
Received June 2, 2021, accepted June 19, 2021, date of publication June 25, 2021, date of current version July 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3092572

Run-Time Recovery and Failure Analysis
of Time-Triggered Traffic in Time
Sensitive Networks
WEIJIANG KONG 1, MAJID NABI 1,2, (Member, IEEE),
AND KEES GOOSSENS 1, (Member, IEEE)
1Department of Electrical Engineering, Eindhoven University of Technology, 5600 Eindhoven, The Netherlands
2Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Corresponding author: Weijiang Kong (w.kong@tue.nl)

This work was supported by the PENTA Project on High Performance Vehicle Computer (HPVC) and Communication System for
Autonomous Driving under Grant HIPER 181004.

ABSTRACT Reliability is one of the major concerns of Time Sensitive Networking (TSN). Current systems
mostly rely on static redundancy to protect functionality from permanent component failures. This greatly
increases the cost of Time-Triggered (TT) flows. Instead, Software Defined Networking (SDN) enables
dynamic redundancy. Disrupted traffic can be rerouted by a centralized controller to reduce the cost while
maintaining reliability. This paper presents an approach to compute alternative paths at run-time and analyze
their impact on reliability. We define a novel three-mode recovery scheme, which includes full functionality,
reduced functionality, and emergency halt modes. Run-time recovery for TT flows is explored using Integer
Linear Programming (ILP) and a heuristic algorithm. Then, a Markov chain-based design-time reliability
analysis is developed to evaluate the Mean Time to Reduced Functionality Mode (MTTRF) and Mean Time
to Failure (MTTF) of run-time recoverable systems. Our experiments show that run-time recovery provides
better protection against multi-point failures than static redundancy. Compared with the state of the art,
our proposed ILP has better routing efficiency. The proposed heuristic algorithm can perform routing and
scheduling in polynomial time, but it tends to route multicast flows to longer paths than ILP. Furthermore,
when applied to realistic recovery scenarios, our proposed ILP improves the MTTF by up to 2× and the
average execution time by up to 20× than the raw ILP of the state of the art. Although less efficient with
multicast flows, the heuristic algorithm achieves similar reliability as the ILP, and its worst-case recovery
time is below 100ms on an embedded ARM processor.

INDEX TERMS Network reliability, run-time recovery, times-sensitive networking, functional safety,
vehicle networks.

I. INTRODUCTION
The communication bandwidth demand of the emerging
autonomous driving technology has encouraged innovations
in next-generation vehicle networks. While switched Eth-
ernet is considered as a promising solution, it is not orig-
inally designed for real-time safety-critical systems and
requires enhancements for bounded latency and reliability.
This results in a set of amendments of the Ethernet standard
named Time Sensitive Networking (TSN) [1]. To support
safety critical control applications, TSN strictly specifies that
recovery time must be less than 100ms [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai .

TSN supports seamless redundancy with Frame Repli-
cation and Elimination for Reliability (FRER) [3].
According to FRER, frames are replicated at source and
transmitted through separate paths; duplicates are eliminated
at destinations. While single-point failures are eliminated,
FRER introduces a significant overhead since it requires
at least twice the bandwidth. Instead, earlier practices in
Software Defined Networking (SDN) [4] point out a more
efficient solution [5], [6]. If network has a logically cen-
tralized controller possessing knowledge of its flows, it will
be able to compute alternative configuration at run-time to
recover flows from failures. Thus, bandwidth of the backup
paths does not have to be reserved but can be assigned to
non-safety critical traffic until needed. If designed properly,

91710 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0557-6100
https://orcid.org/0000-0003-3181-2952
https://orcid.org/0000-0001-7536-4050
https://orcid.org/0000-0003-1494-1138

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

recovery also tolerates more multi-point failures than static
protection.

Today’s intelligent vehicles employ cross-layer
approaches [7] to enhance reliability, which means fault
handling mechanisms on different layers (e.g., TSN, com-
putation hardware, applications, etc.) can collaborate to per-
form graceful degradation. Therefore, TSN has the option to
inform its applications when facing unrecoverable failures
and cooperate with their fault handling mechanisms to oper-
ate or shutdown the system safely.

Problems remain to be solved to bring run-time recoverable
TSN into reality: 1) the recovery scheme in which TSN
gracefully propagate failures to its applications is yet to be
defined; 2) run-time recovery requires computation of routing
and scheduling within a 100ms deadline, which existing solu-
tions still cannot satisfy; 3) a system-level reliability analysis
at design-time to evaluate the impact of specific recovery
algorithms on reliability is missing.

In this paper, our exploration of run-time recovery is lim-
ited to Time-Triggered (TT) traffic on TSN. We target a
Time Sensitive Software Defined Networks (TSSDN) archi-
tecture [8], which provides the necessary software-defined
features for run-time recovery. It has been formally verified
that, with careful optimization, TSN configuration latency
lower than a millisecond is possible [9]. Thus, we assume
that the real-time configuration is provided. This paper focus
on the prior steps of building an integrated run-time recov-
erable system, which is to prove the feasibility of run-time
routing and scheduling within the deadline as well as ana-
lyzing the reliability gain of run-time recovery. We specif-
ically target TSN used in in-vehicle networks, where the
network scale and the number of flows to be supported
is relatively limited. The contributions of this paper are as
follows.
• We define a novel recovery approach for TT traffic.
It consists of three modes: full functionality mode,
reduced functionality mode, and emergency halt mode.
Run-time recovery attempts to maintain the current
functionality mode. When failures are not recoverable,
system-wide functionality degradation is performed
through mode switching. (§3-4)

• We develop faster methods to compute alternative routes
and schedules in response to failures. Our Integer Lin-
ear Programming (ILP) solution produces near optimal
results at design-time. We minimize its number of vari-
ables and linear constraints to substantially reduce the
solving time and introduce slots prioritization as well
as destination forwarding to increase it routing capac-
ity. But it may take longer than the recovery deadline
(100ms) making it unsafe for use at runtime. (It does
provide a baseline to which the run-time implementation
can be compared). Our polynomial time heuristic algo-
rithm instead finds feasible routes and schedules within
the deadline using resources available on embedded
platforms. But it tends to use more links than ILP when
routing multicast flows. (§5)

• We develop a system-level reliability analysis for our
recovery and degradation process. Given system spec-
ifications and recovery approaches, the system’s Mean
Time to Reduced Functionality Mode (MTTRF) and
Mean Time to Failure (MTTF) are calculated by
evaluating the recovery behavior for possible failure
sequences. (§6)

• We perform a comparative study of the proposed recov-
ery approaches, a state of the art routing & schedul-
ing approach [10], and FRER using randomized testing
and the proposed reliability analysis tool. Experiments
are conducted on 40 synthetic topologies to demon-
strate that run-time recovery is more reliable against
multi-point failures than FRER. Comparedwith the state
of the art, our proposed ILP can setup more flows
on a same network. The proposed heuristic algorithm
achieves similar efficiency with ILP for unicast flows.
But it is less efficient in handling multicast flows. Using
additional 120 more realistic test cases, our experiment
shows that the proposed recovery approaches can result
up to twice the mean time to failure than the state of
the art; the proposed ILP by its average can setup flows
within a second; and the heuristic algorithm meets the
100ms worst-case execution time requirement. Finally,
to demonstrate that the proposed approaches are feasible
in realistic network configurations, we perform a case
study of an automotive TSN to show that the execution
time of the proposed heuristic algorithm is well below
the recovery deadline. (§7)

II. RELATED WORK
Various techniques for fault recovery have been studied on
switched Ethernet. SDN enables segment protection which
creates static redundancy [6], [11]. It features at low response
time and can be combined with dynamic path configuration
which is not real-time to improve the average recovery delay.
However, such techniques cannot be applied to TSN which
requires worst-case recovery time guarantee. Recovery is
also studied in OpenFlow [5], [12]. These research focus on
the design of network architecture and use build-in routing
algorithm from the network controller. Because OpenFlow
networks require nationwide scalability, they conclude that
carrier grade recovery is hard to achieve. However, TSN is a
scenario where scalability is of less concern. Moreover, high
redundancy cost, high determinism of traffic and powerful
computation resources on-board together makes TSN a fea-
sible scenario for run-time recovery.

Flow recovery connects to the well-researched routing
and scheduling problem of TSN. Here we consider only
TT traffics. TSN scheduling focuses on assigning the trans-
mission duration to flows that traverse determined paths.
Satisfiability Modulo Theories (SMT) is a well-developed
and widely used approach for this problem [13]–[16]. Latest
research [17] proposes window-based heuristic scheduling
which relaxes flow isolation but still provides real-time guar-
antee for flows. However, flow routes must be provided for

VOLUME 9, 2021 91711

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

scheduling whereas recovering link failures requires find-
ing both the alternative routes and schedules. Therefore,
a scheduling mechanism that relies on additional routing
methods alone is not sufficient for solving the run-time recov-
ery problems. A joint routing and scheduling technique solves
flow routing and scheduling as a single optimization problem,
for which ILP [18], [19] is a widely-adopted design-time
approach. It offers better routing quality (e.g., lower laten-
cies) compared with scheduling on fixed paths [18] but also
demands significant run-time and resources. As an exam-
ple, the ILP in [18] takes more than a minute to route
30 flows on a server-grade processor. To solve the joint
routing and scheduling problem for online usage, incre-
mental approaches [10] have been developed. Routing and
scheduling for online usage is the closest scenario to run-time
recovery. Thus, the work in [10] is the state of the art
with which our solutions will be compared. However, since
it is not strictly real-time, the state of the art is not effi-
cient enough for recovery: their raw ILP formulation takes
more than 10s per flow; and to achieve sub-seconds aver-
age execution time, they introduce optimizations involving
reattempts on which recovery cannot rely. Instead, our ILP
solution focuses on directly optimizing the raw ILP formula-
tion to achieve sub-seconds execution time. Recent research
also addresses machine learning as an accurate approach
for the schedulability analysis and verification of TSN
[20], [21]. However, issues such as ‘‘false positives’’ [20]
still remain to be solved before it can be applied to run-time
recovery.

A survey on functional safety of the Ethernet-based com-
munication solutions can be found in [22]. Existing reliability
analysis for self-recoverable networking has limitations to
be applied to self-recoverable TSN. [23] uses Markov state
reward model for SONETmesh networks by considering link
restoration with a measurable restoration rate. However, flow
recovery requires more in-depth analysis of the systems. [24]
uses discrete-event simulation to analyze a binary sibling tree
network. But it has the risk to over-estimate system’s relia-
bility and is thus not suitable for safety critical systems. [25]
considers the reliability of self-healing networks from the per-
spective of tasks. It is based on the general assumptions that
the alternative path can be found if a route exists, which omits
the impact of recovery mechanism and might significantly
overestimate the system reliability.

III. SYSTEM OVERVIEW
In this section, we describe our run-time recoverable system,
following a detailed introduction of the TSSDN’s scheduling
model. We model a TSN-based system as a directed graph
G ≡ (V ,E). The set of vertices V contains end stations (VES)
such as Electronic Control Units (ECU), sensors, actuators,
and switches (VSW), i.e. V = VES ∪ VSW . E represents sim-
plex links connecting network vertices. Since TSN requires
bidirectional communication, each pair of connected vertices
is connected by at least two opposite edges. Direct links
between end stations are allowed. Both switches and end

FIGURE 1. Schedule of TSSDN. Durations with ‘T’ are for TT flows. The rest
of each slot is assigned to other flow types.

stations can forward flowswhile end stations additionally can
generate and consume flows.

A. SCHEDULING MODEL OF TSSDN
According to IEEE 802.1Qbv [26], TT flows are cyclic and
shaped by Time Aware Shapers (TAS) on egression ports.
TAS synchronously grant transmission to traffic queues based
on a predefined schedule in Gate Control Lists (GCL), which
consist of ordered operations to open or close transmission
gates for each port. TSSDN uses the same hardware basis
but imposes an extra non-queuing transmission constraint to
ensure timing isolation as well as ultimate low delay and
jitter [8]. Non-queuing transmission requires to reserve con-
secutive links so that flows can be forwarded from sources to
destinations without blocking. To avoid collisions, TSSDN
uniformly divides large TAS periods into smaller synchro-
nized time slots. As shown in Fig. 1, different TT flows are
not allowed to be scheduled on the same slot of the same
link. As a result, each egress port will receive only one frame
during each time slot. And that frame will be transmitted
before the time slot ends. Such specification dispel worries
about timing interference, such as cyclic dependency caused
during routing [27].

In TSSDN, the period of TAS is referred to as Base Period
(BP). Its duration tbp must be smaller than the minimum
transmission period of TT flows so that flow periods can
be rounded down to its nearest integer multiple for schedul-
ing. Meanwhile, the duration of time slot tsl must be larger
than the non-queuing end-to-end delay of a maximum-sized
frame. b represents the number of slots in one BP, i.e. tbp =
b × tsl . And B = {1, . . . , b} represents the set of all time
slots in one BP for all links available for scheduling. TSSDN
scheduling only involves specifying the time slot. Reserving
links and generating GCL are automated [28].
F represents the set of flows to be supported at a specific

moment. A flow f ∈ F consists of a specification and an
implementation, i.e. f = (sp, ip). The specification sp defines
single-frame transmissions from a source s ∈ VES to a set of
destination D ⊆ VES with period pt . Since pt is rounded to
p =

⌊
pt
tbp

⌋
during scheduling, we consider p instead of pt in

flow specifications, i.e. sp = (s,D, p).
Phase is the transmission offsets that allow flows to overlap

on the same slot of the same link. Since a flow with period
p transmits every p BPs, it can share slot sc with at most
p − 1 other flows of the same period marked by different
phases [10]. This is shown in Fig. 2. We represent the set of
phases for flows whose periods are p by P = {1, . . . , p}. The

91712 VOLUME 9, 2021

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

FIGURE 2. Example of p flows sharing the same slot.

implementation ip = (RO, sc, ph) consists of the route, time
slot and phase of a flow. The route RO ⊆ E is a cycle-free
set of links. sc ∈ B is the slot of transmissions and ph is the
phase. If a flow is currently under disruption and does not
have a valid implementation, it is referred to as ip = ∅.
TSSDN conforms to the Control Data Traffic (CDT) spec-

ification of TSN in [29]. Frames can have maximum size
of 128 bytes. The minimum interval between frames is
500µs. Flows can traverse at most 5 hops and require end-
to-end delay of less than 100µs. Thus, network diameter must
be limited, e.g., to seven hops as required by IEEE 802.1AS
time synchronization protocol [30].

B. MODEL OF SELF-RECOVERABLE SYSTEMS
Today’s intelligent in-vehicle networks are designed with
domain-based pattern where different applications are sup-
ported in different domains. Due to their strict timing require-
ment, TT flows must be constrained within the control
domain fully equipped with TSN-capable switches. There-
fore, recovery can only be performed within a fraction of
the system. In fact, both the standard [30] and TSSDN [10]
suggest the network diameter to be limited within seven hops.
Due to expensive bandwidth overhead, network designers
also tend to minimize the amount of TT flows. The realistic
systems evaluated in recent studies [17], [29], [31] indicate
that there can be less than twenty TT flows in relatively small
TSN use cases.

1) CENTRALIZED NETWORK CONTROL
The network control in TSSDN is centralized. When the
recovery controller receives notification on failures, it inter-
prets the disrupted flows and computes their alternative routes
and schedules based on the global knowledge of the network.
Then, it sends update messages to either recover the disrupted
flows without changing running flows or initiates a system
degradation by switching to a mode with less functionality.
Previous study [9] has formally verified that the network
configuration latency is well below the required recovery
deadline. For instance, with the explicit flow configuration
protocol where SDN traffic are mapped to highest priority
and number of SDN messages per switch is limited to one,
the upper bound of configuration latency can be reduced to
0.6mswhich is independent from the size of the configuration
message [9].

2) FAILURES
Run-time recovery targets long-lived or permanent failures
of the network components. Transient failures such as packet
loss due to noise should be handled by other fault tolerant

mechanisms. When failures are detected, the messages sent
to the recovery controller only signal link failures. The vertex
failures can be taken as the failure of all its attached links.
Upon arrival of the first failure message, the recovery con-
troller keeps monitoring messages given a worst-case time-
out. Thus, all failure messages can be received in case of
vertex failures or multi-link failures.

3) FUNCTIONALITY
The growing complexity of today’s autonomous driving sys-
tems demands cross-layer reliability approaches. Different
from the traditional fail-operational networks that must han-
dle failures within their own scope, TSN has the option to
propagate failures to the application layer when necessary
and collaborate with its failure handling mechanisms. For
example, a flow carrying 60 fps video stream of a camera
might not be recoverable from a link failure because the
redundant links in the network do not have enough band-
width. Therefore, the network controller informs the camera
to reduce its frame rate to 30 fps for a successful reroute.
Furthermore, the vehicle now must limit its speed and other
applications may also change their flows accordingly. Similar
but more complex examples of such design can be found
in [32].

Negotiating system-wide flow requirement upon degra-
dation is very likely to cause a recovery delay violation.
Instead, a more suitable solution would be specifying the
degradation behavior as a part of the Service Level Agree-
ment (SLA), which allows pre-configuration. We generalize
such system behavior as functionality modes. Each function-
ality mode is a set of flows to be supported. We refer to
the mode in which full designed functionality is performed
as the full functionality mode, and the mode to which the
system switches when full functionality cannot be supported
as reduced functionality mode. F fm is the set of flows for full
functionality mode, and F rm is the set of flows for reduced
functionality modes. When the reduced functionality mode
cannot be supported due to failures, the system enters emer-
gency halt mode to avoid catastrophic behavior. The emer-
gency halt mode does not require setting up new flows, i.e.
applications should utilize the surviving flows to perform safe
shutdown.

While designing flows in different functionality modes is
a multi-discipline question involving co-design of TSN and
safety-critical applications, we focus on the recovery of TSN
in this paper. Generally, TSN does not impose any constraints
on the flows of these modes. But to make the protection valid,
F rm should require fewer network resources than F fm (fewer
flows and/or lower frame rate per flow). Like fast failover
mechanisms in OpenFlow [33], our mode-switching degrada-
tion requires the reduced functionality mode configuration to
be pre-installed in switches. If switches can support multiple
pre-installed configurations, the network can have multiple
reduced functionality modes. However, for simplicity and
w.l.o.g., we consider only one reduced functionality mode in
this paper.

VOLUME 9, 2021 91713

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

4) FRER
Run-time recovery requires flows to tolerate a recovery delay
during which packet will be lost. Such packet losses need
to be captured by the application-level fault tolerance mech-
anisms. For flows that cannot tolerant recovery delay or
packet losses, FRER must be applied to guarantee reliability.
In this scenario, run-time recovery can be a supplementary
protection for the redundant paths. These flows will not fail
if at least one of their replicas is still running, regardless
of whether the disrupted replicas are recoverable. However,
if the last running replica is disrupted, or all replicas are dis-
rupted simultaneously, the system must degrade immediately
without recovery attempt.

Given a set of flows F , we refer to its subset of FRER flows
as F f and its subset of non-FRER flows as Fn. For every
FRERflow f ∈ F f , its replica is identified as f ′ ∈ F f . f and f ′

are identical in specification but different in implementation.
To avoid being disrupted by the same link failure, their routes
cannot share links. Additionally, the maximum tolerable jitter
jt between two replicated frames must be specified in their
specification, i.e. ∀f ∈ F f , sp = (s,D, p, jt).

IV. PROPOSED RECOVERY PROCESS
In this section, we describe the forwarding and management
operations of the network controller and vertices to perform
a reliable recovery.

A. INITIALIZATION
On startup, the recovery controller queries each network ver-
tex for the topology. Based on the given time slot and flow
specification, it computes two GCL configurations for each
network vertex, one for the full functionality mode and one
for the reduced functionality mode. Both configurations are
then transmitted to the corresponding network vertices. Full
functionality configuration is immediately set up on regarded
ports and becomes ready for incoming traffic. Meanwhile,
reduced functionality configuration is stored in a fallback
GCL. It has no effect on traffic, but the ports can switch to
fallback GCL following reconfiguration messages.

Usually TT flows are static. Configurations for dynamic
and transient flows can be added to the network incremen-
tally by the network controller. Resources for dynamic flows
must be reserved based on their worst-case assumptions.
Before transmission, transient flows send transient requests
for which a timeout is specified to free the resources. Before
the timeout is reached, transient flows are served as static
flows in the current functionality for recovery. To avoid the
transient requests disrupting the recovery process, they must
have lower priority in transmission and processing, resulting
in potentially higher startup delay of the transient flows com-
pared to the recovery process.

B. FAILURE PROCESSING
When link failures are identified, network vertices block the
affected ports and send failure messages to the network con-
troller. Delayed frames cannot be used by the safety-critical

applications due to their timing violation. But they still carry
information about the failures and thus are valuable for relia-
bility mechanisms. For instance, if ECUs detect that an actu-
ator is not responding, knowing that packets are blocked due
to network failures indicates that the actuator might still be
functioning leading to different handling procedure. Hence,
the blocked frames can be redirected to nearby ports to be for-
warded to their source, destinations, or the network controller
depending on their applications. They can be forwarded as
Best-Effort (BE) or Audio Video Bridging (AVB)-A traffic
depending on the exact reliability mechanisms.

C. RECONFIGURATION
The recovery controller collects all failed links Ef ⊂ E
including those involved in earlier recoveries, and computes
alternative implementations for affected flows FD whose
routes have at least one failed link (i.e., FD = {f ∈ F | RO ∩
Ef 6= ∅}). Based on the alternative implementation, reconfig-
uration messages are generated. There are two scenarios.

• When maintaining current mode, the reconfiguration
message contains instructions to remove invalid GCL
entries on old routes and add alternative entries to new
routes. During this process, non-disrupted flows are for-
warded normally.

• When changing mode, the reconfiguration message for
a network vertex contains instructions to remove invalid
fallback GCL entries on old routes and add alternative
entries to new routes. During this process, the ongoing
mode is supported in a fail-operational manner. As the
fallback GCL is updated, an activate instruction within
reconfiguration message causes the network vertex to
switch to the fallback GCL for forwarding.

Note that emergency halt does not involve anyGCL switch-
ing on network vertices. The network controller informs tasks
about the existing failures. And it is up to the tasks to shut-
down using their surviving flows.

D. VERIFICATION
Before reconfiguring the network, the generated implemen-
tation must be verified. We implement a simple rule-based
verification for our recovery controller which checks: 1) if
each route exceeds the maximum of hops, 2) if each route
is connected and cycle-free, 3) if the schedule has conflicts
between flows. Implementation that fails to be verified sig-
nals a failure of the recovery controller and results in instant
system halt.

V. ROUTING AND SCHEDULING FOR RECOVERY
Upon reception of the failed links Ef , the recovery controller
marks the implementation of all disrupted flowsFD as invalid.
It then processes flows in FD one by one. We use a deter-
ministic processing order to ensure analyzability. Attempting
recovery with non-deterministic order, e.g., randomly select-
ing the next flow to be processed, will cause additional com-
plexity for reliability analysis. In this section, we introduce

91714 VOLUME 9, 2021

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

an ILP and a heuristic algorithm to compute alternative routes
and schedules.

To recover a disrupted flow, the following inputs are used.

• Network topology G = (V ,E)
• Set of all time slots B = {1, . . . , b}
• Set of all failed links Ef so far
• Selected flow to be recovered f ∈ F
• Set of phases that f can use P = {1, . . . , p}
• Specification and implementation of all flows in F

A. ILP SOLUTION
ILP has already been used in TSSDN to set up flows on a
fixed topology [10]. Since it produces near optimal results,
we develop an ILP solution to indicate the maximum reli-
ability achievable by recovery. Compared with ILP in [10],
our proposed solution features at handling an extended rout-
ing and scheduling problem with dynamic failures in the
topology as well as FRER flows. We propose to express the
problem using fewer variables. And the correlations between
these variables can be mostly resolved as upper and lower
bounds of the variables instead of linear constraints. Thus,
the solving time of our ILP formulation is greatly reduced.
To increase the routing capability of our ILP, we propose slots
prioritization and destination forwarding. Our main objective
is the same as [10] which is to minimize flows’ route length,
because it has been shown that the shortest routing path
utilizes network resources more efficiently.

Here are the variables used in our ILP solution.

• Flow counter ci ∈ N, for i ∈ E . ci indicates the number
of destinations flow f reaches through link i. If i is not
used by f , then ci = 0.

• Slot and phase selection hj,k ∈ {0, 1}, for j ∈ B, k ∈ P.
hj,k = 1 if and only if f uses slot j and phase k .

• Link-wise schedule li,j,k ∈ {0, 1}, for i ∈ E, j ∈ B, k ∈
P. li,j,k = 1 if and only if f is scheduled on link i, slot j
and phase k .

The objective function is shown in Eqn. 1. pij is the priority
for slots j, ∀j ∈ B.

Min

 ∑
∀i∈E,j∈B,k∈P

li,j,k +
∑

∀j∈B,k∈P

pij · hj,k
b+ 1

 (1)

The primary objective (first term) minimizes the length
of path for f to minimize its network load. The secondary
objective (second term) specifies slots prioritization in which
each time slot is assigned a fixed priority as its preference of
being selected for scheduling (slots with lower priority first).
Slots prioritization urges the solution to concentrate flow
scheduling to avoid false blocking. An example of such false
blocking is shown in Fig. 3. In Fig. 3(a), flows 1 and 2 are
scheduled on the shortest path but the randomly picked slots
block flow 3. Prioritization forces flows 1 and 2 to use slot 1 in
Fig. 3(b), so flow 3 can use slot 2. We define pij = j so slots
represented by smaller number are preferred. Since selected
slot and phase are unique,

∑
∀j∈B,k∈P pij × hj,k 6 b. Thus,

FIGURE 3. An example of slot prioritization.

the secondary objective divided by b + 1 will be effective
only when the primary objective is minimized.

1) GENERAL CONSTRAINTS
Constraints for all flows are:

1. A flow selects a single slot and a single phase.∑
∀j∈B,k∈P

hj,k = 1 (2)

2. Flow conservation constraints ensure the validity of the
route. A valid route must be continuous starting from the
source and passing all destinations free of cycles. i(v) and
o(v) stand for input and output links for vertex v. Eq. 4
allows destination forwarding in which route could pass a
destination to each other destinations. It makes maximum use
of the redundant links connecting end stations to route flows.
Note that the network interface of these end stations must
be designed with forwarding capability to enable destination
forwarding. ∑

∀i∈i(s)

ci = 0 ,
∑
∀i∈o(s)

ci = |D| (3)

∀ v ∈ D :
∑
∀i∈i(v)

ci −
∑
∀i∈o(v)

ci = 1 (4)

∀ v /∈ {s} ∪ D :
∑
∀i∈i(v)

ci −
∑
∀i∈o(v)

ci = 0 (5)

3. Link-wise route and schedule constraints ensure hj,k = 1
if at least one link is used and li,j,k is not all 0.

∀i ∈ E, j ∈ B, k ∈ P : li,j,k − hj,k 6 0 (6)

∀i ∈ E : ci −
∑

∀j∈B,k∈P

|D| · li,j,k 6 0 (7)

4. Collision avoidance constraints for every flow fn ∈ F
with period pn and valid ipn = (ROn, scn, phn) are as follows.

if p = pn→ ∀i ∈ ROn : li,scn,phn = 0; (8)

if p 6= pn→ ∀i ∈ ROn, k ∈ P : li,scn,k = 0; (9)

5. Failed links must be avoided.

∀i ∈ Ef , j ∈ B, k ∈ P : li,j,k = 0 (10)

2) FRER CONSTRAINTS
Constraints for FRER flows are:

6. If f ∈ F f with replica f ′, ensure that their paths are
disjoint.

∀i ∈ RO′, j ∈ B, k ∈ P : li,j,k = 0 (11)

VOLUME 9, 2021 91715

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

Algorithm 1 Heuristic Routing & Scheduling
1: for all j in B do
2: for all k in P do
3: Grj,k = residualnw(G, ST ,PT ,Ef , j, k)
4: roj,k = shortestpath(Grj,k , s,D)
5: if roj,k is currently shortest then
6: ip = (roj,k , j, k)
7: end if
8: end for
9: end for

10: return ip if found

7. If f ∈ F f with replica f ′, ensure replicas arrive in
tolerated jitter range, where JC is the feasible slot and phase
pairs (j ∈ B, k ∈ P) that satisfy Eq. 13.

∀(j, k) /∈ JC : hj,k = 0 (12)

|(k − ph′) · b+ (j− sc′)| 6
⌊ jt
tsl

⌋
(13)

Constraints 4, 5, 6, and 7 are encoded into the upper and
lower bound constraints of the solver (both upper and lower
bounds of the variables are 0). As a result, FRER, existing
flows, and failures do not change the number of variables
and constraints but require extra efforts to form the upper
and lower bounds. Compared to using linear constraints,
it reduces the search effort and helps to quickly identify the
existence of feasible solutions. The rest of the constraints are
linear constraints. Our formulation uses |E|× |B|× |P|+2×
|E|+|V |+2 linear constraints. In comparison, the ILP in [10]
uses 4×|E|×|B|×|P|+|V |+|D|+|E |+2 linear constraints.
Since |E| × |B| × |P| is magnitudes larger than remaining
factors, the # of constraints is reduced by approximately 75%.

B. HEURISTIC SOLUTION
Instead of solving routing and scheduling as a uniform opti-
mization problem, they can also be viewed as separated steps.
Consider a given schedule (j, k) where j ∈ B, k ∈ P,
the problem is reduced to routing a multi-destination flow
among the free links Erj,k ⊆ E (links that are neither sched-
uled on (j, k) nor failed). This is the well-known Steiner tree
problem [34]. Although the problem is NP-complete [35],
there are polynomial-time heuristic algorithms to find near
optimal solutions.

Besides inputs defined earlier, our heuristic algorithm
requires keeping track of two additional variables along with
the flow implementation, which avoids checking flows to
identify link availability. However, they must be updated
every time a flow implementation is changed.

• Slot table ST = {sti,j}, for i ∈ E , j ∈ B. sti,j is the period
of the flows scheduled on slot j of link i. Only flows with
the same period can share slots. sti,j = 0 if it is unused.

• Phase table PT = {pti,j,k}, for i ∈ E , j ∈ B, k ∈
{1, . . . , sti,j}. pti,j,k = 1 means phase k is occupied on
slot j of link i.

FIGURE 4. CTMC of a 4-link network. Colors are: green for full, yellow for
reduced, red for halted functionality modes. λi is the failure intensity of
link i . Node labels indicate the failure sequences.

Our heuristic algorithm iterates through all pairs of slots
and phases to find the one that minimizes the route length.
To ensure fast execution, we compute the shortest path tree
from source to all destinations as an approximate solution to
the Steiner tree problem. This is shown in Algorithm 1.

In Algorithm 1, residualnw() computes the sub-network
Grj,k = (V ,Erj,k) of G formed by free links. A link i ∈
Erj,k if it satisfies Eq. 14. Grj,k and G always have the same
vertices. It is up to the routing algorithm to handle vertices
isolated by failures and occupied links if they exist.

(i /∈ Ef) ∧ {sti,j = 0 ∨ [(sti,j = p) ∧ (pti,j,k = 0)]} (14)

Procedure shortestpath() computes shortest path tree con-
necting source and all destinations of f on Grj,k . Instead
of finding the shortest tree that connects the source and all
the destinations, this algorithm finds the shortest route from
source to each of the destination. So, it can be performed by
the Dijkstra algorithm with O(|Erj,k |+ |V | log |V |) complex-
ity [36]. Thus, the overall complexity for routing and schedul-
ing isO(|B|× |P|× (|E \Ef |+ |V | log |V |)). This polynomial
complexity comes at the cost of its solution quality. While it
still provides shortest route for unicast flows, its solution will
potentially cost more links than an optimal Steiner tree for
multicast flows.

Slot prioritization can be implementedwhen deciding if the
route found is currently shortest. First, the recorded solution
ip is compared with roj,k on the length of the route. If they are
the same, the selected time slots are compared. The solution
whose time slot has higher priority is recorded as the best
solution.

Algorithm 1 only requires slight modification to be applied
to FRER flows. If its replica f ′ has a valid implementation,
(j, k) must be selected from JC , which is calculated as in
constraint 7 in §5.a. Also, RO′ must be excluded from Gr .
Thus, the overall complexity for processing an FRER flow is
O(bjt/tslc × (|E \ {Ef ∪ RO′}| + |V | log |V |)).

VI. CTMC-BASED RELIABILITY ANALYSIS
The life cycle of run-time recoverable TSN can be modeled
by a Continuous Time Markov Chain (CTMC) since the flow

91716 VOLUME 9, 2021

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

implementation after recovery only depends on the failure
and flow implementation in the previous state of the network.

A. FAILURE EVENTS
Long-lived or permanent component failures that can pos-
sibly occur to the system can be modeled as failure events.
Each failure event consists of a set of failed components
associated with a distribution function. To make CTMC anal-
ysis valid, all failure events must be independent. The cov-
erage of the failure events determines the precision of the
analysis.

B. STATE SPACE GENERATION
Given a system and all its failure events, state space genera-
tion takes the failure events and generates a CTMC exploring
all sequences of successive failures events. Fig. 4 shows an
example of our CTMC considering only link failures. For a
given failure sequence, it starts from the initial full functional-
ity state, removes the first failed link and recovers the system
into a new state. The analysis applies the recovery approach
under evaluation to determine the functionality of the new
state based on whether the previous failures are recoverable.
This process is repeated until the system enters the halt mode
(when reduced functionality cannot be sustained). The system
cannot be restored from the halt mode by itself, as it is shut
down for maintenance in the real life.

C. SYSTEM RELIABILITY
Given the CTMC generated above, the distribution of states
can be calculated using an analytical approach [37] with
outputs:

• πf (t) is the probability that the system is in full function-
ality mode at time t .

• πr (t) is the probability that the system is in full or
reduced functionality mode at time t .

We evaluate different recovery approaches with two met-
rics, MTTRF and MTTF. MTTRF is the mean time that the
system stays in the full functionality mode, i.e. the aver-
age time since system start up till the first functionality
degradation happens. It indicates the frequency which the
network requires for maintenance. MTTF is the mean time
before the emergency halt, which reflects the lifetime of the
system. They can indicate the reliability of the systems as
well as the maintenance frequency (cost). Therefore, both
metrics reflect the quality of recovery approaches. While
our work mainly focuses on finding recovery approaches
that meets the execution time requirement, improvement of
recovery quality is preferred. And significant loss of reliabil-
ity must be avoided. MTTRF and MTTF are calculated by
Eq. 15 and 16.

MTTRF =
∫
∞

0
t · (1− πf (t))′dt (15)

MTTF =
∫
∞

0
t · (1− πr (t))′dt (16)

D. OPTIMIZATION
For large or highly redundant networks, the CTMC generated
can be huge. Thus, we apply following optimization to reduce
the cost of computation:

• The sequences are enumerated in a depth-first order to
reduce the memory consumption, e.g., {1, 2} is evalu-
ated after {1} in Fig. 4, since it requires knowledge of
{1}. After all states reachable from {1} are evaluated,
the implementation of {1} can be deleted from memory.

• High order failures can be assumed to result in the halt
mode. This is a conservative approximation as it pro-
vides a lower bound of the system reliability. Depending
on the timing and precision requirement, designers can
chose the maximum number of failures evaluated.

• Merge all halt states into a single absorbing state. Paral-
lel edges created are also merged, e.g., halt is reachable
from {2, 1} by failure of link 3 or 4 in Fig. 4, and thus
can be encoded as a single edge λ3 + λ4 = 2λ.

VII. EVALUATION
To evaluate the proposed approaches, we implement
our proposed ILP (pILP, §5.a) and analysis (§6) in
MATLAB which runs on a desktop computer equipped with
an Intel(R) Core(TM) i7-9700F 3.0GHz CPU. For compar-
ison, we re-implement the state of the art ILP (SOA) [10]
using the same setup. To show that our heuristic algorithm
(HRS, §5.b) is ready for embedded deployment, it is imple-
mented in C++ together with the state space generation
(§6) and runs on a Cortex-A9 dual-core 650MHz processor
on a PYNQ board [38]. The result is post-processed by
MATLAB to calculate MTTRF andMTTF. Note that in CDT
specification, TT traffic can transmit in maximum 5 hops.
Thus, for larger networks, links and nodes beyond the reach
of 5 hops can be pruned for each source node to reduce the
execution time.

In this section, we comparatively evaluate our proposed
approaches with the existing approaches. We compare their
routing capability on networks with/without failures using
40 randomly generated topologies to which a limited num-
ber of time slots are allocated (§7.a). Then, we generate
120 test cases based on 3 typical redundant topologies with
30-100 flows setup by pILP and analyze the impact of
the recovery approaches as well as topologies on reliability
(§7.b). The execution time of different approaches captured
in this process is evaluated (§7.c). Finally, a case study on an
automotive TSN is performed (§7.d).

A. RECOVERY EVALUATION
The network designers tend to allocate just enough time
slots for meeting the scheduling and redundancy requirement
so that more bandwidth guarantee can be provided to other
traffic types. The routing and scheduling approaches that can
probably setup more flows given the same amount of time
slots are preferred. Randomized testing can be used to eval-
uate the efficiency of the proposed recovery approaches in

VOLUME 9, 2021 91717

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

FIGURE 5. Evaluation of different recovery approaches. (a) Acceptance rate versus the number of flows for unicast flows. (b) Acceptance rate versus the
number of destinations of 15 multicast flows. (c) Survival rate versus the order of failures.

comparison with the SOA and FRER.We generate 40 topolo-
gies with redundancy using random regular graph, each with
8 end stations. Every end station is attached to 3 links.
To show how the algorithms perform when time slots are
just enough or even insufficient, the number of time slots
per link is set to only 4 (TSSDN can have 40 time slots if
necessary [10]). Allocating more time slots results in more
flows to be successfully setup in the network. But it does
not change the trend demonstrated in the results. On each
topology, we carry our experiment with randomly generated
flows whose source and destinations are selected by uniform
distribution. The period of the flows is set to the BP of the
networks.

First, we compare the three approaches (pILP, HRS and
SOA) in their capability of setting up flows on failure-free
networks. The capacity of the algorithms is indicated by
the acceptance rate which is the percentage of different
topologies in which the corresponding set of flows can be
successfully setup. Note that even there is only one single
flow in the tested set of flows cannot be setup, the topology
cannot be counted as accepted. Because FRER relies on these
routing and scheduling approaches to be setup, it is excluded
from this comparison.

1) FLOW CAPACITY
To test the routing capacity of the algorithms, evaluation is
conducted by generating 15 - 50 unicast flows by steps of 5
on each topology, resulting 40× 8.320 cases. The quality of
the algorithms is measured by the acceptance rate. The result
is shown in Fig. 5.(a).

Generally for all three algorithms, the acceptance rate
reduces when the number of flows increases. Compared with
SOA, the acceptance rate of pILP reduces more smoothly due
to slot prioritizing. For example, when there are 35 flows
in the network, pILP can successfully setup 47.5% cases
while SOA can only setup 22.5%. In scenarios of unicasting,
the Steiner tree problem is reduced to the single destina-
tion routing problem. Thus, the acceptance rate of HRS is
very close to that of pILP. Notice that pILP and HRS are
slightly different as they may chose different shortest path
when multiple options exist. Thus, there is a minor variation
between the acceptance rate of HRS and pILP in Fig. 5.a. The
acceptance rate of all approaches reduces to zero for scenarios
with 50 flows. Since there are only 4 time slots on each link,
flows exceed the capacity of the network. More flows could

be setup if more time slots are allocated. However, the relative
behavior of the algorithms will not change.

2) MULTICAST FLOWS
To demonstrate how these algorithms behave when setting
up multicast flows, evaluation is conducted by generating
15 multicast flows with 1-7 destinations on the topologies,
resulting 40 × 7.280 cases. The quality of the algorithms is
again measured by the acceptance rate. The result acquired
is shown in Fig. 5.(b). Note that adding more flows to
the networks will not change the trend observed in this
experiment.

When the flows have more destinations, their paths gener-
ally occupy more links. Thus, the acceptance rate decreases.
As indicated by the result, pILP again achieves highest accep-
tance rate, which indicates slot prioritizing is still effective
for multicast flows. Due to the approximation in HRS, it finds
longer paths than pILP. Hence, the networks aremore likely to
be saturated, resulting in lower acceptance rate. The original
design of SOA does not allow flows to be forwarded through
its destinations. To ensure a fair comparison, we run the same
test with the original SOA and a modified SOA (SOAm)
which has constraints allowing forwarding through destina-
tions. Note that in scenarios of unicasting, flows only need
to reach one destination, which means destinations do not
forward flows anyway. So, the ILP formulation of SOA and
SOAm are exactly the same for unicast flows. Despite the
lack of slot prioritizing, SOAm still finds shorter paths for
multicasting, thus is more efficient than HRS. In contrast,
SOA has the lowest acceptance rate among all the solutions,
since it cannot utilize the redundant links at destinations.
However, whether forwarding is allowed through destinations
is more of a question for the network design than routing,
since end stations needs efficient network interfaces. Our
experiment show that in networks with redundancy, enabling
forwarding in end stations can enhance the capacity of the
networks by up to 60% (# of destination nodes= 3). Note that
multicast flows with more destinations potentially require
more links to be setup. When flows have 5 or more destina-
tions, the flows exceed the capacity of the network in which
4 slots are allocated per link. Hence, the acceptance rate drops
to 0, although part of the flows with more than 5 or more
destinations can be successfully setup.

Then, we compare run-time recovery using different algo-
rithms and FRER under different failure scenarios.

91718 VOLUME 9, 2021

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

3) ORDER OF FAILURES
To demonstrate the effectiveness of different approaches in
handling failures, we randomly generate sequential failures
of 1-9 links on the topologies, resulting 40 × 9.360 cases.
For each case, 10 random unicast flows are setup on the
failure-free network. The quality of the approaches is indi-
cated by survival rate which is the percent of cases with
the same number of failed links but on different topologies
where all disrupted flows can be successfully recovered.Note
that since FRER does not involve recovery, we measure its
percent of cases where all flows have at least one surviving
replica. The result is shown in Fig. 5.(c).

Similar to the conclusion in Fig. 5.(a), the proposed recov-
ery approaches and SOA achieves similar quality in the uni-
casting scenarios.While FRER can provides 100% protection
for single link failures, it is vulnerable to multi-link failures.
Its survival rate drops to 87.5% for 2-link failures and 45% for
3-link failures, while survival rate remains higher than 95%
for the recovery approaches.

B. SYSTEM ANALYSIS
To compare the impact of topological redundancy on the
reliability of run-time recoverable systems, evaluation is per-
formed on three redundant topologies: 8 nodes ring (R08),
10 nodes ring (R10), and 4× 2 mesh (M08) with all vertices
as end stations, and each link has 16 transmission slots. For
simplicity, we only consider link failures with exponential
distribution, whose failure rate is λ = 3× 10−9h−1 for every
link as required by Automotive Safety Integrity Level D [39].

On each topology, evaluation is conducted by generating
30-100 flows which randomly have 1-3 destinations resulting
3×5×8 = 120 (5 cases for each number of flows). Flows in
F fm and F rm are identical except their period, i.e. F fm consists
of these flows with period set to two times the base period
while F rm consists of these flows with period set to 3 times
the base period. We analyze the reliability of those systems
under different recovery approaches compared above (SOA,
pILP, HRS, SOAm) using the proposed reliability analysis.
The average of MTTRF and MTTF for every 5 test cases with
the same number of flows are shown in Fig. 6. Note that flows
are initialized using pILP for all cases. And to reduce the state
space, reliability analysis assumes that failure of more than
3 links will in result emergency halt.

As already indicated by previous experiments, loading
more flows to the network will reduce the effect of recovery
because they occupy time slots and links as well as increasing
the number of disrupted flows on failures. Additionally, due
to phase sharing, flows with lower periods are also harder to
recover. Thus, reduced functionality mode tends to survive
even after the failure of full functionality mode. For exam-
ple, in M08 with 60 flows and pILP recovery, on average,
MTTRF is 3.807× 107 h while MTTF is 5.128× 107 h. This
means that the systems are expected to survive an additional
1.321 × 107 h with reduced functionality after leaving full
functionality mode. Compared with SOA which is effective
in fewer scenarios causing reduced functionality mode to fail

soon after degrading from full functionality mode, we thereby
conclude that the proposed recovery process significantly
enhances the ability of reduced functionality to protect full
functionality.

1) RECOVERY APPROACHES
pILP and HRS can have MTTRF and MTTF up to 2x larger
than SOAwhich does not allow forwarding using the destina-
tions, e.g., on M08 with 30 flows, average MTTRF for pILP
is 5.137× 107 h while it is 2.637× 107 for SOA. In contrast,
SOAm which is the SOA with modified routing constraint
to allow forwarding through destinations can achieve sim-
ilar MTTRF and MTTF as pILP when the network is not
heavily loaded. However, when the network load increases,
it becomes less effective than pILP due to the lack of slot
prioritizing.

The fact that HRS finds longer path for multicast flows
does not cause major reliability impact in this realistic setup.
The reason is that multicast flows are sensitive to the integrity
of the topologies. So, they aremore likely to cause system halt
due to loss of connectivity which is not recoverable by any
approach than saturating the network. In fact, although only
1/3 of the flows has 3 destinations, we found more than 50%
of the degradation is caused by flows with 3 destinations no
matter what recovery approach is used. Therefore, the relia-
bility achieved by a recovery approach is more affected by its
capability of handling unicast flows. In this experiment, since
HRS is also enforced with slot prioritizing, it even achieves
better MTTRF and MTTF than SOAm which has be proven
to handle multicast flows more efficiently.

2) TOPOLOGY
By virtue of the cross-links, meshes are more redundant and
can safely carry more flows. Thus, reliability of R08 is more
sensitive to the number of flows compared with M08. The
capability to reliably carry flows also reduces when rings
scale up. Because limited redundancy can be easily congested
during recovery, plus the fact that the failure probability
increases when there are more links.

C. RUN-TIME EXECUTION
While performing reliability analysis to the 120 test cases
above, our program also records the execution time to process
each failure and flows. They are shown in Fig. 7. Since the
execution time of HRS and ILPs have different magnitude,
we apply logarithmic scale on x-axis to ensure readability.

Even in the worst case, HRS can process a single flow
within 5ms. Thus, recovering a single link failure without
degradation requires no more than b × 5ms = 80ms.
Compared with SOA, the per-flow average execution time
is 156.90/1.99 ' 79× faster on M08. The worst-case
total recovery time is observed during degradation, where
up to 2 × b flows need to be processed. But this can be
avoided by evaluating reduced functionality mode in parallel
(on 2 cores) with full functionality mode. According to the
experiment, HRS is capable of computing alternative flow

VOLUME 9, 2021 91719

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

FIGURE 6. Reliability achieved by different recovery approaches on various topology and flow setups.

FIGURE 7. Average and maximum runtime measured for pILP and SOA on
i7-9700F, and HRS on Cortex-A9. SFL: time to process a single flow, TOT:
total time to process a failure.

implementations within 100ms. Considering that today’s
vehicles are equipped with much more powerful processors
than a 650MHzCortex-A9, e.g., 2.0GHzCortex-A72 onNXP
BlueBox [41], we conclude that HRS is capable of dynam-
ically computing flow configuration in response to failures
well within required 100ms deadline.
Compared with SOA, the per-flow average execution time

of pILP is improved by 3195/157 ' 20× on M08 and more
than 40× on both rings. Thus, pILP has more advantages
while being used to setup networks or benchmark topologies.
However, both ILP-based approaches require more than 10s
to process a single failure, thus are not suitable for run-time
recovery.

D. AN AUTOMOTIVE CASE STUDY
To demonstrate the proposed approaches are suitable for
realistic automotive networks, we perform a case study
on the scenario shown in Fig. 8. The network consisting
of 15 switches and 21 end stations is modified from the archi-

TABLE 1. Experiment results for the case study. MAX and AVG stands for
the maximum and average time observed to process a failure (TOT).

tecture of the Orion crew exploration vehicle [31]. Although
this topology is not initially built for automotive applications,
it features at larger scale and more redundancy than automo-
tive networks. Thus, it demonstrates that our approaches scale
to realistic automotive use cases. We keep the switch network
of Orion and remap its end stations to vehicle components.
Unmapped end stations are considered non-safety-critical
and thus omitted. Since the applications of Orion only use up
to 5 TTflows, we reconstruct an automotive application based
on a level 2+ truck platooning architecture EcoTwin [40].
The safety-critical functions of the EcoTwin is initially dis-
tributed on four processors. Tomaximize the amount of flows,
we map each function to an individual processor resulting six
processors connected by TT flows. Audio and video streams
in the EcoTwin are also omitted because they are forwarded
as AVB flows. Additionally, the original topology does not
have redundant links for end stations. So, we add redundant
links for end stations related to the basic control functions
(e.g., braking and steering).

The number of time slots per link in our case study net-
work is set to 8 as it is the minimum number of time slots
for the network to reach maximum reliability. Link failure
rate is λ = 3 × 10−9h−1 as in the previous experiments.
While the application performs automatic truck platooning
in full functionality mode, its reduced functionality mode
can be designed to provide only the basic driving interface
for drivers. A driver take-over is requested and the platoon-
ing application is still executed to provide route suggestion
instead of directly controlling the vehicle. Thus, flows in full

91720 VOLUME 9, 2021

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

FIGURE 8. Network and flows reconstructed from Orion [31] and EcoTwin [40]. SW represents switches.

and reduced functionality mode have different period, other
specifications remain the same for simplicity. The flow period
equals to base period in F fm and two times the base period
in F rm. We compare pILP, SOA, and HRS.

The reliability of the system and execution time for each
approach is shown in Table 1. As there are plenty of time
slots allocated for recovery, all three approaches compared
reaches the maximumMTTRF and MTTF. This is consistent
with our previous experiment that when there are plenty of
redundancy and relatively fewer flows, network reliability
achieved by different recovery approaches is similar. Com-
plex topology introduces significant variation of the exe-
cution time. Although the average execution time of pILP
is 12x lower than SOA, its worst-case execution time is
only 2x better. While both pILP and SOA cannot meet the
100ms deadline for run-time recovery, the maximum execu-
tion time of HRS is 29.69mswhich is well below the recovery
deadline.

VIII. CONCLUSION
This paper presents a design to realize run-time recovery of
TSN. We develop an improved design-time ILP approach
and a fast run-time heuristic algorithm based on a novel
multi-mode recovery scheme, which we evaluate with a
CTMC-based reliability analysis. Our evaluation shows that
recovery improves MTTF of the system by up to 2× depend-
ing on the redundancy, topology, and recovery algorithm.
The execution time of the heuristic algorithm on an embed-
ded processor is within the 100ms requirement of recov-
ery. We compare run-time recovery with the standardized
FRER, as well. The result shows that run-time recovery
which requires less redundancy in bandwidth achieves better
protection against multi-point failures. In the future, we will
implement efficient network architecture that supports fast
configuration and mode switching to bring run-time recovery
to reality. We are also interested in developing mechanisms
in which ECUs collaborate with the spatial and temporal
redundancy of TSN to ensure a more reliable system.

REFERENCES
[1] Time-Sensitive Networking (TSN) Task Group. Accessed: Mar. 3, 2021.

[Online]. Available: https://1.ieee802.org/tsn/#TSN_Standards
[2] J. Takeuchi, H. Goto, S. Iiyama, T. Nomura, H. Kosugi, M. J. Teener,

and Y. Kim, ‘‘Requirements for automotive AVB system profiles,’’ AVnu
Alliance, White Paper, Mar. 2011.

[3] International Standard–Local and Metropolitan Area Networks–Specific
Requirements—Part 1CB: Frame Replication and Elimination for Relia-
bility, Standard ISO/IEC/IEEE 8802-1CB:2019(E), 2019, pp. 1–106.

[4] K. Kirkpatrick, ‘‘Software-defined networking,’’ Commun. ACM, vol. 56,
no. 9, pp. 16–19, Sep. 2013.

[5] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester, ‘‘Soft-
ware defined networking: Meeting carrier grade requirements,’’ in Proc.
18th IEEE Workshop Local Metrop. Area Netw. (LANMAN), Oct. 2011,
pp. 1–6.

[6] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, ‘‘Open-
Flow: Meeting carrier-grade recovery requirements,’’ Comput. Commun.,
vol. 36, no. 6, pp. 656–665, Mar. 2013.

[7] J. Schlatow, M. Moostl, R. Ernst, M. Nolte, I. Jatzkowski, M. Maurer,
C. Herber, and A. Herkersdorf, ‘‘Self-awareness in autonomous automo-
tive systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2017, pp. 1050–1055.

[8] N. G. Nayak, F. Dürr, and K. Rothermel, ‘‘Time-sensitive software-defined
network (TSSDN) for real-time applications,’’ in Proc. 24th Int. Conf.
Real-Time Netw. Syst. (RTNS). New York, NY, USA: Association for
Computing Machinery, 2016, pp. 193–202.

[9] D. Thiele and R. Ernst, ‘‘Formal analysis based evaluation of software
defined networking for time-sensitive Ethernet,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), 2016, pp. 31–36.

[10] N. G. Nayak, F. Durr, and K. Rothermel, ‘‘Incremental flow scheduling
and routing in time-sensitive software-defined networks,’’ IEEETrans. Ind.
Informat., vol. 14, no. 5, pp. 2066–2075, May 2018.

[11] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
‘‘OpenFlow-based segment protection in Ethernet networks,’’ IEEE/OSA
J. Opt. Commun. Netw., vol. 5, no. 9, pp. 1066–1075, Sep. 2013.

[12] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
‘‘Enabling fast failure recovery in openflow networks,’’ in Proc. 8th
Int. Workshop Design Reliable Commun. Netw. (DRCN), Oct. 2011,
pp. 164–171.

[13] W. Steiner, ‘‘An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks,’’ in Proc. 31st IEEE Real-Time Syst. Symp.,
Nov. 2010, pp. 375–384.

[14] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, ‘‘Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,’’ in
Proc. 24th Int. Conf. Real-Time Netw. Syst. (RTNS). New York, NY, USA:
Association for Computing Machinery, 2016, pp. 183–192.

[15] W. Steiner, S. S. Craciunas, and R. S. Oliver, ‘‘Traffic planning for time-
sensitive communication,’’ IEEE Commun. Standards Mag., vol. 2, no. 2,
pp. 42–47, Jun. 2018.

VOLUME 9, 2021 91721

W. Kong et al.: Run-Time Recovery and Failure Analysis of TT Traffic in TSNs

[16] S. S. Craciunas, R. S. Oliver, and T. Ag, ‘‘An overview of scheduling
mechanisms for time-sensitive networks,’’ in Proc. Real-Time Summer
School LÉcole dÉté Temps Réel (ETR), 2017, pp. 1551–3203.

[17] N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop, ‘‘Window-based schedule
synthesis for industrial IEEE 802.1Qbv TSN networks,’’ in Proc. 16th
IEEE Int. Conf. Factory Commun. Syst. (WFCS), Apr. 2020, pp. 1–4.

[18] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, andG.Mühl,
‘‘ILP-based joint routing and scheduling for time-triggered networks,’’
in Proc. 25th Int. Conf. Real-Time Netw. Syst. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 8–17.

[19] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, ‘‘Optimizing message
routing and scheduling in automotive mixed-criticality time-triggered net-
works,’’ in Proc. 54th Annu. Design Autom. Conf. (DAC), Jun. 2017,
pp. 1–6.

[20] T. L. Mai, N. Navet, and J. Migge, ‘‘On the use of supervised machine
learning for assessing schedulability: Application to Ethernet TSN,’’ in
Proc. 27th Int. Conf. Real-Time Netw. Syst. (RTNS). New York, NY, USA:
Association for Computing Machinery, 2019, pp. 143–153.

[21] T. L.Mai, N. Navet, and J.Migge, ‘‘A hybrid machine learning and schedu-
lability analysis method for the verification of TSN networks,’’ in Proc.
15th IEEE Int. Workshop Factory Commun. Syst. (WFCS), May 2019,
pp. 1–8.

[22] A. Elia, L. Ferrarini, and C. Veber, ‘‘Analysis of Ethernet-based safe
automation networks according to IEC 61508,’’ in Proc. IEEE Conf.
Emerg. Technol. Factory Autom., Sep. 2006, pp. 333–340.

[23] H. C. Cankaya and V. S. S. Nair, ‘‘Accelerated reliability analysis for
self-healing SONET networks,’’ACMSIGCOMMComput. Commun. Rev.,
vol. 28, no. 4, pp. 268–277, Oct. 1998.

[24] T. Angskun, G. Bosilca, G. Fagg, J. Pje!sivac-Grbovi, and J. J. Dongarra,
‘‘Reliability analysis of self-healing network using discrete-event simu-
lation,’’ in Proc. 7th IEEE Int. Symp. Cluster Comput. Grid (CCGrid),
May 2007, pp. 437–444.

[25] M. Glaß, M. Lukasiewycz, F. Reimann, C. Haubelt, and J. Teich,
‘‘Symbolic reliability analysis of self-healing networked embedded sys-
tems,’’ in Computer Safety, Reliability, and Security, M. D. Harrison and
M.-A. Sujan, Eds. Berlin, Germany: Springer, 2008, pp. 139–152.

[26] International Standard–Local and Metropolitan Area Networks—Part 1Q:
Bridges and Bridged Networks Amendment 3: Enhancements for Sched-
uled Traffic, Standard ISO/IEC/IEEE 8802-1Q:2016/Amd.3:2017(E),
2018, pp. 1–62.

[27] A. Finzi and S. S. Craciunas, ‘‘Breaking vs. solving: Analysis and routing
of real-time networks with cyclic dependencies using network calculus,’’ in
Proc. 27th Int. Conf. Real-Time Netw. Syst. (RTNS). New York, NY, USA:
Association for Computing Machinery, 2019, pp. 101–111.

[28] F. Dürr and N. G. Nayak, ‘‘No-wait packet scheduling for IEEE time-
sensitive networks (TSN),’’ in Proc. 24th Int. Conf. Real-Time Netw. Syst.
(RTNS). New York, NY, USA: Association for Computing Machinery,
2016, pp. 203–212.

[29] S. Thangamuthu, N. Concer, P. J. L. Cuijpers, and J. J. Lukkien, ‘‘Analysis
of Ethernet-switch traffic shapers for in-vehicle networking applications,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2015, pp. 55–60.

[30] IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area
Networks, Standard IEEE Std 802.1AS-2011, 2011, pp. 1–292.

[31] S. M. Laursen, P. Pop, and W. Steiner, ‘‘Routing optimization of AVB
streams in TSN networks,’’ SIGBED Rev., vol. 13, no. 4, pp. 43–48,
Nov. 2016.

[32] T. Ishigooka, S. Otsuka, K. Serizawa, R. Tsuchiya, and F. Narisawa,
‘‘Graceful degradation design process for autonomous driving sys-
tem,’’ in Computer Safety, Reliability, and Security, A. Romanovsky,
E. Troubitsyna, and F. Bitsch, Eds. Cham, Switzerland: Springer, 2019,
pp. 19–34.

[33] B. Stephens, A. L. Cox, and S. Rixner, ‘‘Scalable multi-failure fast failover
via forwarding table compression,’’ in Proc. Symp. SDN Res. New York,
NY, USA: Association for Computing Machinery, Mar. 2016, pp. 1–12.

[34] C. A. S. Oliveira and P. M. Pardalos, ‘‘A survey of combinatorial optimiza-
tion problems in multicast routing,’’ Comput. Oper. Res., vol. 32, no. 8,
pp. 1953–1981, Aug. 2005.

[35] R. M. Karp, Reducibility Among Combinatorial Problems. Boston, MA,
USA: Springer, 1972, pp. 85–103.

[36] M. L. Fredman and R. E. Tarjan, ‘‘Fibonacci heaps and their uses in
improved network optimization algorithms,’’ J. ACM, vol. 34, no. 3,
pp. 596–615, Jul. 1987.

[37] T. Yuge and S. Yanagi, ‘‘Quantitative analysis of a fault tree with pri-
ority AND gates,’’ Rel. Eng. Syst. Saf., vol. 93, no. 11, pp. 1577–1583,
Nov. 2008.

[38] (2020). TUL PYNQ-Z2 Board. [Online]. Available: https://www.tul.
com.tw/ProductsPYNQ-Z2.html

[39] Road Vehicles-Functional Safety-Product Development at the Hardware
Level, Standard ISO 26262-5:2011, Nov. 2011.

[40] T. Bijlsma and T. Hendriks, ‘‘A fail-operational truck platooning architec-
ture,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2017, pp. 1819–1826.

[41] (2020). NXP BlueBox: Autonomous Driving Development Platform.
[Online]. Available: https://www.nxp.com/design/development-
boards/automotive-development-platforms/nxp-bluebox- autonomous-
driving-development-platform:BLBX

WEIJIANG KONG received the B.Sc. degree
in electronic and computer engineering from
Shanghai Jiao Tong University, Shanghai, China,
in 2018, and the M.Sc. degree in embedded sys-
tems from the Royal Institute of Technology,
Stockholm, Sweden, in 2019. He is currently pur-
suing the Ph.D. degree with the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands.
His current research interests include time sensi-
tive networking and network reliability.

MAJID NABI (Member, IEEE) received the B.Sc.
degree in computer engineering from the Isfa-
han University of Technology, the M.Sc. degree
in computer engineering from Tehran University,
and the Ph.D. degree in electrical and com-
puter engineering from the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands,
in 2013. He is currently an Assistant Professor
with the Department of Electrical Engineering,
TU/e, and Isfahan University of Technology. His

research interests include efficient and reliable networked embedded sys-
tems, low-power wireless sensor networks, and the Internet of Things.

KEES GOOSSENS (Member, IEEE) received the
B.Sc. degree in computer science from the Uni-
versity of Wales, in 1988, and the Ph.D. degree
from the University of Edinburgh, in 1993. In his
thesis, he investigated the formal verification of
hardware, in particular by using semi-automated
proof systems in conjunction with formal seman-
tics of hardware description languages, such as
ELLA and VHDL. He continued this work at
several other universities before joining Philips

Research, The Netherlands, in 1995. At Philips he worked on behavioral
synthesis for high-throughput video processing, then on on-chip commu-
nication protocols and memory management. Until 2010, at Philips/NXP
Semiconductors Research he led the team that defined the Aethereal network
on chip for consumer electronics, where real-time performance and low cost
are major constraints. He was also a part-time Full Professor with the Delft
University of Technology, from 2007 to 2010. He is currently a Full Professor
with the Eindhoven University of Technology, where his research focusses
on composable (virtualized), predictable (real-time), low-power embedded
systems, and supporting multiple models of computation. He is the author
of 17 patents, and published four books and more than 200 articles, with four
paper awards. His 2003 article was selected as one of the 30 most influential
articles of ten years of the DATE Conference. His Google Scholar H-index is
50. He was a Steering Committee Member of ACSD, NOCS, and MPSOC;
and a TPCMember for many conferences, including CODES+ISSS, CRTS,
DATE, DSD, ECRTS, FPL, ICPP, ReConFig, RTAS, SAMOS, and VLSI-
SOC. He was an Editorial Board Member of the ACM Transactions on
Design Automation of Electronic Systems (TODAES), an Associate Editor of
the journal of Design Automation of Embedded Systems (DAEM) (Springer),
and a guest editor of several special issues on networks on chip.

91722 VOLUME 9, 2021

