SupposeN is irreversible and there exists no
dead transition atM , i.e., ∀t ∈ T , t is enabled atM , which
is denoted as M [t〉. Since the WAMG is acceptably
marked, there exists no disabled transition atM0. Based
on the Definitions 5-7, there exists a T -semiflow −→σ in
the WAMG, where−→σ =−→σ0 +

−→σ1 , such thatM0 [σ0〉M ,
i.e.,M =M0 + [N ] · −→σ0 , andM [σ1〉M ′, i.e.,M ′ =M +
[N ] · −→σ1 . On the basis ofM =M0+ [N ] · −→σ0 andM ′=M
+ [N ] · −→σ1 , we obtainM ′ =M0 + [N ] · −→σ . Since−→σ is a
T -semiflow,M ′ =M0 according to Lemma 3. Replacing
M ′ byM0 in state equationM ′ =M + [N ] · −→σ1 , we have
M0 = M + [N ] · −→σ1 , i.e., M0 ∈ R(N , M ), indicating
that N is reversible. This is in contradiction with the
hypothesis. Therefore, there exists a dead transition at
M . According to Theorem 1, if there is a dead transition
at M , then there is an EW atM .

B. NEW CLASSIFICATION OF SIPHONS IN WAMGs
Event circular waits (EWs) are employed as the structural
characteristic of deadlock from a transition perspective. Nev-
ertheless, from the viewpoint of place, there exists another
structural characteristic of deadlock, i.e., siphons, which
are widely used to solve deadlocks by preventing siphons
from being undermarked [3], [6], [9], [11]–[14], [19]. Next,
we illustrate the relationship between siphons and EWs.

Consider a siphon S in a simple net system, such as a
system of simple sequential processes with resources (S3PR)
and a system of sequential systems with shared resources
(S4R). Let SR = S ∩ PR and SA = S ∩ PA, such that SA ⊆
H (SR). However, not all siphons in WAMGs conform to this
feature. Thereby, a new classification of siphons is explored.
Definition 15: Let S be a siphon:

1) S is said to be of Type I if ∀p ∈ SA, p ∈ H (SR), and ∀r
∈ SR, ∃p ∈ SA ∩ H (r);

2) S is said to be of Type II if ∃p ∈ SA \ H (SR), and ∀r ∈
SR, ∃p ∈ SA ∩ H (r);

3) S is said to be of Type III if ∀p ∈ SA, p ∈ H (SR), and ∃r
∈ SR, @p ∈ SA ∩ H (r); and

4) S is said to be of Type IV if ∃p ∈ SA \ H (SR), and ∃r ∈
SR, @p ∈ SA ∩ H (r).

A siphon S as S = SA1 ∪ SA2 ∪ SR1 ∪ SR2 , where SA1 = {p
| p ∈ SA ∧ p ∈ H (SR)}, SA2 = SA \ SA1 , SR1 = {r | H (r) ∩ SA1
6= ∅}, and SR2 = SR \ SR1 .
Consider the weighted augmented marked graphs

(WAMGs) (N ,M0) shown in Fig. 1. There are 25 siphons
involved in the WAMG, as shown in Table 1, in which S11,
S12, S13, S14, S16, S20, S21, S22, S23, S24 and S25 are Type I
siphons. Take S11 as an example, S11 = {p5, p9, p10, p15, p16,
p18, p19}, in which SA = {p5, p9, p10, p15} and SR = {p16, p18,
p19}. ∀p ∈ SA, p ∈ H (SR), i.e., p5, p9, p10, p15 ∈ H (SR). ∀r ∈
SR, ∃p ∈ SA ∩ H (r), i.e., for p16, ∃p15 ∈ H (p16); for p18, ∃p5,
p10 ∈ H (p18); for p19, ∃p9 ∈ H (p19). In S11, SA1 = SA = {p5,
p9, p10, p15} and SR1 = SR = {p16, p18, p19}.

S2, S4, S6, S7, S8, S9 and S10 are Type II siphons. Take S2
as an example, S2 = {p9, p11, p14, p18, p19}, in which SA =
{p9, p11, p14} and SR = {p18, p19}. ∃p ∈ SA \ H (SR), i.e., ∃p11
∈ SA such that p11 /∈H (SR). ∀r ∈ SR, ∃p ∈ SA ∩H (r), i.e., for
p18, ∃p14 ∈ H (p18); for p19, ∃p9 ∈ H (p19). In S2, SA1 = {p9,
p14}, SA2 = SA \ SA1 = {p11}, SR1 = SR = {p18, p19}.
S15, S17, S18 and S19 are Type III siphons. Take S15 as an

example, S15 = {p5, p10, p15, p16, p18, p20}, in which SA =
{p5, p10, p15} and SR = {p16, p18, p20}. ∀p ∈ SA, p ∈ H (SR),
i.e., p5, p10, p15 ∈ H (SR). ∃r ∈ SR, @p ∈ SA ∩ H (r), i.e., for
p20, @p ∈ SA such that p ∈ H (p20). In S15, SA1 = SA = {p5,
p10, p15}, SR1 = {p16, p18}, SR2 = SR \ SR1 = {p20}.
S1, S3 and S5 are Type IV siphons. Take S1 as an example,

S1 = {p9, p11, p15, p16, p18, p19}, in which SA = {p9, p11, p15}
and SR = {p16, p18, p19}. ∃p ∈ SA \ H (SR), i.e., ∃p11 ∈ SA
such that p11 /∈ H (SR). ∃r ∈ SR, @p ∈ SA ∩ H (r), i.e., for p18,
@p ∈ SA such that p ∈ H (p18). In S1, SA1 = {p9, p15}, SA2 =
SA \ SA1 = {p11}, SR1 = {p16, p19}, SR2 = SR \ SR1 = {p18}.
1) The siphon of Type I can be derived when SA2 = ∅ and

SR2 = ∅, i.e., S = SA1 ∪ SR1 . Type I usually appears
in S3PR and S4R. In such systems, |•t| = |t•| = 1,
•t ∩ PA = {p} and {r} ⊆ t• ∩ PR. If {p, r} ∈ S, then
p ∈ H (r).

2) When the siphon is of Type II, SR2 = ∅, i.e., S = SA1
∪ SA2 ∪ SR1 . The occurrence of Type II is attributed to
the synchronizations of WAMGs. This is a main char-
acteristic that is different from state machines. Since
multiple places can point to the same transition, there
exists the case that several places belong to a siphon
even though these places do not use the resources
contained in the siphon. SA2 usually appear as a chain
of p ∈ PA, and these places are mostly in parallel
processes. Assume that ∃pji ∈ SA1 such that p

•

j1 =
•pj2,

p•j2 =
•pj3, . . ., p•ji−1 =

•pji and pj1, pj2, . . ., pji ∈
SA1 , where j ∈ NK and i ∈ N|PTj|. Two situations are
presented to clarify SA2 . 1) ∀

•pj1 ∈ S•R1 , ∃t ∈
•SR1 such

that t ∈ S•A2 . 2) If ∃pj1 /∈ S•R1 , then ∃t ∈
•SA1 such

that t ∈ S•A2 .
3) For the siphon of Type III, SA2 = ∅, i.e., S = SA1 ∪

SR1 ∪ SR2 . The occurrence of Type III is the connection
between resources and processes in WAMGs. There
exists not only t ∈ •SR1 satisfying SA1 ∈

•t in certain
processes, but also t ∈ •SR1 in other processes such that
@p ∈ SA1 , p ∈ •t . Therefore, SR2 can be introduced if
∃t ∈ •SR1 such that t ∈ S•R2 . Assume that ∃pji ∈ SA1
such that p•j1 =

•pj2, p•j2 =
•pj3, . . ., p•ji−1 =

•pji and
pj1, pj2, . . ., pji ∈ SA1 , where j ∈ NK and i ∈ N|PTj|.
1) ∀•pj1 ∈ S•R1 , ∃t ∈

•SR1 such that t ∈ S•R2 . 2) If
∃pj1 /∈ S•R1 , then ∃t ∈

•SA1 and ∃t ∈ •SR1 such that
t ∈ S•R2 .

4) For the siphon of Type IV, each component is not
empty, i.e., S = SA1 ∪ SA2 ∪ SR1 ∪ SR2 . Type IV is a
combination of Type II and Type III with both SA2 and
SR2 . In different situations, the post-transitions of SA2
and SR2 are utilized to complement the pre-transitions
of different components. Assume that ∃pji ∈ SA1 such
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TABLE 1. Description of the siphons for the WAMG in Fig. 1.

that p•j1 =
•pj2, p•j2 =

•pj3, . . ., p•ji−1 =
•pji and pj1,

pj2, . . ., pji ∈ SA1 , where j ∈ NK and i ∈ N|PTj|. 1)
∀
•pj1 ∈ S•R1 , ∃t ∈

•SR1 such that t ∈ S•R2 and ∃t ∈
•SR2 such that t ∈ S•A2 . 2) If ∃pj1 /∈ S

•
R1
, then ∃t ∈ •SA1

such that t ∈ S•R2 , ∃t ∈
•SR2 such that t ∈ S•A2 and ∃t ∈

•SA1 such that t ∈ S•A2 .

Theorem 3: Consider a WAMG (N ,M0) and M ∈ R(N ,
M0). ∃ an EW atM iff ∃ an undermarked siphon S at M .

Proof:We prove that a WAMG (N ,M0) contains an EW
at M iff there exists a undermarked siphon S atM .

• Necessity. Since (N ,M0) contains an EW at M , there
exists at least one event circuit EC1 〈t1, t2, . . ., tn, t1〉 at
M , A set P1 = 〈p1, p2, . . ., pn〉 can be constructed such
that p1 ∈ •t1 ∩ t•2 , p2 ∈

•t2 ∩ t•3 , . . ., pn ∈
•tn ∩ t•1 . For t

∈ P•1, there are two cases:

– Case 1) ∃i ∈ {1, 2, . . ., n}, ∃t ∈ p•i such that t /∈ EC1
and ∀t ∈ •pi such that t ∈ EC1. Therefore, P is a
siphon since •P ⊆ P• holds.

– Case 2) ∃i ∈ {1, 2, . . ., n}, ∃t ∈ •pi such that t /∈
EC1, According to Definition 13, t belongs to the
other event circular wait. Therefore, ∃EC = EC1 ∪

EC2 ∪, . . ., ∪ ECm and P = P1 ∪ P2 ∪, . . ., ∪ Pm,
(m ≥ 2).

For t ∈ P•, repeat above steps. There are two cases
which are similar to Case 1) and Case 2). In the most

complicated case, all places can constitute a maximal
set P. After removing some redundant places that do not
affect other places, the remaining places can constitute
a strict minimal undermarked siphon [11], [18], [27].
By selecting a specific dead transition t , all the places
in P are sequentially checked. For a clear description,
let S = P− {p}. Based on the definition of undermarked
siphon, if p ∈ •t , p is temporarily reserved in the strict
minimal siphon to be sought. If p /∈ •t , it is necessary to
verify whether the remaining places can still constitute a
siphon after removing p. There are two cases. Case 1) S
is still a siphon, which means that the removal of p does
not affect the remaining places. This situation occurs due
to ∀t ∈ •P ∩ p• such that t ∈ S•, indicating that p is
not a necessary element of a strict minimal undermarked
siphon. Case 2) S is no longer a siphon since •S ⊆ S•

does not hold. ∃t ∈ •P ∩ P• such that t /∈ S•, which
means that the removal of pwill cause other places to be
removed. Hence, p is an element that constitutes a strict
minimal siphon. ∀p ∈ P, repeat above steps. Select the
places that are temporarily reserved in P to ensure that at
least one is retained in the strict minimal siphon. A strict
minimal undermarked siphon can be obtained.

• Sufficiency. If ∃S atM such that S is undermarked, then
∃t ∈ T at M such that t is dead. In accordance with
Theorem 1, an EW exists atM .
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Note that the statement that ∃ an EW at M iff ∃ an under-
marked siphon S at M proved in Theorem 3 indicates that
an undermarked siphon S is obtained according to an EW
at M and an EW can be deduced based on an undermarked
siphon S at M , which does not mean that both elements of S
and EW correspond to each other. In the sequel, we show the
basic relationships between the EWs and the corresponding
undermarked siphons (SCs). In other words, we illustrate
the relationships between the places that correspond to the
dead transitions in EWs and the places that are involved
in the undermarked siphons SCs. The dead transitions in
EWs can be classified into two types, i.e., resource disabled
and process disabled. Based on Definition 15, we assume
that SC = SCA ∪ SCR = SCA1 ∪ SCA2 ∪ SCR1 ∪ SCR2 . The
relationships are explained as follows via two cases:
• Case 1) If a dead transition in an EW is process disabled,
i.e., ∃p ∈ PA, t ∈ p• is dead due toM (p)= 0, then p acts
as a PC between two dead transitions and p /∈ H (SCR)
and p ∈ SCA2 .

• Case 2) If a dead transition in an EW is resource dis-
abled, i.e., ∃r ∈ PR, t ∈ r• is dead due toM (r)<W (r, t),
then r ∈ SCR. Since resources in a WAMG can be shared
by different processes, t and t ′ that is being waited by t
can be in the same process or in different processes.
– Case 2.1) If t ∈ Ti and t ′ ∈ Tj, (i, j ∈ NK and i 6=
j), then r ∈ SCR1 and ∀p ∈ t

•
∩ H (r) such that p ∈

SCA1 . If ∃pij ∈ SCA1 , i ∈NK and j ∈N|Pi|, such that t
=
•pi1, p•i1 =

•pi2, p•i2 =
•pi3, . . ., p•ij−1 =

•pij, then
pi1, pi2, . . ., pij ∈ SCA1 ⊆ H (SCR1 ).

– Case 2.2) If t , t ′ ∈ Ti, i ∈ NK , then r ∈ SCR2 and ∀p
∈ t• such that p /∈ SC .

Here, p ∈ SCA1 in Case 2.1 ensures that t ′ ∈ S•C . However,
this is not necessary in Case 2.2. We show that t ′ ∈ S•C
according to the following cases: Case a) if t ′ is resource
disabled by r ′ such that t ′ ∈ •r ∩ r ′•, then t ′ ∈ •SC ∩ S•C ;
and Case b) if t ′ is process disabled by p′, then p′ ∈ SCA2 such
that t ′ ∈ •r ∩ p′•, i.e., if ∃p′ ∈ •t ′ such that M (p′) = 0, then
t ′ ∈ •SC ∩ S•C . Since p ∈ t

•
∩
•t ′ and t ′ ∈ S•C , p is not an

unnecessary element for SC , i.e., p /∈ SC in Case 2.2. If p is in
SC , then SC is not a strict minimal siphon. This is contrary to
Theorem 3.

Note that a dead transition in an EW can be both process
disabled and resource disabled. Under such a circumstance,
the activity places and resource places that are related to
the transition are categorized as the elements of SCA1 and
SCR1 , respectively, based on the principle that the places that
correspond to the dead transitions in EWs are first mapped in
the places of Type I SCs, and then those of Type II, Type III,
and Type IV SCs, respectively.

Next, we elaborate on several specified relationships
between the classifications of EWs, i.e., EWA, EWB, and
EWC , and that of SCs, i.e., Type I, Type II, Type III, and
Type IV, according to above discussions, along with several
illustrative examples.

Consider the WAMG in Fig. 1. We denote T1 = {t1, t2, . . .,
t9} and T2 = {t10, t11, t12, t13}. The initial marking in Fig. 1 is

FIGURE 5. Three example event circular waits. (a) 〈t6, t11〉, (b) 〈t9, t7, t3,
t12, t11, t5, t8, t6〉, and (c) 〈t5, t11, t12, t3〉.

set as M0 = [4 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 3 2 2 1].
The WAMG in Fig. 1 can reach a totally deadlock marking
M = [3 1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 1]. In the sequel,
we assume that all EWs for the WAMG in Fig. 1 is obtained
at M if no other statement is given. To facilitate the readers’
understanding, we label the resource places corresponding to
the transitions in an EW outside the EW, and resource holders
or process connectors corresponding to the transitions in an
EW inside the EW, in the following examples. Assume that a
dead transition t in an EW is waiting for another transition t ′.
If t is resource disabled, i.e., ∃r ∈ •t ∩ t

′
• such that M (r) <

W (r, t), then r is a resource place that is marked outside the
EW. ∀p∈H (SCR)∩ t•, p is a resource holder which is marked
inside the EW. For process disabled t , the process connector
p ∈ •t ∩ t

′
• is marked inside the EW.

(1) If an EWA is an RW, then the EWA correspond to a
Type I SC .
Example 5: An EWA 〈t6, t11〉 is shown in Fig. 5(a). Since

there is a resource competition that occurs between p17 and
p19, the deadlock can also be explained by an RW 〈p17, p19〉.
Since t6 is dead due to M (p19) < W (p19, t6) and t11 is dead
due toM (p17)<W (p17, t11), t6 and t11 are resource disabled
and p19, p17 ∈ SCR1 . Because p9 ∈ t

•

6 ∩ H (p19) and p14 ∈ t•11
∩ H (p17), p9, p14 ∈ SCA1 . Hence, we obtain Type I SC = {p9,
p14, p17, p19}.
(2) Not only EWAs but also EWBs and EWCs can corre-

spond to the Type I siphons.
Example 6: Assume that the structure of the WAMG

in Fig. 1 remains unchanged whereas the initial marking is
changed to M0 = [4 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 3 1 2
1]. There exists a totally deadlock marking M ′ = [3 0 1 0 0
1 1 0 0 0 0 2 2 0 0 0 0 0 0 1]. An EWB can be derived at
M ′ as shown in Fig. 5(b). Since t3 is dead due to M (p18) <
W (p18, t3), t11 is dead due toM (p18) <W (p18, t11), and t6 is
dead due to M (p19) < W (p19, t6), t3, t11 and t6 are resource
disabled and p18, p19 ∈ SCR1 . Because p5 ∈ t

•

3 ∩ H (p18), p10
∈ t〈3〉3 ∩ H (p18), p14 ∈ t•11 ∩ H (p18), and p9 ∈ t•6 ∩ H (p19),
p5, p9, p10, p14 ∈ SCA1 . Since t5, t8 ∈ T1, p8 ∈ t

•

5 such that
p8 is not in any undermarked siphon that corrpesonds to the
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FIGURE 6. Two example event circular waits. (a) 〈t6, t11, t12, t3, t9, t8〉
and (b) 〈t2, t12, t3〉.

EWB. Since t7, t8, t9, t12 are process disabled, ∃p5 ∈ t•3 ∩
•t7,

∃p9 ∈ t•6 ∩
•t8, ∃p10 ∈ t•7 ∩

•t9, and ∃p14 ∈ t•11 ∩
•t12 such

that p5 ∈ PC(t3, t7), p9 ∈ PC(t6, t8), p10 ∈ PC(t7, t9), and
p14 ∈ PC(t11, t12). Furthermore, p5 ∈ H (p18) ∩ PC(t3, t7), p9
∈ H (p19) ∩ PC(t6, t8), p10 ∈ H (p18) ∩ PC(t7, t9), and p14 ∈
H (p18) ∩ PC(t11, t12). Hence, we obtain Type I SC ={p5, p9,
p10, p14, p18, p19}.
Example 7: AnEWC is shown in Fig. 5(c). Since t5 is dead

due to M (p19) < W (p19, t5), t12 is dead due to M (p16) <
W (p16, t12) and t3 is dead due toM (p18)<W (p18, t3), t5, t12,
and t3 are resource disabled and p19, p16, p18 ∈ SCR1 . Because
p8 ∈ t•5 ∩ H (p19), p15 ∈ t•12 ∩ H (p16), p5 ∈ t•3 ∩ H (p18), and
p10 ∈ t

〈3〉
3 ∩ H (p18), p5, p8, p10, p15 ∈ SCA1 . Since t11, t12 ∈

T2 and p14 ∈ t•11, p14 is not in any undermarked siphon that
corrpesonds to the EWC . Hence, we obtain Type I SC = {p5,
p8, p10, p15, p16, p18, p19}.

(3) EWAs can correspond to not only Type I SCs but also
Type II, Type III and Type IV SCs.
Example 8: We illustrate that EWAs correspond to

Type IV SCs since Type IV is a combination of Type II and
Type III. There is an EWA shown in Fig. 6(a). Since t6 is dead
due to M (p19) < W (p19, t6) and t12 is dead due to M (p16) <
W (p16, t12), t6 and t12 are resource disabled and p19, p16 ∈
SCR1 . Because p9 ∈ t

•

6 ∩ H (p19) and p15 ∈ t•12 ∩ H (p16), p9,
p15 ∈ SCA1 . Since t3, t9 ∈ T1 and t11, t12 ∈ T2, t11 is dead
due toM (p18) <W (p18, t11), and t3 is dead due toM (p18) <
W (p18, t3), t3 and t11 are resource disabled and p18 ∈ SCR2 .
p5 ∈ t•3 and p14 ∈ t•11 such that p5 and p14 are not in any
undermarked siphon that corrpesonds to the EWA. Since t9 is
process disabled, ∃p11 ∈ t•8 ∩

•t9, p11 ∈ PC(t8, t9) such that
p11 ∈ SCA2 . Hence, we obtain Type IV SC = {p9, p11, p15,
p16, p18, p19}.
A special case is presented as follows.
(4) Assume that t ∈ r• is dead due toM (r)<W (r, t). ∃p ∈

t• such that p /∈ H (r). There must be a transition t ′ ∈ p• such
that t ′ is dead owing to M (p) = 0. p behaves as a resource
holder in SC , i.e., ∃r ′ ∈ SC such that p ∈ H (r ′), essentially p
acts as a process connector.
Example 9: In the EW as shown in Fig. 6(b), t2 is dead due

to M (p17) < W (p17, t2) and p3 ∈ t•2 such that p3 /∈ H (p17).
Furthermore, t3 ∈ p•3 such that t3 is dead due to M (p3) = 0.
Even if p3 behaves as a H (p16), it is actually a PC(t2, t3) in
SC = {p3, p4, p7, p15, p16, p17}.

IV. A NEW METHOD BASED ON EVENT CIRCULAR WAITS
FOR DEADLOCK AVOIDANCE
Since deadlocks can degrade the stability and operating effi-
ciency of the systems, it is crucial to avoid deadlocks as

soon as possible [15], [22], [27], [30]–[33], [37]. Although
many technologies, such as the look-ahead strategy, have
been proposed to deal with deadlocks, there is little work
for in-depth exploration of how long a deadlock will occur
from a specifiedmarking. This makes the current methods too
aggressive, i.e., they explore too many reachable markings,
from the RWs perspective.

Theorem 1 proposed above provides the sufficiency and
necessity condition between EWs and the liveness of PNs.
Therefore, deadlocks can be avoided via EWs. In this section,
we show that deadlocks can be avoided earlier at a specified
marking by using EWs rather than RWs, indicating that EWs
are much more efficient than RWs for deadlock avoidance.
Then, an effective approach to avoid deadlocks is proposed
based on EWs.

We will compare the avoidance efficiency by using
EWs and RWs in the following two cases. The case in
Lemma 4 shows that there exists an ordered transition
sequence. Each transition is waiting for a transition in other
processes. The cases in Lemma 5 shows that there exists an
ordered transition sequence, at least one of which is waiting
for a transition in the same process.
Lemma 4: Let N = (P,T ,F,W ) be a WAMG. ∃t1i ∈ T1,

i ∈ N|T1|, such that t1i holds the resources in r1 while waiting
for r2, ∃t2j ∈ T2, j ∈ N|T2|, such that t2j holds the resources in
r2 while waiting for r3, . . ., ∃tKk ∈ TK , k ∈ N|TK |, such that
tKk holds the resources in rK while waiting for r1 atM ∈ R(N ,
M0), where r1, r2, . . ., rK ∈ PR, then an EW 〈t1i, t2j, . . ., tKk 〉
and an RW 〈r1, r2, . . ., rK 〉 generate simultaneously at M ∈
R(N , M0).

Proof: Based on the assumption that t1i is waiting for
t2j, . . ., tKk is waiting for t1i, an EW 〈t1i, t2j, . . ., tKk 〉 exists;
meanwhile, since t1i, t2j, . . ., tKk are all resource disabled and
belong to different processes, an RW 〈r1, r2, . . ., rK 〉 can be
obtained.
Example 10: As shown in Fig. 5(a), t6 ∈ T1 is waiting for

t11 ∈ T2 to release the resources in p19, and t11 ∈ T2 is waiting
for t6 ∈ T1 to make the resources in p17 sufficient. Since both
t6 and t11 are resource disabled and are located in different
processes, an EW 〈t6, t11〉 and an RW 〈p19, p17〉 are formed
simultaneously.
Lemma 5: Let N = (P,T ,F,W ) be a WAMG. ∃tix , tix+n
∈ Ti, i, n ∈ N+, x, . . ., x+ n ∈ N|Ti|, such that tix+n is waiting
for tix or tix is waiting for tix+n at M ∈ R(N , M0), then ∃ an
EW but @ an RW atM .

Proof: Based on the assumption, we then prove this
lemma by the following two cases:
• Case 1) tix+n is waiting for tix due to M (pia) = 0, . . .,
M (pia+n) = 0, where pia ∈ t•ix ∩

•tix+1, . . ., pia+n−1 ∈
t•ix+n−1 ∩

•tix+n, a, . . ., a + n − 1 ∈ N|Pi|. ∃tjy ∈ Tj, j
∈ N+, y ∈ N|Tj|, tjy is resource disabled and waiting for
tkz ∈ Tk , k ∈ N+, z ∈ N|Tk |, tkz is resource disabled and
waiting for tmn, m ∈ N+, n ∈ N|Tm|, . . ., tix+n is process
disabled and waiting for tix+n−1, . . ., tix+1 is process
disabled and waiting for tix , and tix is resource disabled
and waiting for tjy, i.e., all resource competitions occur
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FIGURE 7. Two example event circular waits. (a) 〈t6, t11, t9, t8〉 and
(b) 〈t11, t6, t8, t5〉.

among different processes. Since ∃tix+1, . . ., tix+n ∈ Ti
such that tix+1, . . ., tix+n are process disabled, RWs do
not exist. However, an EW 〈tjy, tkz, tmn, . . ., tix+n, . . .,
tix+1, tix〉 can be constituted atM .

• Case 2) tix is waiting for tix+n due to M (r) < W (r, t),
where r ∈ t•ix+n ∩

•tix . ∃tjy ∈ Tj, y ∈ N|Tj|, tjy is resource
disabled and waiting for tkz ∈ Tk , k ∈ N+, z ∈ N|Tk |,
tkz is resource disabled and waiting for tmn, m ∈ N+,
n ∈ N|Tm|, . . ., tix is resource disabled and waiting for
tix+n, and tix+n is waiting for a transition in the same pro-
cess or other processes, . . ., and tix is resource disabled
and waiting for tjy. Note, only the resource competition
between different processes can constitute an RW, Since
tix , tix+n ∈ Ti, there exists no RW under this situation.
However, an EW 〈tjy, tkz, tmn, . . ., tix , tix+n〉 can be
constituted at M . no matter whether they are process
disabled or resource disabled.

Example 11: As shown in Fig. 7(a), t6 ∈ T1 is waiting for
t11 ∈ T2 to release the resources in p19 and t11 ∈ T2 is waiting
for t9 ∈ T1 to make the resources in p18 adequate. Both t6
and t11 are resource disabled while t9 and t8 are process
disabled. The competition of t6 and t11 for resource p19 and
the competition of t11 and t9 for resource p18 occur between
different processes. Since t9 and t8 are process disabled,
there exists no resource wait between t9 and t8 or t8 and t6.
Obviously, EWs are formed before RWs in such cases.
Example 12: Fig. 7(b) shows an EW, where both t11 and

t6 are resource disabled. The competition of t11 and t6 for
resource p17 exists between different processes, while the
competition of t6 and t8 for resource p19 exists between the
same process. An RW cannot be formed but an EW can.
Clearly, EWs generate before RWs in such cases.
Remark 2: Lemma 4 illustrates the case that both EWs

and RWs are formed simultaneously. Only in this case, can
an EW and an RW have the same efficiency when avoiding
deadlocks. Lemma 5 illustrates the case when EWs occur
before RWs, indicating that EWs are much more efficient
than RWs in avoiding deadlocks.
Lemma 6: Consider a WAMG (N ,M0). If there exists an

EW atM ∈R(N ,M0) and ∃t ∈ T such that t /∈ any EW, thenN
is partially deadlocked andM is a partially deadlockmarking.

Proof: According to Theorem 1, each EW consists of
several dead transitions. If ∃t ∈ T such that t /∈ any EW atM ,
then t is live. Therefore, N is partially deadlocked andM is a
partially deadlock marking.
Lemma 7: Consider a WAMG (N ,M0). If there exists an

EW at M ∈ R(N ,M0) and ∀t ∈ T such that t ∈ an EW, then
N is totally deadlocked andM is a totally deadlock marking.

Proof: Since ∀t ∈ T such that t ∈ an EW, ∀t ∈ T such
that t is dead. Therefore, N is totally deadlocked and M is a
totally deadlock marking.
Theorem 4: Deadlocks can be avoided earlier at a speci-

fied marking by using EWs in contrast to RWs
Proof: Let N = (P,T ,F,W ) be a WAMG. According

to the structure of a WAMG, we prove this proposition by the
following two cases:
• Case 1) There is only one process in a WAMG, i.e., for
i ∈ {1}, N i = N | ({p0i} ∪ PAi , Ti, Fi) is a strongly
connected PN.M is a deadlock marking, i.e., ∃t ∈ Ti, i ∈
{1}, such that t is dead atM ∈ R(N ,M0). When avoiding
deadlock markingM at a given markingMx ∈ R(N ,M0),
since the deadlock occurs only in N i, there exists an EW
at M , but not an RW .

• Case 2) There are several processes in aWAMG, i.e., for
each i ∈ NK , N i = N | ({p0i} ∪ PAi , Ti, Fi) is a strongly
connected PN. A deadlock marking M ∈ R(N , M0) can
be a partially deadlock marking or a totally deadlock
marking. According to Lemmas 6 and 7, there are two
cases:
– Case 2.1)M is a totally deadlock marking, i.e., ∀t ∈
T such that t is dead atM . We suppoes that ∃ EW at
M ′ ∈ R(N ,M0) and ∃ RW atM ′′ ∈ R(N ,M0). There
are three cases:
∗ Case 2.1.1) If M ′, M ′′ ∈ R(N ,M0) are two par-

tially deadlockmarkings, which eventually reach
M .

∗ Case 2.1.2) If M ′′ = M , M ′ ∈ R(N ,M0) is
a partially deadlock marking, which eventually
reaches M .

∗ Case 2.1.3) IfM ′ = M ′′ = M .
Assume that an EW exists at M ′ and an RW
exists at M ′′ when avoiding deadlock markings at
a given marking Mx ∈ R(N ,M0). According to
Lemmas 4 and 5, ∃σ ′, σ ′′ ∈ T such that Mx [σ ′〉
M ′ and Mx [σ ′′〉 M ′′, then |σ ′| ≤ |σ ′′|.

– Case 2.2)M is a partially deadlock marking, i.e., ∃t
∈ Ti, i ∈ NK , such that t is dead at M . We suppoes
that ∃ EW at M ′ ∈ R(N , M0) and ∃ RW at M ′′ ∈
R(N , M0).
∗ Case 2.2.1) ∀t ∈ Tj, j ∈ NK and i 6= j, such that
M [t〉 holds.

∗ Case 2.2.2) ∃t ∈ Tj, j ∈ NK and i 6= j, such
that t is dead at M ∈ R(N ,M0). If M ′, M ′′ ∈
R(N ,M0) are two partially deadlock markings,
which eventually reachM .

∗ Case 2.2.3) If M ′′ = M , M ′ ∈ R(N ,M0) is
a partially deadlock marking, which eventually
reaches M .

∗ Case 2.2.4) IfM ′ = M , M ′′ ∈ R(N ,M ).
∗ Case 2.2.5) IfM ′ = M ′′ = M .
In Case 2.2.1, when avoiding deadlock marking
M at a given marking Mx ∈ R(N ,M0), since the
deadlock occurs only in N i instead of N j, there
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exists an EW at M , but not an RW . In Case 2.2.2,
Case 2.2.3, Case 2.2.4 and Case 2.2.5, when avoid-
ing deadlock markings at a given marking Mx ∈

R(N ,M0). According to Lemmas 4 and 5, ∃σ ′, σ ′′ ∈
T such that Mx [σ ′〉 M ′ and Mx [σ ′′〉 M ′′, then |σ ′|
≤ |σ ′′|.

Next, we propose an approach to avoiding deadlocks via
EWs.

First, a control law f (M , t): {t | M [t〉} → {0, 1} of any
markingM ∈ R(N ,M0) is shown as follows: if the firing of t
needs to be prevented, we set f (M , t) = 0; otherwise, we set
f (M , t) = 1.

Then, we present the detailed procedures of our deadlock
avoidance policy.

Consider a certain marking M in which deadlocks are to
be avoided. If there is an EW at M ′ ∈ R(N ,M ), then M ′ is a
deadlock marking and the firing sequences fromM toM ′ are
forbidden. More specifically, given the current markingM ,

f (M , t) =


0, if ∀t ∈ T , such that M [t〉M ′,

where an EW exists at M ′;
1, otherwise.

(1)

The above procedure then repeats after the execution of the
next marking.

Algorithm 1 is proposed to calculate a set of transitions that
lead to no deadlock markings at M ∈ R(N ,M0). The main
steps of Algorithm 1 and its time complexity are summarized
as follows.

First, we obtain all enabled transitions by traversing all
transitions at M . Since there are at most |T | transitions,
the computation complexity of this step is O(|T |). Then,
we detect EWs atM ′ ∈ R(N ,M ) via the following 5 steps:

1) Step 1 (Lines 9-11): Obtain a set of all disabled transi-
tions atM ′ (denoted as T1) by traversing all transitions.
The computation complexity of this step is O(|T |);

2) Step 2 (Lines 12-14): Obtain a set of transitions which
satisfy the condition 3) of Definition 13 atM (denoted
as T2). All reachable markings need to be traversed in
the worst case, thus the computation complexity of this
step is O(|R(N ,M )|);

3) Step 3 (Line 15): Obtain a set of the event paths
which consist of the transitions in T2 (denoted as 0)
by the Depth First Search (DFS) Algorithm. Suppose
that there are s directed arcs in a PN, s ∈ N+. The
main step is to determine the paths between any two
transitions in T2. Paths between |T2|2 pairs of nodes
should be calculated at M . When calculating the path
between two nodes, each place needs to be traversed
to check whether it is connected to each transition.
Similarly, each transition must be traversed to check
whether it is connected to each place. Two directed arcs
are then obtained, such that one is from a place to a
transition and the other is from a transition to a place,
forming a complete process. The complexity of this
process is O(|T | · |P|). Nodes can be added to a path

Algorithm 1: Calculation of a Set of Transitions That
Lead to No Deadlock Markings atM

1 Input: A WAMG N = (P,T ,F,W ) and a markingM ;
2 Output: A set of transitions that lead to no deadlock

markings atM ;
3 EPf : the first transition in an event path EP;
4 EPl : the last transition in an event path EP;
5 for i = 1; i ≤ |T |; i++ do
6 if ∀p ∈ •ti, M (p) ≥ W (p, ti) then
7 M [ti〉M ′, EW = T1 = T2 = 0 =1 = ∅; for j =

1; j ≤ |T |; j++ do
8 if ∃p ∈ •tj, M ′(p) < W (p, tj) then
9 T1 = T1 ∪ tj;

10 for j = 1; j ≤ |T1|; j++ do
11 if tj satisfies the condition 3) of

Definition 13; then
12 T2 = T2 ∪ tj;

13 Obtain event paths which consist of the
transitions in T2 by DFS Algorithm and denote
as 0 = {EP1, EP2, . . ., EPm};

14 Obtain event circuits which consist of the
transitions in T2 by DFS Algorithm and denote
as 1 = {EC1, EC2, . . ., ECn};

15 for j = 1; j ≤ |0|; j++ do
16 if EPfj ∈ ECx ⊆ 1, EPlj ∈ ECy ⊆ 1, x, y ∈

{1, 2, . . ., n} then
17 EW = EW ∪ EPj;

18 if EW = ∅ then
19 f (M , ti) = 1, TE = TE ∪ ti;

20 else
21 f (M , ti) = 0;

if there exist connections between two nodes. Then,
subsequent nodes are traversed. In the worst case, all
the directed arcs need to be traversed in a PN when
looking for a path, which means that the process with a
complexity of |T | · |P| needs to be performed s/2 times.
Therefore, the total computation complexity of this step
is O(|T2|2 · (|T | · |P|)s/2).

4) Step 4 (Line 16): Obtain a set of the event circuits
which consist of the transitions in T2 (denoted as 1)
by the Depth First Search Algorithm.When calculating
an event circuit, each node needs to be traversed so as
to determine whether it is connected to other nodes.
Since there are |T | + |P| nodes in total, the computation
complexity of this step is O(|T | + |P||T |+|P|);

5) Step 5 (Line 17-23): Calculate EWs at M ′ and deter-
mine a set of transition that can be fired atM (denoted
as TE ). All event paths in 0 need to be traversed, so the
time complexity is O(|0|).
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TABLE 2. Reachable markings for the WAMG in Fig. 1.

FIGURE 8. Partial reachability graph of the WAMG in Fig. 1 including
M0 − M11.

FIGURE 9. Partial reachability graph of the WAMG in Fig. 1 including
M0 − M1, M8 − M10, and M12 − M22.

In summary, the overall computation complexity of Algo-
rithm 1 is O(|T | · |T2|2 · (|T | · |P|)s/2).
We now implement the proposed deadlock avoidance pol-

icy by the WAMG in Fig. 1. Assume that the structure of
the WAMG in Fig. 1 remains unchanged whereas the initial
marking is changed toM0 = [4 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2 3
2 2 1].

A partial reachability graph of the WAMG is shown
in Fig. 8, and the reachable markings are shown in Table 2.

Assume the net system is at M1. There are three transitions
t1, t2 and t10 that can be fired atM1. It is necessary to predict
whether the EWs exist at the markings reachable from M1
after the execution of t1, t2 or t10. If t1 is fired, theWAMG can
reach M2, which contains an EW 〈t2, t6〉; if t2 is fired, it can
reach M8 that does not contain any EW; and if t10 is fired,
it can reach M10 that does not contain any EW. Therefore,
f (M1, t1) = 0, f (M1, t2) = 1, and f (M1, t10) = 1. The firing
of t1 is forbidden which is represented by a dotted arrow. And
the firing of t2 and t10 are permitted, which are represented by
solid arrows. In case such an EW 〈t2, t6〉 atM2 is not avoided
beforehand, the systemwill eventually reach an RW〈p17, p19〉
at a totally deadlock marking M6 after 4 transitions. Clearly,
the deadlock can be avoided earlier at M1 by using EWs
compared with RWs, indicating that EWs are muchmore effi-
cient than RWs for deadlock avoidance. A partial reachability
graph of the WAMG is shown in Fig. 9, it can be found that
M0 ∈ R(N ,M1). After the firing of t1 is forbidden atM1, there
exist two firing sequences σ1 = 〈t3, t4, t5, t6, t8, t7, t9〉 and
σ2 = 〈t3, t7, t4, t5, t6, t8, t7〉 such thatM1 [t2〉M8 [σ1〉M0,M1
[t2〉 M8 [σ2〉 M0, M1 [t10〉 M10 [σ 〉 M8 [σ1〉 M0, and M1 [t10〉
M10 [σ 〉 M8 [σ2〉 M0, where σ = 〈t10, t11, t12, t11, t13, t12,
t2, t13〉.

V. CONCLUSION
This paper proposes a new type of circular wait, namely,
EWs, as an alternative to RWs that were treated as one of
four necessary conditions for a deadlock. EWs are shown
and proven to be more general and essential than RWs in
WAMGs. We illustrate the relationship between EWs and
deadlocks and show the conditions under which an EW can
occur in PNs. This is critical of deadlock control of network
systems. Since both siphons and EWs in PNs are employed
as the structural characteristic of deadlock, we study the rela-
tionship between EWs and undermarked siphons inWAMGs.
A necessary and sufficient condition is established between
undermarked siphons and EWs. Finally, EWs are used to
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avoid deadlocks. We show that deadlocks can be avoided
earlier at a specified marking by using EWs rather than RWs,
indicating that EWs are much more efficient than RWs for
deadlock avoidance. In future research, the application scope
of EWs for deadlock avoidance should be further expanded.

REFERENCES
[1] F. Basile, R. Cordone, and L. Piroddi, ‘‘Integrated design of opti-

mal supervisors for the enforcement of static and behavioral specifica-
tions in Petri net models,’’ Automatica, vol. 49, no. 11, pp. 3432–3439,
Nov. 2013.

[2] E. G. Coffman, M. Elphick, and A. Shoshani, ‘‘System deadlocks,’’ ACM
Comput. Surveys, vol. 3, no. 2, pp. 67–78, Jun. 1971.

[3] C. Chen and H. Hu, ‘‘Liveness-enforcing supervision in AMS-oriented
HAMGs: An approach based on new characterization of siphons using
Petri nets,’’ IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 1987–2002,
Jul. 2018.

[4] C. Chen and H. Hu, ‘‘Static and dynamic partitions of inequalities: A uni-
fiedmethodology for supervisor simplification,’’ IEEE Trans. Autom. Con-
trol, vol. 64, no. 11, pp. 4748–4755, Nov. 2019.

[5] C. Chen and H. Hu, ‘‘Time-varying automated manufacturing systems and
their invariant-based control: A Petri net approach,’’ IEEE Access, vol. 7,
pp. 23149–23162, 2019.

[6] F. Chu and X.-L. Xie, ‘‘Deadlock analysis of Petri nets using siphons and
mathematical programming,’’ IEEE Trans. Robot. Autom., vol. 13, no. 6,
pp. 793–804, Dec. 1997.

[7] V. Deverakonda and R. S. Sreenivas, ‘‘On a sufficient information struc-
ture for supervisory policies that enforce liveness in a class of general
Petri nets,’’ IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1915–1920,
Jul. 2015.

[8] N. Du and H. Hu, ‘‘A robust prevention method for automated manufac-
turing systems with unreliable resources using Petri nets,’’ IEEE Access,
vol. 6, pp. 78598–78608, 2018.

[9] J. Ezpeleta, J. M. Colom, and J. Martinez, ‘‘A Petri net based deadlock
prevention policy for flexible manufacturing systems,’’ IEEE Trans. Robot.
Autom., vol. 11, no. 2, pp. 173–184, Apr. 1995.

[10] A. Giua, C. Seatzu, and F. Basile, ‘‘Observer-based state-feedback control
of timed Petri nets with deadlock recovery,’’ IEEE Trans. Autom. Control,
vol. 49, no. 1, pp. 17–29, Jan. 2004.

[11] H. Hu and Z. Li, ‘‘An optimal-elementary-siphons-based iterative deadlock
prevention policy for flexible manufacturing systems,’’ Int. J. Adv. Manuf.
Technol., vol. 38, nos. 3–4, pp. 309–320, Aug. 2008.

[12] H. Hu, M. Zhou, Z. Li, and Y. Tang, ‘‘An optimization approach to
improved Petri net controller design for automated manufacturing sys-
tems,’’ IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 772–782,
Jul. 2013.

[13] H. Hu and Y. Liu, ‘‘Supervisor simplification for AMS based on Petri nets
and inequality analysis,’’ IEEE Trans. Autom. Sci. Eng., vol. 11, no. 1,
pp. 66–77, Jan. 2014.

[14] H. Hu, Y. Liu, and L. Yuan, ‘‘Supervisor simplification in FMSs: Compar-
ative studies and new results using Petri nets,’’ IEEE Trans. Control Syst.
Technol., vol. 24, no. 1, pp. 81–95, Jan. 2016.

[15] H. Hu, R. Su, M. Zhou, and Y. Liu, ‘‘Polynomially complex synthe-
sis of distributed supervisors for large-scale AMSs using Petri nets,’’
IEEE Trans. Control Syst. Technol., vol. 24, no. 5, pp. 1610–1622,
Sep. 2016.

[16] H. Hu, M. Zhou, Z. Li, and Y. Tang, ‘‘Deadlock-free control of auto-
matedmanufacturing systems with flexible routes and assembly operations
using Petri nets,’’ IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 109–121,
Feb. 2013.

[17] H. Hu andM. Zhou, ‘‘A Petri net-based discrete-event control of automated
manufacturing systems with assembly operations,’’ IEEE Trans. Control
Syst. Technol., vol. 23, no. 2, pp. 513–524, Mar. 2015.

[18] Y. Huang, M. Jeng, X. Xie, and S. Chung, ‘‘Deadlock prevention pol-
icy based on Petri nets and siphons,’’ Int. J. Prod. Res., vol. 39, no. 2,
pp. 283–305, Jan. 2001.

[19] Z. Li and M. Zhou, ‘‘Elementary siphons of Petri nets and their appli-
cation to deadlock prevention in flexible manufacturing systems,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 34, no. 1, pp. 38–51,
Jan. 2004.

[20] Z. Li, G. Liu, H. Michael, and M. Zhou, ‘‘Erratum to deadlock prevention
based on structure reuse of Petri net supervisors for flexible manufacturing
systems,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 43, no. 2, p. 474,
Mar. 2013.

[21] Z. Li, N.Wu, andM. Zhou, ‘‘Deadlock control of automatedmanufacturing
systems based on Petri nets—A literature review,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 437–462, Jul. 2012.

[22] J. Luo, Z. Liu, and M. Zhou, ‘‘A Petri net based deadlock avoidance
policy for flexible manufacturing systems with assembly operations and
multiple resource acquisition,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3379–3387, Jun. 2019.

[23] J. Luo and K. Nonami, ‘‘Approach for transforming linear constraints on
Petri nets,’’ IEEE Trans. Autom. Control, vol. 56, no. 12, pp. 2751–2765,
Dec. 2011.

[24] J. Luo, H. Ni, W. Wu, S. Wang, and M. Zhou, ‘‘Simultaneous reduc-
tion of Petri nets and linear constraints for efficient supervisor syn-
thesis,’’ IEEE Trans. Autom. Control, vol. 60, no. 1, pp. 88–103,
Jan. 2015.

[25] Z. Ma, Y. Tong, Z. Li, and A. Giua, ‘‘Basis marking representation
of Petri net reachability spaces and its application to the reachability
problem,’’ IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1078–1093,
Mar. 2017.

[26] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–579, Apr. 1989.

[27] J. Park and S. A. Reveliotis, ‘‘Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible rout-
ings,’’ IEEE Trans. Autom. Control, vol. 46, no. 10, pp. 1572–1583,
Oct. 2001.

[28] E. Salimi and R. S. Sreenivas, ‘‘On invariant-based monitors that enforce
liveness in a class of partially controlled general Petri nets,’’ IEEE Trans.
Autom. Control, vol. 60, no. 10, pp. 2825–2830, Oct. 2015.

[29] F. Tricas, F. García-Vallés, J. M. Colom, and J. Ezpeleta, ‘‘A Petri net
structure-based deadlock prevention solution for sequential resource allo-
cation systems,’’ in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain,
Apr. 2005, pp. 271–277.

[30] N. Viswanadham, Y. Narahari, and T. L. Johnson, ‘‘Deadlock prevention
and deadlock avoidance in flexible manufacturing systems using Petri
net models,’’ IEEE Trans. Robot. Autom., vol. 6, no. 6, pp. 713–723,
Dec. 1990.

[31] N. Wu, ‘‘Deadlock avoidance in AGV system using colored Petri net
model,’’ Int. J. Prod. Res., vol. 40, no. 1, pp. 223–238, 2002.

[32] N. Wu and M. Zhou, ‘‘Avoiding deadlock and reducing starvation and
blocking in automated manufacturing systems,’’ IEEE Trans. Robot.
Autom., vol. 17, no. 5, pp. 657–668, Oct. 2001.

[33] N. Wu, M. Zhou, and G. Hu, ‘‘One-step look-ahead maximally permissive
deadlock control of AMS by using Petri nets,’’ ACM Trans. Embedded
Comput. Syst., vol. 12, no. 1, pp. 10:1–10:23, Jan. 2013.

[34] X. Xie and M. Jeng, ‘‘ERCN-merged nets and their analysis using
siphons,’’ IEEE Trans. Robot. Autom., vol. 15, no. 4, pp. 692–703,
Aug. 1999.

[35] K. Xing, F.Wang, M. C. Zhou, H. Lei, and J. Luo, ‘‘Deadlock characteriza-
tion and control of flexible assembly systems with Petri nets,’’ Automatica,
vol. 87, pp. 358–364, Jan. 2018.

[36] K. Xing, M. Zhou, F. Wang, H. Liu, and F. Tian, ‘‘Resource-transition
circuits and siphons for deadlock control of automated manufacturing
systems,’’ IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 41, no. 1,
pp. 74–84, Jan. 2011.

[37] Y. Yang and H. Hu, ‘‘Implementation of distributed control of hierarchical
assembly systems via extended critical places,’’ IEEE Access, vol. 7,
pp. 182937–182950, 2019.

[38] X. Yin and S. Lafortune, ‘‘Synthesis of maximally permissive
supervisors for partially-observed discrete-event systems,’’
IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1239–1254,
May 2016.

[39] Y. Zhou, H. Hu, Y. Liu, and Z. Ding, ‘‘Collision and deadlock
avoidance in multirobot systems: A distributed approach,’’ IEEE
Trans. Syst., Man, Cybern. Syst., vol. 47, no. 7, pp. 1712–1726,
Jul. 2017.

[40] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, ‘‘A distributed approach
to robust control of multi-robot systems,’’ Automatica, vol. 98, pp. 1–13,
Dec. 2018.

[41] Y. Zhou, H. Hu, Y. Liu, S.-W. Lin, and Z. Ding, ‘‘A distributed method
to avoid higher-order deadlocks in multi-robot systems,’’ Automatica,
vol. 112, pp. 1–13, Feb. 2020.

92598 VOLUME 9, 2021



X. Fan et al.: Event Circular Waits and Their Analysis via Petri Nets

XING FAN received the B.S. degree in automation
from the Shaanxi University of Science and Tech-
nology, Xi’an, China, in 2015. She is currently
pursuing the Ph.D. degree in control theory and
control engineering with Xidian University. Her
research interests include discrete event systems
and their supervisory control techniques, Petri
nets, and automated manufacturing systems.

BENYUAN YANG received the B.S. degree in
logistics engineering from the Tianjin College,
University of Science and Technology Beijing,
Tianjin, China, in 2014, and the M.S. degree in
logistics engineering from the University of Sci-
ence and Technology Beijing, in 2017. He is cur-
rently pursuing the Ph.D. degree in control theory
and control engineering with Xidian University,
Xi’an, China. His research interests include dis-
crete event systems and their supervisory control

techniques, Petri nets, automated manufacturing systems, business process
management, and distributed control techniques.

HESUAN HU (Senior Member, IEEE) received
the B.S. degree in computer engineering and the
M.S. and Ph.D. degrees in electro-mechanical
engineering from Xidian University, Xi’an, China,
in 2003, 2005, and 2010, respectively.

He is currently a Professor with Xidian
University and also with Nanyang Technologi-
cal University, Singapore, and a Researcher with
Xi’an Jiaotong University, Xi’an. He holds over
30 issued and filed patents in his fields of expertise.

He has over 130 publications in journals, book chapters, and conference
proceedings in the above areas. His current research interests include discrete
event systems and their supervisory control techniques, Petri nets, automated
manufacturing systems, multimedia streaming systems, autonomous vehi-
cles, cyber security, and artificial intelligence.

Prof. Huwas a recipient ofmany national and international awards, includ-
ing the Franklin V. Taylor Memorial Award for Outstanding Papers from the
IEEE SMC Society, in 2010, and the finalist of the Best Automation Paper
from the IEEE ICRA Society, in 2013, 2016, and 2017, respectively. He has
been an Associate Editor of the IEEE Control Systems Magazine, IEEE
Robotics and Automation Magazine, IEEE TRANSACTIONS ON AUTOMATION

SCIENCE AND ENGINEERING, and Journal of Intelligent Manufacturing. He was
on the editorial board over ten international journals.

VOLUME 9, 2021 92599


