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ABSTRACT Images are susceptible to various kinds of noises, which corrupt the pictorial information stored
in the images. Image de-noising has become an integral part of the image processing workflow. It is used
to attenuate the noises and accentuate the specific image information stored within. Machine learning is an
important tool in the image-de-noising workflow in terms of its robustness, accuracy, and time requirement.
This paper explores the numerous state-of-the-art machine-learning-based image de-noisers like dictionary
learning models, convolutional neural networks and generative adversarial networks for a range of noises
like Gaussian, Impulse, Poisson, Mixed and Real-World noises. The motivation, algorithm and framework of
different machine learning de-noisers are analyzed. These de-noisers are compared using PSNR as quality
assessment metric on some benchmark datasets. The best de-noising results for different noise types are
discussed along with future prospects. Among various Gaussian noise de-noisers, GCBD, BRDNet and
PReLU network prove to be promising. CNN+LSTM, and MC2RNet are most suitable CNN-based Poisson
de-noisers. For impulse noise removal, Blind CNN, and CNN+PSO perform well. For mixed noise removal,
WDL, EM-CNN, CNN, SDL, and Mixed CNN are prominent. De-noisers like GRDN and DDFN show
accurate results in the domain of real-world de-noising.

INDEX TERMS Convolutional neural networks, dictionary learning, generative adversarial networks, image

de-noising, machine learning.

I. INTRODUCTION

Image de-noising has played a pivotal role in recent years
with the advent of many latest computer vision applications.
The digital image is prone to noise corruption due to camera
sensors, illumination level, transmission error, timing error
of A/D converters, storage sensor faulty memory location,
capturing medium, transmission channel interference, and
compression artifacts. In biological imaging, low-light con-
ditions and shorter exposure time degrade the image qual-
ity [1]. Image restoration is required in various fields such
as medical imaging, remote sensing, underwater de-noising,
dehazing applications [2]. The different medical imaging
modalities like computed tomography (CT), magnetic res-
onance imaging (MRI), X-ray, PET, etc. use appropriate
de-noising methods for proper diagnosis. Moreover, image
pre-processing also includes de-noising procedure prior to
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the medical image classification or segmentation problem to
attain higher accuracy. Remote sensing de-noising restores
relevant data from synthetic aperture radar images, satellite
images, hyperspectral images, and underwater images.

A. TYPES OF NOISES

The noise classification is done based on its probability dis-
tribution function, correlation, nature, and its source. The
different types of noise based on pdf are Gaussian, Rayleigh,
Uniform, Impulse, Poisson, etc. According to the correlation,
noise is classified into white and color noise. The white noise
has uniform power spectral density and zero autocorrelation,
unlike color noise. If an image is corrupted with white noise,
it implies that all the pixels are uncorrelated with each other.
It is additive or multiplicative (speckle) according to nature,
i.e., noisy pixels are added or multiplied with the reference
image. It is termed as quantization noise or photon noise as
per source classification. The description of commonly used
noise types is given as follows:
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1) GAUSSIAN NOISE

It is statistical and additive in nature which follows normal
distribution with zero mean and o standard deviation and
affects all the pixels in the image. The cause of its occurrence
is sensor temperature fluctuation and environmental illumina-
tion variations. It is commonly found in magnetic resonance
imaging, and confocal laser scanning microscopy imag-
ing [3]. The probability distribution function of Gaussian
noise is given by the following equation.

_a=p?

¢ 202 (1)

1
p(x) =
o+ 2m
where x is image pixel value, 1 is mean and o is the standard
deviation.

2) IMPULSE NOISE

It is an additive noise that occurs due to faulty sensors and
transmission error. It affects only certain pixels in the entire
image, unlike Gaussian noise. It is divided into two parts,
i.e., salt and pepper impulse noise (SPIN) and random valued
impulse noise (RVIN). In salt and pepper noise corruption,
some image pixels take either maximum or minimum value
of image dynamic range. Whereas RVIN corruption changes
some image pixels with a random value, its detection is more
difficult than salt and pepper noise detection. The salt and
pepper impulse noise is given by [4]

P, forx =a
Py for x =b 2)

0, otherwise

px) =

where a and b are minimum and maximum pixel values of an
image dynamic range. P, and Pj, are probabilities which are
equal for salt and pepper noise.

3) POISSON OR PHOTON NOISE
The Poisson distribution is used to model photon noise caused
by the photon’s random arrival on the image sensor [5]. The
applications of Poisson noise removal include astronomy,
medical imaging, and low-light photography. The conditional
probability of Poisson distributed image y for clean image x
is given by [6]
N e_x"»fx?j'j"
pol =TT, _, o 3)

where i, and j denote pixel indices.

4) GAMMA NOISE

The speckle noise in ultrasound images occurs due to coher-
ent imaging mechanisms from the scatters [7]. It reduces the
image sharpness and creates difficulty for lesion diagnosis.
It is modeled by Gamma distribution, whose probability dis-
tribution function is given by the following equation.

b..b—1
Le_az, x>0
px)=1@®-1 - 4
0 otherwise

where parameters a and b are positive integers.
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5) RAYLEIGH NOISE

The noise in synthetic aperture radar (SAR) images is gran-
ular in nature, and it is modeled by Rayleigh distribution [8].
Sometimes, ultrasound images are also prone to Rayleigh
noise corruption. The Rayleigh distribution is given by the
following probability density

2( ) —()C;a)z
—(x—a) e
px)=3b

0

forx > a (®)]
otherwise

6) CAUCHY NOISE

The atmospheric and underwater acoustic signals of radar
and sonar imaging are corrupted with additive heavy-tailed
impulse like noise, known as Cauchy noise [9]. The prob-
ability distribution function of Cauchy distribution is given
by:

2

(618, 7) = — v
pXxX;o0,yY)=——FF""">5
Y y2 + (x — 8)?

where y > 0 denotes the scale parameter, and § € R denotes
the localization parameter.

Q)

7) MIXED NOISE

In many real-life applications, images are corrupted by more
than one noise type. The mixture of Gaussian and impulse
noise is found in computed tomography (CT) images and
c¢DNA microarray imaging [10], [11]. The mixed noise in
cDNA microarray imaging occurs due to photon and elec-
tronic noise interaction, dust particles on surface of glass
slides, and laser reflection. In hyperspectral images, the com-
bination of signal independent additive Gaussian noise and
signal dependent multiplicative Poisson noise is found [12].

B. CLASSIFICATION OF IMAGE DE-NOISING TECHNIQUES
The image de-noising methods can be grouped into spa-
tial domain techniques, transform domain techniques, fuzzy
filtering-based techniques, and machine learning tech-
niques [13], [14]. The block diagram illustrating the classi-
fication of image de-noising techniques is given in Fig.1.
The spatial domain filtering is widely used for image
restoration in which filtering operation is directly applied
to the image pixels. They are further divided into linear
and non-linear filters. The most common linear filters are
the mean filter, Gaussian filter, and Weiner filter. The basic
mean filter replaces the particular pixel of operation with
the mean value from the pre-defined neighborhood. Simi-
larly, Gaussian filters use a Gaussian kernel with a partic-
ular mean and deviation. They suffer from the problem of
over-smoothening and blurring of edges. To overcome this
problem, Wiener filter was introduced but it is also unsuc-
cessful while operating on sharp edges. Later, non-linear
filters were introduced in which output is a non-linear func-
tion of input for edge, detail, and texture preservation. The
primary examples of non-linear filters are total variation fil-
ters, anisotropic diffusion filters, bilateral filter, and fourth-
order partial differentiation filter. The bilateral filter replaces
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FIGURE 1. Block diagram illustrating classification of image de-noising techniques.

pixel value with neighborhood weights which are function
of both Euclidian distance and range difference [15], [16].
The detailed comprehensive review of impulse and Gaussian
de-noising filters is given in [14].

The transform domain techniques convert the image into
the transform domain, and then mathematical operations are
carried out on transform domain coefficients. It is followed
by inverse transform to restore de-noised image. These tech-
niques are divided into data-adaptive and non-data adaptive
techniques based on the transform basis function. The inde-
pendent component analysis (ICA) and principal component
analysis (PCA) are data-adaptive transform methods. The
ICA is successfully utilized for non-Gaussian de-noising.
PCA is a de-correlation method that transforms the original
image dataset into the PCA domain and selects the most sig-
nificant principal components (maximum Eigen-vectors) for
image restoration [17]. Wavelet-based image de-noising is a
multi-resolution image analysis technique that uses different
mother wavelets such as Daubechies, Haar, etc., to obtain
wavelet coefficients. It has been used to de-noise Gaussian,
salt and pepper, and Poisson noise using the appropriate
thresholding operator [18], [19]. In recent years, the most
promising non-local means, collaborative filtering method
in the transform domain is block-matching and 3D filtering
(BM3D) [20]. In this approach, similar 2D image patches are
compiled into 3D groups by the block matching process. The
collaborative Wiener filtering is done in the transform domain
on this 3D group. The improved versions of BM3D are given
in [21], [22]. Curvelet filter is based on theory of multi-
scale geometry (i.e., position, scale, and orientation usage).
It gives better de-noising performance on edges and bor-
ders than state-of-the-art wavelet de-noising methods [23].
It uses ridgelet transform as a primary step, and curvelet
sub-bands are formed with a filter-bank structure formed by
trous wavelet filters. The 2-D contourlet transform provides
spatial and directional resolution to keep contours and details
intact [24].

93340

The image restoration using fuzzy-based methods consid-
ers the image as a fuzzy set and its pixel values as its member.
Fuzzy-based filters use fuzzy rules to design membership
functions by calculating the gradient’s degree in various
directions. The fuzzy impulse noise detection and reduction
method calculate the gradient in eight directions for noisy
pixel detection prior to the filtering [25]. In histogram fuzzy
de-noising filters, the membership function is derived from
the input histogram [26]. It consists of the fuzzy detec-
tion phase and cancellation phase. A detailed explanation of
fuzzy-based techniques is given in [14], [27].

The image de-noising models can be grouped into ana-
Iytical models (stochastic and deterministic) and machine
learning-based models. In analytical models, forward
de-noising model is explicitly known to the user, and the
solution approach is used based on certain chosen criteria.
The deterministic modeling of spatial filters is challenging
for each image type. The edge deterioration and blurring
are common artifacts in spatial and transform domain tech-
niques. On the other hand, in the machine learning mod-
els, the inverse model is learned with the help of image
datasets containing clean and noisy image pairs. The most
important question arises: what is the relative advantage of
machine (deep) learning approach over analytical methods?
In deep learning models, computational burden exists in
the learning phase, whereas the testing phase consists of a
feed-forward model. Whereas analytical methods rely on a
computationally demanding optimization process and heuris-
tic selection of hyper-parameters which is not the solution
for getting good de-noising results. It has been observed
that machine learning models give superior performance
compared to analytical methods, as feature learning makes a
single model apt for considerable variation in the noise level.

Some de-noisers are based on an analytical optimization,
which involves an iterative process based on some stopping
criteria. Although, analytical optimization is involved but
it cannot be directly categorized in the machine learning
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domain which is basically a numerical optimization problem.
Some of the important analytical optimization methods are
total variation regularization [28] and weighted nuclear norm
minimization (WNNM) [29]. Variational-based methods find
the appropriate priors such as low-rank priors, non-local self-
similarity priors, sparse priors, low-rank priors, and gradient
priors. WNNM assigns the weight to the singular value of
an image and analytical optimization is done based on some
energy function.

In recent years, there is a paradigm shift from analyti-
cal models to machine learning models owing to improved
image quality assessment metrics. In the following section,
machine learning-based image de-noisers are explained in
detail. In this paper, the following convention is followed in
explaining methods: y is the noisy input image, x is the clean
image or ground-truth image, v is the noise component added
x to generate y, and the final predicted de-noised image from
de-noiser is X.

C. MACHINE LEARNING-BASED IMAGE DE-NOISING

The machine learning image de-noising techniques have
made considerable progress with introducing benchmark
datasets for a particular application, deep learning advance-
ments, and increased computational power with Graphi-
cal Processing Unit’s (GPU’s). They are further broadly
classified into sparsity-based dictionary learning mod-
els, multi-layer perceptron models, convolutional neu-
ral network-based models, and generative adversarial
network-based models.

1) SPARSITY-BASED DICTIONARY LEARNING MODELS

In the sparsity-based techniques, every image patch is con-
stituted as a linear combination of several patches from
an overcomplete dictionary D. The image encoding is
done with the coding vector e over a complete dictionary
and /i-norm sparse regularizer on coding vector «, i.e.,
mig||oc||1 s.t.x = Da, following a generalized model given
by [30], [31]:

& = arg™™ |ly — D)3 + A el ©)

Here, A is a sparseness-balancing regularization parame-
ter, and |le||; is &s 1-norm. Another design of the model
uses |e|p (e’s 0-norm) in place of ||e||;. K-Singular Value
Decomposition (K-SVD) technique is the pioneering work
that uses dictionary learning to frame the sparse representa-
tion model. The learning of this model can take place from
the benchmark datasets as well as from the input image by
K-SVD [32]. The K-SVD is the iterative process in which
two consecutive steps take place sparse coding of the exam-
ples using the current dictionary and updating the dictio-
nary atoms for optimum data fitting. Some other works as
in [33], [34] follow the same workflow like that of K-SVD
with variation in dictionaries and optimization problems.
The clustering-based sparse representation involves a cost
function (double header /; optimization problem) in which
both structural structuring and dictionary learning is used
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as the regularizer. A typical sparsity-based image de-noising
algorithm is given in Algorithm 1.

Algorithm 1 De-Noising Algorithm of Sparsity-Based de-
Noiser [30]
1. Input: y, where y is the image observed in the noisy
environment
2. Find ¥ = Da, where D is a sparse dictionary con-
structed to suit x, & is the sparsity constraint, and «
is an unknown parameter, A is a sparseness-balancing
regularization parameter set according to:
L =1} lly —Detll3 + A leellg (lleello may be replaced by
lleelly)
Such that L is as low as possible
3. Find the estimate of x according to the following:
& = argmin ||| s.2. ly — De|l, < A, x = D&, where
A is a small-value limiting parameter
4. Solve the above non-deterministic polynomial problem
by using greedy pursuit or convex relaxation
5. Output: X

2) MULTI-LAYER PERCEPTRON MODELS

The multi-layer perceptron (MLP) network, as shown
in Fig. 2, is the feed-forward model that maps the input image
vector (y) with the output image vector (x) with several inter-
mediate hidden layers. The general equation of MLP network
with two hidden layers is given by

X = bs + watanh(ba + wo tanh (b1 + w1y)) )

where w is the weight matrix, b is vector-valued bias, and
the activation function is tanh, which operates component-
wise. The stochastic gradient is used for training with noisy
and clean image pairs. The parameters of MLP are updated
by back-propagation, minimizing the mean-square error.
To increase the training efficiency, data normalization, proper
weight initialization, and learning rate division is done. The
noisy image is broken into overlapping patches, and each
patch is de-noised separately. MLP estimates the de-noised
version of the overlapping noisy patches, and then the average
is calculated for overlapped de-noised patches [35]. There is
an improvement in de-noising performance when de-noised
patches are weighted by the Gaussian window. The MLP with
four hidden layers uses time-series images and has shown sig-
nificant improvement in keeping details and edges intact for
SAR images [36]. The trainable non-linear reaction-diffusion
model [37] is a feed-forward architecture that embeds a stan-
dard non-linear diffusion model in the neural network. The
number of layers of MLP is less because of vanishing gradient
compared to convolutional neural networks that limit their
performance. A multi-layer perceptron de-noising algorithm
is given in Algorithm 2. This algorithm is in accordance with
Fig. 3, which depicts a single hidden layer MLP.

3) CNN-BASED DE-NOISING MODELS
In recent years, the convolutional neural network (CNN)
based models have shown significant improvement in various
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FIGURE 2. Multi-layer perceptron network [35].
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FIGURE 3. One hidden-layer MLP.

image quality metrics compared to other state-of-the-art
methods [39]. The success of CNN models can be attributed
to large modeling capacity and significant advancement in
network training and design. The CNN is designed for grid
or matrix kind of data as input taking inspiration from the
visual cortexes of animals. In CNN models, the convolutional
kernel with learnable parameters is shared across all image
positions. The convolutional kernel can be visualized as a
feature extractor for a particular image restoration applica-
tion. The convolutional layers have a cascade connection,
so extracted features become more complex, hierarchically,
and progressively. CNN model consists of an input layer,
series of intermediate hidden layers, and the output layer.
The convolutional kernel with learnable weights is applied on
each layer, followed by some activation function. The output
of each layer is fed as the input of the next one. The output
of intermediate layers is termed as feature maps. The general
equation of the intermediate feature maps (FM) of " layer
of CNN is given by [40]

FM; = A(ZH]_ FM[™" 5 wi, + bl) 9)

where S; represents selection of the input feature map, FM ﬁ_ !
is the previous feature map, w]li. is the weight of the convolu-
tion kernel of the /" layer, A is the activation function which
can be a rectified linear unit, sigmoid function etc. and bj[»

is the bias in the ™" layer. The training procedure involves
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Algorithm 2 De-Noising Algorithm of Multi-Layer
Perceptron-Based de-Noiser [35]

1. Multi-layer perceptron (MLP) (supervised) learns a
function f(.): R — R? by training on a dataset,
where m and o are the input dimensions and the output
dimensions, respectively

2. GivenY = {y1, y2,¥3, ..., ym} and a target x, it learns
a non-linear function approximator for either regres-
sion or classification

3. Features Y are input to the MLP architecture, which has
an input layer, one or more non-linear hidden layers,
and an output layer that outputs f(Y)

4. Each neuron in the hidden layer transforms the values
from the previous layer as g(w1y1 +. . . +wy, V), Where
g(.): R — R is a non-linear activation function like
hyperbolic tan function

5. The output layer transforms the values received from
the hidden layer into output values

Input / / O/p Image
Image 256 256 x 256
64 FM
X 256 64 FM w (RGB)
(RGB) 256 x 256 x
256 256
64 Conv 64 Conv 3 Conv filters
filters3x3x3 filters 3x3x64
Bias 3x3x64 Bias
(1x1x64) Bias (Ix1x3)
(1x1x64)
Desired Output

Image i

256 x 256 (RGB) Obj Func.
c()=11.113

FIGURE 4. CNN architecture for image restoration [39].

optimizing parameters such as kernels by using clean and
noisy image labels with stochastic gradient descent, Adam’s
algorithm, etc. The cost function optimization takes place
during the training process. The mean square error between
the clean image and its de-noised version is the fundamental
cost function. Fig. 4 illustrates the basic architecture of CNN.
Algorithm 3 gives CNN de-noising process.

4) GAN-BASED DE-NOISING MODELS

The generative adversarial network (GAN) uses generative
modeling with two sub-models, termed generator and dis-
criminator [41]. This network is designed to overcome deep
generative model difficulty of learning complex probabilis-
tic distributions. The generator model is used for extracting
new plausible images from the problem domain, whereas
the discriminator determines whether the generated image
samples are real or fake. The discriminator model acts as
an adversarial network. The main motive of the generator
network is to obtain image samples that can disguise the
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Algorithm 3 De-Noising Algorithm of CNN Based
de-Noiser [38]
1. Input noisy image y, noise standard deviation o and
clean image x
iey=x+v

2. CNN Module: Input: input image or image plus noise
level maps
Intermediate units: Convolution + Batch Normaliza-
tion + Activation function
Output unit: Convolution+ Residual learning

3. Intermediate output is feature maps given by:
FM;; = A(ZiGMJ_ FMﬁ_1 *w]l.i +b]l-), where FMf_1
represents the feature map of / — 1 layer, wj’.i and b; are
weight and bias of [ layer, A is activation function, M;

is selection operator of feature maps.

4. Residual learning implies * = y — R(y), where R
represents residual learning CNN operator.

5. Loss function: [(68) = % vazl IR (v; 6)— (v; — xi) \2,
where 0 denotes CNN parameters, N are the number
of images in the training dataset, y and x represent a
noisy and clean image, R is residual learning.

6. If [(6) = 0, model is trained, else retrain for the next
epoch.

discriminator network. Usually, the generator network maps
the noisy image with the ground-truth, and the discriminator
network uses the loss function to find the difference between
the output image of the generator and the ground truth. The
discriminator finds whether the predicted image by genera-
tor output x = G(y) is real or fake. The other de-noising
methodology involves the extraction of noise blocks from
the input noisy images with the GAN. Thereafter, generated
noise blocks along with clean images from a training dataset
for CNN to produce de-noised output [42]. The following
equation represents GAN objective function:

mGin max V(D, G) = Ex~pdata(x) [logD (x)]
+ Ey~p,pllog (1 =D (G (y))] (10)

where D (x) is the discriminator model, G (y) is the generator
model, pdata (x) is the real data distribution, py(y) is the
generated data distribution (i.e., input noisy image y), and E
is the expected output. Fig. 5 shows the architecture of GAN
for image restoration. Algorithm 4 gives GAN de-noising
pseudocode. TABLE 1 gives advantages and disadvantages
of different machine learning image de-noisers.

Il. MACHINE LEARNING-BASED GAUSSIAN DE-NOISERS

The Gaussian noise de-noisers are used in many impor-
tant applications such as MRI de-noising, optical coherence
tomography images, natural images, etc. The CNN-based
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FIGURE 5. Basic GAN architecture for image restoration.

machine learning model has shown tremendous improve-
ment in image quality assessment metrics as compared to
other state-of-the-art networks. The CNN based de-noisers
have excelled in Gaussian noise de-noising but real
world image de-noising is still a challenging problem.
The Gaussian de-noisers are being designed for adaptive
white Gaussian, spatially variant Gaussian noise, and blind
Gaussian noise. The two important benchmark datasets
BSD-68 and Set-12 are used for comparative analysis for
Gaussian de-noisers. The CNN-based models follow discrim-
inative learning while GAN’s are generative learning models.
CNN models require supervised learning, i.e., the availability
of noisy and clean image pairs in training datasets. In the
recent works, we are progressing towards unsupervised learn-
ing due to the lack of clean-noisy image pairs for real-world
applications. The training of deep learning models involves
optimization of the loss function, which consists of data
fidelity term and regularizer. The different de-noiser variants
are designed by changing the loss function, the number of
layers, training dataset size, activation functions, and so on.
The following section describes some benchmark machine
learning models which are used for image de-noising:

A. METHODOLOGIES OF DICTIONARY LEARNING
MODELS (GAUSSIAN NOISE)

The dictionary learning models achieve sparse representa-
tion by updating the dictionary with the training images.
The fixed dictionary is limited to a specific type of images,
whereas atoms of the learned basis dictionary are empirically
learned for any family of images. The learned dictionary
provides more efficient image priors for Bayesian estimation
as compared to the fixed dictionary. The Gaussian dictio-
nary learning techniques are K-SVD [32], locally learned
dictionary (KLLD) [43], non-local hierarchical learning
with wavelets [44], mean-corrected atoms dictionary learn-
ing [45]. The K-SVD algorithm finds the best dictionary for
the N image samples by solving the following sparsity equa-
tion in which dictionary D is initialized with /> normalized
columns

gf';“y —Dall% such that ||a;||y < To (11

In the above equation, Ty is the no. of non-zero entries in
representation vector ac. The two iterative steps are the sparse
coding stage and the codebook or dictionary update stage.
In the sparse coding step, pursuit algorithm is used for the
computation of the representation or sparse vector « for each
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TABLE 1. Advantages and disadvantages of different machine-learning models.

Machine-
learning model

Advantages

Disadvantages

Dictionary-
learning model

Multi-layer
perceptron
model

CNN

GAN

Dictionary-learning models are powerful tools for
many image restoration, de-noising and
recognition tasks

Most local image patches can be well
approximated by a sparse linear combination of
basis atoms

Constructing dictionaries adaptive to the input
image via some learning process helps achieve
better sparsity than fixed orthogonal dictionaries
like DCT, and wavelets

Dictionary-based learning models help preserve
minute details and texture of images that undergo
noise addition

Capability to learn non-linear models
Capability to learn models in real-time (on-line
learning)

Less number of parameters as compared to fully
connected neural networks

Apt for both known and blind Gaussian de-noising
Concept of transfer learning i.e. the weights
learned by CNN can be used by other network.
Many methodologies are being designed owning
to simple architecture and mathematical modelling

Unsupervised learning method; can be trained
using unlabelled image data as they learn internal
representations of data

Generate data similar to real image data; can
generate images indistinguishable from the real
data

Learn complex distributions of image data
Discriminator is a classifier that can classify
objects

Most dictionary-learning methods consider an
over-complete dictionary and formulate the
learning process as a minimization problem
Minimization problems are very challenging and
mostly non-convex

Minimization in such a case is usually greedy and
computationally demanding

If correlations among dictionary atoms are not well
constrained, the redundancy of the dictionary does
not necessarily improve the performance of sparse
coding

MLP with hidden layers have a non-convex loss
function where there exists more than one local
minimum. Therefore different random weight
initializations can lead to different validation
accuracy

MLP requires tuning a number of hyper-parameters
such as the number of hidden neurons, layers, and
iterations

MLP is sensitive to feature scaling

Analytical approaches have advantage over CNN
in merging prior into the inverse problem solution
Non-avaibaility of image databases for medical
image de-noising and classification

Difficulty in case of unsupervised learning in real
world scenario.

Fail to model a multimodal probability distribution
of data; suffer from mode collapse. Sometimes,
suffer from complete collapse (generated samples
are virtually identical)

Suffer from the problem of vanishing gradients;
training of the initial layers in the net is either
extremely slow or effectively stops

Internal covariance shift is induced by a change in
the input distribution; this slows down the training
Training of GANs can be comparatively slow
owing to the above reasons

input image y, by solving the following equation

The next step is the dictionary update stage. Out of K
columns of the dictionary, i.e., K atoms, each atom is updated
considering one at a time. The image input examples that
use a particular atom are retained, the rest of the exam-
ples are discarded. The contribution of other atoms is also
subtracted from the representation vector. Now, the overall
representation error is minimized by singular vector decom-
position (SVD) to update the dictionary. The flowchart of
K-SVD algorithm is given in Fig. 6.

KLLD algorithm involves clustering, dictionary selection,
and coefficient calculation. In clustering local, features cap-
ture the local structures of the image data. The next step
that is dictionary selection is the optimization according to
the clustering done in the first step. In the final step, coeffi-
cients are calculated for dictionary atoms, which are linearly

Input Sparse Dictionary De-noised
min | |y‘ — Da| |2 such that leeillo < To (12) Noisy —=>{ Coding Step [—={ Update Step | =  Output
o i 2 0
! Image Tmage
Fix Fix sparse
dictionary representatio
D, find n vector a,
sparse update
representatio dictionary D
n vector &
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FIGURE 6. Flow chart of K-SVD algorithm [32].

combined subjected to the kernel weights. The non-local hier-
archical dictionary learning is achieved by sparsity and mul-
tiresolution analysis of wavelets in each decomposition level.
Recently, K-SVD algorithm is modified based on dictionary
learning with mean corrected atoms, which outperformed
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Algorithm 4 Image de-Noising for GAN-Based Image
de-Noiser [41], [42]

Algorithm 5 De-Noising Algorithm of Sparsity-Based Dic-
tionary Learning Models [46]

1. Input noisy image (y) to Generator G; p,(y) being the
noise distribution.

2. Generator generates reconstructed image data G(y)
with distribution p, (y)

3. Pass original image data (x) with distribution p; (x)
and reconstructed image data G(y) to the discriminator

4. Discriminator D outputs the probability of the input
belonging to the original data

5. G and D play a two-player minimax game in
an adversarial setup, in which G and D try to
minimize and maximize a value function based
on binary cross-entropy function V (G,D) =
Ex~p, [InD (x)]+Ey~p, [In(1 — D (G(y))] respectively

6. Training of GAN: optimize the value function as
mingmaxpV (G, D)
a) Fix the learning of G: update generator parame-
ters (Op) by gradient ascent using m data samples
and m fake samples as

a1
———[InD (x) + In(1 — D (G(y))]
0p m
For fixed G, V (G,D) will be maximum for
— _ P®
D) = 5 5pm o
b) Fix the learning of D: update discriminator
parameters () by gradient descent using m fake

samples as
2 l[l (I -=D(GW)]
dgm G0

For fixed D, mingV = 2JS(px||pg) — 2In2 is evaluated,
where JS is known as Jensen-Shannon divergence.

7. Training of GAN ends when JS(px||pg) becomes 0,
i.e., px = pg and mingmaxpV (G, D) — 2In2

K-SVD in terms of PSNR. In [46], the authors propose to
break up the noisy image into patches and treat the vector-
ized version of each patch as signals, thereby restricting the
dimensionality of each atom in the dictionary. The size of the
patch is chosen to allow for enough details of the underlying
signal. Overlapping patches are chosen to reduce blocking
artifacts that might result at the boundaries. Dealing with
patches as signals, the K-SVD algorithm can be effectively
scaled to de-noise large images. The algorithm is given in
Algorithm 5.

B. METHODOLOGIES OF CNN-BASED MODELS
(GAUSSIAN NOISE)

The de-noising CNN ( DnCNN) is the benchmark de-noiser
which is being used for image restoration tasks like image
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1 Input image ¥ = A = {A,As,..
expressed as a set of A signals)
2. De-noise Y via an ill-posed problem of finding patches
Z,whereA =7 +v
3. De-noised image patches Z are obtained with the help
of an optimization problem, which aims at minimizing
the following cost function:

LA (Y s

A A

X,Z = argming 4 ||Z — Al + B IDX — Z||}

+ D i lxillg

4. Tt is solved in terms of smaller optimization problems
defined as:
X,Z = argmin,, ;|Z—A|3 + B|Dx; — RZ|} +
> i i llxillp, where R; selects i particle from Z,
ie., z; = R;Z, and B is a parameter that depends on
noise variance

5. The cost function minimizes the error between the
restored image and the input noisy image, under the
assumption that each patch in the input image can be
represented as a sparse linear combination of patches
in the dictionary D

6. The closed form solution of the above optimization
problem:

BA + ZR,»Dx,-

Z o i

- T

BIC Y R R,
1

super-resolution and JPEG image de-blocking apart from the
Gaussian image de-noising [38]. DnCNN model overcomes
the disadvantage of trainable non-linear reaction-diffusion
(TNRD) and a cascade of shrinkage fields [47], which uses
specific priors based on the analysis model. So, the priors
fail to capture image structures effectively. Moreover, many
handcrafted parameters are used during stage-wise greedy
training in combination with joint fine-tuning.

The additive noise (v) is combined with the clean image (x)
to form the noisy image (y) . The DnCNN model uses residual
learning with the batch normalization module. In residual
learning, the CNN learns the noise component instead of a
de-noised image. The residual learning model is given by
R(y) =~ v, and the desired output image is y — R (y). The
batch normalization achieves faster training by mini-batch
stochastic gradient by reducing the internal co-variate shift.
It is implemented by normalization and scale + shift step
before non-linearity in each layer. In the / depth network,
the first layer is a convolutional layer with ReL.U activation,
which uses sixty-four filters (3 x 3 x no. of image channel)
to give sixty-four feature maps as output. The intermediate
layers are repeated units of convolution (sixty-four filters of
size 3x3x64) and ReLLU activation with batch normalization.
The concluding layer is a convolutional layer which uses
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same number of filters as the number of image channels of
size 3 x 3 x 64. The model gives same de-noising results
with both stochastic gradient descent and Adam’s algorithm
by optimizing the following loss function:

1
1(®) = N Ziv:l IR (v;.©) — (v; — xi) H2 (13)

where © denotes DnCNN parameters, N are the num-
ber of images in training dataset, y and x represent a
noisy and clean image, R is residual learning. There are
other de-noisers variants whose basic architecture resem-
bles with DnCNN network. Wavelet de-noising CNN i.e.,
WDnCNN [48] uses residual learning in the novel feature
space of the wavelet domain. In this method, the network
is trained with four decomposed wavelet sub-bands, and the
architecture is the same as that of DnCNN. SCNN [49] is
residual learning-based model which uses soft shrinkage acti-
vation function for varying noise levels of the input image.

IDCNN [40] is another deep convolutional neural network
that follows the same residual learning architecture as that
of DnCNN without incorporating batch normalization. This
network fails to converge with stochastic gradient descent
because of the gradient explosion. So, this network clips the
gradient in the specific pre-defined interval, i.e., gradient
clipping procedure. It has been observed that network perfor-
mance improves as the depth of the network increases from
four to ten. In this model, a non-fixed noise mask is used
during the process so that a single model can be used for
different noise levels. The loss function of IDCNN is given
by

1) =|x—2|, (14)

where x and Xx denote clean and estimated images
respectively.

The ECNDNet [50] is a residual learning model which
follows the loss function given in equation (13). The archi-
tecture is the same as that of DnCNN. The main feature of
the ECNDNet network is the usage of dilated convolution to
increase the receptive field size. It reduces the computational
cost and enhances the extraction of more context informa-
tion. Batch Normalization Residual Network (BRDNet) also
uses residual learning, batch re-normalization, and dilated
convolution to address the problem of internal co-variate
shift for extraction of more features [51]. Deep itera-
tive down-up CNN (DIDN), densely connected hierarchial
denoising network (DHDN) [52], and multi-level wavelet
CNN (MWCNN) [53] are based on UNet [54] architecture
which was designed for the semantic segmentation. The
deep iterative down-up CNN (DIDN) [55] is also based on
receptive field size variation for improving de-noising results.
It consists of four stages: initial feature extraction, down-up
block, reconstruction, and enhancement. The initial feature
maps are extracted by convolution followed by iterative up
and down sampling of feature maps by down-up block. The
outputs of all the down-up blocks are fed into the reconstruc-
tion block, which has convolutional and parametric rectified
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linear units. The concatenated output of the reconstruction
block is fed into an enhancement block with a convolution
unit. DHDN network uses modified UNet architecture to
learn a large number of parameters, solves vanishing gradient
by residual learning and dense connectivity to convolution
layers. In MWCNN, multiwavelet transform is integrated
into UNet architecture to increase the receptive field size by
reducing the resolution of feature maps.

The fast and flexible de-noising convolutional neural net-
work (FFDNet) is the fastest in terms of implementation
time, and it can handle spatially variant Gaussian noise [56].
The unique feature of this model is that unlike other net-
works, the mapping function contains a noise level map in
the input. The noise level map plays a crucial role in keeping
the trade-off between noise reduction and detail preserva-
tion. Conventionally, the mapping function learns de-noised
images from noisy images, CNN parameters, and Gaussian
noise standard deviation. In FFDNet, the CNN parameters are
not affected with variation in Gaussian noise level. It works
on downsampled sub-images, which tend to increase the
receptive field. The architecture of FFDNet has the same units
as that of DnCNN, i.e., convolutional operator in the first
layer, repeated units of convolution, batch normalization, and
ReLU activation, concluded with the convolutional layer. The
Adam’s algorithm [57] is used for training to minimize the
following loss function.

1
1@ =523 IFeMie) - as)

where F' denotes FFDNet learning function and M is noise
level map.

Some models like NN3D [58] and graph CNN [59] which
exploits non-local and local similarities through non-local
filter and graphical signal processing. The NN3D uses stan-
dard pre-trained CNN in cascade connection with standard
non-local filter. The DnCNN, IDCNN, and FFDNet focus
towards local features with biased receptive field. The NN3D
integrates non-local features in a single modular framework
to further improve de-noising performance. Similarly, graph
CNN also exploits the non-local similarities by incorporating
a graphical convolutional layer. The graph CNN layer works
on feature maps to aggregate similar spatially adjacent and
spatially distant pixels. The averaging of local and non-local
pixels is done to produce the desired feature map. Universal
Denoising network (UNet and UNLNet) is another network
that integrates convolution and non-local filtering layers for
both gray and color image denoising [60]. Fig 7 depicts
the block diagram of the combined architecture of DnCNN,
IDCNN, SCNN, and FFDNet.

The models, namely PDNN [61], IRCNN [62], and
DRUNet [63] integrate the observational model with deep
CNN’s discriminative learning. The model-based methods
require several iterative steps to solve the optimization prob-
lem, but they are utilized to solve different image restoration
tasks like de-blurring, super-resolution, and de-noising with
the single model with the help of an image degradation
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FIGURE 7. Block diagram depicting the architecture of DnCNN, IDCNN, SCNN, and FFDNet.

matrix. They utilize the powerful de-noising capabilities of
CNN and prior of the observational models in a single
modular framework. In [61], [62], model based optimiza-
tion is merged with robust image priors with variable
splitting technique. The variable splitting reduces the num-
ber of CNN parameters and enhances the CNN training
efficiency. The observation model is unfolded into dis-
criminating CNN learning, which is composed of multiple
de-noisers modules interleaved with back-projection (BP)
that ensure the observation consistencies. DRUNet [63] is the
improved version of IRCNN and its methodology involves
usage of CNN as deep denoiser prior accompanied by
half quadratic splitting based iterative algorithm for solv-
ing deblurring, super-resolution, denoising and color image
demosacking.

Recently, the attention-guided de-noising convolutional
neural network (ADNet) [64] has outperformed all previ-
ous CNN’s. They are specifically designed to overcome the
disadvantage of increment in network length. As the length
of the network increases, the influence of shallow layers
becomes weak in de-noising performance. It is divided into
four major modules; sparse block (SB), feature enhancement
block (FEB), attention block (AB) and reconstruction block
(RB). The SB reduces the depth and improves the efficiency
of the network with the usage of convolution and dilated
convolution operator. It is twelve layer block with dilated
Conv + BN + ReLU (second, fifth, ninth, and twelfth layer)
and Conv + BN + ReLU in the rest of the layers. The next
(13" to 16™) layers form FEB to create robust features by
merging global and local features. The first three layers of
FEB is Conv + BN + ReL.U, and the fourth layer is Conv.
The output of the Conv layer and input noisy is concatenated
to improve the representation capability further. It is followed
by the usage of tanh activation for the non-linearity. The
AB consists of just one Conv layer, which compresses the
features into the weights to modify the previous layer output.
RB is the final stage, which incorporates subtractor for the
residual learning process. The architecture of ADNet is given
in Fig. 8. The fully convolutional encoder-decoder structure
with skip connections is also used for Gaussian and speckle
noise removal [65].
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The PReLU (parametric rectified linear units) and edge
aware based CNN de-noiser is one of the latest works that
has produced good PSNR results for both BSD-68 and
Set-12 compared to other networks [66]. It is improvised
DnCNN network with PReLU as an activation function which
learns the slope in the negative direction as well. The inclu-
sion of principal component analysis on the feature maps in
sixteenth layer has led to the extraction of more features. The
final step is cascading the network with an adaptive bilateral
edge aware filter to further refine the edge and texture details.

C. METHODOLOGIES OF GAN-BASED MODELS
(GAUSSIAN NOISE)

The GAN network given in [67] in uses DenseNet CNN as the
generator network to ease up the vanishing-gradient problem
and Wasserstein-GAN as the loss function. The generator net-
work outputs an estimated ground truth image from the noisy
image, whereas the discriminator eliminates the difference
between the generator output and the ground-truth image.
The generator network follows the architecture of DenseNet
with eight Dense Blocks, along with input, output, and bottle-
neck convolution block. The generator extracts both low-level
and high-level features efficiently. The discriminator network
uses leaky ReLLU as the activation function and layer normal-
ization instead of batch normalization. It has eight convolu-
tional layers and two fully connected layers, which assign a
probability to generated images and ground-truth images. The
value function of de-noising GAN network is given by

minmax V (D, G)= Ex'vpdata(x) [D (x)] _Ey~pv(y) [D 0’)]
G DeD ;

(16)
where D is the set of 1-Lipschitz functions. The objective is to
make an approximation of K * W (pdata (x) , py (y)), in which
K is a Lipschitz constant and W is a Wasserstein distance.

The gradient penalty term is added so that the gradient of the
discriminator network does not exceed K, and is given by

3y ~pWE [ (19D 0)l12 = 1)’ (17)
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FIGURE 8. Architecture of ADNet [64].

Loss function is the combination of content loss and adver-
sarial loss given as

= )\'lGAN + lcontent (18)

where, content loss is given by /1 or > norm, and adversarial
loss is given by Wasserstein-GAN critic function.

The GAN-CNN based blind de-noiser (GCBD) model [42]
extracts noise blocks from the clean images. The GAN pro-
duces a noisy block instead of the de-noised image. The noisy
blocks extracted from the GAN are used for the creation of
a training dataset for CNN. The GCBD model is a cascade
connection of GAN followed by CNN. The generated blocks
by GAN along with extracted noise blocks are used for
training the discriminative learning based CNN. The GCBD
can be used when there is an absence of paired data for the
supervised training of CNN. It gives promising results for
Gaussian noise, mixed noise, and real-world noisy images.
The limitation is that noise is taken only as additive white
noise with zero-mean.

IIl. MACHINE LEARNING-BASED IMPULSE DE-NOISERS
A. METHODOLOGIES OF DICTIONARY LEARNING
MODELS (IMPULSE NOISE)

Wang et al. have proposed an adaptive dictionary-
learning-based method to preserve image structure in
impulse-contaminated images with the help of a robust
l1-norm data-fidelity term to help impulse noise cancella-
tion [68]. In this algorithm, the restoration problem is math-
ematically formulated into an /1 — /; minimization objective
and solved under the augmented Lagrangian framework
through a two-level nested iterative procedure. The algorithm
has high image restoration power to produce restored images
with a high PSNR value. Guo et al. [69] have introduced a
novel algorithm to enhance image sparsity to help remove
salt and pepper noise removal with a fast multiclass dic-
tionary learning, and then both the sparsity regularization
and robust data fidelity are formulated as minimizations
of Iy — lp norm for impulse noise removal. Additionally,
a numerical algorithm of modified alternating direction min-
imization is derived to solve the proposed de-noising model.
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This algorithm excels in image detail preservation. Deka et al.
in [70] have proposed a novel two-stage de-noising method
for removing random-valued impulse noise from an image.
In the first stage, an impulse noise detection scheme is used
to detect the pixels which are likely to be corrupted by the
impulse noise, viz., noise candidates. In the second stage,
the noise candidates are reconstructed by the image impaint-
ing method based on sparse representation in an iterative
manner until convergence is achieved. This algorithm works
well in terms of both visual and quantitative aspects.

B. METHODOLOGIES OF CNN-BASED MODELS (IMPULSE
NOISE)
Chen et al. have proposed a blind CNN architecture for
random-value impulse noise (RVIN) removal [71]. This
improvised de-noising mechanism for RVIN suppression
works on the principle of flexible noise ratio prediction,
which proved to be better than DnCNN-based RVIN sup-
pression by eliminating unnecessary dependence on the exact
perception of the noise ratio. Random patches are selected
from the RVIN-corrupted test image and feature vectors that
indicate whether the centre pixel is contaminated or extracted
by the predictor. These feature vectors are composed of
numerous statistics, viz., the multiple rank-ordered abso-
lute differences (ROADs), the clean pixel median deviation
(CPMD), and the edge pixel difference (EPD). They are
rapidly mapped to noisy/clean (1 for noisy, O for clean) labels
by the pre-trained noise detector. According to the ratio of the
obtained noisy labels to the total number of selected patches,
the predictor provides the noise ratio of the whole image.
From the output of the NRP, i.e., the predicted noise ratio,
the most appropriate DnCNN specifically trained for this
noise ratio is exploited for de-noising. Under the guidance
of the NRP, the proposed method has the ability to handle
unknown noise ratios. This method performs well in terms of
execution efficiency and image restoration. Turkmen [72] has
proposed an artificial neural network for de-noising RVIN-
incorporated images by detecting the noisy pixels.

The statistics used to detect the RVIN noisy cen-
tres are rank-ordered absolute differences (ROADs), and
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FIGURE 9. Block diagram depicting the basic concept of impulse de-noisers.

rank-ordered logarithmic difference (ROLD) values. These
are the inputs to the ANN for the detection process. After
the detection process is completed, the corrupted pixels are
restored by the edge-preserving regularization (EPR) method,
allowing edges and noise-free pixels to be preserved. This
mechanism works well in the presence of high-density RVIN.

Li et al. [73] have improvised the usage of densely
connected convolutional networks (DenseNet) to de-noise
images corrupted by impulse noise with the help of CNN to
learn pixel-distribution features from noisy images. The pro-
posed method, viz., a densely connected network for impulse
noise removal (DNINR), captures the pixel-level distribution
information using wide and transformed network learning.
This mechanism shows significantly better results in terms
of edge preservation and noise suppression.

Khaw et al. [74] have used an efficient CNN with par-
ticle swarm optimization (PSO) for high-density impulse
noise removal. This high-density impulse noise detection
and removal model mainly consists of two parts: impulse
noise removal and impulse noisy pixel detection for restora-
tion. The deep CNN architecture facilitates the de-noising
procedure to filter out noise from the noisy images. The
PSO algorithm optimizes the threshold values for detecting
impulse noisy pixels. The method is robust and works well
on both gray and color images in terms of both qualitative
and quantitative aspects.

The RVIN can also be removed with the combination of
classifier and regression CNN [75]. Classifier network sep-
arates noisy and noise-free pixels. Thereafter, the regression
network uses noise-free pixels along with the original noisy
input image to predict the output image. Batch Normalization
is embedded in both classifier and regression network to
accelerate the de-noising performance.

Fig.9 shows the overall architecture of the Impulse-noise
removal model. The first step is the extraction of a ran-
dom patch from the noise-corrupted image, and then a
classifier N/W is used to predict noisy labels. Thus, the
noise-contamination determiner determines the predicted
labels (PLs) in case of Jin et al.,, and extracts feature
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vectors (FVs) in case of Chen and Turkmen. These feature
vectors are composed of numerous statistics, viz., ROADs,
CPMD, EPD, ROLD, etc. Finally, a de-noiser N/W is used
to de-noise the contaminated image based on the identified
noisy centers.

IV. MACHINE LEARNING-BASED POISSON DE-NOISERS
Poisson noise is a special type of noise that is not additive
in nature. Unlike the Gaussian noise, the noise power is
measured by the peak value as its strength is dependent on
the image intensity. It is natural to define the noise power in
an image by the maximal value in the image, i.e., its peak
value. Thus, Poisson de-noisers are described in terms of the
peak value as the strength of the noise power.

A. METHODOLOGIES OF DICTIONARY LEARNING
MODELS (POISSON NOISE)

Giryes et al. [76] have proposed a novel method to apply the
sparse-representation technique to image patches extracted,
adopting the same exponential idea. The proposed algorithm
uses greedy pursuit with boot-strapping based stopping con-
dition and dictionary learning within the de-noising process.
The stopping criterion is novel in its nature. The paper effec-
tively migrates from the Gaussian Mixture Model (GMM) to
a dictionary-learning based model by resolving the difficul-
ties involved in the conversion process. The reconstruction
performance of the proposed scheme is competitive with
leading methods in high SNR, and achieving state-of-the-art
results in cases of low SNR.

B. METHODOLOGIES OF CNN-BASED MODELS (POISSON
NOISE)

Kumwilaisak er al. [77] have proposed a method
(CNN+ LSTM) based on Deep Convolutional Neural and
Multi-directional Long-Short Term Memory Networks to
de-noise images of Poisson noise. CNN layers are used to
extract image features and to estimate noise bases in the
images, and the multi-directional LSTM layers are effi-
ciently used to memorise the statistics of residual noise
components, which possess long-range correlations and are
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sparse in the spatial domain. The Blahut-Arimoto algorithm
is used to numerically derive a distortion-mutual information
function for the image de-noising algorithm. The algorithm
shows state-of-the-art performance in terms of objective and
subjective qualities. Su et al. [78] have proposed a novel
method to tackle the problems caused due to Poisson noise
in the low-light imaging field. This proposal is that of a
deep multi-scale cross-path concatenation residual network
(MC2RNet) which incorporates cross-path concatenation
modules for de-noising. MC2RNet learns the remnant residue
between the noisy and the latent clean image to facilitate
the model training procedure. This method opts for blind
Poisson training over discriminative de-noising algorithms
to train a single model for handling Poisson noise with
different levels. The algorithm shows a better performance
in terms of peak signal-to-noise ratio and visual effects.
Ramez et al. [79] have proposed a flexible and data-driven
method to de- noise Poisson-corrupted images, which reduces
the heavy ad hoc engineering load occurring due to com-
putational post-processing in the contemporary de-noising
procedures. They have used a powerful framework of deep
CNNs and a training mechanism that trains the same network
with images having a specific peak value. Thus, by using
a supervised approach and the representation capabilities of
deep CNNs, and using a specific class of images for training,
the authors have presented a comparatively simple method
that shows state-of-the-art performance both qualitatively and
quantitatively and is an order of magnitude faster than other
methods. Ramez et al. [80] have introduced a methodology
that exploits the architecture of a fully convolutional CNN
that uses shallow layers to handle local noise statistics and
deeper layers to recover edges and enhance textures. The
de-noiser is made class-aware by exploiting semantic class
information that boosts performance, and enhances textures,
and reduces artifacts. The residual learning based Gaussian
de-noiser (DnCNN) [38], discussed in section 2.2 can also be
trained for Poisson noise removal with training with Poisson
noise corrupted data patches and relevant hyper-parameter
settings [77].

V. MACHINE LEARNING-BASED MIXED NOISE
DE-NOISERS

The extraction of the clean image from mixed noise corrupted
image is very complex problem because of the high-level of
non-linearity in the noise distribution. The combination of
Gaussian and impulse noise is present in many practical appli-
cations. The CNN based transfer learning models, dictionary
learning model, and variational based mixed noise model
are the machine learning models developed for mixed-noise
removal. The comparative analysis of various mixed noise
models is difficult as mixed noise can be modeled in different
ways. The expression of noisy image pixel y obtained by
corruption with the Gaussian and SPIN noise is given by

dpmin With probablity p/2
y= dmayx With probablity p/2 (19)
X + v with probablity 1 — p
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where d,;, and d,, are minimum and maximum values
in the entire image dynamic range with probability of p/2.
The AWGN noise v is added with the probability 1 — p.
Similarly, the expression of noisy image pixel y obtained by
the corruption with the SPIN, RVIN and Gaussian noise is
given by:

dpin With probablity p/2
dmay With probablity p/2
d with probablity #(1 — p)
X 4+ v with probablity (1 — r)(1 — p)

(20)

where d is random pixel value with the probability r (1 — p).

A. METHODOLOGIES OF DICTIONARY LEARNING
MODELS (MIXED NOISE)

The dictionary learning models are designed for mixed
Gaussian noise of different standard deviation and mixed
Gaussian-impulse noise [84]. The energy minimization
model with the weighted /2 — [° norm is being used for mixed
noise removal such as Gaussian-Gaussian mixture, impulse
noise, and Gaussian-impulse noise. It integrates maximum
likelihood estimation and sparsity over the learned dictio-
nary. Modified-SVD is used for low rank approximation.
In the recent structured dictionary learning model [87], two
structured dictionary learning models are combined together.
The data-fidelity term uses /,-norm fidelity to fit image
patches and /,-norm regularizer for the sparse coding. The
authors in [32] propose a novel algorithm to tackle mixed
Gaussian noise, i.e., the K-SVD algorithm, which generalizes
the K-means clustering process for adapting dictionaries in
order to achieve sparse signal representations on a given set
of training signals. A dictionary is sought for that leads to the
best representation for each member in the set, under strict
sparsity constraints.

B. METHODOLOGIES OF CNN-BASED MODELS (MIXED
NOISE)

The CNN-based transfer learning, four-stage convolutional
filtering model is mixed noise de-noiser designed for a mix-
ture of Gaussian and impulse noise [82]. It uses a rank order
filter in the preprocessing step, which is Cai’s filter in case
of Gaussian and SPIN, whereas the combination of adaptive
median filter and adaptive center weighted median filter is
used in the case of Gaussian, SPIN, and RVIN. The bilinear
interpolation is performed on rank order filter output to get a
slightly smoother version of the noisy image. The purpose of
bilinear interpolation is to suppress high-frequency compo-
nents that occurred due to rank order filtering on the Gaussian
noise. It is followed by the four-stage convolutional filtering.
The first stage consists of the conv layer and ReL.U activation
function followed by the max-pooling layer. The second and
third stages consist of the conv layer and ReLU activation
function. The fourth stage is the conv layer. The squared
Frobenius norm is used as the loss function, and training
is done by the back propagation algorithm. The other CNN
model for mixed Gaussian and impulse noise involves two
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parts: the first half for impulse noise removal and the second
half for the Gaussian noise removal [83]. It consists of the
input layer, intermediate layers of convolution, batch normal-
ization, and leaky ReLU followed by the convolutional output
layer. The second part of Gaussian noise removal has a skip
connection for residual learning. CNN model given in [88],
has conv+ReLu+BN as basic building block and shows best
structural metrics results for both known and unknown noise
level of mixed Gaussian-Impulse noise [88]. The CNN is
used as a regularizer in traditional variational based methods
for mixed noise removal [86]. The mixed noise parame-
ters are iteratively estimated by variational method followed
by noise classification according to the statistical parame-
ters. The methodology is implemented by optimization of
sub-problem involving four steps which are regularization,
synthesis, parameters estimation and noise classification.

VI. REAL WORLD-DENOISERS

Xu et al. have constructed a benchmark dataset to de-
noise real-world images [89]. The authors have used dif-
ferent cameras with different camera settings. They have
evaluated different de-noising methods on the new proposed
dataset as well as previous datasets for a proper compari-
son and subsequent analysis. Extensive experimental results
demonstrate that the methods designed specifically for real-
istic noise removal based on sparse or low rank theories,
achieve good de-noising performance and are robust. Another
observation made by the authors suggests that the proposed
dataset is more challenging for the state-of-the-art meth-
ods. In Kim et al. [90], a grouped residual dense network
(GRDN) is proposed, which is an extended and generalized
architecture of the state-of-the-art residual dense network
(RDN) [91]. The core part of RDN is the grouped residual
dense block (GRDB) and is used as a building module of
GRDN. Cascading GRDNS aids the de-noising performance
significantly. Inspired by the GAN modeling technique, the
authors have made their own generator and discriminator for
real-world noise modeling. Lin et al. [92] have constructed
a new dataset to solve the problem of low availability of
proper datasets and obtained the corresponding ground truth
by averaging, and then they extended them through noise
domain adaptation. Furthermore, they went on to propose
an attentive generative network by injecting visual attention
into the generative network. During the training, the visual
attention map learns noise regions. The generative network
pays more attention to noise regions, which contributes in
balancing between noise removal and texture preservation.
Extensive experiments show that this method performs well
both qualitatively and quantitatively. Chen et al. have pro-
posed a Deep Boosting Framework (DBF) [93] for real-world
image denoising by combining the deep learning into the
boosting algorithm. The DBF replaces conventional boosting
units with elaborate convolutional neural networks. The out-
come is a lightweight Dense Dilated Fusion Network (DDFN)
as the boosting unit, which addresses the vanishing gradient
problem during training due to the cascading of networks
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while promoting the efficiency of limited parameters. This
method reduces the domain-shift issue with the one-shot
domain transfer scheme. This is a strong technique in terms of
real-world de-noising. Real-world de-noising has been tested
and evaluated on different datasets like DND and NIGHT.
DND is a novel benchmark dataset which consists of real-
istic photos from 50 scenes taken by 4 consumer cameras.
The NIGHT dataset is divided into 20 images (denoted as
NIGHT-A) and the other 5 images (denoted as NIGHT-B).
Another dataset used is RID. It has 20 representative scenes,
which are captured under different shooting conditions. The
problems faced in real-world de-noising are as follows:
(1) The noise in real-world noisy images is very complex,
which cannot be described by simpler distributions like Gaus-
sian or Poisson. (2) The inherent practicality of real-world
noisy images makes the de-noising more difficult than the
synthetic case. (3) the noise distribution may change along
with the in-camera imaging pipeline [94]. It thus makes the
noise distribution in a captured RGB image different from its
Gaussian assumption in the RAW space. (4) The problem of
domain shift cannot be neglected in the practical scenario.
It can neither be neglected between the synthetic and the
real-world noise, but the characteristics of real-world noise
can also exhibit differences pertaining to different camera set-
tings (viz., sensor or aperture size), shooting conditions (viz.,
light, environment, and temperature), and imaging pipelines
(viz., smartphone and professional camera) even under the
same ISO values [93]. These problems make real-world
image de-noising difficult and still a challenging task.

VIi. BLIND IMAGE DE-NOISERS

The noise models are defined for a particular noise type
with known probability distribution function. For example,
in case of Gaussian noise the standard deviation of the noisy
image is known and the corresponding de-noised images are
calculated. However, in real life scenario, the noise can be
due to combined effect of various sources and noise modeling
input parameters may not be well-defined. So, de-noisers
which produce a de-noised image even when noise level of
input image is not defined are termed as blind de-noisers.
The models are trained in such a way that it can incorporate
a wide range of unknown noise levels. Another approach is
to estimate noise levels of the input image, which does not
produce accurate de-noised images due to inaccurate noise
approximation. BM3D is the non-learning blind de-noiser
based on leveraging self-similarity by joint filter application
on self-similarity image patches.

The DnCNN [38] model based on residual learning and
batch normalization is the blind Gaussian de-noiser in which
single model is trained with varying noise levels from zero
to fifty-five, down-sampled images with different upscal-
ing factors and images (JPEG) with multiple quality fac-
tors. So, the same network can be used as blind Gaussian
de-noiser, JPEG image de-blocker and single-image super-
resolution. Although FFDNet [56] improves DnCNN perfor-
mance at noise level fifty and seventy-five on BSD-68 dataset,
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TABLE 2. Comparison of PSNR (in dB) value of different machine learning models on set-12 dataset.

Images CMan  Hous Pepper  Starfis Monar  Airpla  Parrot Lena Barbara  Boat Man Couple  Average
e s ch ne

Gaussian noise level 6=15
K-SVD [32] - 34.30 - - - - 30.97 - - - 30.46 - -
K-LLD [43] - 33.81 - - - - 30.91 - - - 30.65 - -
CSF [47] 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.32
TNRD [37] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.50
DnCNN [38] 32.61 3497 33.30 32.20 33.09 31.70 31.83 34.62 32.64 3242 32.46 32.47 32.86
IDCNN1[40] 32.54 34.87 33.24 - 35.49 32.79 - 33.75 33.15 31.81 - - -
IDCNN2 [40] 32.24 34.83 33.11 - 35.38 32.68 - 33.70 32.98 31.73 - - -
FFDNet [56] 32.42 35.01 33.10 32.02 32.77 31.58 31.77 34.63 32.50 32.35 32.40 32.45 32.75
PDNN[61] 32.44 35.40 33.19 32.08 33.33 31.78 31.48 34.80 32.84 32.55 32.53 32.51 3291
gr;]phCNN 32.58 35.13 33.27 32.42 33.25 31.84 31.89 34.57 32.84 32.41 32.42 32.40 32917
ECNDNet[50] 32.56 34.97 33.25 32.17 33.11 31.70 31.82 34.52 32.41 32.37 32.39 32.39 32.81
IRCNN [62] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.77
BRDNet[51] 32.80 35.27 33.47 32.24 33.35 31.85 32.00 34.75 32.93 32.55 32.50 32.62 33.03
ADNet [64] 32.81 3522 33.49 32.17 33.17 31.86 31.96 34.71 32.80 32.57 32.47 32.58 32.98
ADNet-B [64] 31.98 35.12 33.34 32.01 33.01 31.63 31.74 34.62 32.55 3248 32.34 32.43 32.77
PReLU [66] 33.18 35.59 33.54 33.17 34.20 32.65 32.73 35.21 32.25 32.90 32.76 32.78 33.41
MWCNN [53] - - - - - - - - - - -- - 33.20

Gaussian noise level 6=25
K-SVD [32] - 32.12 - - - - 28.12 - - - 27.59 - -
K-LLD [43] - 31.77 - - - - 28.40 - - - 28.17 - -
MLP [35] 29.61 32.56 30.30 28.82 29.61 28.82 29.25 32.25 29.54 29.97 29.88 29.73 30.03
CSF[47] 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.83
TNRD[37] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06
DnCNN[38] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43
IDCNN1[40] 30.06 32.94 30.79 - 32.85 30.06 - 31.13 30.45 29.18 - - -
IDCNN2[40] 29.98 32.87 30.71 - 32.77 30.00 - 31.08 30.18 29.12 - - -
FFDNet [56] 30.06 33.27 30.79 29.33 30.14 29.05 29.43 32.59 29.98 30.23 30.10 30.18 30.43
PDNN[61] 30.12 33.54 30.90 29.43 30.31 29.14 29.28 32.69 30.30 30.34 30.15 30.24 30.54
GraphCNN[59] 30.12 33.22 30.87 29.76 30.51 29.30 29.48 32.42 30.28 30.17 30.10 29.99 30.516
ECNDNEet[50] 30.11 33.08 30.85 29.43 30.30 29.07 29.38 32.38 29.84 30.14 30.03 30.03 30.39
IRCNN [62] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38
BRDNet[51] 31.39 3341 31.04 29.46 30.50 29.20 29.55 32.65 30.34 30.33 30.14 30.28 30.61
ADNet[64] 30.34 33.41 31.14 29.41 30.39 29.17 29.49 32.61 30.25 30.37 30.08 30.24 30.58
ADNet-B[64] 29.24 33.38 30.99 29.22 30.38 29.16 29.41 32.59 30.05 30.28 30.01 30.15 30.46
PReLU [66] 31.20 34.37 31.86 31.06 32.02 30.60 30.73 33.03 30.68 30.82 30.73 30.74 31.49
MWCNNJ[53] - - - - - - - - - - - - 30.84

Gaussian noise level 6=50
MLP [35] 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78
TNRD [37] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81
DnCNN[38] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18
IDCNN1[40] 26.80 29.89 27.22 - 29.23 26.52 - 27.69 26.50 25.87 - - -
IDCNN2[40] 26.82 29.76 27.20 - 29.18 26.45 - 27.68 26.51 25.87 - - -
FFDNet [56] 27.03 3043 27.43 25.77 26.88 25.90 26.58 29.68 26.48 27.32 27.30 27.07 27.32
PDNN [61] 27.12 31.04 27.44 25.95 27.00 25.97 26.42 29.85 27.21 27.42 27.32 27.23 27.50
[C;r;]phCNN 27.00 30.16 27.40 25.92 26.89 25.93 26.43 29.32 26.56 27.05 27.19 26.75 27.217
ECNDNet[50] 27.07 30.12 27.30 25.72 26.82 25.79 26.32 29.29 26.26 27.16 27.11 26.84 27.15
IRCNN [62] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.14
BRDNet [51] 27.44 30.53 27.67 25.77 26.97 25.93 26.66 29.73 26.85 27.38 27.27 27.17 27.45
ADNet [64] 27.31 30.59 27.69 25.70 26.90 25.88 26.56 29.59 26.64 27.35 27.17 27.07 27.37
ADNet-B[64] 27.22 3043 27.70 25.63 26.92 26.03 26.56 29.53 26.51 27.22 27.19 27.05 27.33
PReLU [66] 28.00 31.75 28.74 27.52 28.57 27.54 27.56 29.62 28.13 27.59 27.65 27.40 28.34
MWCNN[53] - - - - - - - - - - - - 27.79

it is a non-blind de-noiser as it requires a noise level
map at the input. Similarly [60] involves two sub-networks
which are trained separately based on noise-level choice
at inference time making it inappropriate for blind level
denoising. Blind Universal Image Fusion De-noiser [95] is
the network that extracts features to learn an image prior
and intermediate noise level values, which is fed into the
fusion part of the model for final de-noising. The latest
de-noisers such as ADNet [64], BRDNet [51], SCNN [49],
PReLU [42], [66], [78] are designed for blind denoising.
The blind de-noiser for mixed Gaussian impulse noise is

93352

also being designed [83]. The recent research trend in the
field of computer vision is progressing towards the devel-
opment of universal and blind de-noiser for real-world
de-noising.

Viil. DESCRIPTION OF DATASET AND SOFTWARE TOOLS

A. SOFTWARE

The tremendous success of machine learning particularly
deep learning is because of the parallel computing of GPU.
TABLE 12 describes popular machine-learning libraries used
for various computer vision tasks.
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TABLE 3. Comparison of PSNR (in dB) value of different machine learning models on BSD-68.

BSD-68
c 15 25 50
DnCNN [38] 31.72 29.23 26.23
IRCNN [62] 31.63 29.15 26.16
SCNN [49] 31.48 29.03 26.08
PDNN [61] 32.29 29.88 -
FFDNet [56] 31.62 29.19 26.30
UNLNet [60] 31.95 29.51 26.41
ECNDNet[50] 31.71 29.22 26.23
ADNet [64] 31.74 29.25 26.29
BRDNet [51] 31.79 29.29 26.36
DRUNet [63] 31.91 29.48 26.59
MWCNN[53] 31.91 29.46 26.58
PReLU [66] 32.60 30.48 27.20
c 10 20 30 40 50 75

DnCNN-S [38] 33.88 30.27 28.36 27.11 26.23 24.64
IRCNN [62] 33.74 30.16 28.26 27.08 26.19 -
I[\;I;fD(WD“CNN) - - 28.56 - 26.42 2491
FFDNet [56] 33.76 30.23 28.38 27.18 26.29 24.79
DIDN [55] 33.98 30.44 28.58 27.37 26.47 -
I[\g]z’D(D“CNN) - - 28.41 - 26.27 24.71
I[\?;fD(FFDNCt) - - 2837 - 26.29 24.80
DIDN+ [55] 34.01 30.47 28.61 27.40 26.50 -
WDnCNN [48] - - 28.56 - 26.39 24.85
DHDN [52] 34.04 - 28.58 - 26.43 -

Kodak-24
c 10 20 30 40 50
DnCNN-S [38] 34.90 31.47 29.62 28.37 27.49
IRCNN [62] 34.76 31.38 29.52 28.37 27.45
FFDNet [56] 34.81 31.47 29.69 28.51 27.62
DIDN [55] 35.16 31.83 30.04 28.84 27.96
DIDN+[55] 35.20 31.87 30.08 28.88 28.01
DHDN [52] 35.24 - 30.11 - 28.01
c 15 25 35 50 75
BRDNet [51] 34.88 3241 30.80 29.22 27.49
ADNet [64] 34.76 32.26 30.68 29.10 27.40

TABLE 4. PSNR (in dB) values of color de-noising networks.

CBSD-68
[ 10 20 30 40 50
CBM3D [81] 35.89 31.89 29.72 28.08 27.36
DnCNN-S [38] 36.12 32.37 30.32 28.95 27.92
IRCNN [62] 36.06 32.27 30.22 28.85 27.86
FFDNet [56] 36.14 32.34 3031 28.96 27.96
DIDN [55] 36.48 32.73 30.71 29.36 28.35
DIDN-+ [55] 36.52 32.77 30.75 29.40 28.40
DHDN [52] 36.48 - 30.54 - 28.01
c 15 25 50
DRUNet [63] 34.30 31.69 28.51

Kodak-24
c 10 20 30 40 50
CBM3D [81] 36.57 32.92 30.89 29.17 28.62
DnCNN-S [38] 36.58 33.20 31.28 29.95 28.94
IRCNN [62] 36.70 33.19 31.24 29.91 28.92
FFDNet [56] 36.80 33.32 31.39 30.08 29.10
DIDN [55] 37.32 33.88 31.97 30.68 29.72
DIDN+ [55] 37.37 33.94 32.03 30.75 29.80
DHDN [52] 37.37 - 32.01 - 29.74
c 15 25 50
DRUNet [63] 35.31 32.89 29.86

B. DATASETS color image de-noising, medical image de-noising and real-

The machine leaning based methods have shown significant
progress due to the availability of open access benchmark
datasets. The datasets are available for gray scale de-noising,
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world de-noising. The training dataset is used for training the
model, whereas testing dataset images are used to assess the
de-noising results. The peak signal to noise ratio (PSNR) and
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TABLE 5. PSNR (in dB) comparison of different methods on live1 dataset on poisson noise.

Peak Value DnCNN [38] DenoiseNet[79] CNN+LSTM[77]
0.1 18.90 19.15 19.61
1 22.68 22.59 22.87
10 27.77 27.49 27.77
40 30.92 30.72 31.01
80 32.65 3231 32.71
TABLE 6. Average PSNR (in dB) values on different datasets for poisson noise.
Method Peak Boats Airplane Basoo Barbara Flower  Goldhill lenna Monarch Pens Pepper szrag
DnCNN [38] 0.1 19.63 18.60 17.34 18.84 19.50 20.89 19.30 18.39 19.92 18.66 19.11
DenoiseNet [79] 0.1 20.10 19.35 17.29 18.98 19.79 21.16 19.26 18.36 19.89 19.23 19.35
CNN+LSTM [77] 0.1 20.56 19.66 17.52 19.20 20.21 21.63 20.40 19.03 20.18 19.62 19.80
DnCNN [38] 1 2437 22.98 19.30 22.03 24.52 24.46 2433 23.70 24.30 23.60 23.36
DenoiseNet [79] 1 24.24 22.94 19.35 21.89 24.18 24.47 24.28 23.52 23.99 23.42 23.23
CNN+LSTM [77] 1 24.74 23.54 19.44 22.23 25.22 24.79 24.72 23.82 24.45 23.62 23.66
DnCNN [38] 10 29.76 28.40 22.95 2.20 30.74 28.62 29.27 29.96 29.64 28.32 28.48
DenoiseNet [79] 10 29.44 28.15 22.90 26.57 30.39 28.45 29.03 29.61 29.21 28.19 28.19
CNN+LSTM [77] 10 29.80 28.43 23.01 27.15 30.73 28.68 29.38 29.94 29.56 28.49 28.52
DnCNN [38] 40 32.78 31.23 25.38 30.43 33.66 31.01 31.27 33.23 32.48 30.35 31.18
DenoiseNet [79] 40 32.58 31.14 25.40 30.00 33.48 30.88 31.25 32.98 32.18 30.62 31.05
CNN+LSTM [77] 40 3291 31.64 25.56 30.49 33.86 31.11 31.58 3332 32.56 30.90 31.40
DnCNN [38] 80 34.29 32.57 26.78 31.95 35.07 3234 3233 34.85 34.10 31.47 32.56
DenoiseNet [79] 80 33.90 32.61 26.80 31.50 34.52 32.16 32.11 34.35 33.46 31.63 32.30
CNN+LSTM [77] 80 34.37 33.16 26.98 32.02 35.16 32.40 32.50 34.97 34.03 31.99 32.76
TABLE 7. Average PSNR (in dB) value on set-10 dataset for poisson noise.
Method Peak Flag House Camera Man Bridge Saturn Peppers Boat Couple Hill
DenoiseNet [79] 19.45 22.87 21.59 22.49 19.83 26.26 21.43 22.38 22.11 22.82
1[\/7[2(33]2RNetefB | 19.97 23.04 21.95 22.52 19.88 26.93 21.69 22.48 22.15 22.80
1[\/715(33]2RNet6fs 20.04 23.17 21.97 22.54 19.94 27.35 21.70 22.60 22.20 22.94
DenoiseNet [79] 21.38 24.77 23.25 23.64 20.80 28.37 23.19 23.66 23.30 23.95
MC2RNet6—B
(78] 5 21.87 24.99 23.42 23.66 20.86 29.01 23.20 23.69 23.40 23.99
][\;Ig]ZRNetéis 21.92 25.23 23.66 23.76 20.87 29.22 23.35 23.80 23.57 24.07
DenoiseNet [79] 23.18 26.59 24.87 24.717 21.81 30.02 24.83 24.86 24.60 25.01
?;EZRNC%?B 4 24.13 26.78 24.84 24.84 21.81 30.94 24.96 24.29 24.76 25.10
l[\gg]ZRNew’S 2424 278 2503 2495 21091 31.29 2497 2508 2493 2525
DenoiseNet [79] 25.73 28.42 26.35 26.10 2291 32.28 26.45 26.23 26.11 26.26
MC2RNet6—B
(78] 3 26.61 28.56 26.39 26.06 22.95 33.28 26.66 26.24 26.26 26.34
I[\/7[8C]2RNet678 26.71 28.75 26.45 26.24 23.01 33.71 26.68 26.46 26.41 26.43
DenoiseNet [79] 28.94 31.67 29.21 28.74 25.42 36.20 29.77 29.06 29.13 28.71
MC2RNet6—B
(78] 30 30.57 31.52 29.04 28.71 25.37 36.40 29.71 28.99 29.16 28.77
l[\;lg]zRNew—S 30.95 31.90 29.23 28.83 25.48 36.99 29.84 29.21 29.34 28.93
TABLE 8. Average PSNR (in dB) value on BSD-68 dataset for poisson noise.
Method Peak=1 Peak=2 Peak=4 Peak=8
IRCNN [62] [80] 21.66 22.86 24.00 25.27
DenoiseNet [79] 21.79 22.90 23.99 25.30
MC2RNet6-B [78] 21.92 23.00 24.13 25.39
MC2RNet6-S [78] 22.00 23.08 24.25 25.51

structural similarity index (SSIM) are most commonly used
image quality assessment metrics. However, there are many
image quality assessment metrics which are given in [39].
The performance comparison of de-noisers can be done if
they use a common testing dataset. In case of Gaussian
de-noisers, Set-12 dataset comprises of twelve scenes and
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BSD-68 dataset, i.e. Berkeley Segmentation Dataset com-
prises of sixty eight natural images is commonly used.
Kodak-24, LIVE and McMaster are also being used for syn-
thetic de-noising. RENOIR, NAM, DND, SIDD and Xu are
datasets for real world de-noising [89]. Some of the bench-
mark datasets are given in [96].
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TABLE 9. Average PSNR (in dB) comparison of mixed noise (RVIN+AWGN) on different natural images.

Noise

Image level Lena Barbara Bridge Boat Airplane Pepper Hill

Mixed CNN [82] o=15, 32.28 25.67 28.86 29.12 32.52 34.07 31.61

[83] p=0.15 32.56 29.43 29.16 30.30 32.87 33.49 31.73

Mixed CNN [82] o=15, 29.10 24.17 26.54 27.02 28.81 29.90 29.04

[83] p=0.30 31.71 28.32 28.09 29.19 31.88 33.66 30.98

Mixed CNN [82] o=15, 24.87 21.67 22.86 23.62 23.32 24.54 24.69

[83] p=0.45 30.36 26.25 26.53 27.60 30.44 32.09 29.86

Mixed CNN [82] gzg’:’l’s 29.87 24.52 26.61 27.61 30.34 31.65 29.48

[83] 30.46 27.28 26.72 28.31 30.73 31.76 29.55

Mixed CNN [82] g;2)53’0 27.93 23.36 25.10 26.08 28.00 28.70 27.80

[83] 29.79 26.35 25.97 27.39 29.90 31.30 28.99

Mixed CNN [82] g:gi’s 24.88 21.65 22.62 23.45 23.97 24.87 24.59

[83] 28.54 24.75 24.81 26.10 28.40 30.04 28.01

TABLE 10. De-noising results for mixed Gaussian noise on Barbara image (PSNR=19.02 dB).

Method PSNR (dB)  Method PSNR (dB)

WDL (case 1) [84] 3239 E&S]VD (known parameters) 27.66
W-KSVD (unknown TYPE-II (r;: 1, = 0.7 ¢

WDL (case 2) [84] TYPE-I 30.07 parameters) [84] 03,0, = 10,0, = 50) 29.35

K-SVD [85] 26.95 IRCNN [62] 28.95
EM-CNN [86] 30.68

TABLE 11. Results for blind de-noising.

Noise Type Gaussian noise

Mode Non-blind Blind

Method BM3D [20] DnCNN-B [38] GCBDI[42]

o=15 31.07 31.61 31.59

g=25 28.57 29.16 29.15

Noise Type Mixed noise

Mode Non-blind Blind

Method BM3D [20] DnCNN-B[38] GCBD[42]

s =15 41.08 40.75 42.00

s =25 37.85 37.54 39.87

IX. RESULT AND DISCUSSION

Out of all machine learning methods, dictionary learning
models performance is inferior in terms of PSNR. The dis-
advantages of dictionary learning are heuristic selection of
the hyperparameters like sparsity level, number of atoms and
iterations [97]. It fails to learn invariant features such as
translational, rotation and scale invariance and it is apt for
low dimensional signal only. The machine learning models
have evolved from fully connected neural networks to CNN
based de-noisers. CNN’s have various advantages over fully
connected neural networks such as multi-layer perceptron.
The spatial information is intact in the case of CNN whose
input is multi-dimensional image data. The parameters of
CNN are reduced due to weight sharing as a fixed weight
kernel is used. Therefore, reduction in the number of learning
parameters, translational invariance and locality due to con-
volutional operation has given on edge to CNN over other
fully-connected models [98]. Most of the CNN de-noisers
require application oriented large datasets for supervised
learning. The availability of medical image datasets is still
challenging as it requires manual intervention for its anno-
tation. Moreover, the de-noising results are almost stagnant
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after the network attains a certain depth and there is no signifi-
cant change by increasing the number of training images. The
CNN methodologies involve a change in activation function,
network depth, loss function, training dataset, etc. In order to
solve this problem there is a gradual shift from discrimina-
tive learning CNN model to generative learning model GAN
model. It uses two neural networks generator and the dis-
criminator, where generator model creates plausible images
and discriminator model constantly evaluates the generator
images as real or fake. Therefore, both networks work in
synchronization and act as an adversarial for each other. The
fundamental design of GAN is based on indirect training
of the generator by the discriminator. This falls under the
category of semi-supervised learning. The training efficiency
of GAN is more than that of CNN as more features are
learned in GAN in the same number of epochs as compared to
CNN [99]. The GAN’s achieve better results with less training
images as compared to CNN.

TABLE 2 shows de-noising results in terms of PSNR for
dictionary learning and CNN based networks. The models
progressed from K-SVD, KLLD i.e., from dictionary learn-
ing models to CNN based models. The DnCNN model is

93355



I EE E ACC@SS R. S. Thakur et al.: Image De-Noising With Machine Learning: A Review

(g) BRDNet (PSNR 30.50 dB) [51]
FIGURE 10. Butterfly image (Set-12) de-noising results at ¢ = 50.

Random-Valued Impulse Noise
Plane Image

(d) Blind CNN De-noised

. (b) Noisy Image (c) ANN De-noised Image _
(a) Original Image (20% RVIN) (PSNR=28.96 dB) [72] Image (PSI[\;I}] 37.37 dB)
Boat Image

(h) Blind CNN De-noised
Image (PSNR=27.32 dB)
[71]

() Noisy Image (g) ANN De-noised Image
(60% RVIN) (PSNR=25.89 dB) [72]

(e) Original Image

FIGURE 11. RVIN de-noising results for plane and boat image.

the benchmark residual learning-based Gaussian de-noiser, increase in receptive field size, the change in the number
which has led to the further development of many de-noisers. of layers, integration of transform, spatial domain methods
The methodologies involve a change in the loss function, with CNN and inclusion of graph theory in CNN. It can
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Real-World De-noising

Noisy Image
(PSNR=37
dB/SSIM=0.9345)

Original Image

MLP De-noised (PSNR=39
dB/SSIM=0.9695) Image
(351, [89]

DnCNN De-noised Image
(PSNR=37.26
dB/SSIM=0.9389) [38][89]

Noisy Image
(PSNR=26.32
dB/SSIM=0.7576)

Original Image

FIGURE 12. De-noising results for real-world noisy images.

be inferred from TABLE 2 that PSNR values obtained by
different CNN based methods are very close to each other.
However, ADNet [64] network with four modules suppresses
the effect of network length on shallow layers and gives
good PSNR results on Set-12 dataset. In the CNN network,
after an optimum number of layers, PSNR values attain sat-
uration. It implies that further increment in network length
does not improve the de-noising performance. Apart from
ADNet, BRDNet is the other network that integrates resid-
ual learning with batch renormalization and dilated convo-
lutions to enhance de-noising performance. The de-noising
performance of BRDNet can be attributed to an increase in
receptive field size by dilated convolutions and an increase in
network width by concatenation of two networks. Therefore
it overcomes the disadvantages of the previous networks,
such as (a) training difficulty and stagnation of results due
to an increase in network length (b) mini-batch and inter-
nal co-variate shift problems. Further, PReLU [66] based
edge aware filter has attained the best PSNR results both on
Set-12 and BSD-68 dataset at different sigma levels. It has
used parametric rectified linear units as activation, which
overcomes the disadvantage of ReLU by learning in the
negative direction. The success can be attributed to the fact
that this is a hybrid methodology which has the inclusion of
principal component analysis and edge aware bilateral filter.
Moreover, CNN uses supervised learning which is becom-
ing computationally demanding with an increase in dataset
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RDN De-noised Image [91], GRDN De-noised Image
[90] [90]
(PSNR=39.11 (PSNR=39.59
dB/SSIM=0.9899) dB/SSIM=0.9902)

size. Therefore, the generative learning model of Generative
Adversarial Network is being used. The GCBD model gives
promising result even in the absence of supervised learning
data. Its PSNR value is the same as that of the DnCNN
network on the BSD-68 dataset for noise level=15, and 25.
TABLE 3 gives a comparative analysis of machine learning
methods on the BSD-68 and Kodak-24 datasets. It has been
observed that there is no significant difference in the PSNR
values of different networks. The DIDN network designed
with receptive field variation and modification of U-net archi-
tecture designed for semantic segmentation perform better for
color images too as shown in TABLE 4. DRUNet [63] net-
work which is based on deep learning CNN based image prior
plugged into the half quadratic splitting-based de-noising
iterative algorithm shows good results on both gray and color
images.

The impulse de-noisers predict pixels affected by noise in
the first step. It is followed by a noise contamination deter-
miner and post noise detection processing. The dictionary
learning and CNN-based models are designed for impulse
noise removal. However, the noise ratios are varied in a very
large range. To overcome the problem of less flexibility due to
the unknown severity of contamination, [70] uses a noise ratio
predictor that can measure the severity of corruption, i.e., the
noise ratio of the image rapidly and efficiently. Fig. 11 (d)
shows that blind CNN achieves a higher value of PSNR,
compared to ANN [72]. Blind CNN removes the noise and
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Original Image

Noisy (PSNR=19.02 dB)

Noisy (PSNR=19.02 dB)

WDL (Case 1) WDL (Case 2)
(PSNR=32.39 dB) [84]

Gaussian Mixture Noise (r; :

Gaussian + RVIN (6=10, ri=10%)
Barbara Image

Noisy Image SDL De-noised Image (7™ iteration)

(PSNR=18.6041 dB) [87]
(PSNR=31.7117 dB)

Gaussian + SPIN (=10, p=0.30)
Boat Image

NoisyIag
(PSNR=10.65 dB/SSIM=0.0731)
High-Density Impulse Noise

CNNe-noised Image [83]
(PSNR=31.92 dB/SSIM=0.8596)

Noisy Image (90%)
Gaussian Mixture Noise
Barbara Image

K-SVD (PSNR=26.95 dB)
(PSNR=30.07 dB) [84] [85]

r, = 07: 03,00 = 10,0, = 50)

IRCNN [62] K-SVD (known parameters) W-KSVD (unknown
(PSNR=28.95 dB) [62]

_ parameters)
(PSNR=27.66 dB) [32] (PSNR=29.35 dB) [84]

EM-CNN [86]
(PSNR=30.68 dB)

FIGURE 13. De-noising results for mixed noise.
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TABLE 12. Popular software packages.

TABLE 13. Models used in multi-domain image de-noising.

Software

NOISE SUPPRESSION IN

Packages Developer Description MODEL SPECIALITY VARIOUS MODELS
C++, Python and Matlab 1. Single DnCNN
Caffe Berkeley Al 1n§erfaces ' Intuitively removes model_ for blind
y
Research Widely used for object latent clean image in Gaussian
detection tasks DnCNN the hidd lg denoising
: ¢ hidden layers ; .
Matlab interface, C++ [38] utilizing the resi(}i]ual 2. Single mage
Oxford Visual compiler learnin super-resolution
N g strategy .
Matconvnet Geometry Group Pre-trained models for 3. éPEIG . 1mage
computer vision tasks. ) ) eblocking
Pytorch Facebook Al Python interface, Open Uses an integration
vt Research Lab source software of CNN and EM-
Python library for fast based - mixed oise 1. Removal of
Montreal Institute ~ numerical computation removal IO glveh 2 Gaussian mixture
Theano of Learning Used for image de- EM-CNN variationa _ metho noise
: . - . that can estimate the
Algorithms noising, classification, [86] . 2. Removal of
super-resolution noise parameters Gaussian-Impulse
P iteratively to . P
Faster than Theano : . noise
Google Brain compiler categorize noise
Tensorflow Team C++ and Python types _and levels in
. each pixel
interfaces U .
Python interface 5e8 MaxImim
. Y . likelihood estimation
Keras ONEIROS project  Acts as interface for framework and
Tensortlow hl?rary sparse 1. Gaussian-Gaussian
MXN Apache Software ;}: alla.blle, Flexible, . representations over mixture
et Foundation ultiple programming a trained dictionary 2. Impulse noise
languages W-KSVD and uses a self- 3. Gaussian-impulse
[84] determined noise
weighting data 4. Modified K-SVD
retains image details, the reason being the NRP. It converts fidelity function that for weighted rank-
the noise mask into a noise ratio, and, according to this ratio, iert;lcsts . fn"(lisigfere:; one approximation
the most appropriate CNN model is selected for de-noising, estimated noise
rather than restoring the image by removing the detected parameters '
RVIN noise pixel-by-pixel. g)slftsting techﬁ;‘;btlz
The Poisson noise is modeled by its peak value and bring strong image 1. Gaussian noise
it is also categorized into dictionary learning models and prior into  model- (grey and color)
CNN based models. There is just one dictionary learning IRCNN [62] Ei‘:gi dsogérrifaii‘;g 2 nMoli’;:d Gaussian
model which performs de-noising by greedy pursuit algo- CNN de-noisers are 3. Various low-level
rithm and boot strapping based stopping criterion. Gaussian used as modules in vision applications
de-noisers such as DnCNN and IRCNN are also being used ggf;llzt;ilssg
for Poisson de-noising with different parameter settings. Constructs  paired
Although Gaussian de-noisers are being used for the poisson training  data  from
noise, the heuristic setting of network parameters is again the ~given ~noisy ) ‘
. X R o images, and then 1. Blind Gaussian
a big challenge. TABLE 5 gives poisson de-noising per- GCBD[42] trains a  deep noise
formance on Livel dataset. DenoiseNet is the first residual denoising  network 2. Blind Mixed noise

learning based CNN de-noiser designed for poisson noise.
Later, CNN+LSTM and MC2RNet models have outper-
formed DenoiseNet. The CNN + LSTM Poisson de-noiser,
which uses CNN for feature extraction and LSTM layers to
store noise components, outperforms DenoiseNet as given in
TABLE 5 and VI. The inclusion of Blahut-Arimoto algorithm
to determine the number of CNN layers and learning of
residual noise statistics by LSTM improves the de-noising
results of CNN+LSTM. Deep multi-scale cross-path con-
catenation residual network (MC2RNet) which incorporates
cross-path concatenation modules for de-noising also out-
performs CNN based DenoiseNet as given in TABLE 7 and
TABLE 8 on Set 10 and BSD-68 dataset respectively. There-
fore, CNN+LSTM, DenoiseNet and MC2RNet are the avail-
able CNN based Poisson de-noisers which are less in number
as compared to Gaussian de-noisers.
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for removing the
noise; GAN is used
to build the dataset
Uses enhanced
sparse representation
in transform domain
where enhancement

BM3D [20]  of  sparsity s
achieved by
grouping similar 2-D
image fragments into
3-D data arrays

—_

Gaussian noise

2. Color image de-
noising

3. Mixed noise

The mixed noise can be modeled mathematically in
different ways. There are models designed for mixture
of impulse and Gaussian noise. The four-stage residual
learning-based mixed network [82] and de-noiser with two-
stage cascade connection of impulse and Gaussian de-noisers
are used for mixed Gaussian Impulse noise given in
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Blind De-noising

Noisy

Ground Truth — po\R=34.86 dB)

TABLE 9. TABLE 10 discusses mixed Gaussian noise. And,
TABLE 11 discusses blind de-noising. Figs. 10 to 14 depict
qualitative results of different images with different noise
types, i.e., Gaussian noise, impulse noise, mixed noise, real-
world, and blind noise. TABLE 13 discusses the methods that
extend into multiple domains of image de-noising.

X. CONCLUSION AND FUTURE SCOPE

In this paper, a comprehensive study and analysis of machine
learning models for removal of different noises is provided.
The categorization of different de-noisers is done into dictio-
nary learning models, CNN based models and GAN based
models. The comparative analysis PSNR results of different
de-noisers on some benchmark datasets are provided for
better understanding of the reader. It has been observed that
integration of analytical methods in machine learning model
can further improve the results. Although there are numer-
ous networks designed for synthetic datasets, but real-world
image de-noising is still a challenging problem. The GAN
based de-noisers are still in the primitive stage. However,
the generative learning based GAN and deep belief networks
can perform unsupervised learning to a certain extent unlike
CNN. The future prospects lie in the design of real-world
de-noisers with unsupervised learning framework for practi-
cal applications. The transfer learning approach, graph theory
inclusion in neural network, prior design, and receptive field
enhancement are some of the areas for future research.
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