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ABSTRACT In this paper, two supervised learning models based solutions are proposed for Electricity
Theft Detection (ETD). In the first solution, Adaptive Synthetic Edited Nearest Neighbor (ADASYNENN) is
used to solve class imbalanced problem. For feature extraction, Locally Linear Embedding (LLE) technique
is utilized. Moreover, Self-Attention Generative Adversarial Network (SAGAN) is used in combination
with Convolutional Neural Network (CNN) for the classification of electricity consumers. In the second
solution, Synthetic Minority Oversampling Technique Edited Nearest Neighbor (SMOTEENN) is proposed.
Moreover, a novel classification model, named as ERNET, which is based on EfficientNet, Residual
Network (ResNet) and Gated Recurrent Unit (GRU)), is used to detect Non-Technical Losses (NTLs). We also
used a Sparse Auto Encoder (SAE) for effective feature extraction that makes the classification more robust
and easy. Furthermore, a robust Root Mean Square Propagation (RMSProp) optimizer is used to improve
the learning rate of the model. To validate the proposed models, simulations are performed using different
performance metrics, such as precision, recall, F1-score, Area Under the Curve (AUC), FPR and Root Mean
Square Error (RMSE). All simulations are performed using State Grid Corporation of China (SGCC) dataset.
The proposed models are compared with benchmark models, such as SAGAN, Wide and Deep Convolutional
Neural Network (WDCNN), CNN and Long Short Term Memory (LSTM). The simulation results prove that
the proposed models outperform the existing models in terms of the aforementioned performance metrics.

INDEX TERMS Electricity theft detection, gated recurrent unit, non-technical losses, random undersam-
pling, random oversampling, smart grid, SGCC.

NOMENCLATURE CatBoost Category Boosting
AdaGrad Adaptive Gradient Algorithm CNN-LSTM  Convolutional Neural Network-Long Short
ADASYNENN  Adaptive Synthetic Edited Nearest Term Memory
Neighbor CNN-RF Convolutional Neural Network-Random
ANN Artificial Neural Network Forest ) )
AUC Area Under the Curve d Degree of imbalance ratio
a Input Layer dy Preset threshold value, which decides the
b Bias tolerable value of class imbalance ratio
CDF Cumulative Distribution Function ECNN Enhanced Convolutional Neural Network
CNN Convolutional Neural Network ELR Enhanced Logistic Regression
ENN Edited Nearest Neighbor
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I. INTRODUCTION

With the increase in the number of residential homes and
industries, the demand of energy increases manifolds. There-
fore, power generation companies need to generate more
electricity [1]. Moreover, there should be a balance between
electricity generation and consumption to mitigate the issue
of energy shortage [2]. Due to the latest advancements in
Advanced Metering Infrastructure (AMI), traditional grids
are converted into smart grids where data is collected through
smart meters. The balance between demand and supply is
also established using bi-directional flow of energy and infor-
mation [3]. In energy transmission systems, two types of
losses occur, which are known as Technical Losses (TLs)
and Non-Technical Losses (NTLs). The former losses occur
due to poor infrastructure and energy dissipation. Whereas,
the latter losses are defined as the difference between total
electricity transmitted through distribution lines and the elec-
tricity consumed by the users. Due to the NTLs, power utili-
ties face losses worth millions of dollars, which highly affect
the country’s economy [4]. The manual inspection of these
losses is both time consuming and expensive [5], [6].

There are different reasons for the occurrence of NTLs,
which are broadly categorized in two categories: human and
non-human. The former includes tampering the meter read-
ings, hooking with the main lines, etc. Whereas, the lat-
ter includes errors in smart meters, fluctuating energy flow,
meter inaccuracies, etc., [6]. With the NTLs, other losses
also occur, such as unbearable load on electrical systems, load
shedding, economical loss, etc., [7]. With the use of smart
meters, flow of both energy and information becomes auto-
mated. For the utility companies, the smart meters remotely
provide data related to readings of electricity consumption
on real time basis. Therefore, it becomes easy to steal
the electricity by manipulating the electricity consumption
data [8], [9].

To handle NTLs, several solutions have been proposed in
the literature [10], [11]. These solutions are broadly catego-
rized into three types: hardware based solutions, game theory
based solutions and data-driven based solutions. Hardware
based solutions focus on designing smart devices and sensors
to detect electricity thieves. These solutions require hardware
equipment and devices that are expensive and involve high
maintenance cost. Moreover, these devices are less efficient
and more time consuming [12]. On the other hand, in game
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theory based solutions, there exists a game between players,
i.e., utility and electricity users [13]. Both entities try to
maximize their benefits. However, these solutions are based
on assumptions that can be inappropriate if wrong utility
function is formulated. Moreover, these solutions have less
accuracy and high False Positive Rate (FPR) [14]. In contrast,
many data-driven based solutions are adopted in literature
for NTL detection [15]. These solutions include techniques
that are based on artificial intelligence and machine learning.
These techniques perform pattern analysis on the electricity
consumption data without requiring additional hardware cost
and human resources. Furthermore, the data-driven based
solutions are more robust, efficient and easy to understand
as compared to hardware based and game theory based solu-
tions [16]. However, in the data-driven based solutions, there
are some problems, which are needed to be addressed. The
problems are class imbalanced problem, low accuracy and
high FPR. Therefore, this study is carried out keeping in view
the data-driven solutions.

The remainder of this paper is organized as follows.
Section II discusses the work done in the literature on the
detection and prevention of NTLs and also highlights the
limitations. Whereas, the proposed solutions are elaborated
in Section III. Simulation results along with their discussion
are presented in Section IV. Conclusion and future work are
given in Section V.

Il. STATE-OF-THE-ART METHODOLOGIES

In smart grids, anomaly is defined as the deviation from
regular or normal electricity consumption patterns. It occurs
due to many factors like arrival of more family members
at home, occurrence of a special occasion, illegal use of
electricity, etc. In anomaly detection, data-driven models are
used that learn the normal patterns and detect the abnormal
patterns to identify the electricity thieves.

Maamar et al. [17] have proposed a hybrid technique,
which is based on k-means clustering and deep neural net-
work for anomaly detection. However, users have to select
the value of k (number of clusters) at the start, which is
not suitable in a dynamic environment. Also, the imbalance
class problem is not resolved. Yip et al. [18] have proposed a
novel technique, named as loss factor and error term, to detect
anomaly in smart meter’s data. Loss function is used to calcu-
late NTLs; whereas, error term is used to detect noise in trans-
mission and distribution lines. However, the class imbalanced
problem is not addressed. In a recent study [19], Cheng et al.
have proposed an auto encoder technique for anomaly detec-
tion in electricity consumption data. Auto encoder is used to
learn the patterns in an unsupervised manner while discarding
the noise. However, the class imbalanced problem is not
addressed and overfitting is not solved, especially when there
is no sufficient level of diversity in the data. Giuseppe et al.
have proposed a concept of drift aware based approach for the
detection of anomaly from electricity consumption patterns.
The authors have used Long Short Term Memory (LSTM)
to capture the periodicity of normal consumers based on
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their previous consumption history [20]. However, the class
imbalanced problem is not solved. The LSTM method may
require high memory bandwidth to feed its computational
units. Ding ef al. [21] have proposed a hybrid model, which
is based on Gausian Mixture Model (GMM) and LSTM for
the detection of real time anomaly. However, it is difficult to
determine for certain the number of clusters to be created.
Also, the class imbalanced problem is not tackled. Authors
in [22] have proposed Jaya-LSTM for the forecasting of elec-
tricity load. All of the above mentioned methods perform bet-
ter in terms of anomaly detection. However, the methods are
not feasible enough to accurately detect electricity fraudsters.
Zheng [23] have proposed Wide and Deep Convolutional
Neural Network (WDCNN) for ETD. They have used State
Grid Corporation of China (SGCC) dataset, which consists
of verified electricity thieves. However, the class imbalanced
problem is not addressed.

Zheng et al. [24] have proposed a hybrid technique,
which is a combination of maximum information coeffi-
cient and clustering technique, to find density peaks for
the detection of electricity thieves. However, it is tedious
to generate clusters from local densities of data points that
are randomly distributed. Thus, it is difficult for the clus-
ter heads to be selected. Moreover, the class imbalanced
problem is not solved. Li et al. [25] have performed ETD
for Internet of Things (IoTs) enabled smart homes. The
method is not suitable for solving the future changes in
electricity consumption data as it depends on the past data.
Moreover, the class imbalanced problem is not addressed.
Fleury et al. [26] have proposed genetic programming algo-
rithm for theft detection. Data is collected from more than
4000 consumers for experiments. The authors have focused
on feature engineering rather than classification. However,
it is difficult to tune the parameters of genetic programming
algorithm and also selecting wrong number of clusters may
affect the accuracy of the algorithm. Micheli et al. [27]
have proposed multiple linear regression model for the
detection of NTL. However, the model is not efficient for
real life scenario as the relationship between covariates
and response variables may not be linear. In another study,
Coma-Puig ef al. [28] have implemented and compared three
machine learning techniques: eXtreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightBoost)
and Category Boosting (CatBoost) for NTL detection. How-
ever, the techniques are not suitable for smaller datasets as the
methods may create overfitting problem. Viegas et al. [29]
have proposed fuzzy clustering model for the identification
of electricity thieves. They have used Gustafson-Kessel fuzzy
algorithm and have attained 63% True Positive Rate (TPR).
Buzau et al. [30] have applied several machine learning
models, such as K Nearest Neighbor (KNN), Linear Regres-
sion (LR) and Support Vector Machine (SVM) for NTLs
detection. However, there is a problem of selecting k in KNN,
and SVM is not suitable for large dataset.

Moreover, electricity theft is a crucial problem for utility
companies, as they have to bear huge losses every year. Many
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TABLE 1. Analysis of different NTL detection models and their performance measures.

Proposed model Dataset used Evaluation measures Accuracy
Detection of suspicious users by using fuzzy | Customer’s bill data Z-shaped and S-shaped member function N-A
logic [18]
Hybrid of Gaussian mixture and LSTM [21] Numenta Anomaly Benchmark | Mean Square Error (MSE), Fl-score, recall | N-A
(NAB) and synthetic dataset and precision
MODWPT [31] Households’ data of Honduras Matthews correlation coefficient, specificity, | 94%
accuracy, F1-score, AUC and recall
Anomaly detection system [32] Consumption data of Tanzania Accuracy, cross validation and F1-score 87%
Binary black hole algorithm [33] Electricity consumption dataset of | Recognition rate and time complexity N-A
Brazil
Artificial Neural Network (ANN) based customer | Endesa’s dataset Classification,  regression  and  self- | N-A
filtering and classification and regression tree organizing map
[34]
Semi-supervised embedded system for NTL [35] | SGCC Accuracy, FPR, precision, recall and F1- | 95%
score
Hybrid of MLP and LSTM [36] Endesa’s smart meter data PR, AUC and precision N-A
Kullback leibler divergence detector for optimal | Electricity consumption data of Ire- | AUC and FPR N-A
attack [37] land
Theft detection system based on entropy [38] Dataset is taken from Irish Social | FPR and detection rate N-A
Science Data Archive
ECNN and ESVR [39] ISO-NE RMSE, Mean Absolute Error (MAE) and | N-A
MSE
LSTM and RUSBoost [40] SGCC Precision, recall, F1-score and ROC 87%
ELR and ERELM [41] UCI RMSE, MAE, MSE 85.51%
MARA [42] DAYTOWN and EKPC Mean absolute percentage error and variance | 98.76%
HABACO [43] N-A Execution time N-A

data-driven based solutions are proposed in the literature
for ETD. However, there exists some limitations in these
solutions, which are needed to be addressed. Li et al. [44]
have proposed a hybrid model, which consists of CNN and
Random Forest (RF) for ETD. However, the computational
complexity of RF is very high as it takes more time to con-
struct decision trees. In addition, FPR is also not calculated.
Hasan et al. [45] have proposed a hybrid technique by com-
bining CNN and LSTM for ETD. The proposed technique
efficiently performed in terms of accuracy. However, LSTM
requires a lot of memory for storing long-term sequences.
Moreover, LSTM is not hardware friendly because it needs
more resources as compared to CNN and Gated Recurrent
Unit (GRU). In [45], authors have used Synthetic Minor-
ity Oversampling Technique (SMOTE) to balance the data
for training CNN and LSTM models to perform classifica-
tion. However, SMOTE generates synthetic data samples,
which cause overfitting problem. In [31], authors have pro-
posed Random Undersampling (RUS) with adaptive boosting
method to solve the problem of imbalanced data. They have
proposed Maximal Overlap Discrete Wavelet Packet Trans-
form (MODWPT) for classification. However, RUS leads to
loss of relevant samples that are important for the training
of machine learning model and prevent it from underfitting
problem. Authors in [23] have proposed WDCNN model for
the detection of electricity thieves. However, authors do not
provide a mechanism to handle the class imbalanced problem,
which leads to misclassification. Furthermore, the model has
high FPR value, which leads to high inspection cost. Table 1
shows the analysis of some of the existing techniques and
their performance measures while Table 2 presents the advan-
tages and disadvantages of existing techniques.
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lil. PROPOSED MODELS

To overcome the issues identified from the literature, we pro-
pose two deep learning models in this work: GANCNN and
ERNET. The former is the combination of Self-Attention
Generative Adversarial Network (SAGAN) and CNN.
Whereas, the latter is a hybrid of EfficientNet, Residual
Network (ResNet) and GRU. In the GANCNN model, data
sampling and feature extraction are done using Adaptive Syn-
thetic Edited Nearest Neighbor (ADASYNENN) and Locally
Linear Embedding (LLE), respectively. In the ERNET model,
GRU is applied for the classification of honest and dishonest
consumers. GRU does not require separate memory cell and
excessive parameters to train the model.

A. PROPOSED GANCNN MODEL

The proposed GANCNN model comprises of five steps: data
collection, data pre-processing, data sampling, feature extrac-
tion and classification. The proposed model is illustrated in
Figure 1. The flowchart of the proposed model is presented
in Figure 2. Moreover, the steps and flowchart are discussed
in different sections.

1) DATA COLLECTION

The data used in this work is acquired from SGCC [46].
It is a labeled dataset with a known number of electricity
thieves. It consists of customers’ ID, daily consumption and
flagged (i.e., target attribute) either as O or 1. Daily electricity
consumption data from January 2014 to October 2016 is
considered. The consumption records of 42,372 consumers
are present in the dataset. Out of these, 3,615 are electricity
thieves and remaining 38,373 are normal consumers [23].
Table 3 shows the detail of SGCC dataset.
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TABLE 2. The advantages and disadvantages of existing techniques.

Ref. | Advantages Disadvantages
[17] | A robust hybrid approach to detect anomaly in the behavior of elec- | Users have to select the value of k (number of clusters) at the start,
tricity consumers using the k-means clustering mechanism and DNN | which is not suitable in a dynamic environment. The class imbalanced
algorithm problem is also not resolved
[18] | Anomaly detection framework based on loss factor and error term to | Class imbalanced problem is not addressed
detect NTLs
[19] | An autoencoder based ensemble method for anomaly detection in | Classimbalanced problem is not addressed and overfitting is not solved,
electricity consumption data especially when there is no sufficient level of diversity in the data
[20] | A LSTM method for anomaly detection in electricity consumption data | Class imbalanced problem is not solved. The LSTM method may
require high memory bandwidth to feed the computational units
[21] | A hybrid system based on GMM and LSTM for detecting real time | It is difficult to determine for certain the number of clusters to be
anomaly in electricity consumption data created. Class imbalanced problem is not tackled
[22] | A Jaya-LSTM is used for detecting anomaly in electricity consumption | Class imbalanced problem is not addressed
data
[23] | A WDCNN method is used for ETD Class imbalanced problem is not tackled
[24] | A maximum information coefficient, and clustering technique by fast | It is tedious to generate clusters from local densities of data points that
search and find of density peaks are used for ETD are randomly distributed. Thus, it is difficult for the cluster heads to be
selected. Class imbalanced problem is not solved
[25] | A simple moving average method is used for ETD Class imbalanced problem is not addressed. The method is not suitable
for solving the future changes in electricity consumption data as it
depends on the past data
[26] | A gradient boosting machine algorithm, mixed model clustering and | It is difficult to tune the parameters of genetic programming algorithm
genetic programming algorithm, are used for ETD and also selecting wrong number of clusters may affect the accuracy of
the results
[27] | A multiple linear regression model is used for ETD The model is not efficient in real life scenario as the relationship
between covariates and response variables may not be linear
[28] | Three machines learning techniques, such as XGBoost, LightBoost and | The techniques are not suitable for smaller dataset as the methods may
CatBoost, are used for ETD create overfitting problem
[30] | The methods of KNN, LR and SVM are used for ETD There is a problem of selecting k in KNN and SVM is not suitable for
large dataset
Sampling Block TABLE 3. The detail of SGCC dataset.
Dataset Block Preprocessing Block Overfitting L.1
O © /\ﬂ57 Information Loss[.3 Total number of observations | 42,372
@ % No Samplingl. 4 Normal consumers 38,373
0 © o {" Fraudulent consumers 3, 615
’J ADASYNENN Sampling Duration 01-01-2014 to 31-10-2016
Classification Block S.1,84,8.6
Classification j/
3 Fature Extraction Block . . . .
R B evvr current value in the dataset. If the value is not null, it remains
T Y ;: g | LLhbr unchanged; otherwise, the algorithm checks the neighboring
Execution & && e'jm‘",e . . . . .
Time Extraction values to fill the missing value. If the neighboring values are
L7 . . .
p—— I null, then they are replaced with zeroes. In case, if previous
and next values are not null, it takes the mean of both values
Jligh FPR performance o and replaces the current null value with the mean value. Here,
No FPR I [_.,-] one thing to be noted is that even if the neighboring values
calculated S.9 . Q . .
L6 are null and replaced with zeroes, the overall pre-processing
method is not affected negatively. It is because the data dis-
— P——— tribution remains the same. To normalize the data, we use
L1: SMOTE causes overiting $.1: ADASYNENN is proposed _ Min-Max normalization method in this research, as neural
5. Information loss in b S.4: No information loss in ADASYNENN .. . . .
]1:3 No T\::\I;:]ngwchmqucm»cd :i. Is\:\y:p[n[\)\[g technique is used networks are sensitive to diverse data. The method is apphed
11-(: I;lij[izi\\};:}u“l:rlu of CNN-RF :Tv‘] [],’I].i:);:\jf(nili‘,if NN has less exeention time using fOllOWing Equation 1 [23]

FIGURE 1. Detailed view of the proposed GANCNN model.

2) DATA PRE-PROCESSING

The dataset consists of missing values due to the faulty
meters, unscheduled repairing of electricity equipment, data
tampering, etc. In this research, we use imputation method
for handling the missing values [47]. The working of impu-
tation method is shown in Figure 3. Initially, it checks the
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xi — min(x)

f(xi) = ey

max(x) — min(x)’

x; denotes daily electricity consumption of a consumer.
Where max(x) and min(x) show maximum and minimum
values of a consumer’s consumption, respectively.

3) DATA SAMPLING

SGCC dataset is imbalanced in nature, as shown in Figure 4a.
If the data in both majority and minority classes is not
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L.7:High execution time of CNN-RF S.11: Proposed GANCNN has less execution time | |
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SMOTE: Synthetic Minority Oversampling Technique
CNN-RF: Convolutional Neural Network - Random Forest
ADASYNENN: Adaptive Synthetic Edited Nearest Neighbor GANCNN: Generative Adversarial Network CNN

RUS: Random Undersampling
FPR: False Positive Rate

SGCC: State Grid Corporation of China
LLE: Locally Linear Embedding
KNN: K Nearest Neighbor

FIGURE 2. Detailed flow diagram of the proposed GANCNN model.

" Original Dataset 1o ADASYNENN
Read the dataset < Start z Cr e R
v H S N L
.« WY .
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06 :.-' :'. e -.: ..i':::..
R T S
Is current value ~ No . Check next and LRSS I
not null? " previous values 5 cene a1
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No No Is next FIGURE 4. Apply sampling technique.

Is previous

value null?

Yes

Take mean of previous and
next values, and replace null
value with mean value

Replace value
with zero

End 4—[

FIGURE 3. Flow chart of data cleaning process.

balanced, the model is biased towards the majority class.
The biasness leads to the reduction in classification accuracy,
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value null?

Yes which further leads to performance degradation. In our sce-

nario, normal consumers (i.e., majority class) are more in
number as compared to electricity thieves (i.e., minority
class). Therefore, it is important to balance the data before
passing it to the classification model. If the model is trained
on the normal consumers, it becomes ineffective and shows
less accuracy in detecting the electricity thieves. In existing
studies, many data sampling techniques have been used to
handle imbalanced data. The techniques are broadly catego-
rized into two types: oversampling and undersampling. The
former is performed when the number of samples of one class
are less and they have to be increased. Whereas, the latter is
the opposite of it and involves removing the samples, which
are more in number. Both oversampling and undersampling

Replace value
with zero
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are performed to remove the class imbalanced issue and
have their respective advantages and disadvantages. In this
work, the hybrid technique, named as ADASYNENN, is used
for data sampling. It is a combination of ADASYN (over-
sampling) and ENN (undersampling) techniques, as shown
in Figure 4b. ADASYN is used to increase minority samples
and make them equal to majority samples [48]. Whereas,
ENN is used to reduce the majority samples and make
them equal to the minority samples. The following steps are
involved in ADASYN.
o Calculate the number of minority and majority class
samples represented as S; and S;, respectively.
e Measure the degree of imbalance ratio d using
Equation 2.

d=Si—S. @

« Equation 3 is used for calculating the number of samples
required to be generated G. The minority samples should
be equal to the majority samples for handling class
imbalance issue.

G =S8 —Si 3

« Find KNNs of each minority class sample. After this
step, each minority sample is associated with a specific
group.

« Give more importance to those minority class samples,
which have more majority class samples in their specific
groups.

o If d < d;, new minority class samples are generated.
(ds is the preset threshold value, which decides the tol-
erable value of the class imbalanced ratio).

o A new sample is generated using Equation 4.

Sn = x; + (x5 — xz5) * AL )

Sy is a newly generated sample. x; and xz; are randomly
chosen from minority group i. A is any random number
between 0 and 1.

Moving ahead, ENN is an undersampling technique used
to remove majority class samples [49]. In this method, major-
ity class samples are removed, which are near to border-
line of minority class samples. Figures 4a and 4b show the
dataset before and after applying ADASYNENN sampling
technique, respectively.

4) FEATURE EXTRACTION

The efficiency of a classification model depends upon
the successful execution of the feature extraction process
in which the significant and most important features are
extracted. In the literature, different methods have been devel-
oped for performing feature extraction. In the first proposed
model of the underlying work, LLE is used for extracting use-
ful information from the dataset [50]. The required number
of features are extracted using KNN and covariance between
features. The closely related features are extracted from the
feature space, which are then used for the classification pur-
pose. A detailed stepwise feature extraction process is shown
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in Figure 6. It is used for non-linear data and is based on
manifold technique, which extracts the important features
from the feature space in an iterative manner.

5) CLASSIFICATION

For the classification of electricity thieves and normal con-
sumers, a hybrid GANCNN model is proposed, which is a
combination of SAGAN and WDCNN. SAGAN is a deep
learning model and is considered as the best training model.
It has two modules: generator and discriminator [51]. The
former creates synthetic data similar to original data by
selecting random input samples from the dataset. The latter
discriminates between fake and original data [52]. During
GAN’s process, both generator and discriminator modules are
trained until discriminator is failed half of the time to distin-
guish between fake and original samples, which means that
generator is successful in creating fake samples. The random
input samples are selected on the basis of inverse transform
technique in which Cumulative Distribution Function (CDF)
is used. CDF is given in Equation 5

CDF =f7(2) = P(Z <=2) ©)

where P is the probability, Z is randomly selected input from
data and z is the input sample. The architecture of SAGAN is
shown in Figure 5.

The output of SAGAN is passed as an input to deep CNN,
which comprises of many layers: convolutional layer, max
pooling layer, dropout layer, fully connected layer and flatten
layer [44]. Where the convolutional layer overcomes the
limitations of traditional neural networks by connecting a
neuron to its neighboring neurons, known as receptive field.
Convolutional operation is performed on input samples and
convoluted feature maps are sent to the max pooling layer,
which selects optimal features by reducing high dimension-
ality. The dropout layer is used to prevent the model from
overfitting problem. The optimal features selected in the max
pooling layer are used by the fully connected layer to change
the dimensions of the vector. The flatten layer connects the
input layers to the output layers. The architecture of CNN is
shown in Figure 7.

The network structure of the proposed GANCNN model is
given in Table 4 while Table 5 provides the hyperparameter
of the model. In this study, GAN is used as the front end
to process the input data while CNN is used as back end to
process the non-linear features of the abstracted data. The
GANCNN model has 13 layers, which alternate between
convolution and maxpooling layers.

6) ADAM OPTIMIZER

In the literature, many optimization techniques are presented
for tuning hyperparameters of the deep learning models.
In [53], authors have analyzed different algorithms used
for hyperparameters’ tuning, which include genetic algo-
rithm, cross validation, simulated annealing, etc. In this work,
we use Adam optimizer to tune the hyperparameters of CNN,
because it is considered as the best optimizer. It requires
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FIGURE 7. Architecture of CNN.

less memory, less execution time and is also efficient for
large datasets. It possesses the properties of both Adaptive
Gradient Algorithm (AdaGrad) and Root Mean Square Prop-
agation (RMSProp) optimizers, which give the best output
[54], [55]. It also calculates the learning rate for each param-
eter. Moreover, it is also easy to implement as compared to
other optimization techniques.

B. PROPOSED ERNET MODEL

The second model proposed in this work for ETD is com-
prised of five stages, as shown in Figure 8. The stages
are same as defined in the GANCNN model. The SGCC
dataset is used for this model as well. For dimensionality
reduction, Sparse Auto Encoder (SAE) technique is used
as a feature extractor. For data sampling, SMOTEENN is
proposed. A hybrid of EfficientNet, ResNet and GRU, named
as ERNET, is proposed for classification of theft and normal
consumers. A detailed flowchart of the ERNET model is
shown in Figure 9.
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TABLE 4. Network structure of the proposed GANCNN model.

Layer | Type Number of neurons | Size of kernel | Stride
0 SGCC input | 42,372 x 1 - -
1 Convolution 42,122 x 5 251 1
2 Max pooling | 21,065 x 5 2 2
3 Convolution 21,040 x 5 150 1
4 Max pooling | 10,520 x 5 2 2
5 Convolution 10,420 x 10 101 1
6 Max pooling | 5210 x 10 2 2
7 Convolution | 5130 x 20 81 1
8 Max pooling | 2565 x 20 2 2
9 Convolution | 2500 x 20 66 1
10 Max pooling | 1250 x 20 2 2
11 Convolution 1150 x 10 101 1
12 Max pooling | 575 x 10 2 2
13 Dense 6 - -

TABLE 5. Hyperparameter of the proposed GANCNN.

Dropout 0.3
Activation function Sigmoid
Learning rate 0.01
Number of epochs 300
Learning rate for discriminator | 0.0004
Learning rate for generator 0.0001

1) DATA PRE-PROCESSING

SGCC data is collected through smart meters, which are
installed across the country. It contains missing or erroneous
values. Therefore, we have applied same pre-processing
steps, which are performed in the first proposed model.
Linear interpolation method [56] is used to fill the missing
values, which improves the training and performance of the
proposed model.

Robust scaler normalization method [57] is used for nor-
malizing the data. It is similar to Min-Max normalization. The
only difference is that it uses quartile ranges and is considered
more robust for normalization. Formula of robust scaler is
given in Equation (6)

i — 02
RobustScaler = xl—Q(x) 6)

03(x) — Q1(x)
x is divided into three parts: Q;, Q> and Q3 that represent
first, second and third quartile ranges, respectively.

2) DATA SAMPLING

As discussed earlier, a hybrid of two sampling techniques is
used in this model for data sampling, known as SMOTEENN.
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Existing sampling techniques have some limitations. For
example, undersampling technique discards important infor-
mation by randomly removing samples. Whereas, in over-
sampling technique, overfitting problem arises due to
the duplication of samples, which further leads to poor
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generalization and misclassification. To resolve the afore-
mentioned issues, SMOTEENN is used in the proposed work.
The working of SMOTEENN is presented in Algorithm 1.
It can be seen from the algorithm that SMOTEENN com-
prises of two sampling techniques: SMOTE (lines 1-9) and
ENN (lines 10-14). The algorithm is presented to give a better
understanding to the readers that how SMOTEENN would
work. The technique starts with the oversampling of the
minority class using SMOTE, which is an enhanced version
of Random Oversampling (ROS). In SMOTE, new samples
are generated by calculating the KNNs. If the data is highly
imbalanced, it generates new samples of minority class equal
in number to the majority class. The newly generated samples
create overhead and cause overfitting problem. Afterwards,
the majority class samples are removed using ENN, which
also solves the aforementioned problems. SMOTEENN is
used to efficiently solve the class imbalanced issue, which
is not efficiently solved by SMOTE and ENN individually.
An abstract view of SMOTEENN is shown in Figure 10.

Algorithm 1 SMOTEENN Algorithm
Input: Dataset D
Output: Balance dataset D
Theft sample is represented as T
LOOP Process
1: foreachain T do
2 Search the KNNs in T
3 Obtain b stochastically from k samples
4:  difference =a — b
5. gap = random number between 0 and 1
6
7
8
9

n = a + difference * gap
Addition of n + D
: end for
: End SMOTE
LOOP Process
10: for each a; in D do
11:  Remove g; from D only if misclassified using KNN
with prototype
122 D-aj
13: end for
14: End ENN
15: return D

3) FEATURE EXTRACTION
In the feature extraction module, SAE is used to improve the
performance of the training model, decrease the loss value
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and reduce the risk of overfitting. The data dimensionality
is reduced by creating new features from the existing dataset.
The number of newly created features is less than the existing
features. SAE has been applied in many research fields like
audio processing, subtitle processing, human body image
detection, natural language processing, etc., for extracting
optimal features [58]. In this method, input features are
encoded before passing them to the hidden layer. After pro-
cessing in hidden layer, the features are decoded at the output
layer. As shown in Figure 11, features passed to the output
layer are less in number as compared to those passed to the
input layer. Encoding and decoding functions are defined
using Equations (7a) and (7b), respectively [58].

h=ocWa+b) (7a)
ai = o(Wh +b) (7b)

where a is used for input layer, % is hidden layer, W is used to
connect parameters among two layers and b is denoted as the
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bias value. For non-linear mapping, we use sigmoid function
(o), which is calculated using Equation (8)

1
l+ea’
Sparsity penalty is an important step in SAE. It is calcu-
lated by adjusting the loss function, given in Equation (9).

o)) = ®)

Obj = L(y, ) + regularization + A Z Iagh)l )

1

y and y represent the actual and predicted outputs, respec-
tively. Loss function’s value is reduced by adjusting W, b
and number of hidden layers. Whereas, overfitting is avoided
using regularization.

4) ERNET BASED CLASSIFICATION MODEL

The proposed classification model consists of three
sub-models including EfficientNet, ResNet and GRU,
as shown in Figure 12. ResNet is an advanced variant of
CNN that uses skip connections after each layer, as shown
in Figure 13. Moreover, additional weight matrix is used
in the model to learn the skip connections. The purpose of
skip connections is to prevent gradient vanishing problem
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TABLE 6. Hyperparameter of the proposed ERNET model.

Batch size 32
Number of iterations | 100
Adam optimizer 0.001

by reusing activation functions from previous layer until the
adjacent layer learns its weights. These skip connections help
in simplifying the model as it takes only few layers at the start
of the training phase. The model restores the skip connections
when it learns all feature space. EfficientNet is combined
with ResNet to improve effectiveness of the entire ERNET
model. To prevent the loss of information from Rectified
Linear Unit (ReLU) activation function, the linear activation
function is used in the last layer of each block. The final
classification is made by using GRU model, which is an
advanced version of RNN, as shown in Figure 14. GRU solves
the problem of vanishing gradient by learning long-term
dependencies. It has two gates: update gate and reset gate.
Update gate is used for long-term dependencies while reset
gate is used for short-term dependencies. GRU requires less
data for high generalization, needs few tuning parameters and
has fast training process. Table 6 shows the hyperparameter
of the proposed ERNET model.

5) RMSprop OPTIMIZER

The basic idea of RMSprop is same as that of gradient
descent. The only difference is of momentum. RMSprop
works in a perpendicular position and its convergence speed
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is faster because it moves in a vertical direction [59], [60].
Due to this, the learning rate of model is increased. The main
advantage of RMSprop is that it chooses several learning rates
for each parameter. The scenario of local optima is illustrated
in Figure 15. As shown in figure, the model starts moving
from unit A and after one loop of gradient descent, it reaches
unit B in the next square. In the next loop, the model reaches
at point C that is more closer to the local optima.

Formula of RMSprop optimizer is given in Equations
(10)-(12). For each parameter W;

v = pver + (1 — p)* g4 (10)
n

W= ——— 11

i fe 8t (11)

W1 = W+ 8W, (12)

« p:exponential average of last updated value,
« 1: initial learning rate,

o g gradient at time 7,

« v exponential average of square gradients,
« €:to avoid ending with zero.

IV. SIMULATION RESULTS

In this section, simulations are performed to validate the per-
formance of the proposed models. Google Colaboratory tool
is used to perform simulations and it also provides free access
to Graphical Processing Unit (GPU) for data processing and
storage [61]. This online tool is very helpful for performing
high computational tasks.
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A. ACCURACY AND LOSS VALUES OF THE PROPOSED
GANCNN AND ERNET MODELS

In this section, accuracy and loss of both GANCNN and
ERNET are calculated. Moreover, the models are compared
with each other and existing models. To calculate the accu-
racy and loss of the proposed GANCNN model, dataset
is divided into training and testing sets as 75% and 25%,
respectively. The performance metrics and splitting criteria
are set as in [62]. Early stopping method is applied to stop
the training process when learning rate of the model does not
improve. We measure the accuracy of GANCNN and ERNET
models to check the closeness of the measured values with the
known values. The accuracy of GANCNN is 0.95, as shown
in Figure 16. Whereas, the accuracy of ERNET model is
0.98, which means it is accurately trained on the given data.
Accuracy and loss are inversely proportional to each other.
The training and testing loss of GANCNN and ERNET mod-
els are also calculated. In GANCNN, the training loss starts
decreasing from 0.48 to 0.15; whereas, the testing loss starts
decreasing from 0.37 to 0.16, as shown in Figure 16. On the
other hand, the training and testing loss for the ERNET model
is also shown in Figure 16. The loss value of training starts
decreasing from approximately 0.5 and reaches below 0.1.
Whereas, the loss value of testing decreases from 0.3 to 0.1.

B. COMPARISON OF ADASYNENN WITH EXISTING
SAMPLING TECHNIQUES

In this section, we compare the proposed ADASYNENN with
the existing sampling techniques, such as SMOTE, ENN,
ADASYN, ROS and RUS in terms of accuracy and loss.
In Figure 17, accuracy of the ADASYNENN is compared
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with the above mentioned benchmark techniques. The results
show that ADASYNENN achieves the highest accuracy,
i.e., 0.95. Whereas, RUS achieves 0.7 accuracy, which is the
lowest among all. The figure is labeled as V.1 and V.4 and
it validates the solutions S.1 and S.4. In Figure 18, ADASY-
NENN is compared with the existing sampling techniques in
terms of loss. As shown in the figure, ADASYNENN has the
lowest loss of 0.15. Whereas, ROS has the highest loss as
compared to other techniques. Moreover, the figure is labeled
as V.1 and it validates the solution S.1.

C. ACCURACY OF GANCNN WITH DIFFERENT SAMPLING
TECHNIQUES

In this section, we measure the accuracy of GANCNN model
by applying different sampling techniques and is shown
in Figure 19. The sampling techniques include ROS, RUS,
ENN and SMOTE. By applying ROS, the training accuracy
of GANCNN is approximately 0.75 and its testing accuracy
is 0.76. The training and testing accuracy of GANCNN with
RUS is 0.75 and 0.77, respectively. Then, SMOTE is applied
with the proposed model that yields 0.78 and 0.76 accuracy
on training and testing data, respectively. Moreover, ENN
technique is also applied on the proposed model, which
achieves 0.78 training and 0.77 testing accuracy. Ultimately,
the proposed GANCNN model achieves the highest accu-
racy by applying the proposed SMOTEENN technique. The
accuracy value for both training and testing is 0.95. From the
simulation results, it is concluded that SMOTEENN outper-
forms ROS, RUS, SMOTE and ENN in terms of accuracy.
Moreover, Figure 19 is labeled with V.2 and V.6, which
validate the solutions S.2 and S.6, respectively.
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D. PERFORMANCE METRICS AND COMPARISON OF THE the total number of true positive samples divided by the total

PROPOSED GANCNN MODEL WITH EXISTING number of false positive samples and true positive samples.
TECHNIQUES It is also defined as the ratio of correctly predicted positive
In this section, the proposed GANCNN model is validated in observations to the total predicted positive observations. It is
terms of precision, recall, F1-score, Area Under the Curve calculated using Equation (13) [63]

(AUC), FPR and RMSE. In the existing literature, authors True Positi

use these metrics to validate the performance of their mod- Precision = .r'ue ostive —. (13)
els. AUC is used in [24], [26], [29], [63], FPR is measured True Positive + False Positive

in [26], [64]. Precision, recall and F1-score are used in [44]. The precision values of GANCNN and existing models

Moreover, GANCNN model is compared with SAGAN, are shown in Figure 20, which is labeled as V.6. The results
WDCNN, CNN and CNN-RF models in terms of aforemen-  show that the proposed model has the highest precision value;

tioned metrics.

whereas, CNN has the lowest precision value.

Precision of the proposed and existing models is calculated Recall is defined as the total number of true positive
and compared in this section. It is used as a performance met- divided by the total number of false negative and true pos-
ric in many classification problems. Precision is defined as itive. Figure 20 shows the recall value of the proposed
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GANCNN and existing models. The results show that recall
of GANCNN model is the highest. The recall value of
SAGAN is the lowest among all. The figure is labeled as
V.6 and it validates the solution S.6. Formula of recall is given
in Equation (14) [63]

True Positive
Recall =

— —. (14)
True Positive + False Negative
F1-score is the mean of precision and recall. It is defined
as the ratio of the product of precision and recall to their
sum, which is multiplied by 2. In Figure 21, GANCNN is
compared with the existing models in terms of F1-score. It is
clear from the figure that GANCNN achieves better F1-score
as compared to the existing models. Fl-score is calculated
using Equation (15) [65]

Precision % Recall

F1 — score =2 % (15)

Precision + Recall”

In Figure 21, FPR and RMSE for GANCNN and existing
models are calculated. FPR is defined as the model’s inability
to detect actual electricity thieves. High FPR increases the
chance of low classification accuracy. It is known as an
important performance measure for classification. As, it tells
about the users that are misclassified as thieves. If the FPR is
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high, it increases the on-site inspection cost. The formula of
FPR is given in Equation 16

False Positive

FPR (16)

- False Positive + True Negative'
Figure 21 is labeled as V.8 and it validates the solution S.8.

E. PERFORMANCE METRICS AND COMPARISON OF THE
PROPOSED ERNET MODEL WITH EXISTING TECHNIQUES
In this section, the proposed ERNET model is evaluated by
applying different sampling techniques. Moreover, ERNET is
compared with the existing classification models. Figures 22
and 23 show the performance of ERNET with different sam-
pling techniques: ROS, RUS, SMOTE and ENN. The perfor-
mance is evaluated in terms of loss. With ROS, training loss
of ERNET is 0.40 and its testing loss is 0.45. By applying
RUS, ERNET achieves 0.43 training loss and 0.45 testing
loss. Moreover, with SOMTE, ERNET achieves 0.42 training
loss and 0.45 testing loss. Finally, with the ENN, the training
and testing loss are 0.40 and 0.45, respectively. Whereas,
the training and testing loss of ERNET with proposed SMO-
TEENN technique is 0.5. The results show that the pro-
posed technique outperforms the aforementioned existing
techniques.
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The ERNET model is compared with ResNet, EfficientNet,
GRU and MLP-LSTM in terms of precision, recall, FPR
and Fl-score. Figure 24 shows the values of precision and
recall for ERNET and other models. As shown in the fig-
ure, precision of ERNET is 0.96, which is the highest than
other models, which have less than 0.8 precision. Moreover,
the recall score of the ERNET model is 0.94, which is the
highest among all existing models. Whereas, recall score of
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ResNet, EfficientNet, GRU and MLP-LSTM is 0.72, 0.76,
0.85 and 0.70, respectively. The figure is labeled as V.7 and
it validates the solution S.7.

Furthermore, the comparison of ERNET with other models
in terms of FPR and F1-score is shown in Figure 25. As it is
illustrated in the figure, FPR of ERNET is below 0.1 that
is the lowest among all. Whereas, the FPR of MLP-LSTM
is 0.51 and is the highest. The FPR of EfficientNet, GRU
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FIGURE 27. Accuracy and loss with Adam and RMSprop optimizer.

and ResNet is 0.30, 0.25 and 0.45, respectively. Moreover,
comparison results of the models in terms of Fl-score are
also shown in Figure 25. The Fl-score of ERNET is 0.93,
which is the highest than other models. Whereas, F1-score of
other models is less than 0.85. The figure is labeled as V.9 and
its validates the solution S.9. Moreover, Figure 26 shows
the comparison of ERNET with existing models in terms of
accuracy, sensitivity, specificity and AUC. The results show
that ERNET outperforms all of the existing models in terms of
aforementioned metrics. Figure 26 also shows that the value
of precision-recall curve of the ERNET model is 0.94.

F. COMPARISON BETWEEN PROPOSED AND EXISTING
OPTIMIZERS

Figure 27 shows the performance of the ERNET model with
RMSProp and Adam optimizers in terms of accuracy and
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loss. The results show that with the RMSProp optimizer,
ERNET achieves 0.95 accuracy for both training and testing.
Whereas, with the Adam optimizer, accuracy of ERNET for
both training and testing is 0.98. Furthermore, the training
and testing loss of ERNET with both RMSProp and Adam
optimizers is less than 0.1.

Figure 28 shows the comparison of GANCNN with exist-
ing models in terms of AUC. As shown in the figure,
AUC of GANCNN is 0.9, which is the highest than other
models. Whereas, all of the other models have less than
0.83 AUC value. Figure 28 also shows the comparison of
Adam optimizer with other optimizers, which include Ada-
Grad, Stochastic Gradient Descent (SGD) and RMSProp.
As shown in the figure, Adam has the highest accuracy
and the lowest loss value as compared to other techniques.
Because for each parameter, it uses momentum and adaptive
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TABLE 7. Performance analysis of the proposed models.

Model AUC | Precision | Accuracy | Recall | Fl-score | FPR | Execution time (min)
GANCNN | 098 | 0.95 0.95 0.99 0.90 0.05 | 35
ERNET 098 | 0.94 0.98 0.93 0.89 0.02 | 40
TABLE 8. Mapping of the results with proposed solutions and identified limitations.
Identified limitations Proposed solutions Validations

L.1: SMOTE causes
overfitting problem

S.1: ADASYNENN is
proposed

S.2: SMOTEENN is
proposed

V.1: As shown in Figure 17 and Figure 18, the ADASYNENN performs
well in creating samples while reducing overfitting

V.2: As shown in Figure 19, GANCNN has the highest accuracy and
resolves overfitting problem

L.2: LSTM has separate
memory cell, which consumes a lot
of memory

quired in ERNET model

S.3: No separate memory cell is re-

V.3: As shown in Figure 30, execution time of proposed ERNET is less
as compared to MLP-LSTM

L.3: RUS removes
random samples from dataset and
information is lost

NENN

S.4: No information loss in ADASY-

S.5: No information loss in SMO-

V.4: As shown in Figure 17, RUS has 0.70 accuracy and proposed model
has 0.95 accuracy
V.5: As shown in Figure 17, RUS has 0.75 accuracy and proposed model

TEENN has 0.98 accuracy
L.4: No sampling S.6: ADASYNENN is V.6: Precision and recall of GANCNN model are high because of
technique is used, proposed sampling technique, as shown in the Figure 20
model is biased towards majority | S.7: SMOTEENN is V.7: As shown in Figure 24, ERNET has high precision and recall values
class proposed because of the sampling technique

L.5: FPR is high, which leads to | S.8: FPR is low
high inspection cost GANCNN model

in proposed

S.9: FPR is low in proposed ERNET

V.8: In Figure 21, FPR is low in GANCNN as compared to existing
techniques
V.9: In Figure 25, FPR is low in ERNET model as compared to existing

model

model techniques
L.6: FPR is not calculated S.8: FPR is low in proposed | V.9:In Figure 21, FPR is low as compared to existing techniques
GANCNN model V.10: In Figure 25, FPR is low in the proposed ERNET model

S.9: FPR is low in proposed ERNET

L.7: RF takes more
execution time to build the trees

S.11: Execution time of

to CNN-RF

GANCNN model is less as compared

V.11: As shown in Figure 30, execution time of the proposed GANCNN
model is less than CNN-RF model

learning rate mechanism, which lead to faster convergence.
The parameters of the Adam optimizer include 7, betal,
beta2 and €. In this scenario, the values of these parameters
for GANCNN are set as: n = 0.001, betal = 0.9, beta2 =
0.999 and ¢ = le-08. In GANCNN, Adam optimizer is
applied for better performance of the CNN model. Adam
is also more suitable for large, noisy or sparse datasets.
Whereas, in the ERNET model, RMSProp optimizer is used
in ResNet. n, p, momentum, € and centered are the parameters
of RMSProp optimizer. We set the values of the parameters
as: 1 =0.001, p = 0.9, momentum = 0.0, ¢ = 1e-07 and cen-
tered = False. The comparison between Adam and RMSProp
optimizer is as follows. RMSProp performs parameter upda-
tion using a momentum on the rescaled gradient. Whereas,
in Adam optimizer, the parameters are updated through the
running average of first and second gradient moment. More-
over, the bias-correction term is absent in RMSProp. How-
ever, Adam involves the correction term, which leads to fast
convergence. The accuracy and loss comparison of different
optimizers is observed from Figure 28.

G. AUC OF THE PROPOSED MODELS

In this section, AUC of both GANCNN and ERNET models
is calculated, as shown in Figure 29. AUC dictates that how
well a model performs in classifying the electricity thieves.
The range of AUC is between 0 and 1. If AUC is near to 1,
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it means that model performs well in terms of classification
and if it is near to 0, it means that model does not perform
well. The threshold value is set as 0.5. The choice of selecting
AUC of 0.5 is to examine the performance of the proposed
models in terms of classifying electricity theft. As shown
in the figure, AUC of GANCNN is 0.985, which is near to
1 that means classification of the model is good. Whereas,
the ERNET model accurately separates both classes (majority
and minority) and its value of AUC is 0.988. The results
show that ERNET model outperforms GANCNN in terms
of AUC. The AUC of 0.985 for the proposed GANCNN
means that there is no discrimination in the classification
of electricity theft, which means that any AUC greater than
0.5 is acceptable. The same explanation is given for the
AUC of 0.988 for the ERNET model. Generally, the AUC
of 0.985 means that the ROC curve falls on the diagonal line
of the curve. It implies that the ROC curve on the diagonal
line has no discriminatory ability. Whereas, the ROC curve
above the diagonal line has discriminatory ability to classify
electricity theft.

H. COMPARISON OF PROPOSED AND BENCHMARK
MODELS’ EXECUTION TIME

In this section, the execution time of GANCNN and ERNET
models is discussed. We compared GANCNN with CNN-
RF, MLP-LSTM, SAGAN and WDCNN models. As shown
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FIGURE 28. AUC of proposed GANCNN model with existing comparison techniques and comparison of Adam with other

optimizers.

in Figure 30, MLP-LSTM has the highest execution time
because of separate memory cell of LSTM. Whereas, the pro-
posed GANCNN model has the lowest execution time
because no additional memory cell is required to store the
information for long-term. Moreover, the ERNET model
is also compared with the above mentioned benchmark
models. The figure shows that ERNET has low execution
time as compared to CNN-RF and MLP-LSTM. Figure 30
is labeled as V.3 and V.11, and it validates the solutions
S.3 and S.11.

In Table 7, the performance analysis of the proposed mod-
els in terms of AUC, precision, accuracy, recall, F1-score,
FPR and execution time, is given. From the analysis results,
the proposed ERNET model outperforms GANCNN model
in terms of accuracy while the proposed GANCNN model
performs better than ERNET in terms of precision, recall,
Fl-score, FPR and execution time. The reasons for better
performance of GANCNN model over the ERNET model
are given as follows. The GANCNN model generates data
that is similar to the actual data. It means that the generated
data is not distinguishable from the actual data. Thus, a real
synthetic data can be generated in order to address the data
imbalance problem. Also, the GANCNN model learns the
internal representation of the data such that any difficulty
in the data is learned easily. Furthermore, after training the
data, the discriminator of the GANCNN model classifies
the data efficiently. On the other hand, the ERNET model
requires more computational time and memory during train-
ing. However, the ERNET model achieves a better accuracy
because it can perform well in a larger network with high dept
and width. Also, ERNET preserves the computational power
through proper scaling of network’s depth and width; thereby,
increasing its accuracy.

Table 8 shows the mapping of identified limitations with
the proposed solutions and their validations. In L.1, the over-
fitting issue of SMOTE is identified. To solve this issue, two
different sampling techniques are proposed: ADASYNENN
and SMOTEENN as S1 and S2, respectively. The solutions
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are validated as V.1 and V.2, as shown in Figures 17, 18
and 19. Next, in L.2, additional memory requirement issue
of LSTM is identified. Therefore, in S.3, GRU is used in
ERNET because of its less time complexity. The solution is
validated as V.3, as shown in Figure 17. In L.3, the infor-
mation loss issue in RUS technique is identified. The issue
is addressed by presenting ADASYNENN and SMOTEENN
with no loss property as S.4 and S.5, respectively. The solu-
tions are validated as V.4 and V.5, as shown in Figure 17.
Furthermore, in L.4, no sampling technique is used, which
causes biasness of model. Therefore, ADASYNENN and
SMOTEENN are proposed as S.6 and S.7. The solutions are
validated as V.6 and V.7, as shown in Figures 20 and 24. In
L.5 and L.6, FPR is high and is not calculated. To overcome
this issue, FPR of the proposed models is calculated and
compared with FPR of benchmark models. The solutions are
labeled as S.8 and S.9. The validation of these solutions is
presented in Figures 21 and 30 as V.8 and V.9, respectively.
In L.7, high execution time of RF is identified. This issue is
resolved in S.11. The solution is validated as V.11, as shown
in Figure 30.

I. DISCUSSION
To efficiently analyze consumers’ energy consumption data
using classical machine learning methods, the class imbal-
anced problem must be addressed. The problem occurs when
the overall number of one class of data (honest consumers’
data) is more than the overall number of another class of data
(fraudulent consumers’ data). So, this paper proposes two
deep neural networks: GANCNN and ERNET. The former
is used to generate synthetic data using the actual data. The
purpose of generating synthetic data is to solve the class
imbalanced problem. Whereas, the latter is used for increas-
ing the network’s width and depth. The aim of increasing the
width and depth of the network is to achieve higher prediction
accuracy from a large dataset.

The effectiveness of the proposed GANCNN and ERNET
models is evaluated using the following performance metrics:
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precision, AUC, FPR, accuracy, Fl-score and recall. In this
paper, two case studies are considered for analyzing the
proposed models. For the first case, the proposed ERNET
model is compared with existing models, such as Efficient-
Net, MLP-LSTM and GRU. The simulation results show that
the proposed ERNET model outperforms the existing models
in terms of all of the performance metrics. Figure 17 shows
that the training accuracy of the proposed ERNET model is
higher than other existing models. Figure 24, Figure 25 and
Figure 26 show that the proposed ERNET model outperforms
other models in terms of precision, recall, FPR, F1-score,
accuracy, sensitivity, specificity and AUC. The reason for
the better performance of the proposed ERNET model over
other models is as follows. The ERNET model can perform
efficiently in a large network with high dept and width.
Besides, it conserves its computational power via scaling the
network’s width and depth. For the second case, the proposed
GANCNN model is compared with other models, such as
CNN-RF, SAGAN, WDCNN and CNN. From the simulation
results, it is observed that the proposed GANCNN model
outperforms other models in terms of all of the performance
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metrics. Figure 20 shows that the proposed GANCNN model
is better than other models in terms of precision and recall.
Figure 28 shows that the proposed GANCNN outperforms
other models in terms of AUC and accuracy. Figure 30 shows
the performance of the proposed GANCNN model in terms
of execution time. The reason for the better performance of
the proposed GANCNN model is as follows. The GANCNN
model can generate synthetic data that is similar to the actual
data, which is extremely important to solve the class imbal-
anced problem. Generally, the focus of the proposed work is
to provide an anomaly detection mechanism that compares
the electricity consumption behavior of different consumers
regarding the trend of prediction error. If the current pattern of
energy consumption of a consumer is different from the pre-
vious one, then an anomaly is detected for that consumer. The
practical actualization of the proposed work is constrained for
different available consumers’ electricity consumption data,
computational capacities of consumers and lack of privacy
about the consumers’ data. However, we do not consider the
privacy preservation of consumers in our proposed scenario,
but it will be considered in the future work.
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V. CONCLUSION

With increase in the electricity demand over the years, two
types of losses are faced by the power utilities: TLs and NTLs.
These losses lead to other problems as well, such as huge rev-
enue loss, class imbalanced problem, low accuracy and high
FPR for detecting electricity thieves. To solve these problems,
two models are proposed in this work. In the first model,
ADASYNENN is used to solve the class imbalanced prob-
lem; whereas, LLE is used for feature extraction. Moreover,
a hybrid technique based on SAGAN and WDCNN, termed
as GANCNN, is introduced for ETD. The second proposed
model consists of five stages. Firstly, interpolation is used to
remove the missing values. Secondly, robust scaler method
is used for data normalization. Thirdly, SAE is applied for
reduction of data dimensionality. Fourthly, SMOTEENN is
applied to solve the class imbalanced problem. Finally, for
classifying honest and theft consumers, a hybrid ERNET
model is introduced, which is a combination of EfficientNet,
ResNet and GRU. Additionally, RMSProp optimizer is used
to enhance the performance of the model. To validate the
proposed models, extensive simulations are performed using
SGCC dataset. Different performance metrics, such as pre-
cision, recall, Fl-score, FPR, accuracy and AUC are used
for evaluation. The results of GANCNN for precision, recall,
F1-score, FPR, accuracy and AUC are 0.95, 0.99, 0.9, 0.05,
0.95 and 0.985, respectively. On the other hand, the results
of ERNET for precision, recall, F1-score, FPR, accuracy and
AUC are 0.94, 0.93, 0.89, 0.02, 0.98 and 0.988, respectively.
Moreover, the proposed models are compared with the state-
of-the-art models, which include SAGAN, WDCNN, CNN,
CNN-RF, MLP-CNN, MLP-LSTM, LSTM and CNN-LSTM.
The results show that the proposed models outperformed the
aforementioned benchmark models. In future, proposed mod-
els will be used for other theft related areas, such as banking.
Moreover, different datasets will be used to determine the
effectiveness of the proposed models.
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