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ABSTRACT Human identification systems generally include face recognition, iris recognition, radio
frequency identification tags, and fingerprint recognition systems. However, these systems pose problems
such as privacy violations, loss concerns, lighting requirements, and additional installation costs. Several
studies have been conducted on human identification systems usingWi-Fi signals to address these problems.
However, there exist problems such as a low number of identified per-sons, low accuracy, and high cost
of data collection. In this paper, we present a deep-learning-based human identification system via Wi-Fi
channel state information. To reduce the cost of data collection and increase the accuracy of human
identification, we propose a data preprocessing and data augmentation process. They achieve an accuracy
improvement of approximately 7%. In addition, we implemented one machine learning model and three deep
learningmodels and demonstrated that the CLSTMmodel is suitable for the application through performance
evaluation. The proposed system can identify up to 8 subjects with an accuracy of about 92%.

INDEX TERMS Channel state information, data augmentation, deep learning, human identification, Wi-Fi.

I. INTRODUCTION
Internet of Things (IoT) is an intelligent technology that
analyzes, predicts, and makes decisions regarding different
objects based on sensor information, such as humidity, tem-
perature, location, and communication status. Recently, arti-
ficial intelligence technologies have been widely applied,
and IoT is rapidly developing in various fields. For instance,
active research on machine learning and deep learning is
underway in the fields of prediction and classification based
on time series data collected by sensors as well as video and
voice data. Hence, IoT has experienced an increase in demand
and supply for drones, autonomous driving, medical services,
smart cities, smart buildings, and smart farms.

As the spread and use of IoT devices increases, indoor
access management and building security for smart build-
ings and smart homes have become essential services. For
these services, a human identification system is indispens-
able. Many human identification systems have been studied
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in various ways. The representative commercial human iden-
tification systems include face recognition using a camera [1],
Radio frequency identification (RFID) tags [2], iris recog-
nition [3], and fingerprint recognition [4]. However, these
systems exhibit some issues. Commonly, extra installation
costs are required for these human identification systems.
In addition, the systems of face recognition, iris recognition,
and fingerprint recognition may infringe on privacy, and in
case of RFID tags, the risk of loss exists.

In order to solve these problems, a human identification
system using CSI of Wi-Fi has recently been studied. Wi-Fi
is one of the IT technologies that is most prominent in our
daily life and can be used inmost indoor environments such as
home, school, office, etc. Using this technology, we can easily
and conveniently identify humans without extra installation
costs, invasion of privacy, and risk of loss.

Initially, human identification via received signal strength
indicator (RSSI) analysis of Wi-Fi signals has been pro-
posed in [5], [6]. However, this is a very unstable indica-
tor because it is heavily influenced by the communication
environment such as the multi-path effect. Channel state
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information (CSI) [7] provides physical layer information of
the Wi-Fi devices. It is a more stable and detailed indica-
tor than RSSI. By means of CSI, many challenging Wi-Fi
signal-based applications such as indoor localization, gesture
recognition, and human counting have been proposed [8].

Various Wi-Fi-based human identification approaches and
systems have been developed. However, a major challenge
has not been resolved yet. i.e., the perturbations of the Wi-Fi
signals are subject to change with respect to the diversified
motion speed and body types of individuals who conduct
activities. In addition, a large amount of data is required to
improve the accuracy of the model, and a large amount of
time is required for data collection. In this paper, to collect
a small amount of data and improve the generalization of the
model according to the walking speed of a person, we propose
aWIID applying data augmentation.WIIDwas designedwith
three deep learning models: convolutional neural network
(CNN), long and short-term memory (LSTM), and convo-
lutional long- and short-term memory (CLSTM) to evaluate
human identification. Virtual CSI data is increased by apply-
ing data increasing techniques such as sliding window [9] and
time warping [10]. The proposed data argument improved the
deep learning accuracy by about 7%, and CLSTM showed an
accuracy of 92% in a scenario with 8 subjects. This is by far
the highest accuracy compared to those of the existing human
identification techniques.

Our primary contributions are as follows:

• We proposed two data augmentation schemes, i.e., slid-
ing window and time warping, to produce a meaningful
dataset with a small amount of data. This improves the
accuracy of the deep learning model and increases the
practicality of the human identification system. The data
augmentation technique has been first used in the Wi-Fi
CSI-based human identification system.

• We designed deep learning models optimized for a small
dataset. These solved the problems regarding overfitting
and underfitting in the learning stage and derived the
CLSTM that demonstrates the best performance for the
human identification application.

• The proposed system was implemented on commodity
Wi-Fi APs to collect Wi-Fi CSI dataset for a total of
8 subjects and to identify each subject. As a result of
the experiment, the performance of the proposed system
was improved where 7 or more subjects exist.

The remaining parts of this paper are structured as fol-
lows. Section 2 presents the trends and problem definition in
related research. Section 3 introduces some technical back-
grounds. Section 4 presents the proposed human identifi-
cation system, and Section 5 evaluates the performance of
the proposed system. The conclusions are then stated in
Section 6.

II. RELATED WORKS
At the early stages of Wi-Fi signal-based research,
RSSI-based statistical models have dominated. However,

these statistical models achieved a low stability due to unpre-
dictable multipath effects in indoor environments. It is known
that CSI-based models are more effective and more reli-
able [15]. They can be used in indoor localization [11], [16],
human counting system [12], gesture recognition [13], etc.
Wi-Fi CSI-based applications using machine or deep learn-
ing models have shown higher accuracy than the statistical
models.

Zhang et al. [15] initiated the human identification using
Wi-Fi CSI. The author assumed that every person had a
unique walking pattern. Every walking pattern generated a
unique perturbation of eachWi-Fi CSI spectrum, which could
be used to extract the unique feature of the person. It used
a continuous wavelet transformation (CWT) preprocessing
algorithm for extracting the signal of various frequency
bands. The proposed identification scheme was implemented
by sparse approximation-based classification (SAC) model
and achieved an average accuracy of 77% and 93% in groups
of two and six persons, respectively. The accuracy of this
model depended on the number of subjects participating in
the experiment. It showed 77% accuracy in an experiment
with six subjects.

Zeng et al. [14] proposed a system named WiWho, which
performed human identification by extracting step counts
and gait patterns via Wi-Fi CSI. It used dynamic time warp-
ing (DTW) and Butterworth filter for preprocessing CSI data.
The subject had to walk 1 meter parallel to the Wi-Fi APs.
WiWho achieved an average accuracy of 92% and 80% in
groups of three and six subjects, respectively. This resulted
in only the results for a maximum of six subjects, and many
data had to be collected for the experiment.

Nipu et al. [17] used decision trees and random forest
models to identify persons. They choose a path with large
CSI fluctuations in advance and collected data from that path.
The average, maximum, minimum, skewness, and energy
values of the collected data were applied to the model. The
decision tree model achieved an average accuracy of 95%
and 84% in groups of two and five subjects, respectively;
whereas the random forest algorithm obtained an accuracy
of 78% to 97.5%.

The conventional approaches for Wi-Fi CSI-based human
identification have three common problems. First, all the pro-
posed schemes present low accuracy. Second, very few sub-
jects can be identified by their human identification schemes.
All the studies so far have classified up to six subjects. Third,
they require many CSI data collection for high accuracy to
train their models. However, collecting CSI data should be
minimized because CSI data collection requires a lot of cost
and time. The proposed human identification system focuses
on methods to solve these three problems.

III. TECHNICAL BACKGROUND
A. Wi-Fi CHANNEL STATE INFORMATION
Wi-Fi technology provides high throughput via the multiple-
input multiple-output (MIMO) method and achieves high
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frequency efficiency via orthogonal frequency division mul-
tiplexing (OFDM). OFDM divides the entire spectrum of
Wi-Fi into multiple orthogonal subcarriers, and each subcar-
rier is divided into narrowband channel sets through MIMO.
Each subcarrier uses the samemodulation and coding scheme
for Wi-Fi data transmission. These features facilitate Wi-Fi
everywhere.

Many researchers have presented new applications by
means of Wi-Fi as sensors. In the early stage, research using
Wi-Fi as sensors mainly used RSSI as data. Recent studies
have focused on using CSI, which reflects the channel state
in more detail, to collect ambient data. CSI is physical layer
information that refers to know channel properties of each
OFDM subcarrier. We can analyze the changes of propagated
signal such as scattering, attenuation, diffraction, fading, and
reflection between the transceiver and receiver.

In the case of a MIMO-OFDM channel with M transmit
antennas, N receive antennas, and k subcarriers, the CSI
matrix may be expressed as a 3D matrix representing the
amplitude attenuation and phase shift of the multipath chan-
nel. That is, the matrix is composed of CSI elements of
M × N × k subcarriers. Hence, the CSI time series matrix
is expressed in terms of time, frequency, and transmis-
sion/reception antenna pairs.

CSI data are mainly collected in two ways: the use of
the 1) Intel 5300 network interface card (NIC) [18] and
2) QualcommAtheros series NIC. The number of subcarriers
depends on the types of NIC and selected bandwidth. For
example, in the 20 MHz bandwidth, the number of CSI
subcarriers is 30 and 56 for Intel 5300 NIC and Qualcomm
Atheros series NIC, respectively.

B. MULTIPATH EFFECT
Wi-Fi standards such as IEEE 802.11a/g/n/ac adopt OFDM
for high bandwidth efficiency. OFDM divides a transmission
frequency channel into several subcarriers with a fixed length.
Each subcarrier uses the same modulation scheme at a low
symbol rate. Every subcarrier of the channel is orthogonal
to each other. This orthogonality allows to avoid inter-carrier
interference.

Signals can be propagated to line of sight (LOS) and
non-line of sight (NLOS). In NLOS, the propagated signals
can be reflected or refracted to multiple paths by objects (e.g.,
walls, floors, ceilings, humans). OFDM is robust against fre-
quency selective fading but sensitive to time selective fading
in this multipath environment [19]. The CSI of each subcar-
rier knows the multipath effect through the temporal changes
of amplitude and phase. By means of this characteristics,
conventional works use Wi-Fi CSI as ambient sensor data.

We conducted an experiment to examine the difference
in the multipath effect according to body shape, gait, and
stride length of persons via CSI amplitude changes. Every
subject walks near installed Wi-Fi devices. Fig. 1 shows
CSI amplitude changes in a subcarrier by each subject. It was
difficult to confirm the pattern of CSI amplitude changes,
but the difference between the subjects was clear. We trained

FIGURE 1. The changes in CSI amplitude for different subjects.

different CSI results for each subject in deep learning system
and performed human identification.

IV. SYSTEM DESIGN AND IMPLEMENTATION
Fig. 2 illustrates a deep learning-based human identification
system. The system consisted of three layers: 1. hardware, 2.
pre-processing, and 3. classification. The role of the hardware
layer was to collect CSI data to investigate the multipath
effect. The sampling rate for the data collection was set to
1,000 Hz. The processing layer removed the collected CSI
data noise using channel impulse response (CIR) and Butter-
worth filter and performed data augmentation using sliding
window and time warping schemes. The pre-processed data
was inserted to the neural network for human identification in
the classification layer.We implemented convolutional neural
network (CNN), long short-term memory (LSTM), and con-
volutional long short-term memory (CLSTM) to classify the
subjects.

A. HARDWARE LAYER
The proposed system operated in an indoor environment with
a pair of commercial Wi-Fi modules. The receiver had NIC
and was capable of collecting CSI data. In this paper, we used
an Intel 5300 NIC supporting an IEEE 802.11n standard. The
transmitter and receiver each used two MIMO antenna. The
frequency band and bandwidth were 5.32 GHz and 20 MHz,
respectively. The 20 MHz bandwidth was divided into
30 subcarriers; hence, each packet provided a 2 × 2 × 30
CSI matrix. A transmitter sent one packet every millisecond
and a receiver collected this in memory. Fig. 3 shows the
experimental environment in which we collected the CSI
data. In an 8×10 m2 classroom, we collected CSI data where
the distance between the transmitter and receiver was 5.2 m.
All subjects walked a dedicated path of 7.2 m at a speed of
about 5 km/h. They waited at the starting point and walked
to the end point when the start alarm went off. All subjects
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FIGURE 2. A deep learning-based human identification system.

FIGURE 3. Experimental environment.

FIGURE 4. Power delay profile of raw CSI measurements.

arrived at the end point within 10 seconds. One dataset to
train deep learning consisted of CSI matrices of packets for
10 seconds (e.g., 10,000 packets).

B. PROCESSING LAYER
Because OFDM is sensitive to time selective fading, the mul-
tipath effect caused delayed signals. Fig. 4 illustrates the
power delay profile (PDP) [20] of one packet transmission.
The PDP was derived by channel frequency response (CFR)
via inverse fast Fourier transformation and norm. In the PDP,

FIGURE 5. Subject 3’s results from the noise removal step.

a packet contained a reflected or refracted delayed signal.
Since we were only interested in the multipath signals by
the subject, the signals delayed by the distance objects such
as walls, ceilings, and obstacles were unnecessary. We only
needed to include the multipath effect by the subject mov-
ing around the Wi-Fi devices. In [20], they proved that the
maximum delayed multipath signal by the subject was within
0.5 µs. Therefore, we regarded the signals after 0.5 µs as
the uncorrelated signals and removed them from the collected
CSI data.

Fig. 5 (a) is the result of removing uncorrelated compo-
nents from the CSI data in Fig. 1 (b). After removing the
uncorrelated signals, the amplitude fluctuation was larger
because only the multipath effect caused by the subject was
reflected. This allowed the deep learning system to better
analyze the subject’s features.

Wi-Fi signal includes low frequency noise caused by
diffraction, refraction, scattering, and penetration, and high
frequency noise due to hardware. This causes the loss of
accuracy to deep learning system. We used the Butterworth
filter to remove these noises. Wang et al. [13] showed that the
frequency ranges of all human activities caused CSI changes
within 300Hz andwalking led to CSI changes of about 10Hz.
In this study, we removed noise in the frequency bands other
than 5 to 100 Hz using the Butterworth filter. Fig. 5 (b) is the
noise removal result from Fig. 5 (a) via the Butterworth filter.
The features of CSI data were maintained even after passing
through the Butterworth filter.

Deep learning models such as CNN and LSTM have
been successfully applied to various classification tasks.
To obtain high accuracy, they require large amounts of data.
Several data augmentation algorithms such as jitter, scal-
ing, cropping, and warping [9] have been used to enhance
the performance of deep learning models. They gener-
ated probable data and maintained their labels. Many deep
learning-basedworks [22]–[24] have used the data augmenta-
tion to improve accuracy, generalization, and prevent overfit-
ting. [22] augments CSI spectrum data through nine different
data transformation processes. This work aims at applying
human behavior recognition, and CSI amplitude change is
less than that of human identification. Moreover, the CSI
change rate is not important because it does not consider the
speed of human movement, i.e., temporal information. These
data augmentation techniques are not suitable for the human
identification application.
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FIGURE 6. Subject 3’s results from the data augmentation.

The human identification system that uses Wi-Fi has dif-
ficulty in collecting large datasets. The proposed human
identification system uses two data augmentation algorithms
such as sliding window and time warping to increase the
collected CSI data. The sliding window algorithm inspired by
computer vision and Transmission Control Protocol (TCP) is
commonly used to augment time series data. The CSI matrix
is a time series data, so the sliding window algorithm is a
proper data augmentation for that. Human walking rhythm
has repeated patterns, and CSI data holds the information
of these patterns. To generate virtual datasets by using this
information, the following sliding window algorithm was
applied:

SW (ω, ε) = {W0,Wε,W2ε, · · · ,Wn−ω} (1)

Equation (1) represents time series data of each win-
dow for the sliding window algorithm where ω and ε are
a defined window size and moving distance of the win-
dow, respectively. The collected CSI data is expressed as
T = {t1, t2, t3, · · · , tn}where n is the size of times series
T , and Wi = {ti+1, ti+2, ti+3, · · · , ti−ω} is the partial time
series data divided by a fixed window size, ω. One original
data set can be increased (n − ω/ε) + 1 times through the
sliding window algorithm. For example, 10,000 data (n) are
generated by an original data set collected for 10 seconds.
If the window size (ω) is selected as 8,000 and the moving
distance (ε) is set to 200, additional data of 110,000 are
produced.

The length of the virtual data generated by the sliding
window was shorter than the length of the original data.
We adjusted the virtual data to the length of the original data
for the deep learning train. A time warping algorithm could
expand or compress the time series data. By means of this
algorithm, the size of the virtual data was expanded to the
size of the original data shown in Fig. 6. The time warping
also served to diversify a subjects’ walking speed through
data expansion and compression. We added data to increase
and decrease the walking speed through time warping.

Bymeans of data augmentation, we obtained 19 virtual CSI
datasets from one collected CSI dataset. That is, the size of
the datasets for deep learning training grew 19 times. Through
the sliding window with SW(8000, 200) and SW(9000, 200),
we secured 11- and 6-times virtual data, respectively. In addi-
tion, original data for 11 and 12 seconds were compressed
to 10 seconds via time warping to produce double virtual

FIGURE 7. A proposed 1D-CNN architecture.

data. The datasets to be trained in each deep learning model
consisted of 70 original datasets and 1,330 virtual datasets
per subject. One dataset included 1,000 CSI data, so we used
a total of 1,337,000 data for the deep learning train.

C. NEURAL NETWORK
In this study, we used three deep learning models:
one-dimensional convolutional neural networks (1D-CNN),
long short term (LSTM), and convolutional long-term mem-
ory (CLSTM). CNN is a deep neural network imitating the
human optic nerves and is specialized in processing a grid
data format. The Wi-Fi CSI matrix is 1D time series data,
so we used 1D-CNN [25]. Fig. 7 shows a proposed 1D-CNN
architecture. We use the convolution layers to extract hierar-
chical features from low level to high level. CSI data includ-
ing a size of 10000 × 120 was input in the input layer, and
convolution was performed through a 10 × 120 filter in the
convolution layer. This enabled us to extract CSI features in
increments of 0.001 seconds. Finally, a pooling layer was
used to process the exponentially increased features by the
CNN filter. In this study, we used 10 filters per convolution
layer and set the stride to 1.

A CNN does not consider the temporal order of the
data. However, since Wi-Fi CSI matrix is time series data,
we investigated LSTM that was a special kind of recurrent
neural network (RNN) to maintain temporal information in
the CSImatrix. It is widely used for classification, processing,
and prediction using time series data. The LSTM played
an important role in processing time series data of human
identification.

CLSTM is an ensemble model of CNN and LSTM.
We stacked the outputs of the CNN layer across time as the
input of the following LSTM layers. Fig. 8 shows a pro-
posed human identification architecture including CLSTM
network. The pre-processed CSI data is iput into the con-
volutional layer. The inputted data is feature extracted every
0.001 second by the convolution filter, and then sent to
the next convolution layer. In the 1D-CNN layers, filters of
100× 120 and 100× 10 were used, respectively. Afterward,
a new layer was obtained by Max pooling, and a time dis-
tributed layer was used to reduce the data dimension before
LSTM input. Temporal features were input to the DNN layer
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FIGURE 8. A proposed human identification architecture with CLSTM.

TABLE 1. Hyper parameters of the deep learning models.

through the LSTM layer, and data was finally classified
through softmax.

V. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
We conducted the experiment that consist of none and eight
subjects. One experiment was called a class, and up to nine
classes were evaluated. The subjects consisted of five males
and three females aged 22 to 28 years. Heights and weights
were different for each subject. CSI matrices were collected
through the hardware layer. The data of each subject was
collected for 12 seconds while the subjects walked from the
starting point to the end point (see Fig. 3). The walking path
of subjects was located 1 m parallel to the transmitter and
receiver. There were no restrictions on subjects’ behaviors
(e.g., using a smartphone, running, walking, jumping, etc.)
when they walked. We collected 100 datasets for each class,
of which 70 were used for training datasets and 30 for test
datasets. The training datasets were augmented 19 times
and 20% of them were randomly used for the validation.
Table 1 presents the hyper parameters of the deep learning
models.

B. EXPERIMENTAL RESULTS
We focused on evaluating the performance regarding the
effects of data augmentation and deep learning models. Most
of the past studies have increased accuracy by increasing the

TABLE 2. Accuracy by number of classes.

amount of data collected or by reducing the number of classes
to be classified. In the case of SVM, a machine learning algo-
rithm that has been widely used in existing human identifica-
tion, it was seen that the accuracy deteriorated rapidly as the
number of classes increased. For nine classes, the accuracy
was 66%. Papers using SVM derived results using only up to
five classes. In the case of deep learning models, more people
could be analyzed because the accuracy decreased according
to the reduction of the number of classes.

Table 2 shows the accuracy of the proposed models with
and without the data augmentation technique. The accuracy
of the SVM machine learning model decreased significantly
as the number of classes to be classified increased. The
nine-class identification clearly did not operate normally as
it achieved an accuracy of 66%. For the deep learning model,
the accuracy also decreased as the number of classes to be
classified increased, but the decrease was smaller than that of
the machine learningmodel. CNNwithout data augmentation
achieved the highest accuracy in the four models. This result
indicates that CNN works well as a feature extraction role
from a lot of data. LSTM is an appropriate network for
processing time series data, but it represents low performance
compared with other two deep learning models because the
size of the input data set is small, and the features of the input
data are unclear. A small amount of data set does not reflect
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FIGURE 9. Confusion matrices of CLSTM.

TABLE 3. Evaluation parameters.

the time series features well; it hence represents poor perfor-
mance in many class scenarios. CLSTM shows high accuracy
in small classes, but the accuracy decreases dramatically as
the number of classes increases. This is because the data size
is small, like the result of LSTM.

Our proposed data augmentation techniques expands the
temporal information of the original data set. It is a proper
for time series data. CNN with data augmentation improves
the accuracy slightly (i.e., approximately 2%). However,
in LSTM and CLSTM, the accuracy increase is very large
(i.e., approximately 9%). This is a result of the expansion
of the temporal information of the input data set. LSTM still
shows lower accuracy thanCNNbecause it cannot distinguish

spatial features, but CLSTM shows much higher accuracy
than CNN.

Fig. 9 depicts the confusion matrix of the seven- to
nine-class classification. The recall rate of User 7 in Fig. 9(a)
is 100%, but the precision is low at 71%. The 100% recall
means that the model properly determined that all data of
User 7 belonged to User 7. On the other hand, the accuracy
of 71% means that the model incorrectly judged that the data
of other people were those of User 7 29% of the time. In
the case of User 4, unlike User 7, the recall rate was 77%
and the precision was 100%. Because the model incorrectly
judged that the 7 data entries of User 4 belonged to User 7,
the recall rate was as low as 77%. Fig. 9 (b) presents a similar
confusion matrix for the seven-class classification. Here, the
data of User 4 andUser 5 are ascribed toUser 7, and themodel
repeatedly judged wrongly. Table 3 shows the evaluation
parameters for CNN, LSTM, and CLSTM networks with and
without data augmentation.

VI. CONCLUSION
This paper proposed a human identification system using
Wi-Fi CSI data. It enables the reduction of data collection
costs via data augmentation techniques such as a sliding
window and time warping. These augmented data is input
into deep learning models improving accuracy and enabling
identification of more people. We evaluated the performance
using three representative deep learning models, and the
CLSTM suitable for dealing with time series data showed
the highest accuracy and stable loss. When using the CLSTM
network, it showed an accuracy of over 90% in all classes. The
proposed system had the advantages of improving accuracy,
increasing the number of subjects, and reducing the cost of
data collection. However, it still had some limitations which
need to be overcome for it to be used practically. If more
than one subject walked on the installed system, the human
identification system did not work properly. In the future,
we plan to study data preprocessing techniques that classify
mixed data to enable one more subject identification.
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