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ABSTRACT Power Internet of Things (PIoT) is a promising solution to meet the increasing electricity
demand of modern cities, but real-time processing and analysis of huge data collected by the devices is
challengeable due to limited computing capability of devices and long distance from the cloud center. In this
paper, we consider the edge computing assisted PIoT where the computing tasks of the devices can be either
processed locally by the devices, or offloaded to edge servers. Aiming to maximize the long-term system
utility which is defined as a weighted sum of reduction in latency and energy consumption, we propose
a novel task offloading algorithm based on deep reinforcement learning, which jointly optimizes task
scheduling, transmit power of the PIoT devices, and computing resource allocation of the edge servers.
Specifically, the task execution on each edge server is modeled as a queuing system, in which the current
queue state may affect the waiting time for the next tasks. The transmit power and computing resource
allocation is first optimized, respectively, and then a deep Q-learning algorithm is adopted to make task
scheduling decisions. Numerical results show that the proposed method can improve the system utility.

INDEX TERMS Power Internet of Things, smart grid, edge offloading, resource allocation, deep reinforce-
ment learning.

I. INTRODUCTION
Power Internet of Things (PIoT) is the application of the IoT
to the smart grid, which can play a role in every aspect of the
smart grid, including power generation, transmission, trans-
formation, distribution, and consumption [1]. By integrating
resource of communication infrastructure with that of power
infrastructure, as well as making use of advanced informa-
tion and communication technologies, the PIoT allows infor-
mation exchange among interconnected devices and further
improves the unitization efficiency of the power systems [2].
More Specifically, different kinds of sensing devices (e.g.,
the global positioning system, cameras, infrared sensors, and
radio frequency identification devices) and advanced meter-
ing infrastructure (AMI) equipments are deployed in different
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geographical areas, thus the PIoT can sense the physical
world, collect monitoring data for processing, and further
make smart decisions of energy management schemes.

However, the collected data can be huge and highly het-
erogeneous, especially when the number of devices is greatly
large, which poses stringent requirements on both communi-
cation and computational resources. Besides, some real-time
demand side management (DSM) schemes [3] are typically
delay-sensitive, which makes data processing tasks even
harder. Although the computation capability of the smart
devices has been improved in recent years, it is still hard
to deal with complex tasks under rigorous delay constraints.
Besides, the cloud computing technique also cannot meet
the low-latency requirements because of long transmission
distance and high construction cost.

Thankfully, edge computing, providing intensive compu-
tation and storage resources at the network edge, emerges as
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a promising solution to this dilemma. By offloading com-
putation tasks to edge servers instead of the cloud server,
communication delay and traffic is reduced and user privacy
is also enhanced [4], [5]. Edge computing is well suited for
data processing and analysis in a PIoT scenarios. For instance,
an edge computing framework for real-time monitoring grid
services was proposed in [6], which further formulated an
edge server scheduling problem to reduce the task processing
cost. Besides, a well-organized data processing scheme for
PIoT was proposed in [7]. Moreover, authors in [8] investi-
gated the message dissemination of edge devices in the smart
grid environment, and proposed an efficient data processing
scheme. In [9], based on the edge computing framework,
some resource management and load balancing policies were
proposed to handle smart grid consumers requests. However,
for the PIoT offloading scenarios, task offloading still causes
extra communication overhead including energy consump-
tion and transmission latency, compared to local computing
on devices. Thus, there is a tradeoff between performance
gain and communication overhead and how to make task
offloading decisions is a challenging problem.

There have been a lot of research focusing on edge offload-
ing in recent years. The authors in [10] proposed an offload-
ing method based on Markov decision process (MDP) to
control task transfer and execution. The work in [11] reduced
both the execution latency and energy consumption for
one-device offloading scenario. Ren et al. in [12] investigated
the latency-minimization problem in a multi-device system
with joint communication and computation resource alloca-
tion. In addition, some strategies were specifically designed
for the PIoT scenarios aiming at minimize the cost of the
edge computing system while satisfying the task completion
needs [13]–[15]. Although employing edge servers for task
computation is a promising approach to reducing latency and
energy consumption, it is still a challenge to make efficient
offloading decisions due to the complicated communication
topology as well as the dynamic system state. Therefore,
in order to improve the long-term performance, it is necessary
to design an offloading mechanism that can dynamically
adapt to the system change, especially with unknown poten-
tial action-state space. Deep reinforcement learning (DRL)
is thought as a promising approach to solving the long-term
optimization [16]–[21]. The authors in [16] and [17] adopted
a DRL algorithm to find the optimal task offloading decisions
for a variety of vehicular communication modes. An inte-
grated framework based on DRL was proposed in [18] to
improve the performance of edge caching. In [19], the authors
proposed a DRL algorithm for an IoT device to choose the
edge server and determine the offloading rate according to
the current battery level. To reduce the action space of DRL,
a distributed learning method combined with game theory
was proposed in [20], in which each device was designed to
perform task offloading independently. In [21], the authors
proposed a scheme in which the devices in a similar channel
state could share learned Q-table with each other to decrease
iterations. Most recently, a novel DRL algorithm called deep

FIGURE 1. The PIoT system.

deterministic policy gradient is proposed to learn continuous
variables [22]–[24]. But none of the mentioned works above
give a offloading mechanism which can jointly optimize the
task scheduling and transmit power and computing resource
allocation to maximize the long-term performance.

In this paper, we consider a PIoT scenario where the
devices compete with each other for sub-channels to access to
the edge servers. The task execution on the servers is modeled
as a queueing system and the task offloading process of the
devices is modeled as anMDP [25]. By jointly optimizing the
task scheduling and transmit power and computing resource
allocation, our objective is to maximize the system utility,
which is a weighted sum of reduction in latency and energy
consumption. The main contributions of this study are sum-
marized as follows:

1) We consider a PIoT system assisted by multiple
edge servers and formulate the task offloading problem as
a long-term Mixed Integer Non-linear Program (MINLP).
We jointly optimize task scheduling and transmit power and
computing resource allocation to maximize the system utility
defined as a weighted sum of reduction in latency and energy
consumption.

2) We decompose the original task offloading problem into
(i) a resource allocation problem including the transmit power
and computation resource allocation, and (ii) a task schedul-
ing problem. The transmit power and computing resource
allocation problem is addressed using optimization methods
and then the task scheduling problem is solved using the DRL
method.

3) A lot of simulation results are presented and the perfor-
mance gain of the proposed offloading scheme is validated.

The rest of this paper is organized as follows: The system
model and problem formulation are described in section II.
A deep Q-learning based task offloading policy is proposed
in Section III. Simulation results are presented and discussed
in Section IV, followed by the conclusion of this study in
Section V.

II. SYSTEM MODEL
In this paper, we consider a PIoT system assisted by the
edge computing, as shown in Fig. 1. The sets of edge access
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points (APs) and devices are denoted as M = {1, . . . ,M}
and U = {1, . . . ,U}, respectively. Each AP is equipped
with an edge server with strong computing capability for the
offloaded task processing. For ease of expression, we also
denote the set of edge servers as M. Each device has a
computing task which can be computed locally or offloaded
to one of the edge servers. In this PIoT system,we assume that
there has a control center, which can gather the network state
from the devices and the servers while making task offloading
and resource allocation decisions through a dedicated control
channel.

We also assume that the communication topology of this
PIoT system is invariant within a time framewith fixed length
τ [16]. Then the task of device u ∈ U generated in each
frame is described by a tuple πu = {Du,Cu}, where Du
and Cu are the data size [bits] and the workload [cycles] of
task u, respectively. The computation to data ratio is given by
κ = Cu

Du
. We divide each frame into three related periods, i.e.,

task offloading, remote computing, and result return.

• Task offloading. At the beginning of each frame, device
u generates a new task πu. Based on the results of task
offloading, the task can be computed locally or sent to
one of the edge servers.

• Remote computation. After receiving data from the
devices, the edge servers start to execute the their respec-
tive tasks. We model each edge server as a queuing
system, in which the new received tasks need to wait
until the edge server finish the tasks from the former
frames.

• Result return. After the remote computation is finished,
the edge servers return the computing results to the
devices. Similar to the work in [4], due to the size
of computing results is much smaller than the size of
input tasks, the latency and overhead of returning the
computing results is ignored.

A. COMMUNICATION MODEL
The devices access to the edge servers via orthogonal
frequency division multiple access scheme such that no
intra-cell interference exists in the uplink. Let N =

{1, . . . ,N } denotes the set of available sub-channels used
by each AP. The bandwidth of each sub-channel is W =

B/N , where B is the total system bandwidth. We use an
indicator at,nu,m to denote the offloading decision of device u,
and at,nu,m = 1, if device u offloads to AP m on sub-channel
n in frame t; otherwise, at,nu,m = 0. We assume that each
sub-channel can be assigned to at most one device associated
with the sameAP. Thus, the intra-cell interference is well mit-
igated, but the inter-cell interference remains among devices.
Besides, each device can offload its task to at most one edge
server using one sub-channel. Thus, we have the following
constraints:

U∑
u=1

at,nu,m ≤ 1,∀n ∈ N ,∀m ∈M, (1)

and
N∑
n=1

M∑
m=1

at,nu,m ≤ 1,∀u ∈ U . (2)

The uplink rate of device u to AP m on sub-channel n is
given as

Rt,nu,m=W log2(1+
at,nu,mp

t
u|h

t,n
u,m|

2∑
m′∈M\m

∑
u′∈U\u

at,nu′,m′p
t
u′ |h

t,n
u′,m′ |

2 + σ 2
),

(3)

where ptu represents the transmit power of device u, σ 2 is the
background noise variance, and ht,nu,m denotes the channel gain
between device u and AP m on the sub-channel n in frame t .

When device u offload its task to a certain edge server,
the related uplink transmission time of device u can be cal-
culated as

T tu,up =
∑
m∈M

∑
n∈N

at,nu,m
Du
Rt,nu,m

, (4)

and the related energy consumption is given as

E tu,up = ptuT
t
u,up. (5)

B. COMPUTATION MODEL
We denote fu [cycles/s] as the local computing capabil-
ity of device u. When device u computes its task locally,
i.e.,

∑
m∈M

∑
n∈N at,nu,m = 0, the local computation time of

device u is calculated as

Tu,loc =
Cu
fu
, (6)

and the related energy consumption is given as

Eu,loc = Pu,compTu,loc, (7)

where Pu,comp is the local computing power which is a con-
stant for each device u [20].
If device u offloads its task to serverm, the task computing

time is

T tu,comp =
Cu
F tm,u

, (8)

where F tm,u [cycles/s] is the server computing capability
assigned by server m to device u in frame t .

C. TASK QUEUING MODEL
In the considered PIoT system, the task processing on each
edge server is modeled as a queuing system in which the
queue state in the next frame only depends on the current
queue state and task offloading decision. Therefore, we can
formulate the queuing model as anMDP.We define the queue
state of server m at the beginning of frame t as S tm, and we
have S tm = {s

1
m, s

2
m, . . . , s

t−1
m }, in which stm is the latency for

the server m to finish the task received in frame t . We define
U t
m as the set of devices which offload to server m in frame t .
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With the first-come-first-serve policy, the servers need to
complete previous tasks first. The latency for server m to
finish the tasks received in frame t is defined as

stm = st−1m +1mt, (9)

where 1mt is the added computing time in frame t , which is
defined as

1mt = arg max
u∈U t

m

(
Cu
F tm,u
+max{T tu,up − s

t−1
m , 0}

)
. (10)

Similar to the work in [17], we also denote the maximal
waiting time of device u in frame t as

T tu,wait = st−1m . (11)

Then, the total offloading latency is defined as

T tu,off = T tu,comp + T
t
u,up + T

t
u,wait. (12)

D. UTILITY FUNCTION
Finally, the latency and energy consumption can be denoted
as

T tu = I(
∑
m∈M

∑
n∈N

at,nu,m = 1)T tu,off

+I(
∑
m∈M

∑
n∈N

at,nu,m = 0)T tu,loc, (13)

and

E tu = I(
∑
m∈M

∑
n∈N

at,nu,m = 1)E tu,up

+I(
∑
m∈M

∑
n∈N

at,nu,m = 0)E tu,loc, (14)

respectively, where I(x) is an indicator function which is
equal to 1 if x is true; otherwise 0. The utility of device u in
frame t is defined as a weighted sum of reduction in latency
and energy consumption, which takes the form [4]

J tu = β1
T tu,loc − T

t
u

T tu,loc
+ β2

E tu,loc − E
t
u

E tu,loc
, (15)

where β1, β2 ∈ [0, 1] are two positive weights.
We further define At

= {at,nu,m|u ∈ U , n ∈ N ,m ∈ M},
P t
= {ptu|0 ≤ ptu ≤ Pmax, u ∈ U t

up}, and F t
= {F tm,u|0 ≤

F tm,u ≤ Fm, u ∈ U t
m,m ∈ M} as the decision sets of

task scheduling, transmit power allocation, and computing
resource allocation, respectively. In addition, U t

up denotes the
set of the devices which choose to offload their tasks in frame
t . Note that ptu = 0 and F tm,u = 0, if u /∈ U t

up.

E. PROBLEM FORMULATION AND DECOMPOSITION
We formulate a problem which jointly considers task offload-
ing decision and the resource allocation to maximize the
average utility:

max
{�t |1≤t≤T }

1
T
6T
t=16

U
u=1J

t
u (16a)

s.t. at,nu,m ∈ {0, 1},∀u ∈ U ,m ∈M, n ∈ N , (16b)

∑
u∈U

∑
m∈M

at,nu,m ≤ 1,∀n ∈ N , (16c)∑
u∈U

at,nu,m ≤ 1,∀m ∈M, n ∈ N , (16d)

0 < ptu ≤ P
max,∀u ∈ U t

up, (16e)∑
u∈Um

F tm,u ≤ Fm,m ∈M, (16f)

F tm,u > 0,∀u ∈ U t
m,m ∈M. (16g)

T tu,up ≤ τ,∀u ∈ U t
up. (16h)

where �t
= {At ,P t ,F t

} is a group of the three variables.
The constraint (16h) suggests that if device u chooses to
offload, the transmit time of device u should be smaller than
the frame length τ .

It is hard to find the optimal solution to the problem (16)
because the problem (16) is an MINLP. Besides, the current
decisions of task scheduling and resource allocation will
affect the decisions in the next frame, which make the prob-
lem (16)more difficult. To deal with this dilemma, we decom-
pose the original problem into two problems, i.e., the task
scheduling and resource allocation problems. Specifically,
given the decisions of transmit power and computing resource
allocation, the task scheduling problem is formulated as
(P t ,F t )

max
At

6U
u=1J

t
u(P∗,t ,F∗,t ) (17a)

s.t. (16b)− (16g). (17b)

Then, given the task scheduling decision At , the transmit
power and computing resource allocation problem is formu-
lated as

max
P t ,F t

6U
u=1J

t
u(At ) (18a)

s.t. (16e)− (16h). (18b)

Note that P t and F t can be individually optimized due
to their separation in both the objective function and the
constraints. Thus, we further decompose (18) into two sub-
problems, i.e.,

min
P t

∑
u∈U t

up

β1T tu,up
Tu,loc

+
β2E tu,up
Eu,loc

(19a)

s.t. (16e) and (16h), (19b)

and

min
F t

∑
m∈M

∑
u∈Um

Cu
F tm,u

(20a)

s.t. (16f) and (16g). (20b)

In the next section, we will give the solutions to (17), (19),
and (20), respectively, and the solutions finally are formed
into the solution to the problem (16).
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III. PROPOSED TASK OFFLOADING ALGORITHM
In this section, we first solve the transmit power allocation
problem as well as the computing resource allocation prob-
lem, given the task scheduling decision. Thenwe adopt a deep
Q-learning algorithm to determine the task scheduling policy.

A. TRANSMIT POWER ALLOCATION
Note that problem (19) is non-convex, since the uplink trans-
mission of one device is effected by the other devices.We first
give an approximation of inter-cell interference in which
the transmit power in the interference is maximal, and the
approximate uplink rate R̂t,nu,m in the objective function of (19)
is given by

R̂t,nu,m=W log2

×(1+
at,nu,mp

t
u|h

t,n
u,m|

2∑
m′∈M\m

∑
u′∈U\u

at,nu′,m′P
max|ht,nu′,m′ |

2 + σ 2
).(21)

Based on R̂t,nu,m, we denote the approximate uplink transmis-
sion time and the approximate transmission energy consump-
tion as T̂ tu,up and Ê

t
u,up, respectively. By substituting R̂

t,n
u,m into

problem (19), we can decouple the uplink rate of the devices
from each other and reformulate the problem (19) as

min
ptu

�t
u(p

t
u) (22a)

s.t. 0 < ptu ≤ P
max,∀u ∈ U t

up (22b)

T̂ tu,up ≤ τ,∀u ∈ U t
up, (22c)

where �t
u(p

t
u) =

β1T̂ tu,up
Tu,loc

+
β2Ê tu,up
Eu,loc

.
Lemma 1: �t (ptu) is quasi-convex in the domain (0,Pmax].
proof: �t ′

u (p
t
u) and �t ′′

u (p
t
u) are the first and second

derivative of �t
u(p

t
u). We have

�t ′
u (p

t
u) =

β2 log2(1+ A
t
up
t
u)−

Atu(β1+β2p
t
u)

(1+Atuptu) ln 2

log22(1+ A
t
uptu)

, (23)

and

�t ′′
u (pu) =

Atu(C1+ C2)

ln 2(1+ Atuptu)2 log
3
2(1+ A

t
uptu)

, (24)

where C1 =
(
Atuβ1 − β2(2+ A

t
up
t
u)
)
log2(1 + Atup

t
u), and

C2 = 2Atu(β1+β2p
t
u)

ln 2 .
Note that �t ′

u (p
t
u) = 0, when

0(pt∗u ) = β2 log2(1+ A
t
up
t∗
u )−

Atu(β1 + β2p
t∗
u )

(1+ Atupt∗u ) ln 2
= 0, (25)

where Atu =
hnu,m

(
∑

m′∈M\m
∑

u′∈U\u a
n,t
u′,m′

Pmaxhn
u′,m′
+σ 2)

, β1 =

λ1Du
Tu,locW

, and β2 =
λ2Du
Eu,locW

. Substituting p∗u into (24), we have

C1+ C2 = Atu(β1 + β2p
t∗
u ) log2(1+ A

t
up
t∗
u ) ≥ 0. (26)

So we can verify that �t
u(p

t
u) is quasi-convex in the domain

(0,Pmax].

Based on Lemma 1, we can confirm that 0′(pu) > 0, and
0(0) < 0, which means 0(pu) is a monotonically increasing
function in the domain (0,Pmax]. Furthermore, the optimal
solution p∗u satisfies p

∗
u = Pmax or 0(pt∗u ) = 0. We propose a

bisection method with a convergence threshold ξ to solve this
problem, and we repeat narrowing the scope between Pmin

and Pmax according to the value of 0(ptu). Details are shown
in Algorithm 1.

Algorithm 1 Bisection method based transmit power
allocation.
1: initialization: Pmin

= 0.
2: repeat
3: ptu = (Pmax

+ Pmin)/2.
4: if 0(ptu) ≤ 0 then
5: ptu = Pmin.
6: else
7: ptu = Pmax.
8: end if
9: until Pmax

− Pmin
≤ ξ .

10: output ptu = (Pmax
+ Pmin)/2.

B. COMPUTING RESOURCE ALLOCATION
The objective function of problem (20) is convex, because the
elements in its Hessian matrix is ∂2J tu/∂(F

t
m,u)

2
=

2Cu
(F tm,u)3

>

0 or ∂2Ju/∂F tm,uF
t
m′,u′ = 0 (m 6= m′). Hence, the Lagrangian

function of (20) is

L(F t , λ, ν) =
∑
m∈M

∑
u∈U

Cu
F tm,u
+

∑
m∈M

λm
∑
u∈U

(F tm,u − Fm)

+

∑
m∈M

∑
u∈U

νm,uF tm,u, (27)

where λ = [λ1, . . . , λM ] and ν = [ν1,1, . . . , νM ,U ] are the
vector of Lagrangian multipliers. By evaluating the deriva-
tives for F tm,u in (27), we can get

∂L(F t , λ, ν)
∂F tm,u

=−
Cu

(F tm,u)2
+λm + νm,u,∀m ∈M,∀u ∈ U t

m.

(28)

Note that F t∗m,u satisfies −
Cu

(F t∗m,u)2
+ λm + νm,u = 0, and we

have

F t∗m,u =
√
Du/(λm + νm,u),∀m ∈M,∀u ∈ U t

m. (29)

Combined with the constraint in (16f), we can obtain the
following relationships:

ν∗m + ν
∗
m,u = (

1
Fm

∑
u∈U t

m

√
Cu)2,∀m ∈M,∀u ∈ U t

m, (30)

and

F t∗m,u =
Fm
√
Cu∑

u∈U t
m

√
Cu
,∀m ∈M,∀u ∈ U t

m. (31)
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C. DEEP Q-LEARNING BASED TASK SCHEDULING
To obtain the task scheduling decision At in (16),
the Q-learning technique is adopted. The queue states of
the edge servers at the beginning of frame t is defined as
S t = {S t1, S

t
2, . . . , S

t
M }, which can be evaluated according to

(9)-(11). Given the state S t , the control center determines the
task scheduling decisionAt as well as the resource allocation
decisionsP t andF t . Define the instantaneous reward as J t =∑U

u=1 J
t
u and the offloading experience as (S t ,At , J t , S t+1).

We use a Q-function Q(S t ,At ) to denote the Q-reward, and
the updated rule is written as

Q(S t ,At ) ← (1− ϕ)Q(S t ,At )

+ϕ

(
J t + γ max

At+1
Q
(
S t+1,At+1

))
, (32)

where ϕ ∈ [0, 1] is the weight of the current offloading utility,
and γ ∈ [0, 1] is the myopic view about the future reward of
the devices. We apply the ε-greedy policy with exploration
probability ε ∈ [0, 1] to avoid Q-learning staying in the local
maximum, and keep the balance between exploration and
exploitation. The long-term evaluated At and S t are stored
in the Q-table.

However, the size of the Q-table can be huge especially
when the considered problems are complex and the states
are massive. To overcome this challenge, we propose a deep
Q-learning based task offloading algorithm which use a neu-
ral network, instead of the Q-table, to capture the complex
relationship between the server state and the scheduling deci-
sion. The main deep Q-network is denoted as Q(S t ,At

; θ ),
where θ is the parameter vector for the main neural network.
The input of the neural network is the server state, and the
output is the Q-reward. We adopt a target network with the
parameter vector θ tar to generate the loss of each action during
the training. The structure of the target network is as same as
the main deep Q-network.

Let Y ttar be the output of the target network, we can define
the loss function of deep Q-learning in each iteration as

L(θ ) = E
[
Y ttar − Q(S

t ,At
; θ )

)
]. (33)

In order tomitigate the over-estimation issue of theQ-value
in (33), we adopt the double deep Q-learning [26], in which
the Y ttar is given by

Y ttar = J t + Q
(
S t+1, argmax

At
Q(S t ,At

; θ ); θtar

)
. (34)

We use an experience replay to store the former offloading
experience in deep Q-learning, and then randomly select
sample batches from the replay for training, so as to over-
coming the shortcomings caused by the sample correlation.
We update the parameter vector θtar every K times with a
scalar ς , and we have

θ tar = ςθ + (1− ς )θ tar. (35)

Combined with the resource allocation, the proposed deep
Q-learning approach is described in Algorithm 2.

Algorithm 2 Deep Q-learning for task offloading.
1: Initialization: Initialize the experience replay buffer,

parameter vectors θ and θtar.
2: for episode i = 1, . . . , I do
3: Receive the initial state S1 with empty task queue.
4: for Frame t = 1, . . . ,T do
5: Generate a random ρ ∈ [0, 1]
6: if ρ ≤ ε then
7: Choose At randomly;
8: else
9: At

= argmaxQ(S t ,At
; θ ).

10: end if
11: GivenAt , evaluate the results of resource allocation

according to Algorithm 1 and (31).
12: Execute actionAt , and derive the current reward J t

and the next state S t+1.
13: Store the experience (S t ,At , J t , S t+1) into the

experience replay buffer.
14: Choose a batch of samples from the experience

replay buffer randomly, and perform a gradient
decent algorithm on (33).

15: Every K steps, update the target network by (35).
16: end for
17: end for

IV. NUMERICAL RESULTS
In this section, we conduct experiments to validate the perfor-
mance of the proposed algorithm in terms of average utility
with respect to the MU number, frame length, task workload
and so on. All codes are implemented in python 3.7 with
TensorFlow 2.0 and are run on a computer with CPU i7-7700.

We consider a multi-server scenario whereM = 7 and the
distance between two neighboring APs is set as 1 km. The
path loss is modeled as L[dB] = 140.7+ 36.7log10d[km] [4].
The total bandwidth is B = 20 MHz and the sub-channel
number is equal to the number of the devices per cell. The task
size of each device is 420Kb [27] and the maximal transmit
power is 0.1W. We consider a pdf2text application with κ =
8900 cycles/byte [20]. We use a fully-connected deep neural
network composed of one layer with 100 hidden neurons to
build the main network and the target network, respectively.
More default parameter values are listed in Table 1.

For performance comparison, we introduce three base-
line algorithms, i.e., joint offloading and resource alloca-
tion (JORA) algorithm [4], greedy offloading and joint
resource allocation (GORA) algorithm [28], and random
offloading and joint resource allocation (RORA) algorithm.
In the JORA algorithm, the control center makes joint task
offloading and resource allocation in each frame. In the
GORA algorithm, the devices offload the tasks to the edge
servers for processing as possible and greedily access to the
sub-channels according to the channel gain until the system
utility does not increase. In the RORA algorithm, the devices
randomly choose local computing or task offloading.
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TABLE 1. Default simulation parameters.

FIGURE 2. Comparison of average utility against different number of
neurons.

However, the three baseline algorithms do not take the server
state transition into account.

We first show the effect of the neuron number on the per-
formance of the proposed algorithm in Fig. 2, where neurons
number varies from 20 to 100. It is shown that more neurons
lead to better performance. However, the increase tends to
be slow when the neuron number is large, which suggests
that the proposed algorithm can achieve satisfying perfor-
mance with a reasonable number of neurons, not always a
huge number.

In Fig. 3, we compare the system average utility of the
proposed algorithm with the baseline algorithms with respect
to the number of devices. On the whole, we can find that the
proposed deep Q-learning based algorithm can achieve bet-
ter performance than the baseline algorithms, which ignore
the effects of the current action on the following actions.
Moreover, it is found that the average utility increases with
the number of devices when the number of devices is small.
This is because the utility is defined as a weighted sum
of reduction in latency and energy consumption, and when

FIGURE 3. Comparison of average utility against different numbers of the
devices with Du = 420 Kb, κ = 8900, τ = 2 s, and Fm = 10 GHz.

FIGURE 4. Comparison of average utility against different frame length
with U = 28, Du = 420 Kb, κ = 8900, and Fm = 10 GHz.

the number of devices is not large, the edge serves have
enough computing capability to serve more devices which
acquire more benefits from offloading compared with local
computing. However, due to limited bandwidth resources,
when the number of the devices is relatively large, the uplink
transmission time of each device is significantly increased
resulting in the decreased average utility.

In Fig. 4, we compare the proposed algorithm with the
baseline algorithms over different values of frame length
τ . We find that the proposed algorithm still achieves better
performance than the baseline algorithms. Furthermore, it is
found that the average utility increases with τ . This is because
given a larger τ , the servers have more time to process tasks
in its queue, which can significantly reduce the waiting time
and the latency of offloading.

To further investigate the performance of the proposed
algorithm, we present the effects of the bandwidth, the data
size, the task workload, and the server computing capability
in Figs. 5(a), 5(b), 5(c), and 5(d), respectively. Results show
that the proposed algorithm can achieve From Fig. 5(a),
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FIGURE 5. Comparison of average utility against different bandwidth, data size, task workloads, and server computation
capabilities with U = 28 and τ = 2 s.

we can see that the average utility increases with B, this is
because the bandwidth of each sub-channel is equally allo-
cated and a larger bandwidth can reduce the transmit power
and uplink latency. From Fig. 5(b), since the data size directly
affects the uplink latency, we can see that the average utility
decreases with Du, However, in Fig. 5(c), we note that the
average utility increases with the task size. The reason for this
fact is that the utility function is determined by the reduction
of the latency and the energy consumption, thus offloading
huge tasks to the edge servers can save more latency and
energy compared with local computing. Finally, According
to Fig. 5(d), it is seen that the average utility increases as Fm
increases. This implies that when the computing capability
is strong, more tasks can be computed in the current frame.
In summary, the average utility of the proposed algorithm is
always better than those of the baseline algorithms.

V. CONCLUSION
In this paper, we considered a PIoT system with multiple
edge servers and modeled the task processing on each edge

server as a queuing system. A task offloading problem was
formulated, which aimed to maximize the system average
utility defined as a weighted sum of reduction in latency and
energy consumption. We decomposed the original problem
into a task scheduling problem and a resource allocation prob-
lem. A bisection method was used to find the solution to the
transmit power allocation problem and a closed-form solution
to the computing resource allocation is obtained. Moreover,
we adopted the deep Q-learning method to learn the task
scheduling policy. The simulation results demonstrated that
the proposed algorithm can improve the system performance.
To implement the proposed algorithm in a PIoT system,
we only need to deploy and run the proposed algorithm in
a control center. Specifically, in each frame the edge servers
collect the necessary information and upload it to the control
center. With the collected information, the control center
runs the proposed algorithm and broadcasts the decisions
to the edge servers to perform the appropriate actions. The
convenience of deployment and implementation makes the
proposed algorithm more practical.
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