
Received June 9, 2021, accepted June 19, 2021, date of publication June 25, 2021, date of current version July 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3092528

SimulateIoT: Domain Specific Language to
Design, Code Generation and Execute IoT
Simulation Environments
JOSÉ A. BARRIGA , PEDRO J. CLEMENTE , ENCARNA SOSA-SÁNCHEZ ,
AND ÁLVARO E. PRIETO
Quercus Software Engineering Group, Department of Computer Science, University of Extremadura, 10003 Cáceres, Spain

Corresponding author: José A. Barriga (jose@unex.es)

This work was supported in part by the Ministry of Science and Innovation (MCI), for the State Research Agency (AEI) under Project
RTI2018- 098652-B-I00, in part by the Government of Extremadura, Council for Economy, Science and Digital Agenda under
Grant GR18112, in part by the European Regional Development Fund (ERDF) under Project IB20058, and in part by the Cátedra
Telefónica de la Universidad de Extremadura (Red de Cátedras Telefónica).

This work did not involve human subjects or animals in its research.

ABSTRACT Internet of Things (IoT) is being applied to areas as smart-cities, home environment, agriculture,
industry, etc. Developing, deploying and testing IoT projects require high investments on devices, fog nodes,
cloud nodes, analytic nodes, hardware and software. New projects require high investments on devices,
fog nodes, cloud nodes, analytic nodes, hardware and software before each system can be developed. In
addition, the systems should be developed to test them, which implies time, effort and development costs.
However, in order to decrease the cost associated to develop and test the system the IoT system can be
simulated. Thus, simulating environments help to model the system, reasoning about it, and take advantage
of the knowledge obtained to optimize it. Designing IoT simulation environments has been tackled focusing
on low level aspects such as networks, motes and so on more than focusing on the high level concepts
related to IoT environments. Additionally, the simulation users require high IoT knowledge and usually
programming capabilities in order to implement the IoT environment simulation. The concepts to manage
in an IoT simulation includes the common layers of an IoT environment including Edge, Fog and Cloud
computing and heterogeneous technology. Model-driven development is an emerging software engineering
area which aims to develop the software systems from domain models which capture at high level the domain
concepts and relationships, generating from them the software artefacts by using code-generators. In this
paper, a model-driven development approach has been developed to define, generate code and deploy IoT
systems simulation. This approach makes it possible to design complex IoT simulation environments and
deploy them without writing code. To do this, a domain metamodel, a graphical concrete syntax and a model
to text transformation have been developed. The IoT simulation environment generated from each model
includes the sensors, actuators, fog nodes, cloud nodes and analytical characteristics, which are deployed
as microservices and Docker containers and where elements are connected by using publish-subscribe
communication protocol. Additionally, two case studies, focused on smart building and agriculture IoT
environments, are presented to show the simulation expressiveness.

INDEX TERMS IoT systems, IoT simulation, fog computing, model-driven development, model to text
transformation, data analysis.

I. INTRODUCTION
The Internet of Things (IoT) is widely applied in several
areas such as smart-cities, home environments, agriculture,

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaolong Li .

industry, intelligent buildings, etc. [46]. Usually, these IoT
environments require using hundreds of sensors and actuators
shared throughout these areas which are generating a vast
amount of data. Data must be suitably stored, analysed and
published using Big Data or Stream Processing techniques.
Big Data or Stream Processing techniques must be applied

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92531

https://orcid.org/0000-0001-8377-1860
https://orcid.org/0000-0001-5795-6343
https://orcid.org/0000-0002-0267-5875
https://orcid.org/0000-0002-2312-4589
https://orcid.org/0000-0002-8104-3234

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 1. IoT architecture: Cloud, Fog and Edge computing.

to conveniently store and analyse published data. Taking into
account where data are processed and stored, the IoT envi-
ronment architecture can be defined by several computing
layers (Edge, Fog and Cloud computing (see Figure 1) [30]).
Edge layer is defined closer to data generators, Fog layer
resides on top of the edge and act as intermediary layer with
limited storing and processing capabilities and Cloud layer
is defined with full storing and processing capabilities. Thus,
the development of IoT systems requires themanagement and
integration of conveniently heterogeneous technologies such
as devices, actuators, databases, communication protocols,
stream processing engines, etc. As a consequence, in order to
implement, deploy and test the IoT systems a high investment
must be made in time, money and effort.

Simulating IoT environments is one way to decrease
this initial investment because the users can measure and
dimension the artefacts needed to deploy and interconnect
the systems. Thus, these artefacts can include several kinds
of devices from sensors or actuators to NoSQL databases,
messaging brokers or stream processor engines. However,
although there are several simulation environments for wire-
less sensor networks (WSN), there is a lack of IoT simulator
tools for designing IoT environments at a high level that
enable modeling this kind of systems by using the domain
concepts and relationships. In addition, there is a lack of
IoT simulation tools that makes it possible to deploy the IoT
system on multiple nodes in order to test the communica-
tions among the system’s elements and where complex IoT
components such as databases, complex event processing or
message brokers can be suitable deployed and tested.

Currently, there is a lack of methodologies and tools to
simulate IoT systems and allow users to properly describe
the IoT environment. Currently, not only tools are needed
but also methodologies to guide the simulation designing and
simulation process of IoT environments. So, both methodolo-
gies and tools to simulate IoT systems are interesting research
areas. should be developed. Thus, while methodologies

FIGURE 2. Model-driven development. Four layers of metamodeling.

would allow developers to describe the steps and the char-
acteristics to simulate IoT systems, the tools would help to
design and execute the IoT environment simulated in sandbox
environments. These tools should take into account the main
IoT characteristics including heterogeneous devices (sensors
and actuators), heterogeneous communication mechanisms
such as publish-subscribe communication protocol, analy-
sis from information generated, storing of information, etc.
However, an IoT environment is a broad and heterogeneous
concept which involves heterogeneous technologies such as
communication protocols such as publish-subscribe commu-
nication protocol, databases, analysis tools, etc. Not only
should IoT methodologies and tools be designed and devel-
oped, but they should also be carried out using software
engineering good practices.

Model-Driven Development is an emerging software engi-
neering research area that aims to develop software guided
by models based on Metamodeling technique. Metamodel-
ing is defined by four model layers (see Figure 2). Thus,
a Model (M1) is conform to a MetaModel (M2). Moreover,
a Metamodel conforms to a MetaMetaModel (M3) which is
reflexive [2]. The MetaMetaModel level is represented by
well-known standards and specifications such asMeta-Object
Facilities (MOF) [29], ECore in EMF [48] and so on. A
MetaModel defines the domain concepts and relationships in
a specific domain in order to model partial reality. A Model
(M1) defines a concrete system conform to a Metamodel.
Then, from these models it is possible to generate totally or
partially the application code (M0 - code) by model-to-text
transformations [44]. Thus, high level definition (models)
can be mapped by model-to-text transformations to specific
technologies (target technology). Consequently, the software
code can be generated for a specific technological platform,
improving the technological independence and decreasing
error proneness.

92532 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

So, Model-Driven Development (MDD) is proposed
to tackle this heterogeneous technology (devices, actua-
tors, complex event processing engines, notification tech-
nology, publish-subscribe communication protocol, etc.).
Model-Driven Development [16], [20], [40], [43] increases
the abstraction level where the software is implemented,
focusing on the domain concepts and their relationships.
These domain concepts (sensors, actuators, fog nodes, cloud
nodes, etc.) and their relationships are defined by a model
(M1), conform to a metamodel (M2), which can be anal-
ysed and validated using MDD techniques. Besides, the IoT
environment code, including all the artefacts needed, can be
generated from a model (M1) using model-to-text transfor-
mations, decreasing error proneness and increasing the user’s
productivity.

The main contributions of this paper include:
• This work shows that using Model-Driven Develop-
ment techniques are suitable to develop tools and
languages to tackle successfully the complexity of het-
erogeneous technologies in the context of IoT simulation
environments.

• Amethodology called SimulateIoT to describe each step
needed to define an IoT simulation environment and
execute it.

• A Model-Driven solution that supports the methodol-
ogy proposed. It facilitates the development of each
methodology phase by defining a SimulateIoT meta-
model (M2), a graphical concrete syntax (graphical
editor) to define models (M1) and a model-to-text trans-
formation towards the code generation for specific IoT
simulation environment (M0 - code). It includes the code
generation to execute the IoT simulation. Furthermore,
the IoT system generated can be deployed.

• An IoT deployment process that makes it possible to
deploy the simulation based on microservices which are
deployed on Docker containers, including components
such as databases, complex-event processing engines or
message brokers.

• The application of SimulateIoT to two case studies
focused on different kinds of IoT systems (Smart build-
ings and Agricultural environment).

The rest of the paper is structured as follows. In Section 2,
we give an overview of existing IoT simulation approaches
centered on both low level and high level IoT simulation
environments. In Section 3, we present the SimulateIoT
methodology. Section 4 describes SimulateIoT design and
implementation phases including the SimulateIoT meta-
model, the graphical editor and the model-to-text transforma-
tion developed. In Section 5 two case studies are presented.
Finally, Section 6 elaborates on the limitations of the pre-
sented approach before Section 7 concludes the paper.

II. RELATED WORKS
IoT environments and IoT simulation environments have
been developed using several strategies with different targets
and distinct abstraction levels. The abstraction levels are

not related to the different IoT Architecture levels (Edge,
Fog or Cloud layers) but also the concepts and relationships
used to design the simulation at the IoT architecture level.
For instance, you could use concepts to low level such as
memory, network capabilities and use tools to manage this
kind of configuration or using high level concepts such as Fog
Node, Cloud Node or Complex Event Processing, engines,
NoSQL storage where low level concepts could be transpar-
ently managed. Additionally, using high level abstractions
could be used to generate code for specific technological
targets. In this sense, among other, the concepts analysed
for each different related work include: the abstraction level
used to define the IoT environment, Edge modeling capa-
bilities, Fog modeling capabilities, Cloud modeling capa-
bilities, Complex Event Processing, Big data support, and
Code generation support. So, in the following subsections
several IoT simulation approaches are reviewed that focus on
the different abstraction levels used for their definitions. So,
we are examining i) Low level IoT simulation environments;
and ii) High level IoT simulations environments and IoT
modeling based on model-driven development. The former
are based on defining sensors and actuators close to hardware
(Contiki-Cooja, OMNeT++, IoT-Lab), so these proposals
foster the knowledge of hardware, networks or energy con-
sumption characteristics. The latter (COMFIT, CupCarbon,
IoTSim) focus on defining IoT context and environments at
a level of high abstraction.

A. LOW LEVEL IoT SIMULATION ENVIRONMENTS
Contiki-Cooja [42] is a network simulator tool based on
the Contiki operating system. It is implemented in Java and
allows users to define large and small Contiki motes (a node
in a sensor network) which can be deployed throughout the
network. Relevant information about the network such as
mote output or time-lines could be obtained after the sim-
ulation execution. Note that a mote can be defined ad-hoc
using the motes templates. Obviously, these simulations are
defined at a low level focusing on hardware and network
issues more than IoT contexts or communication patterns
such as publish-subscribe.

OMNeT++ [51] is a general network simulator adapted to
simulate IoT networks. It offers a Domain Specific Language
for modelling the IoT context including aspects related to
routers, switchers, routing protocols or network protocols
(IPv4, IPv6, etc.). This is a powerful simulator focused on
analysing low level aspects of network issues. It uses compo-
nents and component-based compositions to define network
simulations. This approach focuses on defining IoT environ-
ments at a low level of abstraction closed to hardware. So,
it is not centered on describing the IoT environment and
high-level component relationships. Therefore, simulating
wide IoT environments could be tedious and error prone.

IoT-Lab [35] is a platform which allows deploying com-
piled WSN (Wireless Sensor Network)/IoT applications on a
large WSN infrastructure. The applications can be installed
on different types of sensors and can be developed on the

VOLUME 9, 2021 92533

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

Contiki operating system, among others. Thus, the goal of
the authors is showing how both local and global energy
consumption can be precisely monitored.

Tossim [24] is a Wireless Sensor Network (WSN) sim-
ulator tool used over TinyOS. It can simulate thousands
of nodes while it is able to capture the network behaviour
with accuracy. It emulates the underlying raw hardware
behaviour. Thus, the aim of this approach is simulating low
level motes without defining communication patterns such as
publish-subscribe or without using pattern data generations.

B. HIGH LEVEL IoT MODEL-DRIVEN DEVELOPMENT AND
SIMULATION ENVIRONMENTS
This section includes both IoT development environments
and IoT simulation environments which are based on graphi-
cal or textual domain concept descriptions, or model-driven
technologies. There are several IoT metamodels [8], [36],
[47] to model IoT systems, and usually the application code
is partially generated from these models.

In [8] a Domain Specific Language has been defined to
model IoT environments, taking into account several IoT
concepts such as devices, and input and output properties.
Its goal is modelling IoT environments and generating code
for a specific platform such as KNX/EIB. Although it is not
related to IoT simulation, it uses model-driven techniques in
order to tackle designing IoT systems and it can be used for
quick IoT system prototyping.

Another approach based on Model Driven Develop-
ment [9] makes it possible to model complex event process-
ing for near real-time open data. This approach is interesting
because they present a methodology and a domain specific
language to define models in order to model open-data
sources, the processing nodes and the notifications agents.
However, this approach does not focus on modeling and
simulating IoT environments.

COMFIT [15] was a cloud environment to develop the
Internet of Things system. It used model-driven techniques
included in the Model-Driven Architecture (MDA) speci-
fication [18]. For instance, a model-to-text transformation
towards code generation for specific operating system tar-
gets (for instance, Contiki or TinyOS operating systems)
was implemented. It defined several UML Profiles such as
PIM:UML Profile and PSM:UML Profile, a model to model
transformation from PIM models to PSM models, and a
model-to-text transformation. So, authors used well-known
UML tools to model the IoT Systems, however they did not
define an ad-hoc metamodel for IoT, but used UML diagrams
such as detailed activity diagrams.

On the other hand, IoTSuite [36], [47] defined a high level
domain specific language in order to model IoT environ-
ments including concepts such as regions, sensors, actuator,
storage, request, action, etc. Thus, it joined computational
services with spatial information related to regions such
as buildings or floors. Several modelling languages were
defined to model these kinds of systems: Srijan Vocabulary
Language (SVL), Srijan Architecture Language (SAL) and

Srijan Deployment Language (SDL). Then, a code generation
process allows generating the application code. Although
IoTSuite makes it possible to define IoT environments, it isn’t
an IoT simulator.

In [39] a component-based approach for theWeb of Things
was presented. They defined a Model Driven Development
process to model Web of Things (WoT) systems by using
model-driven techniques such as meta-modelling and model
transformations. Thus, they defined a metamodel for WoT
which related Physical Entities such as Sensors or Actua-
tors with Visual Entities such as components deployed on
a system. These models can automatically turn into code
skeletons. However, this metamodel does not allow defining
specific domain concepts related to simulation or storage
issues, among others.

Other approaches focus on simulating IoT systems propos-
ing specific tools [4], [27], [45]. Thus, CupCarbon [27]
defined an IoT Simulator environment which allows users to
describe IoT contexts using a graphical editor. For instance,
a mote could be added on a map like Google Maps, taking
into account parameters such as action radio. It implements an
ad-hoc language to manage the sensor’s communication and
the business logic. It can execute simulations including the
reactions to random events. So, although this approach allows
describing IoT simulation issues, it does not allow describing
the storage information or the complex communication pro-
tocols such as publish/subscribe using messages brokers.

IoTSim [53] is an extension of CloudSim [6] that focuses
on simulating IoT applications in cloud environments. It sup-
ports and enables IoT big data processing using the MapRe-
duce model in the cloud. However, in order to execute the
IoT application to be simulated, users should implement the
workflow that IoTsim proposes, including Datacenter config-
uration, IoTDataCenterBroker, JobTracker, etc. Obviously,
this approach offers a framework to execute IoT applications
on cloud, however it does not offer a designing tool to easily
define the artefacts necessary to be deployed on the IoT-
Sim. Additional extensions to CloudSim deal with the anal-
ysis and use of BigData. BigDataSDNSim [1] allows the
simulation of the big data management system YARN, its
related programming models MapReduce, and SDN-enabled
networks in a cloud computing environment. On the other
hand, IoTSim-Edge is another CloudSim extension spe-
cialised in EdgeComputing [22]. In this way, this simulator
allows defining and simulating elements such as EdgeN-
odes (EdgeDevice, EdgeDataCenter, EdgeBroker), IoTDe-
vices (sensors and actuators) and their characteristics such
as battery consumption, mobility, communication protocol,
etc. These simulators deal with relevant aspects of the IoT
in detail, allowing the simulation of IoT environments or
parts of these environments in a very realistic way. However,
these works lack a high-level abstraction graphical inter-
face to visualise and model the architecture of the environ-
ment. On the other hand, they lack a module capable of
validating a configured environment before its simulation.
Therefore, although these simulators are able to simulate an

92534 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

IoT environment with high detail they need to define the
configuration simulation environment using JSON files and
Java code, which raise the learning curve. For instance, each
sensor type needs to be implemented before being used on a
configuration file. Finally, they do not model high concepts
related to Complex Event Processing or they facilitate code-
generation. Another important aspect is related with Simu-
lation deployment which is carried out in the same machine
without deploying a service-oriented architecture (common
architecture where an IoT system is deployed), that is, all
IoT aspects are simulated so code cannot be re-used for real
implementation proposes.

Using the approach in [4] the developers can test their
cloud and on premise MQTT (Message Queuing Teleme-
try Transport) [33] application for functional and load test-
ing. So, it allows deploying IoT environments focused on
using sensors, actuators and MQTT servers. This tool allows
users to define sensors and actuators and publish/subscribe
concepts to define the IoT environment. It defines a set
of template sensors to be used in order to model the IoT
environment. Besides, data generation can be defined by the
users following several data patterns such as concrete value,
range values, random set or based on time & client. However,
the IoT environment does not make it possible to define
stream rules to react to event patterns.

In [45] an IoT simulator was defined. It was written in
Java and it allowed defining IoT simulations including agents,
places and the context therein. The main steps to define a
simulation included: i) defining the environment, ii) devel-
oping the behaviour and iii) packing and deploying it all
together. The IoT system behaviour should be implemented
ad-hoc using Java. So, this simulator required high expertise
implementing Java agents. Furthermore, this approach did not
resolve how to manage or analyse the device data.
Viptos [7] is an integrated graphical development and sim-

ulation environment for TinyOS-based [21] wireless sensor
networks. Developers can model algorithms with the graph-
ical framework included in Viptos and generate their code in
nesC [17]. Besides, users can define environments to simulate
the behaviour of these algorithms. These environments could
have features such as communication channels, network
topology (the nodes where the algorithms will be tested)
and physical characteristics (low-level, such as OS interrup-
tions) of the environment. In short, this framework allows
application developers to easily transition between high-level
simulation of algorithms to low-level implementation and
simulation. However, due to the characteristics mentioned,
this framework works with a low level of abstraction. For that
reason, the application developers that use this framework
need to know low level concepts about it and the domain
which can simulate. In addition, modelling an extensive sim-
ulation could be complex and the use of simulators with a
higher level of abstraction would be more suitable.
VisualSense [3] is a modelling and simulation framework

for wireless sensor networks that builds on and leverages
Ptolemy II [12]. This framework supports the modelling

of sensor nodes, wireless communication channels, physi-
cal media such as acoustic channels, and wired subsystems
among others characteristics. Besides, this framework sup-
ports the modelling of dynamic networks where nodes can
change their connectivity in run-time. It’s worth mentioning
that the communication between nodes is via events with
timestamps [5]. Finally, the models can be simulated and
visualised at run time. However, this simulator is focused
on modeling networks at a low level of abstraction, without
including high level concepts based onCloud/Fog computing,
publish-subscribe communication protocols and so on.

To sum up, although there is a wide literature focus on
defining the IoT environment and IoT simulation environ-
ments at different abstraction levels, several issues should be
additional treated including fog computing, cloud computing,
storage data, communication protocols or data analysis (see
Table 1. The following sections describe the SimulateIoT
methodology and tools which are proposed to tackle the
complexity of the description and execution of IoT simulation
environments.

III. SimulateIoT METHODOLOGY
This section describes the Simulation Methodology which
has two phases, simulation description and simulation exe-
cution, as shown in Figure 3.

First, simulation description includes the following steps:

1) Data and WSAN specification: Users should define
the wireless sensors and actuator network (WSAN) to
identify the device characteristics (including their data
inputs and outputs) The wireless sensors and actuator
network (WSAN) should be defined to identify the
device characteristics (including their data inputs and
outputs). It allows defining the edge computing layer
formed by sensors and actuators;

2) Fog/Cloud computing spec includes defining devices
with different process capacities. For instance, these
nodes can define how and where data should be stored,
including the database characteristics (SQL database,
NoSQL database, etc.);

3) Processing data specification defines the communi-
cation schemas, that is, the communication protocols
to connect the devices and nodes previously identi-
fied. In addition, this phase should make it possible to
describe how data should be processed using multiple
technologies such as big data or stream processors.

Next, Simulation execution phase includes aspects related
to the hosts where the IoT devices and nodes should be
deployed. So, it includes where databases, message brokers,
stream processors, etc. should be deployed. As a conse-
quence, these aspects allow the IoT to tailor the simulation,
adapting it to real situations.

IV. SimulateIoT TOOLS
This section describes the tools designed to implement the
SimulateIoT methodology (defined in Section III) which

VOLUME 9, 2021 92535

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

TABLE 1. Key elements of the related works summarized (IoT simulation and model-driven development).

FIGURE 3. SimulateIoT methodology overview.

include a Domain-Specific Language (DSL) named Simu-
lateIoT for defining and deploying IoT simulation environ-
ments. For this, SimulateIoT uses model-driven development
techniques to manage the IoT simulation environment defini-
tion using models. So, the models guide the system descrip-
tion and the code generation. Later on, the code generated can
be deployed through several hosts.

In a Model-Driven Development approach like this the
software development is guided through Models (M1) which
conform to a MetaModel (M2). Moreover, a Metamodel

conforms to a MetaMetaModel (M3) which is reflexive.
The MetaMetaModel level is represented by well-known
standards and specifications such as Meta-Object Facilities
(MOF), ECore in EMF and so on. A MetaModel defines the
concepts and relationships in a specific domain in order to
model partial reality. Then these models are used to gener-
ate totally or partially the application code by model-to-text
transformations. Thus, the software code can be generated for
a specific technological platform, improving the technologi-
cal independence and decreasing error proneness.

92536 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

Figure 4 shows a mapping among the phases defined in
the SimulateIoT methodology and the SimulateIoT design
and implementation which defines a model-driven develop-
ment process and the SimulateIoT deployment and execution
phase. Thus, it shows the main elements needed to build
the SimulateIoT ToolsExecution Environment and includes:
a Metamodel definition, a Graphical Concrete Syntax def-
inition (Figure 4-1) and the model-to-text transformations
(Figure 4-2) to generate the code artefacts needed to deploy,
monitor and measure the IoT environment (Figure 4-3).

Thus, the Design and Implementation phase makes it pos-
sible to design the IoT models and generate the code which
will be deployed and executed during the Deployment and
Execution phase. Both the Design and Implementation phase
and the Deployment and Execution phase together address
users to design and implement the SimulateIoT methodology
focusing on using well-known model driven software engi-
neering practices such as metamodeling, validating, model
transformations, etc. Using it improves the system develop-
ment productivity and decreases the error proneness [43].

The main elements of the Design and Implementation
phase such as the SimulateIoT Metamodel or the model-
to-text transformations are described below.

A. SimulateIoT DESIGN AND IMPLEMENTATION PHASE.
SIMULATE IoT METAMODEL
A MetaModel defines the concepts and relationships in a
specific domain in order to model partially reality [43].
Then these models could be used to generate total or par-
tially the application code. Thus, the software code could
be generated for a specific technological platform, improv-
ing its technological independence and decreasing the error
proneness.

Figure 5 defines the domainmetamodel including concepts
related to sensors, actuators, databases, fog and cloud nodes,
data generation, communication protocols, stream process-
ing, and deploying strategies, among others. The relevant
elements are summarised below:
• The Environment element defines the global param-
eters of the IoT simulation environment, including
simulationSpeed and the number of messages to be inter-
changed among the nodes (numberOfMessages). These
attributes define global policies to manage simulation
resources to be applied on all theNode elements defined.

• Node is an abstract concept to represent each node
in the IoT simulation environment. It is extended by
several concepts such as EdgeNode or ProcessNode
in order to specialise each kind of node. A Node can
publish and subscribe to a specific Topic. It defines
publish or subscribe references towards a Topic element
in which it is interested. Note that, later on, each con-
crete kind of Node could be defined with specific con-
straints. Thus, the device position (Coordinates element)
can be defined using latitude and longitude attributes.
latitude and longitude attributes define the device
position (Coordinates element). Furthermore, with the

RaspBerryPi attribute, the generation of the node will
be carried out for this kind of device.

• The EdgeNode element makes it possible to define sim-
ple physical devices such as a sensor or an actuator
without process capacities. Moreover, with the attribute
quantity, it is possible to define how many EdgeNodes
of a type must be generated. Each EdgeNode could be
linked with ProcessNode elements by Topic elements.
Topic elements allow link each EdgeNode with Pro-
cessNode elements. Moreover, each EdgeNode can be
mapped with a physical device such as a temperature
sensor, a humidity sensor, a turn on/off light device or
an irrigation water flow device at the IoT environment.

• A Sensor element extends the EdgeNode element. It is
the device that publishes the data that the IoT environ-
ment works with.
A Sensor element analyses a specific environment
issue (temperature, humidity, people presence, people
counter, etc.) and sends these data to be analysed later.
A Sensor element is able to publish on Topic elements
which propagate data throughout the simulation nodes.
To perform this data propagation, Sensors could inte-
grate the element AdditionalConfiguration that, together
with the element RedirectionConfiguration, can define
a redirection route of ProcessNode through which their
data can flow. Thus, Sensors are able to publish their data
in Topics not accessible to them.

• An Actuator element is a device in the IoT environment
which can execute an action from a set of inputs. For
instance, the inputs could determine that an actuator turn
on or turn off a light; other actuators could require data
input to define the light’s luminosity. In order to receive
data, anActuator element should be subscribed to topics.

• Topic is a central element in this metamodel because it
defines the information transmitted among any kind of
Node elements. Thus, Topic elements are defined from
CloudNode and FogNode elements, and help users to
model a publish-subscribe communication model. Node
elements should identify the target Topic for both pub-
lication or subscription. Consequently, the Topic ele-
ment is a flexible concept to model how data should be
interchanged.

• Data element defines the simple data type to be gen-
erated (Boolean, short, integer, real, string). It has a
DataSource element tomodel either theDataGeneration
element or LoadFromFile element. The former (Data-
Generation element) models how synthetic data are gen-
erated, for instance, using an Aleatory strategy among
two values defined in a GenerationRange element. The
latter (LoadFromFile element) models the path-file that
contains the historic data, for instance, it could be
defined by a CSVload element. In addition, external
tools such as [11], [19] can be linked to increase the
capabilities to offer additional data generation patterns.

• The ProcessNode element defines an IoT node with
process capability. For this, two subtype nodes could

VOLUME 9, 2021 92537

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 4. SimulateIoT methodology and SimulateIoT execution design & implementation phase and deployment & execution phase
related.

be defined: CloudNode and FogNode. Essentially, both
have the same properties and only differ in their pro-
cess capability. Thus, in order to classify the Pro-
cessNode capacity (the size attribute) related to batteries,
CPU, memories, etc. a set of granularity values have
been defined (XS, S, L, XL and XXL). They make it
possible to define different kinds of nodes and apply
different kinds of policies. Thus, Model-Driven Devel-
opment helps to deal with the complexity of IoT systems
and policies management by model abstractions and
constraints.
Using labels (XS, S, L, XL and XXL) to define the
node capacity simplifies the knowledge needed to model
the IoT environment, overall in a changing environment
such as IoT. Labels are used to simplify the reality
taken into account the user’s knowledge and expertise.
For instance, Scrum agile methodology [41] makes it
possible to define the effort needed for a set of devel-
opers to develop a specific user history by using labels.
Concretely they use the Planning Poker technique which
uses Poker cards to estimate the effort needed to carry
out a specific task summarising the developer’s knowl-
edge and expertise, task complexity, context changing,
and so on. In the same sense we estimate the node

capacities using the labels defined. The resources that
different users can associate to a specific label can
change throughout the time or taking into account their
knowledge and expertise.
This strategy allows specifying the ProcessNode ele-
ment capacity and associating specific constraints. For
example, in an XS ProcessNode a ProcessesEngine such
as Complex Event Processing (CEP) engine cannot be
deployed. Hence, granularity labels are used as in a
Scrum project development to define task complexity.
As mentioned, ProcessNode can define Topic elements,
which can be referenced by any kind of Node elements.
Besides, the redirectionTime attribute defines the fre-
quency that stored data are flushed towards the next
ProcessNode element defined by redirect references
(redirection route defined in Sensors). The attribute
BrokerType defines the message-oriented broker that
currently is established by Mosquitto [32]. In addi-
tion, the ProcessNode element hides the complexity
about how data should be gathered and processed. For
instance, it defines how data will be stored, published or
offered to be analysed by stream processing engines (SP)
or complex event processing engines (CEP) by defin-
ing Component elements. Note that either the stream

92538 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 5. SimulateIoT metamodel.

VOLUME 9, 2021 92539

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

processing or the complex event processing capabilities
help to define when an Actuator element should carry
out an action.

• FogNode allows users to describe fog computing
instances [6] which could manage and coordinate sev-
eral devices or actuators. Thus, this concept focuses on
aggregating data for a limited time or connection condi-
tions that are released later on. Furthermore, a FogNode
element can include persistent data storing and data
processing.

• CloudNode extends ProcessNode and allows describing
a special node deployed on a public or private cloud
computing environment.

• The ProcessEngine element should be linked to a Pro-
cessNode, to allow real time data analysis defining
coming from ProcessNode elements or EdgeNode ele-
ments. To do this, defining complex event patterns can
be carried out by Rule elements. These patterns anal-
yse Topic data in real time. Currently, the SimulateIoT
environment works with WSO2 Stream Processor [37]
and Esper CEP [13]. Usually, a CEP (Complex Event
Processing) engine has a higher process capacity and
lower latency than an ESP (Event Stream Processing)
engine [25], [26].

• Rule elements are linked with the ProcessEngine
elements defined at the ProcessNode element. Rule ele-
ments can be defined using the Event Processing Lan-
guage (EPL) [14] defined for a concrete ProcessEngine
kind. Note that the eventType attribute is used to name a
rule.

• Notification elements make it possible to throw alerts
by using several notification kinds: TopicNotification
or eMailNotification. Obviously, Notification hierarchy
could be extended in further metamodel versions. Men-
tion that the Notifications are carried out by messages.
Mention that messages carry out the Notifications. In
this manner, the attribute message could define the noti-
fication message which will be notified.

B. SimulateIoT DESIGN AND IMPLEMENTATION PHASE.
GRAPHICAL CONCRETE SYNTAX AND VALIDATOR
The Design phase includes creating models conforming
to the SimulateIoT metamodel. So, in order to do this,
a Graphical Concrete Syntax (Graphical editor) has been
generated using the Eugenia tool [23]. —- So, in order
to do this, the Eugenia tool [23] —- makes it possible
to generate a Graphical Concrete Syntax (Graphical edi-
tor). The Graphical Concrete Syntax generated from Sim-
ulateIoT metamodel is based on Eclipse GMF (Graphical
Modeling Framework) and EMF (Eclipse Modeling Tools).
Consequently, models (EMF and OCL (Object Constraint
Language) [34] based) can be validated against the defined
metamodel (EMF and OCL based). Note that OCL is a stan-
dard to define model constraints. Figure 6 shows an excerpt
from this graphical editor. It helps users to improve their
productivity allowing not only defining models conforming

to the SimulateIoT metamodel, but also their validation using
OCL constraints [34]. OCL rules have been defined as part
of the SimiulateIoT metamodel using OCLInEcore Tools
(https://wiki.eclipse.org/OCL/OCLinEcore). Each OCL rule,
defined as invariant, has its own context which is related
to the class where it is established. Some of these OCL
constraints are the following:
• An EdgeNode element can only send data to Topic ele-
ments defined in one FogNode:

class EdgeNode {
\ldots
invariant send_data_to_one_node: self.

publish-> forall (topic1, topic2 |
topic1.oclContainer() = topic2.
oclContainer());

\ldots
}

• EachEdgeNode element should be connected (to publish
or to subscribe) with a Topic:

class Sensor {
\ldots
invariant sensor_publish: self.publish > 0
\ldots

class Actuator {
\ldots
invariant actuator_subscribed: self.

subscribed > 0
\ldots

• TopicNotification generated by a Rule should be pub-
lished on a Topic created by the FogNodewhich analyses
data with this Rule:

class ProcessNode {
\ldots
invariant TopicNotificationPublication:

self.create_topic->includesAll(self.
component->selectByKind(ProcessEngine)
.rule.generates_notification->
selectByKind(TopicNotification).
publish_on_topic);

\ldots
}

• ProcessNode could be a FogNode or a CloudNode,
the main difference between these two kinds of node are
their computation power, a characteristic defined by the
ProcessNode attribute size which should be greater than
L in the CloudNode element and smaller than or equal to
L in the FogNode element:

class CloudNode {
\ldots
invariant cloudSizeMajorThanL: self.size.

toString() = ’XL’ or self.size.
toString() = ’XXL’;

\ldots
}

class FogNode {
\ldots
invariant fogSizeMinorThanXL: self.size.

toString() <> ’XL’ and self.size.
toString() <> ’XXL’;

\ldots
}

92540 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 6. Graphical editor based on the Eclipse to model conforming to the SimulateIoT metamodel.

• The ProcessNode element has the ability to redirect
data. To redirect data ProcessNode must have data per-
sistence, be connected to another ProcessNode and its
attribute redirectionTimemust be greater than 0. If redi-
rectionTime is equal to 0, ProcessNode won’t redirect
the data and does not have to meet these requirements.

c l a s s ProcessNode {
\ l d o t s
i n v a r i an t r e d i r e c t i o nR e q u e r im e n t s : s e l f .

r e d i r e c t i o n T im e = 0~or s e l f .
r e d i r e c t i o n T im e > 0~and s e l f .
component−>se l e c tByK ind (DataBase) <>
nu l l and s e l f . r e d i r e c t −>s i z e () > 0 ;

\ l d o t s
}

To sum up this subsection, the graphical concrete syntax
(based on an Eclipse plugin) developed offers a suitable
way to model the IoT environment by using the high-level
concepts defined in the SimulateIoT metamodel. Later on,
the graphical concrete syntax will be used to model and
validate several case studies.

C. SimulateIoT DESIGN AND IMPLEMENTATION PHASE.
MODEL-TO-TEXT TRANSFORMATION
Once the models have been defined and validated con-
forming to the SimulateIoT metamodel, several artefacts can
be generated using a model-to-text transformation defined
using Acceleo . a model-to-text transformation defined using
Acceleo [38] can generate several artefacts.

The generated software includes, MQTT messaging bro-
ker (based on MQTT protocol [33]), device infrastructure,
databases, a graphical analysis platform, a stream processor
engine, docker container, etc. In this regard, Table 2 sum-
marises each node type characteristic including the Docker

container, NoSQL database, MQTT broker, Monitoring using
graphical visualisation and analysing characteristics labelled
as Complex Event Processing (CEP).

D. SimulateIoT DEPLOYMENT AND EXECUTION PHASE
The Execution phase involves deploying all the artefacts
generated from the models. So, several software artefacts
such as the MQTT messaging broker, device infrastructure,
databases, graphical analysis platform, etc. can be configured
and deployed.

Code is generated to allow users to package code, deploy
and monitor the simulation. Thus, the simulation can be
deployed through several hosts where each node should be
deployed. Figure 7 shows an example of the IoT simula-
tion deployed. It shows the different elements that can be
deployed including a CloudNode or FogNode, Sensors and
Actuators. Thus, each CloudNode and FogNode is imple-
mented as a micro-service based on Thorntail [49] and
it is deployed on a Docker container [28]. Besides, each
node can be deployed on hardware with different charac-
teristics such as Rasberry Pi, Jaguarboard, Orange Pi or
Pine64. Note that these micro-computers run under several
versions of Linux and Docker containers can be deployed
on them.

Furthermore, eachCloudNode/FogNode can define a Com-
plex Event Processing Engine (e.g. Esper) or Event Stream
Processing Engine (e.g. WSO2). Besides, it includes an
MQTT broker (e.g Mosquitto), a No-SQL database (e.g.
MongoDB) and a REST API. Likewise, as can be observed,
all of these elements are inter-connected and are deployed on
Docker containers. Finally, all Docker containers are orches-
trated using Docker Swarm.

VOLUME 9, 2021 92541

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

TABLE 2. Available code generation for each different kind of node.

FIGURE 7. Deploy diagram.

Moreover, each node deployed with storing characteristics
includes a specificmonitoring tool. Figure 8 shows an excerpt
from themonitoring environment based on Compass [10]. So,
users take over the monitoring tool including several kinds of
graphical elements such as bar graphs, data lists and so on.
The monitoring environment makes it possible to query the
data stored.

Finally, an overview dashboard is generated to monitor the
simulation execution. So, each node defined can be queried.
For instance, the data stored on a specific ProcessNode can
be queried in real-time. For instance, the user can query the
data stored on a specific ProcessNode in real-time. So, during
simulation execution the console of each ProcessNode shows
the simulation execution log. Later on, the simulation logs
and data stored in the ProcessNode with storage capacity are
available to be queried.

The simulation execution process including the following
steps: i) compiling and deploying the artefacts previously

generated from a SimulateIoT model; ii) data generation to
commence the simulation process, consequently the defined
sensors start to generate data and send them towards the
defined Topics; iii) data propagation, data analysis and
actions are carried out taking into account the defined data
flows; and iv) log simulation can be analysed both in real-time
querying the databases or after simulation execution by
querying the log simulation. For instance, the following char-
acteristics can be analysed: the performance of each compo-
nent (in real-time) including CPU or RAM usage, the total
memory used for each component, the amount of data sent
and received for each component over its network inter-
face, etc.

Algorithm 1 shows a simplified simulation execution pro-
cess. It focuses on the actions carried out in the Docker
containers deployed to execute the simulation process.
Note that each Docker container has its own behaviour
depending on the simulation component deployed (Sensor,

92542 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 8. MongoDB compass to monitor the data stored in the MongoDB databases.

Actuator, FogNode or CloudNode) as has been described
previously.

The number of interactions in Algorithm 1 grows to O(N ∗
M) that is O(N 2), where N is the number of Node elements
and where M the number of messages to be interchanged.
Note that, each Node is deployed on a concrete Docker con-
tainer where each Node should execute its behaviour (O(N)).
The generated IoT system defines a mesh topology net-

work where sensors, actuators, fog nodes and cloud nodes
could be interconnected following the model defined. The
system modeller can use the Graphical Concrete Syntax
that has been developed to describe the Node elements
interactions.

V. CASE STUDIES
Next, two case studies have been defined using the Sim-
ulateIoT methodology and tools previously presented. The
first one defines an IoT simulation on a smart building while
the second one defines an IoT simulation in an agricultural
environment.

Below is a synthesis of the methodology required to use
SimulateIoT and the processes carried out by this tool to
simulate these use cases in order to illustrate them more
effectively.

1) Model definition: This step refers to the modelling of
the IoT Environment that the user wants to deploy.
This model corresponds to the DSL and therefore can
contain all the elements defined in it. Two examples
of IoT Environment models are shown in Figure 9 and
in Figure 11.

2) Code generation and deployment: Once the model
has been defined, the source code of all the elements
involved can be generated from it. Sensors, Actuators,
FogNodes, CloudNodes and all their sub-components
and configuration files will be ready for the deploy-
ment phase. The deployment performs many steps for
the correct deployment of all previously generated
components.

A. CASE 01. SCHOOL OF TECHNOLOGY
Our first case study presents the simulation of a smart build-
ing, more specifically, we have modelled the School of

Technology at the University of Extremadura. It has six build-
ings (Computer Science, CivilWorks, Architecture, Telecom-
munications, Research and a Common Building). So, each
building has its own environment with a set of sensors, actu-
ators and analysis information processes.

1) CASE 01. MODEL DEFINITION
Figure 9 shows an excerpt from the School of Technology
model. Note that Figure 9 also includes numerical references
for each node which are then used to describe the use case.
It is a design of an IoT system which includes several nodes
shared throughout the different buildings. Each building takes
over its own ProcessNode (Figure 9, references 1.1, 1.2, 2)
which recovers all the information produced by the sensors
(Figure 9, references 3.1, 3.2). Thus, these data are suit-
ably stored on specific databases (Figure 9, references 6.1,
6.2, 6.3), analysed and monitored in ProcessNode elements.
In this case study, a FogNode element is defined for each
building (Figure 9, references 1.1, 1.2). For instance, Com-
mon_Building or Computer_Science are FogNode elements
(Figure 9, references 1.2, 1.1). Furthermore, a CloudNode
named SchoolTechnologyCloudNode (Figure 9, reference 2)
is defined to store information gathered from the FogNode
elements. Both FogNode and CloudNode elements define
several Topic elements such as heating_temperature, pres-
ence, smoke-detection topics (Figure 9, references 5.1, 5.2,
5.3). These Topic elements communicate data among the
Node elements defined in the IoT system (Figure 9, references
1.1, 1.2, 2, 3.1, 3.2, 3.3).

In order to model the School of Technology case study,
several sensors such as heating_temperature_meter, pres-
ence_detector, smoke_detector (Figure 9, reference 3.1) and
so on have been defined in Figure 9. Each of them pub-
lishes its own data on a specific Topic element (Figure 9,
reference 5.1). As can be observed in Figure 9, the Sen-
sor elements publish data to several FogNode through Topic
elements.

Note that Sensor elements are EdgeNode elements which
generate data, so the data pattern generators should be defined
(Figure 9, references 4.1, 4.2). For instance, in order to
describe the synthetic data generated by a temperature sensor

VOLUME 9, 2021 92543

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

Algorithm 1: Deploying and Executing the IoT Simulation

1 begin
2
3 //Step 1)~Connections and configuration of each component
4
5 Compile and deploy each IoT component by using Docker Swarm
6 Subscribe each Node (Fog-CloudNode, Sensors, Actuators) to the Topics offered by MQTT Brokers
7 Subscribe each ProcessNode (FogNode and CloudNode) to the Topics on other Fog-CloudNode
8 Configure~the CEP/SP Engine with their EPL rules
9

10 //Step 2)~Start the message flow, the~components start their processes
11
12 //Start Data Generation
13 foreach Sensor do
14 start to publish data from it sources (.csv, syntheticDataGeneration(), etc.) to Topic
15 done
16
17 // Main process executed in parallel by each Node
18 while (data in Sensors is available) do
19 Nodes (FogNode, CloudNode, Actuator) subscribed to Topic receive the data
20
21 //each Node (FogNode, CludNode or Actuator) process the data received
22 switch (NodeType n)
23
24 ProcesNode:
25
26 //2.1 CEP/SP Analysis
27 if (n has CEP/SP engine) then
28 foreach rule to apply to data do
29 ruleObserved=CEP-SP.applyRule(rule[i])
30 if ruleObserved == True then
31 CEP-SEP.sendNotification(rule[i].notificationDestiny)
32 endif
33 endforeach
34 endif
35
36 // 2.2. Data Store
37 if (n has Persistence) then
38 n.saveData(MongoDB)
39 endif
40
41 // 2.3. Data redirection
42 if (n has redirection data) then
43 redirectionData = n.checkredirectionableData(MongoDB)
44 foreach redirectionData do
45 n.redirectData(redirectionData.Destiny)
46 endforeach
47 endif
48
49 Actuator:
50 n.doSomeAction(data)
51 endswitch
52 done
53 end

a.csv input file has been defined. It makes it possible to
reuse historical data. Other sensors can define their synthetic
data generators using a random pattern, incremental pattern,
etc. So, the approach can consume synthetic data based on
simple data, range data, a specific set of values, the values
obtained from a.csv file, data obtained from a url source or
data generated form the external tools such as [11], [19].

As mentioned, in Figure 9 each FogNode has its own
characteristics about how data should be managed includ-
ing storing, analysing or addressing. For instance, the Com-
puterScience FogNode element (Figure 9, reference 1.1)

addresses the information every thirty seconds, storing the
data obtained in a specific NoSQL database (Figure 9, ref-
erence 6.1). Then all data are flushed to the next node
FogNode or CloudNode defined in the architecture and
named in the example SchoolofTechnology_CloudNode. On
the other hand, the Common_Building FogNode element
(Figure 9, reference 1.2) defines a different behaviour
in order to analyse the data and take advantage of being
close to the devices that should carry out some action. For
instance, the Common_Building FogNode defines a CEP
engine component (Esper_CEP) and several Rule elements

92544 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 9. Case 01. The school of technology model conforms to the SimulateIoT metamodel.

(Figure 9, reference 7), for example, the rule_heating anal-
yses the data obtained from a specific Topic named heat-
ing_temperature to notify a specific action to another Topic
named turn_on_heatingwhich is subscribed by specificActu-
ator named heating. Thus, the rule_heating rule analyses the

temperature sent to the heating_temperature Topic element
from the heating_temperature_meter Sensor. Consequently,
it is gathered and analysed by the CEP engine by means of
the rule_heating Rule. Consequently, the CEP engine can
gather data and analyse them by means of the rule_heating

VOLUME 9, 2021 92545

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 10. Case 01. The school of technology model deployed.

Rule. As a consequence, when the pattern defined is matched
(for instance, if (temperature < 20) then switch on heating),
the CEP engine generates an event to turn_on_off_heating
Topic. As a consequence, the CEP engine generates an event
to turn_on_off_heating Topic when the pattern defined is
matched (for instance, if (temperature < 20) then switch on
heating).

2) CASE 01. CODE GENERATION AND DEPLOYMENT
Once the model has been defined, the model-to-text trans-
formation is applied with the following goals: i) to generate
Java code which wraps each device behaviour; ii) to generate

configuration code to deploy the message brokers necessary,
including the topic configurations defined; iii) to generate
the configuration files and scripts necessary to deploy the
databases and stream processors defined; and finally, to gen-
erate the code necessary to query the databases where the
data will be stored; iv) to generate for each ProcessNode
and EdgeNode a Docker container which can be deployed
throughout a network of nodes using Docker Swarm.

Figure 10 shows an excerpt from the School of Technology
IoT model deployed and it includes the following: Each
Node has been deployed on a Docker container using Docker
Swarm technology. Each Docker container instance deploys

92546 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

the characteristics defined on the IoTmodel, including: where
the nodes are deployed, and what the components included in
each ProcessNode are.

Finally, executing the simulation modelled and later on
deploying it, makes it possible to analyse the final IoT
environment before it is implemented and deployed. Thus,
each EdgeNode and ProcessNode element carries out its own
functions such as sending messages, processing and storing
messages, acting from messages, etc. Consequently, the code
generated can be reused on the final system deployed. For
instance, the EdgeNode elements can be replaced by physical
devices (both sensors and actuators), and the Process Node
can be deployed asDocker containers either on premise or on
cloud. Not only is the simulation code generated, but also the
final IoT system code is partially generated.

B. CASE 02. AGRICULTURAL ENVIRONMENT
This case study focuses on designing an IoT system for
managing irrigation andweather data in order to improve crop
production. So, the case study has been designed to simulate
the sensors and actuators distributed over the countryside
which can be monitored in real time. Nowadays, the agricul-
tural domain has several requirements [50], [52]: i) Collec-
tion of weather, crop and soil information; ii) Monitoring of
distributed land; iii) Multiple crops on a single piece of land;
iv) Different fertilizer and water requirements for different
pieces of uneven land; v) Diverse requirements of crops for
different weather and soil conditions; vi) Proactive solutions
rather that reactive solutions.

For instance, sensors such as temperature sensors, humid-
ity sensors, irrigation sensors, PH sensors and actuators such
as irrigation artefacts help to monitor and save water, opti-
mising crop production.

This agricultural IoT environment has been designed over
ten hectares of soil where tomatoes are being cultivated. So,
for each hectare a set of sensors and fog nodes has been
shared. So, using fog nodes decreases the communication
requirements among them. The sensor network is built by
temperature, humidity, irrigation and water pressure sensors.
These sensors send data to a specific Topic element linked to
a FogNode element which is gathering data and re-sending
it, if it is needed. In addition, the irrigation actuators have
been defined for controlling irrigation water. The notification
events from the FogNode elements are sent to Actuator ele-
ments using Topic elements.

1) CASE 02. MODEL DEFINITION
In Figure 11 an excerpt from an IoT model conforming to
the SimulateIoT metamodel is defined. It shows different
Sensor elements such as ph_H1, temperature_H1, Humid-
ity_H1, etc. (Figure 11, reference 3.2) which generates data
for simulation. Moreover, several fog computing nodes have
been defined, although in Figure 11 (for the sake of sim-
plicity) only two FogNode elements are shown (Figure 11,
references 1.1, 1.2). They define several Topics such as
Humidity, Temperature, pH, Water_pressure, etc (Figure 11,

references 5.1, 5.2). In addition, each FogNode element
defines a MongoDB database (Figure 11, references 6.1,
6.2) and an ESP engine (Figure 11, references 7.1, 7.2)
by means of Component elements. Besides, several Rule
elements (event pattern definitions) such as rule_Humidity
or rule_pH have been defined to analyse the data gath-
ered from Topic elements in real-time. Likewise, when an
event pattern is matched, a Notification element such as
Low_pH, High_pH, Low_Humidity, High_Humidity and so
on is thrown. For instance, the Actuator element named Irri-
gator (Figure 11, references 3.1) activates when the Notifica-
tion element named Low_Humidity is thrown.

2) CASE 02. CODE GENERATION AND DEPLOYMENT
Once the model has been completed and validated, a model-
to-text transformation is carried out obtaining the simula-
tion code, which can be deployed on a specific platform.
Thus, the code generated includes several modules defined
using several frameworks or programming languages. Thus,
in order to define a scalable IoT environment, each deploy-
able element (EdgeNode, CloudNode, FogNode, Actuators
and ProcessEngine) is defined as a microservice, wrapping
each Node element in aDocker container. Figure 12 shows an
excerpt from the case study deployment architecture includ-
ing the Docker containers defined and deployed. In Figure 12
the main characteristics of each node can be observed. For
instance, each ProcessNode (Figure 12, references 1.1, 1.2,
2) defines a MongoDB database (Figure 12, references 8.1,
8.2, 8.3), a Mosquitto MQTT message broker (Figure 12,
references 5.1, 5.2, 5.3), and a WSO2 Stream Processor
engine (Figure 12, references 6.1, 6.2). In addition, the Rule
elements defined are processed through the WSO2 engine
defined.

Each Docker container has its own characteristics:
• CloudNode (Figure 12, reference 2) is composed of
a message-driven broker (Figure 12, reference 5.3)
like Mosquitto [32] (that implements a MQTT com-
munication protocol) and a NoSQL database like
MongoDB [31] (Figure 12, reference 7.3). Besides,
the MongoDB instance exposes the data stored using
a REST API (Figure 12, reference 8.3). Moreover,
theCloudNode deploys a Compass instance [10] tomon-
itor the data gathered.

• Each FogNode (Figure 12, references 1.1, 1.2) is com-
posed of a message-driven broker (Figure 12, references
5.1, 5.2) like Mosquitto [32] (that implements a MQTT
communication protocol) and a NoSQL database like
MongoDB [31] (Figure 12, references 7.1, 7.2). Mon-
goDB stores the temporal data gathered by the FogN-
ode instance. Currently, the main difference between
a CloudNode and a FogNode is the process capability.
Using the size attribute at FogNode element makes it
possible to define the process capabilities of the node.
Consequently, both CloudNode elements and FogNode
elements are deployed as Docker containers on hardware
nodes such as PC, VM or Raspberry Pi.

VOLUME 9, 2021 92547

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 11. Case 02. AgroTech model conforming to the SimulateIoT metamodel.

• The ESP characteristic defined at ProcessNode deploys
an event stream processor to process high amounts of
messages in real-time. As can be observed in Figure 12 a
WSO2 engine (Figure 12, references 6.1, 6.2 is deployed
on each FogNode. The WSO2 engine processes the Rule
elements associated with it.

• The EdgeNode elements including sensors (Figure 12,
references 4.1, 4.2) and actuators (Figure 12, references
9.1, 9.2) defined in the model are suitably deployed in
Docker containers.

Later on, the execution information can be audited by
querying theMongoDB database or using the monitoring tool
available on each ProcessNode. Moreover, each Docker is
generating log information during the IoT execution. Finally,

the nodes deployed are accessible from a dashboard tool
which gathers the available endpoints of each element, for
example, to query a MongoDB database or to show informa-
tion about a Mosquitto broker.

VI. DISCUSSION
Model-driven development can be used to model complex
IoT environments using domain concepts. They could not
be tied to specific technology, but rather a model-to-text
transformation makes it possible to generate the code needed
to deploy and simulate the systems. Besides, the system
deployed is gathering continuous data which can be analysed
later on.

92548 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

FIGURE 12. Case 02. AgroTech deployment architecture.

Simulate IoT makes it possible to define models which
could include a large amount of Node elements. Then,
the code generated from models allows to create an scalable
deployment based on well-known software architecture pat-
terns such as publish-subscribe and Docker containers among
others.

The technology used as a target, such as micro-services
(Thorntail), containers (Dockers), message-oriented middle-
ware and MQTT (Mosquitto broker) or a container orches-
trator (Docker Swarm) can be quickly replaced by other
suitable technology if needed. In order to change the target
technology, a model-to-text transformation should be imple-
mented. However, the domain concepts used to model the
IoT environment are fixed. As a consequence, the models
help users to understand the IoT system, their relationships

and constraints. Besides, the code generated can be analysed
later on.

On the other hand, the target users could be both: a) pro-
fessional users and b) students. Professional users can use the
methodology and tools presented in this work to define and
analyse complex IoT environments where finally heteroge-
neous technology is used. Besides, our approach can be used
for teaching purposes because it makes it possible for students
to learn about IoT concepts and relationships. In addition,
they can deploy the IoT simulation, and they can study
the code generated to learn the technology used to deploy
the IoT system. Thus, they can understand edge technology
and integration patterns such as data patterns, IoT charac-
teristics, publish-subscribe communication protocols, MQTT
(Message Queuing Telemetry Transport) communication

VOLUME 9, 2021 92549

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

protocol, containers, NoSQL databases, distributed systems
and so on.

An IoT environment where the nodes are moving through-
out the system can be partially modelled. These kinds of
nodes are needed to define more complex IoT simulation
environments such as wearables, people on the move, etc.
Modeling complex node behaviours could be managed by
means of dynamic behaviours and self-adaptation charac-
teristics which could be defined in order to offer additional
mechanisms for simulation purposes. For example, currently
we are working on Topics elements which could be discov-
ered by using a service discovery or using an introspection
mechanism over the MQTT broker. The node service dis-
covery is a new service deployed on Fog and Cloud Node
elements able to offer by an API information about the Topics
available, making possible that the IoT Nodes can connect to,
send to and receive data from not fixed IoT nodes.

The proposal that we are implementing to manage Node
mobility includes the following aspects:
• It is possible to model a route generation, taking advan-
tage of the geolocation that is already modellable. In this
way, Node elements that require mobility to perform
their functions can be moved through the IoT environ-
ment in such a way that the user who has modelled the
environment requires it.

• The route generation solves the problem that arises from
the need formobility of devices in an environment. How-
ever, it is also necessary to define the coverage of the
different Brokers in the environment, so that the different
devices are able to make the decision to disconnect from
one broker and connect to another. To solve this problem,
it is proposed again the use of geolocation. In this way,
the user whomodels the environment can define a radius
of coverage of the different Brokers deployed, so that the
devices, taking into account their own geolocation, can
determine which Brokers are within reach and which are
not. Thus, the different mobile devices in the environ-
ment can analyse which Brokers to connect to and which
to disconnect from.

• The Topic Discovery Mechanism is a service that makes
it possible to dynamically re-configure the Node ele-
ments in order to publish or subscribe on compatible
Topics. To do this, Node elements publish a broadcast
package to the network following Topic Services avail-
able and compatible with a concrete Topic. To answer
the broadcast, each Node Processing element imple-
ments a Topic Discovery Node which answers it with
the list of Topics available and compatible. Currently,
the Topic compatibility is based on the Topic Data inter-
changed, Topic’s name or Topic’s Tags.

Initial results of this approach to manage node mobility show
that IoT nodes can dynamically reconfigure their connections
to send or receive data.

Finally, using the IoT simulation environment, users can
propose and compare several policies before implementing
them. Consequently, they can carry out several stress tests on

the IoT architecture, obtaining valuable data. For instance,
users can detect if a ProcessNode is running out of RAM. In
addition, the bottlenecks in the IoT system could be detected
by analysing the data gathered, producing valuable data that
helps users to consider different IoT architectural alternatives.

A. LIMITATIONS
Although the domain-specific language and tools presented
offer a wide expressiveness, they have several limitations to
take into account:
• Node mobility has been partially developed following
the approach that has been described before by defining
the Topic Discovery Node (TDN). In this sense, on one
hand, the route for nodes can be defined, and, on the
other hand, the TDN makes it possible re-configuring
dynamically the WSN deployed.

• This current version of our simulator IoT environment,
for the sake of simplicity, allows defining connected
nodes by TCP/IP, and we assume that connectivity is
guaranteed.

• It is possible to simulate IoT environments defined
using a high-level domain-specific language. However,
the hardware simulation is only managed by the size
attribute at ProcessNode which implies several con-
straints to avoid creating specific software elements (see
Table 2). Obviously, it could be considered a simplistic
approach to tackle this complex problem but in the end,
it helps users to model the IoT environments thinking
about the hardware restrictions.

VII. CONCLUSION
Model-driven development techniques are a suitable way
to tackle the complexity of domains where heterogeneous
technologies are integrated. Initially, they focus on modelling
the domain by using the well-known four-layer metamodel
architecture. Then, by using model-to-text transformations
the code for specific technology could be generated. Thus,
in this paper, we are tackling the IoT simulation domain
allowing users to define and validate models conforming to
the SimulateIoT metamodel. Then, a model-to-text transfor-
mation generates code to deploy the IoT simulation model
defined.

The IoT simulationmethodology and tools proposed in this
work help users to think about the IoT system, to propose
several IoT alternatives and policies in order to achieve a
suitable IoT architecture. Finally, the IoT systems modelled
can be deployed and analysed.

Future works include new concepts taking into account the
role of connections among devices and brokers which could
be simulated specifying the type of connection or distance
among devices. Obviously, the SimulateIoT metamodel will
be improved by applying these new concepts, although it will
require that users define more accurately the IoT simulation
model. Additionally, dynamic behaviours and self-adaptation
characteristics could be defined in order to offer additional
mechanisms for simulation purposes. For example, Topics

92550 VOLUME 9, 2021

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

elements could be discovered by using a service discovery
or using introspection mechanism over the MQTT broker.
Finally, another interesting further work includes the defi-
nition and generation of new types of data generation pat-
terns. Again, these model extensions will improve the IoT
simulation.

REFERENCES
[1] K. Alwasel, R. N. Calheiros, S. Garg, R. Buyya, M. Pathan,

D. Georgakopoulos, and R. Ranjan, ‘‘Bigdatasdnsim: A simulator for
analyzing big data applications in software-defined cloud data centers,’’
Softw. Pract. Exper., vol. 51, no. 5, pp. 893–920, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%
2Fspe.2917

[2] C. Atkinson and T. Kuhne, ‘‘Model-driven development: A metamodeling
foundation,’’ IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003.

[3] P. Baldwin, S. Kohli, A. Edward Lee, X. Liu, and Y. Zhao, ‘‘Modeling of
sensor nets in ptolemy II,’’ in Proc. 3rd Int. Symp. Inf. Process. Sensor
Netw. (IPSN), New York, NY, USA, 2004, pp. 359–368.

[4] Bevywise. (2018). Bevywise IoT Simulator. [Online]. Available:
https://www.bevywise.com/iot-simulator/

[5] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
‘‘Heterogeneous concurrent modeling and design in java (volume 3:
Ptolemy ii domains),’’ Dept. Elect. Eng. Comput. Sci., Univ. California,
Berkeley, CA, USA, Tech. Rep. UCB/EECS-2008-37, 2008.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Soft-
ware: Pract. Exper., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[7] E. Cheong, E. A. Lee, and Y. Zhao, ‘‘Viptos: A graphical development
and simulation environment for tinyos-based wireless sensor networks,’’
in Proc. SenSys, vol. 5, 2005, p. 302.

[8] J. P. Clemente,M. J. Conejero, J. Hernández, and L. Sánchez, ‘‘Haais-DSL:
DSL to develop home automation and ambient intelligence systems,’’ in
Proc. 2nd Workshop Isolation Integr. Embedded Syst. (IIES), New York,
NY, USA, 2009, pp. 13–18.

[9] P. Clemente and A. Lozano-Tello, ‘‘Model driven development applied to
complex event processing for near real-time open data,’’ Sensors, vol. 18,
no. 12, p. 4125, Nov. 2018.

[10] (2018). MongoDB Compass. [Online]. Available: https://www.mongodb.
com/products/compass

[11] A. G. D. Prado, G. Ortiz, J. Hernández, and E. Moguel, ‘‘Generación de
datos sintéticos para arquitecturas de procesamiento de datos del Internet
de las cosas,’’ Jornadas de Ciencia e Ingeniería de Servicios (JCIS), 2018.
[Online]. Available: http://hdl.handle.net/11705/jcis/2018/007

[12] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong, ‘‘Taming heterogeneity–the ptolemy approach,’’
Proc. IEEE, vol. 91, no. 1, pp. 127–144, Jan. 2003.

[13] EsperTech. (Nov. 2016). Esper CEP. [Online]. Available: http://www.
espertech.com/esper/

[14] EsperTech. (Jul. 2019). Esper EPL Language. [Online]. Available:
http://esper.espertech.com/release-5.2.0/esper-reference/html/
epl_clauses.html

[15] C. M. de Farias, I. C. Brito, L. Pirmez, F. C. Delicato, P. F. Pires,
T. C. Rodrigues, I. L. dos Santos, L. F. R. C. Carmo, and T. Batista, ‘‘COM-
FIT: A development environment for the Internet of Things,’’FutureGener.
Comput. Syst., vol. 75, pp. 128–144, Oct. 2017.

[16] R. France and B. Rumpe, ‘‘Model-driven development of complex
software: A research roadmap,’’ in Proc. Future Softw. Eng. (FOSE),
May 2007, pp. 37–54.

[17] D. Gay, P. Levis, R. von Behren, M.Welsh, E. Brewer, and D. Culler, ‘‘The
nesC language: A holistic approach to networked embedded systems,’’
ACM SIGPLAN Notices, vol. 38, no. 5, pp. 1–11, May 2003.

[18] MDA Guide Revision, Object Management Group, Needham, MA, USA,
2014.

[19] L. Gutiérrez-Madroñal, I. Medina-Bulo, and J. J. Domínguez-Jiménez,
‘‘IoT–TEG: Test event generator system,’’ J. Syst. Softw., vol. 137,
pp. 784–803, Mar. 2018.

[20] B. Hailpern and P. Tarr, ‘‘Model-driven development: The good, the bad,
and the ugly,’’ IBM Syst. J., vol. 45, no. 3, pp. 451–461, 2006.

[21] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, ‘‘System
architecture directions for networked sensors,’’ ACM SIGARCH Comput.
Archit. News, vol. 28, no. 5, pp. 93–104, Dec. 2000.

[22] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula,
S. Garg, D. Puthal, P. James, A. Zomaya, S. Dustdar, and R. Ranjan,
‘‘IoTSim-edge: A simulation framework for modeling the behavior of
Internet of Things and edge computing environments,’’ Softw. Pract.
Exper., vol. 50, no. 6, pp. 844–867, 2020.

[23] D. S. Kolovos, A. García-Domínguez, L. M. Rose, and R. F. Paige,
‘‘Eugenia: Towards disciplined and automated development of GMF-based
graphical model editors,’’ Softw. Syst. Model., vol. 16, no. 1, pp. 229–255,
2015.

[24] P. Levis, N. Lee, M. Welsh, and D. Culler, ‘‘Tossim: Accurate and scalable
simulation of entire tinyos applications,’’ in Proc. 1st Int. Conf. Embedded
networked sensor Syst., pp. 126–137. ACM, 2003.

[25] D. Luckham. (2006). What’s the Difference Between ESP and
CEP?. [Online]. Available: http://www.complexevents.com/2006/08/
01/what%e2%80%99s-the-difference-between-esp-and-cep/

[26] A. Mathew, ‘‘Benchmarking of complex event processing engine-esper,’’
Dept. Comput. Sci. Eng., Indian Inst. Technol. Bombay, Maharashtra,
India, Tech. Rep. IITB/CSE/2014/April/61, 2014.

[27] K.Mehdi,M. Lounis, A. Bounceur, and T. Kechadi, ‘‘CupCarbon: Amulti-
agent and discrete event wireless sensor network design and simulation
tool,’’ in Proc. 7th Int. Conf. Simul. Tools Techn., Lisbon, Portugal, 2014,
pp. 126–131.

[28] D. Merkel, ‘‘Docker: Lightweight linux containers for consistent develop-
ment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, 2014.

[29] Meta Object Facility (MOF) Core Specification Version 2.5.1, Meta Object
Facility (MOF), Milford, MA, USA, Nov. 2016.

[30] N. Mohan and J. Kangasharju, ‘‘Edge-fog cloud: A distributed cloud for
Internet of Things computations,’’ in Proc. Cloudification Internet Things
(CIoT), 2016, pp. 1–6.

[31] MongoDB. (2018). Mongodb is a Document Database. [Online]. Avail-
able: https://www.mongodb.com/

[32] Mosquitto. (2018). Eclipse Mosquitto: An Open Source MQTT Broker.
[Online]. Available: https://mosquitto.org/

[33] Message Queuing Telemetry Transport (MQTT) v5.0 Oasis Standard,
Oasis, Woburn, MA, USA, 2019.

[34] OMG Object Constraint Language (OCL), Version 2.3.1, OMG,
Milford, MA, USA, Jan. 2012. [Online]. Available: https://www.omg.org/
contact.htm

[35] G. Z. Papadopoulos, J. Beaudaux, A. Gallais, T. Noel, and G. Schreiner,
‘‘Adding value to WSN simulation using the IoT-LAB experimental plat-
form,’’ in Proc. IEEE 9th Int. Conf. Wireless Mobile Comput., Netw.
Commun. (WiMob), Oct. 2013, pp. 485–490.

[36] P. Patel and D. Cassou, ‘‘Enabling high-level application development for
the Internet of Things,’’ J. Syst. Softw., vol. 103, pp. 62–84, May 2015.

[37] (2018). WSO2 Stream Processor. [Online]. Available: https://wso2.com/
analytics-and-stream-processing/

[38] (2016). Acceleo Project. [Online]. Available: http://www.acceleo.org
[39] A. Ruppen, J. Pasquier, S. Meyer, and A. Rüedlinger, ‘‘A component based

approach for the Web of things,’’ in Proc. 6th Int. Workshop Web Things
(WoT), 2015, pp. 1–6.

[40] D. C. Schmidt, ‘‘Model-driven engineering,’’ IEEE Computer Society,
vol. 39, no. 2, p. 25, Feb. 2006.

[41] K. Schwaber and M. Beedle, Agile Software Development With Scrum,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[42] A. Sehgal, ‘‘Using the Contiki Cooja simulator,’’ Center Adv. Syst. Eng.,
Comput. Sci., Jacobs Univ. Bremen Campus Ring, Bremen, Germany,
Tech. Rep., 2013. [Online]. Available: https://www.researchgate.net/
profile/Anuj-Sehgal-4

[43] B. Selic, ‘‘The pragmatics of model-driven development,’’ IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sep. 2003.

[44] S. Sendall and W. Kozaczynski, ‘‘Model transformation: The heart and
soul of model-driven software development,’’ IEEE Softw., vol. 20, no. 5,
pp. 42–45, Sep. 2003.

[45] Siafu. (2007). An Open Source Context Simulator. [Online]. Available:
http://siafusimulator.org/

[46] E. Siow, T. Tiropanis, and W. Hall, ‘‘Analytics for the Internet of Things:
A survey,’’ ACM Comput. Surv. , vol. 51, no. 4, p. 74, 2018.

[47] D. Soukaras, P. Patel, H. Song, and S. Chaudhary, ‘‘Iotsuite: A toolsuite for
prototyping Internet of Things applications,’’ in Proc. 4th Int. Workshop
Comput. Netw. Internet Things (ComNet-IoT), 16th Int. Conf. Distrib.
Comput. Netw. (ICDCN), 2015, p. 6.

VOLUME 9, 2021 92551

J. A. Barriga et al.: SimulateIoT: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments

[48] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Reading, MA, USA: Addison-Wesley,
2009.

[49] Thorntail. (2018). Microprofile for Optimizing Enterprise Java Applica-
tions. [Online]. Available: https://thorntail.io/

[50] Aqeel-ur-Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, ‘‘A review
of wireless sensors and networks’ applications in agriculture,’’ Comput.
Standards Interfaces, vol. 36, no. 2, pp. 263–270, Feb. 2014.

[51] A. Varga and R. Hornig, ‘‘An overview of the OMNeT++ simulation
environment,’’ in Proc. 1st Int. Conf. Simulation Tools Techn. Commun.,
Netw. Syst. Workshops, 2008, p. 60.

[52] N. Wang, N. Zhang, and M. Wang, ‘‘Wireless sensors in agriculture and
food industry-recent development and future perspective,’’ Comput. Elec-
tron. Agricult., vol. 50, no. 1, pp. 1–14, 2006.

[53] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and
R. Ranjan, ‘‘IOTSim: A simulator for analysing IoT applications,’’ J. Syst.
Archit., vol. 72, pp. 93–107, Jan. 2017.

JOSÉ A. BARRIGA received the degree in com-
puter science from the University of Extremadura,
in 2017. He is currently working as a Junior
Researcher with the University of Extremadura.
He has been working in the IoT and the simulation
IoT environments research areas since two years.

PEDRO J. CLEMENTE received the B.Sc. degree
in computer science from the University of
Extremadura, Spain, in 1998, and the Ph.D.
degree in computer science, in 2007. He is cur-
rently an Associate Professor with the Computer
Science Department, University of Extremadura.
He has published numerous peer-reviewed articles
in international journals, workshops, and confer-
ences. He is involved in several research projects.
His research interests include component-based

software development, aspect orientation, service-oriented architectures,
business process modeling, and model-driven development. He has partic-
ipated in many workshops and conferences as a speaker and a member of the
program committees.

ENCARNA SOSA-SÁNCHEZ received the B.Sc.
degree in computer science from the University of
Granada, in 1995. She is currently pursuing the
Ph.D. degree with the Computer Science Depart-
ment, University of Extremadura, Spain. She is
also an Assistant Professor with the Computer
Science Department, University of Extremadura.
She has published several peer-reviewed articles
in international journals, workshops, and confer-
ences, and is involved in several research projects.

Her research interests include service-oriented architectures, business pro-
cess modeling, and model-driven development.

ÁLVARO E. PRIETO received the B.Sc. and Ph.D.
degrees in computer science from the University
of Extremadura, Spain, in 2000 and 2013, respec-
tively. He is currently an Assistant Professor with
the University of Extremadura. He is also a mem-
ber of the Quercus Software Engineering Group.
He is involved in various research, development,
and innovation projects. His research interests
include ontologies, linked open data, data engi-
neering, and predictive analytics.

92552 VOLUME 9, 2021

