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ABSTRACT Face recognition (FR) systems have demonstrated reliable verification performance, suggesting
suitability for real-world applications ranging from photo tagging in social media to automated border control
(ABC). In an advanced FR systemwith deep learning-based architecture, however, promoting the recognition
efficiency alone is not sufficient, and the system should also withstand potential kinds of attacks. Recent
studies show that (deep) FR systems exhibit an intriguing vulnerability to imperceptible or perceptible
but natural-looking adversarial input images that drive the model to incorrect output predictions. In this
article, we present a comprehensive survey on adversarial attacks against FR systems and elaborate on the
competence of new countermeasures against them. Further, we propose a taxonomy of existing attack and
defense methods based on different criteria. We compare attack methods on the orientation, evaluation
process, and attributes, and defense approaches on the category. Finally, we discuss the challenges and
potential research direction.

INDEX TERMS Biometrics, face recognition, adversarial attacks, adversarial perturbation, deep learning.

I. INTRODUCTION
Face recognition (FR) has been a prevalent biometric tech-
nique for identity authentication and is broadly used in several
areas, such as finance, military, public security, and daily life.
A typical FR system’s ultimate goal is to identify or verify a
person from a digital image or a video frame. Researchers
describe FR as a biometric artificial intelligence-based appli-
cation that can exclusively identify a person through analyz-
ing patterns of the person’s facial features.

The idea of using the face as a biometric trait inspired in the
1960s, and the design of the first successful FR system dates
back to the early 1960s [1]. In recent times, the latest advance-
ments of deep learning and the use of mounting hardware
and abundant data have resulted in massive development in
FR algorithms with accurate performance [2]–[4]. This per-
formance permits the broad deployment of FR technologies
in further diverse applications, ranging from photo tagging
in social media to dubious identification in automated border
control (ABC) systems.
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In an advanced FR model, however, promoting the recog-
nition efficiency alone is not sufficient, and the system
should also withstand potential kinds of attacks. Recently,
researchers found that (deep) FR systems are vulnerable
against different types of attacks that create data variations
to fool classifiers. These attacks can be launched either via
(a) physical attacks, which modify the physical appearance
of a face before image capturing, or (b) digital attacks, which
implement modifications in the captured face image [5].

Presentation attacks also referred to as spoofing attacks [6],
are among the main techniques used for physical attacks.
A presentation attack aims to subvert the face recognition
system by presenting a facial biometric artifact, including a
printed photo, the electronic display of a facial photo, replay-
ing video using an electronic display, and 3D face masks [7].
It has recently been demonstrated that makeup can also be
abused to launch presentation attacks [8].

In contrast, adversarial attacks [9] and the variations result-
ing from morphing attacks [10], [116] are critical techniques
utilized for digital invasion. A typical adversarial attack can
deceive the FR systems with carefully crafted perturbations,
called adversarial examples [11]. It should be noted that
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adversarial attacks are mainly categorized in the class of
digital attacks, e.g., adversarial example generation methods
mostly implement on the face images digitally, however,
somemethods are designed to accomplish physically bymak-
ing physical changes on the face appearances and then captur-
ing the modified images [12]. Several approaches have been
proposed to overcome the devastating consequences of this
type of attacks, both those that target FR systems [13]–[16]
and those that target beyond that area [17]–[19]. On the
other hand, the goal of a morphing attack is to generate a
fake face with the morphing and blending of two or more
different subjects (e.g., a criminal and an accomplice) to
enroll the criminal as a legitimate identity template of the FR
system [20], [21]. Similarly, many efforts have been made
in this regard to countermeasure destructive consequences
ranging from face morphing detection methods [22]–[25] to
accomplice’s facial restoration approaches [26]–[28].

Among different attacks, adversarial attacks are fascinating
since they can generally target deep neural networks (DNNs)
and could specifically focus on convolutional neural networks
(CNNs), based on which the state-of-the-art FR models are
established. Themassive growth in the number of papers pub-
lished each year in the field of adversarial example generation
demonstrates this type of attack (see Fig. 1).

FIGURE 1. The cumulative number of adversarial example papers
published in recent years [29].

This work presents a comprehensive survey on differ-
ent techniques of adversarial attack generation intended to
deceive FR systems, along with the potential countermea-
sures established against them. This is the first study that
attempts to review adversarial attack and defense strategies
on FR systems to the best of our knowledge. Since FR may
refer to each of the two applications of face identification or
face verification, we review both in this study.

The main contributions of this paper are:
• We review recent studies on adversarial example gen-
eration approaches on FR systems, present an illustra-
tive taxonomy of the corresponding methods according

to their orientation, and compare these approaches on
orientation, evaluation process, and attributes.

• We review the new adversarial detection methods for
the FR systems, categorize the presented algorithms, and
demonstrate a descriptive taxonomy.

• We outline the main challenges and potential solutions
for adversarial examples that target FR models based on
four main problems: Particularization/Specification of
adversarial examples, instability of FR models, devia-
tion from the human vision system, and image-agnostic
perturbation generation.

The remainder of this paper is organized as follows:
Section II introduces the background of FR techniques, archi-
tectures, and datasets. In Section III, we describe the standard
terms related to adversarial attacks and defenses in the context
of the FR course, represent the attacks’ attributes, explain the
experimental standards, and discuss the pioneer methods of
generating attacks.We review adversarial example generation
methods intended to deceive the FR mission in Section IV.
We discuss themethods and compare the approaches based on
orientation, evaluation process, and attributes. In Section V,
corresponding countermeasures are investigated. We discuss
current challenges and potential future research directions in
Section VI. Section VII concludes the work.

II. BACKGROUNDS
In this section, we briefly introduce basic FR systems and
elaborate on incorporated models in the era of deep learn-
ing. Next, we present widely used architectures and standard
datasets in this regard.

A. A BRIEF INTRODUCTION TO FACE RECOGNITION
Face recognition has been an age-old research topic in the
computer vision community, and the first success of it dates
to the 1960s. Since then, this research path has undergone
scientific leaps in four decisive times. The face representa-
tion for recognition has taken sequential forms of holistic
learning, local feature learning, shallow learning, and deep
learning [30].

In the early 1990s, the historical Eigenface approach [1]
was introduced, and the study of FR became popular shortly
after that. From then till the 2000s, the holistic approaches
that extracted low-dimensional representations from face
images based on certain distribution assumptions [31]–[34]
dominated the FR community. Nevertheless, these meth-
ods demonstrated a failure in addressing the uncontrolled
facial modifications that deviate from the prior considered
assumptions. In the early 2000s, local-feature-based FR tech-
niques were introduced, and handcrafted descriptors such as
Gabor [35] and LBP [36] became popular. However, dis-
tinctiveness and compactness were the two properties these
local features lacked. In the early 2010s, local learning-based
features were introduced [37]–[39] to learn local filters and
encode codebooks for better distinctiveness and compact-
ness Though resolved the lack of necessary properties, these
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shallow representations demonstrated a loss of robustness
against complicated nonlinear facial appearance variations.

These traditional methods attempted to recognize faces by
one- or two-layer representations and improved FR accu-
racy The goal is to explore each aspect of unconstrained
facial variations, including illumination, pose, expression,
or occlusion, separately. The advent of deep learning
methods resolved the limitations of traditional methods.
In deep-learning-based FR approaches, multiple layers of
processing units learn multiple representations that cor-
respond to different levels of abstraction. Interestingly,
the higher-level abstract representations have demonstrated a
strong invariance against face illumination, pose, expression,
and occlusion changes, and represented facial identity with
extraordinary stability. In 2014, DeepFace [3] attained state-
of-the-art accuracy on the Labeled Faces in the Wild (LFW)
dataset [40]. In an unconstrained condition, it competed
successfully with the human performance for the first time
and approached the desired accuracy by training a 9-layer
network on 4 million facial images. Deep learning techniques
have reformed the research horizon of FR in almost all
aspects, from algorithm designs and training/test datasets to
application setups and evaluation protocols.

B. DISTINGUISHED ARCHITECTURES OF FACE
RECOGNIZERS
DeepFace [3] was the first distinguished deep architecture
introduced to the FR community. It has a deep CNN archi-
tecture with several locally connected layers. Afterward,
FaceNet [41] and VGG-Face [2] deep-learning-based mod-
els were introduced, which were designed to train popu-
lar GoogleNet [42] and VGGNet [43] over the large-scale
face datasets, respectively. These models fine-tuned the net-
works via a triplet loss function and implemented it on
face patches created by an online triplet mining method.
Later, the SphereFace [44] was proposed according to ResNet
architecture [45], and a novel angular softmax loss learns
discriminative features by an angular margin. Similar to this
network, CosFace [46] and ArcFace [47] were introduced
based on cosine and angular margin-based loss, respectively.
These models were designed in a way to separate learned fea-
tures with larger cosine and angular distances. Lightweight
networks were then proposed to overcome the lack of GPUs’
power and memory size and become applicable to many
mobiles and embedded devices. LightCNN [48], with a novel
max-feature-map (MFM) activation function, is a famous
example of this category that results in a compact representa-
tion and reduces the computational cost.

C. STANDARD FACE RECOGNITION DATASETS
In 2007, the LFW dataset was provided from 3K images
of faces on the web under unconstrained conditions and
opened a new path for other testing databases to be used
in different tasks. Having sufficiently large training datasets
to evaluate the effectiveness of deep FR models resulted in
continually developingmore complex datasets to facilitate the

FR research. The early deep FR models, such as DeepFace,
FaceNet, and DeepID [49], were trained on private, con-
trolled, or small-scale training datasets, hence, not allowing
the new models to compare with. To resolve this problem,
CASIA-Webface [50], a collection of 0.5M images of 10K
celebrities, was introduced as the first widely used public
training dataset. Later, MS-Celeb-1M [51], VGGface2 [52],
and Megaface [53], collections of over 1M images, were
introduced as a public large-scale training dataset to be used
by many advanced deep learning methods.

III. ADVERSARIAL ATTACK GENERATION
An adversarial attack consists of finely modifying an original
image with the intention of the alterations become almost
imperceptible to the human eye, to fool a specific classifier.
In the realm of digital attacks, this can be implemented as
the addition of a minimal vector n to the input image x, i.e.
(x + n), such that the deep learning model F predicts an
incorrect output for the altered input x + n, which is known
as an adversarial example. This way, a box-constrained opti-
mization problem for generating the adversarial example x′

can generally be described as [9]:

min
x′

∥∥x′ − x∥∥2
s.t. F(x′) = l ′

F (x) = l

l 6= l ′

x′ ∈ [0, 1] (1)

where l and l ′ represent the output label of x and x′, and ‖.‖2
denotes the distance between two image samples according
to L2-norm.

As represented in Fig. 2, to fool the FR model (VGG16 in
this case), the input images are altered so that the human
can still forecast the correct class. However, deep learning
network will be confused and misled to the wrong category.
Szegedy et al. [9] were the first to demonstrate the vulner-
ability of CNN models to adversarial attacks generated by
introducing a minute noise in the input image. The accura-
cies of GoogleNet and VGG-Face models also demonstrated
to be degraded with color balance manipulation. Note that
adversarial attacks’ invisibility and the widespread applica-
tion of deep learning algorithms can cause severe damages
in real-world scenarios [54]. For example, if the signboard
is altered in self-directed driving, adversarial examples can
overly threaten the car, pedestrians, and other automobiles.
Similarly, in FR applications, the failure to verify the altered
input could lead to the degraded performance that can take
benefit in the closed set verification/identification scenarios.

A. TERMS AND DEFINITIONS
This section gives a brief introduction to the standard terms
related to adversarial attacks on (deep) FR models. Our def-
initions of words are essential to understand the technical
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FIGURE 2. Visualization of original face image (first column), adversarial
noise vector of VGG-16 (second column), and altered image (last column).
From top to bottom, the four rows represent the addition of adversarial
noise to the original RGB image and corresponding grayscale
representations of R, G, and B color channels. Adversarial noise is
magnified by a factor of 4 to enhance visibility [13].

components of the reviewed studies. The remainder of this
article follows the same definitions of the terms.
• Adversarial example/image is an intentionally altered
(e.g., by adding noise) version of a clean image to fool
machine learning ML) models, such as FR models.

• Adversarial training is a training process that uses
adversarial images along with clean images.

• Adversary is an agent who creates an adversarial exam-
ple or the example itself, depending on the case study.

• Dodging attack occurs when the attacker tries to have a
face misidentified as any other arbitrary face. It is also
known as obfuscation attack in the literature [55], [56].

• Evasion attack tries to evade the system by altering
samples during the testing phase yet not influencing the
training data.

• Impersonation attack seeks to disguise a face as a spe-
cific (authorized) face.

• Poisoning attack takes place during the training time to
contaminate the training data. In this attack, the attacker
tries to poison data by inserting wisely designed samples
to compromise the whole learning process ultimately.

• Threat model is a model that formalizes assumptions
about the attacker’s goals, attack strategy, knowledge of
the attacked system.

B. ADVERSARIAL ATTACKS ATTRIBUTES
In this section, we discuss the main attributes of adversarial
example generation methods.

1) ADVERSARIAL CAPACITY
Adversarial capacity is determined by the amount of knowl-
edge the attackers could gain about the model. Threat models

in deep FR systems are classified into the following types
according to the attack’s capacity.

White-box attack assumes the complete knowledge of
the target model, i.e., its parameters, architecture, training
method, and even in some cases, its training data.

Black-box attack feeds a target model with the adversar-
ial examples (during testing) created without knowing that
model (e.g., its training procedure or its architecture or its
parameters). Though the knowledge of the model is not avail-
able, the attackers can interact with such a model by utilizing
the transferability of adversarial examples (Section III-B.3).

2) ADVERSARIAL SPECIFICITY
Adversarial specificity is defined as the ability of the attack
to allow a specific intrusion/disruption or create general may-
hem. Threat models in deep FR systems could be categorized
into the following types according to the attack’s specificity.

Targeted attack deceives a model into falsely predicting a
specific label for the adversarial example. In an FR or biomet-
ric system, this is achieved by impersonating distinguished
people.

Non-targeted attack predicts the adversarial examples’
labels irrelevantly, as long as the results are not the cor-
rect labels. In an FR/biometric system, this is accomplished
through face dodging. A non-targeted attack is more com-
fortable to implement than a targeted attack since it has more
choices and space to alter the output.

3) ADVERSARIAL TRANSFERABILITY
Adversarial transferability is the ability of an adversarial
example to continue to impact the models other than the one
employed to create it. It is critical for black-box attacks where
access to the target model, the training dataset, and other
learning parameters may not be available. A substitute neural
network model can be trained in such circumstances, and
then adversarial examples can be generated against the sub-
stitute model. Due to transferability, the target model will be
vulnerable to these adversarial examples. The transferability
of adversarial examples could be defined from easy to hard,
according to having the same neural network architectures but
different datasets or having different neural network architec-
tures from the beginning [11].

4) ADVERSARIAL PERTURBATIONS
Adversarial perturbation is a kind of disruption that can fool a
given model on a specific image with high probability. Small
perturbation is a central premise for adversarial examples.
In the realm of adversarial machine learning, the goal is to
minimize the norm of the smallest adversarial perturbation to
make target models misclassified. Explicitly, given an input
image x, the perturbation vector n aims to alter the label of x,
corresponding to the minimal distance from x to the decision
boundary of the classifier [9]:

min
n∈Rd

‖n‖2

s.t. F (x)F (x+ n) ≤ 0 (2)
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where d is the dimension of the input image and perturbation
vector. The perturbation could be categorized into the follow-
ing types according to the scope of its implementation.

Image-specific perturbations can be explicitly generated
according to the given input images.

Universal perturbations can be generated without know-
ing the underlying details of the given images. Note that
universality refers to the characteristic of a perturbation to
have a good transferability and the ability to be applied to
all input data uniformly. Although universal perturbations
make it easier to create adversaries in real-world applications,
most present attacks generate image-specific perturbations.
It is aimed to move toward this direction and create universal
perturbations that are not required to be reformed when the
input samples are changed (Section VI).

C. EXPERIMENTAL STANDARDS
The performance of adversarial attacks against FR systems is
evaluated based on different datasets and target models. This
spectrum results in complications to evaluate the adversarial
attacks and quantify the robustness of FR models. Large
datasets and complex models usually make the attack and
defense exertions harder.

1) DATASETS
The LFW, CASIA-WebFace, MegaFace, VGGFace2, and
CelebA [57] are the most widely used image classification
datasets to evaluate adversarial attacks on FR systems.

2) TARGET MODELS
Adversaries broadly attack several eminent deep FR mod-
els, such as DeepFace, FaceNet, VGG-Face, DeepID,
SphereFace, CosFace ArcFace, OpenFace [58], dlib,1 and
LResNet100E-IR Face ID model.2

According to these datasets and target models in the fol-
lowing sections, we will inspect recent studies on adversarial
examples targeted FR models according to these datasets and
target models.

D. PIONEERS
In this section, we review several pioneer methods for gen-
erating adversarial examples, including L-BFGS [9], Fast
Gradient Sign Method (FGSM) [59], Basic & Least-likely
Iterative Class Methods [54], [60], Jacobian-based Saliency
Map Attack (JSMA) [61], One Pixel Attack [62], Deep-
Fool [63], Universal Adversarial Perturbations [64], and
Carlini & Wagner Attacks (C&W) [65]. Almost each one
of these methods forms the basis of the real-world attacks
and has the power of significantly affecting machine learning
target models in practice. Descriptions provided here will
show the gradual improvements of the adversarial attacks and
the extent to which state-of-the-art adversarial attacks can

1http://dlib.net

2https://github.com/deepinsight/insightface/wiki/Model-Zoo

achieve.Wewill focus on the main methods that attack DNNs
in general and review them in chronological order to maintain
discussion flow.

1) L-BFGS
Szegedy et al. [9] first generated adversarial examples using
an L-BFGSmethod. The box-constrained L-BFGS is used for
approximately solving the following problem:

min
x′

c ‖n‖2 + L(x
′, l)

s.t. x′ ∈ [0, 1] (3)

where L(x′, l) computes the loss of the classifier, and a min-
imum c > 0 is approximately calculated by line-searching to
satisfy the above condition. Authors showed that the above
method could compute perturbations that fool neural net-
works when added to clean images while remains impercep-
tible to human eyes.

2) FAST GRADIENT SIGN METHOD (FGSM)
Goodfellow et al. [59] proposed a fast and straightforward
method, named Fast Gradient Sign Method (FGSM) to com-
pute an adversarial perturbation by solving the following
problem efficiently:

n = εsign (∇xJ (θ, x, l)) (4)

where ε is the perturbation magnitude, sign (.) denotes the
sign function, and ∇xJ (., ., .) represents the gradient of the
cost function around the current value of the model parame-
ters concerning the x. The generated adversarial example x′

is calculated as x′ = x+n. With the application of the FGSM
method, adversarial examples are not computed iteratively
but, in a one-step, gradient update along the direction of the
gradient sign at each pixel. Miyato et al. [66] proposed a
closely related method and named it Fast Gradient L2. With
this method, the perturbation is computed as:

n = ε
∇xJ (θ , x, l)
‖∇xJ (θ , x, l)‖2

(5)

As it is shown, the computed gradient is normalized with
its L2-norm. An alternative of using the L∞-norm for normal-
ization was proposed by Kurakin et al. [67] and referred to as
the Fast Gradient L∞ method. In the literature, all of these
methods are categorized as one-step methods.

3) BASIC & LEAST-LIKELY ITERATIVE CLASS METHODS
Kurakin et al. [54] extended the one-step gradient ascent idea
and proposed the Basic Iterative Method (BIM). The BIM
iteratively adjusts the direction that increases the loss of the
classifier by running multiple small steps. In each iteration,
the values of the pixels of the image are clipped as follows:

x′(i+1) = Clipε
{
x′(i) + α · sign

(
∇x′(i)J

(
θ , x′(i), l

))}
(6)

where x′(i) denotes the generated adversarial example at the
ith iteration,Clipε {.} confines its change in each iteration, and
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α is the step size. The initialization of the BIM algorithm is
done by setting x′(0) = x, and its termination is controlled by
the number of iterations determined by min (ε + 4, 1.25ε).
This method is also known as the Iterative Fast Gradient Sign
Method (I-FGSM) in the literature. Following this method-
ology, the Iterative Fast Gradient Value Method (I-FGVM)
is proposed, which differs in how it uses the ∇x ′(i)J gradi-
ent [54], [60]. Specifically, the I-FGVM changes the input x in
the direction of the gradient, whereas the I-FGSM uses only
the sign gradient. In each iteration of I-FGSM, the values
of the pixels of the image are clipped as follows:

x′(i+1) = Clipε
{
x′(i) + α · ∇x′(i)J

(
θ , x′(i), l

)}
(7)

In another try, Kurakin et al. [54] extended BIM to Iterative
Least-likely Class Method (ILCM), similar to what they did
to extend FGSM to its ‘‘one-step target class.’’ They substi-
tuted the label l of the image in (6) by the least likely class
(say l2) predicted by the classifier and tried to maximize the
cross-entropy loss.

4) JACOBIAN-BASED SALIENCY MAP ATTACK (JSMA)
Papernot et al. [61] designed an adversarial attack by confin-
ing the L0-norm of the perturbations. In contrast to perturbing
the whole image, they planned to perturb a few pixels in the
image that might induce significant changes to the output.
Accordingly, they defined a saliency adversarial map, called
Jacobian-based Saliency Map Attack (JSMA), by which they
could monitor the effect of changing each pixel of the clean
image on the resulting classification. The proposed algorithm
is repeated until the maximum number of allowable pixels are
altered in the adversarial image so that the neural network
fooling succeeded.

5) ONE PIXEL ATTACK
Su et al. [62] proposed a successful method of fooling differ-
ent neural networks by only changing one pixel per image.
The optimization problem becomes:

min
x′

J
(
θ ,F(x′), l ′

)
s.t. ‖n‖0 ≤ ε0 (8)

To modify only one pixel, ε0 is set to 1, hence, making
the optimization problem hard. So, the authors applied the
concept of Differential Evolution [68] to find the optimal
solution. This technique requires the probabilistic labels pre-
dicted by the targeted model and does not necessitate any
information about the network parameter values or gradients.
It is implemented in a simple evolutionary strategy yet suc-
cessfully fooling networks.

6) DEEPFOOL
Moosavi-Dezfooli et al. [63] proposed an iterative manner,
called DeepFool, to find a minimal norm adversarial per-
turbation for a clean input image. The proposed algorithm
initializes with the assumption that the input image is located
in a region confined by the decision boundaries of an affine

classifier, and the class label of the input is initially decided.
At each iteration, the image is perturbed by a small vector.
It is sought to lead the resulting perturbed image to the
boundaries obtained by linearly approximating the region
boundaries within which the image resides. In each iteration,
the perturbations are added to the image and accumulated
to compute the ultimate perturbation, which alters the input
image label according to the original decision boundaries of
the image region.DeepFool has been demonstrated to provide
smaller perturbations compared to FGSM and JSMA while
having similar fooling ratios.

7) UNIVERSAL ADVERSARIAL PERTURBATIONS
In contrast to their DeepFool method that computes image-
specific perturbations, Moosavi-Dezfooli et al. [64] proposed
their newer algorithm to generate image-agnostic Universal
Adversarial Perturbations to fool a network on any image
successfully. They attempted to find a universal perturbation
that satisfies the following constraint:

P (F (x) 6= F (x+ n)) ≥ δ

s.t. ‖n‖p ≤ ξ (9)

where P (.) denotes the probability, δ controls the fooling
rate, ‖.‖p refers to Lp-norm, and ξ confines the size of uni-
versal perturbation. Accordingly, the smaller the value of ξ ,
the more imperceptible the adversarial example to human
eyes. It is shown that theUniversal Adversarial Perturbations
could be generalized well across popular deep learning archi-
tectures (e.g., VGG, CaffeNet, GoogLeNet, ResNet).

8) CARLINI & WAGNER ATTACKS (C&W)
Carlini and Wagner [65] introduced a set of adversarial
attacks to defeat defensive distillation. According to their
study, the L0-, L1- and L2-norms of quasi-imperceptible per-
turbations are restricted to fail defensive distillation for the
targeted networks. It is also demonstrated that the adversar-
ial examples generated with un-distilled networks transfer
well to the distilled networks making the generated pertur-
bations proper for black-box attacks. Regarding definition,
distillation is referred to as a training procedure to transfer
knowledge of a more complex network to a smaller network.
This notion was initially introduced by Hinton et al. [69].
Later, Papernot et al. [70] introduced the variant of the pro-
cedure using the knowledge of the network to improve its
robustness.

IV. ADVERSARIAL EXAMPLE GENERATION AGAINST
FACE RECOGNITION
In this section, we review adversarial examples generated
against FR systems. We first explain the main attack gen-
eration methods introduced in the literature. Next, we com-
pare different attacks according to their orientation. Finally,
we repeat the comparison this time based on attributes of
the adversarial capacity, specificity, transferability, and the
perturbation type.
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A. METHODS
In this section, we review themain adversarial example gener-
ationmethods against FRmodels.We review different studies
in which they will be compared in succeeding sections to
maintain the discussion flow.

1) IMAGE-LEVEL GRID-BASED OCCLUSION
Distortions that are not specific to faces and can be applied to
any object image are categorized as image-level distortions.
Goswami et al. [71] introduced an image-level distortion
called Grid-based Occlusion. In this approach, points P =
{p1, p2, . . . , pn} are selected along the image upper (y = 0)
and left (x = 0) boundaries according to a parameter ρgrids,
where grids refer toGrid-based Occlusion. The ρgrids param-
eter determines the number of grids utilized to alter the given
image with higher values to result in a denser grid, i.e., more
grid lines. For each point pi = (xi, yi), a point on the opposite
boundary of the image, p′i =

(
x ′i , y

′
i

)
, is selected, with the

condition if yi = 0 then y′i = H , and if xi = 0 then x ′i = W ,
whereW×H is the input image size. Once a set of pair points
P and P ′ selected, one-pixel wide lines are created to link
each pair. Finally, the pixels placed on these lines set to 0
grayscale value.

2) IMAGE-LEVEL MOST SIGNIFICANT BIT-BASED NOISE
(XMSB) DISTORTION
Image-level most significant bit-based noise is another
image-level distortion introduced by Goswami et al. [71].
In this approach, three sets of pixels X1,X2,X3 are selected
stochastically from the image such that |Xi| = ∅i ×W × H .
Here W × H is the input image size, and the parameter ∅i
represents the fraction of pixels where the ith most significant
bit is flipped. Accordingly, the higher the value of ∅i, themore
pixels are distorted in the ith most significant bit. For each
Pj ∈ Xi,∀i ∈ [1, 3], the following operation is pursued:

Pkj = Pkj ⊕ 1 (10)

wherePkj represents the k thmost significant bit of the jth pixel
in the set and ⊕ denotes the bitwise XOR operation. Also,
it should be noted that the sets Xi may overlap; hence, the
total number of pixels influenced by the noise is less than
or equal to |X1| + |X2| + |X3|, depending on the stochastic
selection.

3) FACE-LEVEL DISTORTION
Besides image-level distortion, Goswami et al. [71] also
introduced face-level distortions. This type of distortion
expressly necessitates face-specific information, e.g., loca-
tion of facial landmarks. As a result, this approach is typically
applied after performing automatic face and facial landmark
detection. Once facial landmarks are detected, they are uti-
lized alongwith their boundaries to perform themasking step.
To obscure the eye region, a singular blocking band is drawn
on the face image as follows:

I {x, y} = 0, ∀x ∈ [0,W ] ,

y ∈
[
ye − deye

/
ψ, ye + deye

/
ψ
]

(11)

where ye = (yle + yre)
/
2, and (xle, yle) and (xre, yre) are

positions of left eye center and right eye center, respectively.
The deye is the inter-eye distance and calculated as xre − xle,
and ψ is the parameter that determines the occlusion band’s
width. The Eye Region Occlusion (ERO) process could be
implemented to obscure the forehead and brow in a similar
trend using the facial landmarks on the forehead and brow
regions as a mask. It could also be implemented to occlude
the beard region utilizing the outer facial landmarks and nose
and mouth coordinates to create the mask as combinations of
individually occluded areas.

4) EVOLUTIONARY ATTACK
Dong et al. [72] proposed Evolutionary Attackmethod, based
on (1+1)-CMA-ES [73], which is a useful and straightfor-
ward variant of the covariance matrix adaptation evolution
strategy (CMA-ES) [74]. In each update iteration of the
(1+1)-CMA-ES, a new offspring (candidate solution) is gen-
erated from its parent (current solution) by adding random
noise, the objective of these two solutions is evaluated, and
the better one is selected for the next iteration. This method
can solve the black-box optimization problem of:

min
x′

L(x′) =
∥∥x′ − x∥∥2 + δ (C (F(x′)) = 1

)
(12)

where C (.) is an adversarial criterion that takes 1 if the
attack requirement is satisfied and 0 otherwise, and δ (a)
is 0 if a is true, and +∞, otherwise. However, the authors
did not apply the (1+1)-CMA-ES to optimize (12) due to
the high dimension of x′. To accelerate this algorithm, they
proposed an appropriate distribution to sample the random
noise in each iteration, which can model the local geometry
of the search directions. They sampled a random noise from
a biased Gaussian distribution to minimize the distance of
the sampled adversarial image from the original image. This
added bias term is a critical hyper-parameter controlling the
strength of going towards the original image. The authors
also proposed techniques to reduce the dimension of search
space by considering the characteristics of this problem. They
sampled random noise in a lower-dimensional spaceRm with
m < d, where d is the dimension of input space. They
then adopted an upscaling operator, precisely, the bilinear
interpolation method, to project noise vector to the original
space. Consequently, the input image dimension is preserved,
and the dimension of search space is reduced.

5) FEATURE FAST & ITERATIVE ATTACK METHODS
Given a face pair and a deep face model, [75] proposed
feature-level attacks to compare the face pair via calculating
the distance between their normalized deep representations.
These representations are similar to the embedding features,
except that they are normalized and extracted from the deep
facemodel. To discover the vulnerability of deep facemodels,
the authors proposed to add perturbation on one of the face
images to generate adversarial examples and deceive the face
model. According to their notion, a positive and negative
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face pair is defined, for which the corresponding output labels
are the same and different, respectively. Denoting the face
pair by

{
x1, x2

}
and adversarial example by x′ = x1 + n,

for a positive face pair, l1 = l2 and the optimized objective
and loss function are formulated as:

n = argmax
n
‖F(x1 + n)−F(x2)‖2, ‖n‖∞<ε

J(x1+n, x2) = ‖F(x1 + n)− F(x2)‖2 (13)

whereas for negative face pair {x1, x2}, l1 6= l2 and the
optimized objective and loss function are formulated as:

n = argmax
n
‖F(x1 + n)−F(x2)‖2, ‖n‖∞<ε

J(x1+n, x2) = −‖F(x1 + n)− F(x2)‖2 (14)

where F(xi) denotes deep representations after normalization
and ε limits the maximum deviation of the perturbation.
Forming adversarial perturbation based on the loss functions
of (13) and (14) is called Feature Fast Attack Method (FFM)
and defined as:

x1 + n = Gx1,ε

(
x1 + sign

(
∇x1J(x

1, x2)
))

(15)

Considering an iterative way, the authors proposed the
Feature Iterative Attack Method (FIM) as:

n0 = 0

gN+1 = ∇x1+nNJ(x
1
+ nN , x2)

x1 + nN+1 = (x1 + nN , sign(gN+1)) (16)

where Gx,ε(x′) = min(255, x + ε,max(0, x − ε, x′)); the
iteration can be chosen heuristically min(ε + 4, 1.25ε).

6) EYEGLASS ACCESSORY PRINTING
Sharif et al. [76] proposed a physically realizable attack for
impersonation or dodging in a digital environment. To enable
physical realizability, the first step involved implementing the
attacks purely with facial accessories (specifically, eyeglass
frames) via 3d- or even 2d-printing technologies. In par-
ticular, they used a specific readily available digital model
of eyeglass frames and utilized a commodity inkjet printer
(EpsonXP-830) to print the front plane of the eyeglass frames
on glossy paper, which are affixed to actual eyeglass frames,
subsequently. After alignment, the frames occupy about 6.5%
of the 224× 224 face image pixels, implying that the attacks
perturb at most 6.5% of the pixels in the image. To find
the color of the frames necessary to achieve impersonation
or dodging, their color is initialized to a solid color (e.g.,
yellow), and the frames are rendered onto the image of the
subject. Their color is updated iteratively through the gradient
descent process to craft adversarial perturbations tolerant
to slight natural movements when physically wearing the
frames.

The second step involved tweaking the mathematical for-
mulation of the attacker’s objective to focus on adversarial
perturbations that both robust to small changes in view-
ing condition and smooth as expected from natural images.

To find perturbations independent of the exact imaging con-
ditions, aiming to enhance the generality of the perturbations,
the authors looked for perturbations that can cause any image
in a set of inputs to be misclassified. To this end, an attacker
collects a set of images, X , and finds a single perturbation
that optimizes her objective for every image x ∈ X . For
impersonation, this is formalized as the following optimiza-
tion problem (dodging is analogous):

argmin
n

∑
x∈X

softmaxloss (F (x+ n) , l) (17)

where n denotes the perturbation. To preserve the smoothness
of perturbations, the optimization is updated to account for
minimizing total variation (TV) [77], which is defined as:

TV (n) =
∑
i,j

((
ni,j − ni+1,j

)2
+
(
ni,j − ni,j+1

)2)1/2
(18)

where ni,j denotes a pixel in n at coordinate (i, j). TV (n) is
low when the values of adjacent pixels are close to each other
(i.e., the perturbation is smooth), and high otherwise. There-
fore, by minimizing TV (n), the smoothness of the perturbed
image hence the physical realizability is improved.

7) VISIBLE LIGHT-BASED ATTACK (VLA)
Shen et al. [78] introduced a Visible Light-based Attack
(VLA) against FR systems, where visible light-based adver-
sarial perturbations are crafted and projected on human faces.
For each adversarial example, the authors proposed to gen-
erate a perturbation frame and a concealing frame, which
are projected to the face of the user. The perturbation frame
contains information on how to change the input user’s facial
features to the features of a targeted or non-targeted user,
whereas the concealing frame aims to hide the perturbations
in the perturbation frame from being observed by human
eyes.

Regarding the perturbation frames generation, this method
enlarges the pixel-level image modifications into region-level
to avoid probable perturbation loss in physical scenarios.
Accordingly, the perturbation frame is divided into exclusive
ranges based on the similarity of containing color values.
AManshift clustering divides all colors, where nearby similar
colors are divided into the same regions, and each group of
nearby pixels with the same color in the image is regarded as
one perturbation region. Then, in the second step, a region
filtering strategy is utilized to ensure that the camera can
successfully capture all projected details in a perturbation
frame, and small color regions would not get lost in the
images captured in physical scenarios. Denoting n = x′ − x
as the perturbation frame, a clustering and filtering result of
n is denoted by Cx,x′ and defined as follows:

Cx,x′ = {Gi (p) ,Ri|0 ≤ i ≤ m} (19)

where Gi (p) indicates whether the color of a pixel p should
be set as Ri, and m is the total number of color regions. For
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each pixel p. in the image Cx,x′ , Gi (p) is 1 if p lies within
Ri, and 0, otherwise. The generation function H (·) is defined
next to transform the clustering resultCx,x′ into a perturbation
frame n, as shown in (20):

n = H
(
Cx,x′

)
= [Ri if Gi (p) = 1] (20)

To hide the perturbation frames from human eyes, conceal-
ing frames are generated according to the effect of persistence
of vision (POV) [79]. According to POV, two different col-
ors that swap frequently cause the human brain not directly
process these changes at the exact moment they occur, mak-
ing the human eyes perceive a new color as a fusion of
those colors. Based on this knowledge, by projecting the
perturbation frame and the concealing frame alternately, i.e.,
displaying the corresponding two colors of generated images
interchangeably, it can be difficult for human eyes to feel
the perturbation frame, and a fusion of these colors will be
perceived as a base/background color of the image.

8) ADVHAT ATTACK
Komkov and Petiushko [80] proposed a reproducible adver-
sarial attack generation method, called AdvHat. They printed
a rectangular paper sticker on a standard color printer and put
it on the hat with an off-plane transformations algorithm. The
proposed algorithm split into two steps: (1) off-plane bending
of the sticker, which is simulated as a parabolic transforma-
tion in the 3D space to map each point of the sticker to the
new point on the parabolic cylinder, and (2) pitch rotation of
the sticker, which is stimulated by the application of a 3D
affine transformation to the obtained new points. The authors
projected the resulted sticker on the high-quality face image
with small perturbations in the projection parameters. They
transformed the new face image into the standard template of
ArcFace input to pass it to the optimization step. Regarding
the optimization step, the sum of two parameters (TV loss
and cosine similarity between two embeddings) is minimized
as follows to achieve the gradient signs used to modify the
sticker image:

LT
(
x′, a

)
= Lsim

(
x′, a

)
+ λ · TV (patch) (21)

where LT is the total loss, patch denotes the sticker, x′is a
photo with the applied patch, and λ is a weight for TV loss,
which is assumed to be 1e−4 in this work. Here, Lsim is cosine
similarity between two embeddings and defined as follows:

Lsim
(
x′, a

)
= cos (ex′ , ea) (22)

where ex′ is obtained embeddings of the face image of the
attacker and ea refers to the embedding of the desired person’s
face image calculated by ArcFace.

9) PENALIZED FAST GRADIENT VALUE METHOD (P-FGVM)
Chatzikyriakidis et al. [81] introduced a Penalized Fast
Gradient Value Method (P-FGVM) adversarial attack tech-
nique, which runs on the image spatial domain and generates
adversarial de-identified facial images like the original ones.

This technique is inspired by the I-FGVM, with a minor
exception of combining an adversarial loss and a ‘‘real-
ism’’ loss term in its gradient descent update equations.
In this method, a targeted adversarial example x′ is generated
through the following gradient descent update equations:

x′(i+1) = Clipε
{
x′(i) + α ·

(
∇x′(i)J

(
θ , x′(i), l

)
+λ

(
x′(i) − x

))}
(23)

where λ is a weight coefficient and (x′(i) − x) is the realism
loss term.

10) FACE FRIEND-SAFE ATTACK
Kwon et al. [82] proposed the Face Friend-safe adversar-
ial example generation method, which generates adversarial
examples that are misrecognized by an enemy FR system,
nonetheless, appropriately recognized by a friend FR system
with the least distortion. The proposed method consists of a
transformer, a friend classifier Mfriend, and an enemy classi-
fier Menemy, to generate adversarial face images. Given the
pre-trained Mfriend and Menemy and the original input x ∈ X ,
the optimization problem of generating the adversarial face
example x′ is as follows:

argmin
x′

L(x, x′)

s.t. gfriend(x′) = l and genemy(x′) 6= l (24)

where gfriend(x) and genemy(x) denote the operation functions
of a friend classifier Mfriend and enemy classifier Menemy,
respectively. L (.) is the distance measured between the face
original sample x and face transformed example x′. The
transformer generates adversarial face example x′, taking
the original sample x and its corresponding output label.
The classification loss of x′ by Mfriend and Menemy are
returned to the transformer, which then calculates the total
loss, LT , and repeats the above procedure to generate an
adversarial face example x′ while minimizing LT . This total
loss is defined as follows:

LT = Lfriend + Lenemy + Ldistortion (25)

where Lfriend is the classification loss function of Mfriend,
Lenemy is the classification loss function of Menemy, and
Ldistortion is the distortion of the transformed example, and
defined as the distance between x and x′.

11) FAST LANDMARK MANIPULATION (FLM) METHOD
Dabouei et al. [83] proposed a fast landmark manipulation
approach to craft adversarial faces. They proposed to gener-
ate adversarial examples by spatially transforming original
images. Using a landmark detector function 8, that maps
the face image x to a set of k 2D-landmark locations P =
{p1, . . . , pk}, pi = (ui, vi), it is assumed that p′i = (u′i, v

′
i)

is the transformed version of pi, and defines the ith landmark
location in the corresponding adversarial image x′. To manip-
ulate the face image based on P, a per-landmark flow
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(displacement) f is defined to produce the location of the cor-
responding adversarial landmarks. Accordingly, the adversar-
ial landmark p′i can be obtained from the original landmark pi
and optimized particular displacement vector fi = (1ui,1vi)
as follows:

p′i = pi + fi
(u′i, v

′
i) = (ui +1ui, vi +1vi) (26)

In contrast with the reference work [84], which fulfills
this purpose by defining field f for all pixel locations in
the input image, Dabouei et al. [83] defined it only for k
landmarks, which is notably small compared to the number of
pixels in the input image, especially when incorporated in real
applications like FR problems. This limited number of control
points also reduces the distortion introduced by the spatial
transformation. Using the transformation T , the benign face
image spatially transformed into an adversarial face image as
follows:

x′ = T (P,P ′, x) (27)

where P ′ refers to target control points. Incorporating the
softmax cost as the measure for the correct classification,
authors defined the total loss for generating adversarial
faces as:

L
(
P,P ′, x, l

)
= softmaxloss

(
F
(
T
(
P,P ′, x

))
, l
)

− λflowLflow
(
P ′ − P

)
(28)

where λflow is a positive coefficient used to control the mag-
nitude of displacement, and Lflow is a term incorporated for
bounding the displacement field. This way, the landmark dis-
placement field f is found iteratively using the gradient direc-
tion of the prediction and called the FLM method. Authors
also extended this approach proposing the Grouped Fast
Landmark Manipulation (GFLM) Method, which semanti-
cally groups landmarks and manipulates the group properties
instead of perturbing each landmark. This idea was formed to
resolve severe distortion of the adversarial faces generated by
FLM and preserve the whole structure of the created images.

B. COMPARISON OF DIFFERENT ADVERSARIES ON
ORIENTATION
A general taxonomy of existing adversarial example gen-
eration techniques against FR systems considering the
orientation of adversaries is depicted in Fig. 3. Based
on the strategies followed in different studies or tools
recruited to launch adversarial attacks, different techniques
could be mainly classified into four categories, namely,
(1) CNN models-oriented; (2) physical attacks-oriented; and
(3) geometry-oriented. The remainder of this section is struc-
tured according to this classification.

1) CNN MODELS-ORIENTED
As stated earlier, deep learning paradigm has seen a remark-
able propagation in the FR mission. Several models are
deep CNN-based architectures with many hidden layers and

FIGURE 3. The broad categorization of adversarial attack generation
methods aimed to deceive the FR systems.

millions of parameters, which are designed to achieve very
high accuracies when tested on different databases. Whereas
reported efficiencies of such models improve progressively,
they are shown to be susceptible to adversarial attacks. Real-
izing this, many researchers have started to design approaches
to exploit the weaknesses of such algorithms.

Goswami et al. [71] considered the vulnerability of several
deep CNN-based FR algorithms in the presence of image
processing-based distortions at (1) image-level and (2) face-
level. They confirmed that attacks on systems do not need
to be sophisticated learning based. Instead, a random noise or
even horizontal and vertical black grid lines drawn in the face
image can severely reduce the face verification accuracies.
Examples of this effort are depicted in Fig. 4.

FIGURE 4. Clean input images (a) modified by image processing-based
distortions of xMSB (b), Grid-based Occlusion (c), Forehead and Brow
Occlusion (FHBO) (d), Eye Region Occlusion (ERO) (e), and Bread-like
Occlusion (f) [71].

Dong et al. [72] proposed the Evolutionary Attack algo-
rithm to evaluate the robustness of multiple advanced
FR models against label-level adversarial examples in a
decision-based attack setting.

Zhong and Deng [85] defined Dropout Face Attacking
Networks (DFANet) technique to explore the vulnerability
of deep CNNs against feature-level adversarial examples.
They incorporated dropout in the convolutional layers in
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the iterative steps of the adversarial generation process to
improve the transferability of adversarial examples. Specif-
ically, for a face model composed of convolutional layers,
given the output of the ith convolutional layer, they proposed
to generate a mask with elements that independently sampled
from a Bernoulli distribution. This mask is then utilized to
modify the output of the ith convolutional layer via Hadamard
product of those. Authors proposed to apply this method to
the generation of FIM and combined it with transferability
enhancement methods [86]–[88]. Applying their practice on
the LFW dataset, they generated a new set of adversarial face
pairs to attack commercial APIs of Amazon,3 Microsoft,4

Baidu,5 and Face++,6 which provide highly accurate facial
analysis and facial search capabilities to detect, analyze,
and compare faces for a wide variety of applications. They
made this TALFW database available to the public for future
investigations.

Garofalo et al. [89] focused on the security aspect of
face authentication systems aiming to let impostors evade
the FR models. The authors deployed a poisoning attack
on an authenticator based on the OpenFace FR framework
which was extended with a support vector machine (SVM)
classifier. They implemented the attack against the under-
lying SVM model to classify face templates extracted by
the FaceNet model. In another study with a similar purpose,
Chatzikyriakidis et al. [81] proposed to utilize adversarial
examples in cases of face de-identification. They introduced
theP-FGVM adversarial attack technique against CNN-based
face classifiers. Examples of implementing this method to
generate adversarial images are shown in Fig. 5.

FIGURE 5. Clean facial images (a) modified by adversarial perturbation
(b) to generate de-identified facial images (c) via adversarial attack
method P-FGVM [81]. The absolute value of perturbation is amplified
by 10x.

Lately, Kwon et al. [82] proposed the Face Friend-
safe adversarial example generation method to successfully

3https://aws.amazon.com/rekognition
4https://azure.microsoft.com
5 https://ai.baidu.com
6 https://www.faceplusplus.com.cn

mislead an enemy FR system, nonetheless, be appropriately
recognized by a friend FR system.

Recently, a new Python-based toolbox, termed Advbox,
is proposed to generate adversarial examples [90]. With
Advbox, it is possible to fool neural networks in PaddlePad-
dle, PyTorch, Caffe2, MxNet, Keras, and TensorFlow, with
the additional capability to benchmark the robustness of ML
models. Compared to previous works, this platform supports
actual attack scenarios, such as FR attacks.

2) PHYSICAL ATTACKS-ORIENTED
Intruders to facial biometric systems often encountered two
kinds of challenges: (1) they do not have precise control over
the FR systems’ (digital) input; instead, they may be able
to control their physical appearance, and (2) they might be
easily observed by traditional means like the police, when
manipulating their appearances to evade recognition, e.g.,
with an excessive amount of makeup. In the light of such
challenges, a new class of adversarial attacks has emerged
based on the physical state of the attackers.

Sharif et al. [76] developed the Eyeglass Accessory Print-
ing method to generate a physically realizable yet inconspic-
uous class of attacks. In [91], authors proposed Adversarial
Generative Nets (AGNs) to generate images of artifacts (e.g.,
eyeglasses) that would lead to misclassification. The artifacts
generated by such neural networks resembled a reference
set of artifacts (e.g., real eyeglass designs) and satisfied the
inconspicuousness objective. Similar to GANs, AGNs are
adversarially trained against a discriminator to learn how to
generate realistic images. Differently from GANs, AGNs are
also trained to generate adversarial outputs that can mislead
given FRmodels on both digital and physical levels of evasion
purposes. In this study, the FR algorithms were targeted on
the digital-level by traditional attacks, such as Szegedy’s
L-BFGS method [9], and deceived on the physical-level by
requesting individuals to wear their 3D-printed sunglasses
frames. Fig. 6 illustrates an impersonation attack generation
by wearing such an accessory.

FIGURE 6. The eyeglass frames (a) were used by Lujo Bauer (b) to
impersonate Milla Jovovich (c) [76].

Zhou et al. [92] designed a cap, with some penny-size
lit Infrared LEDs on the peak, to generate inconspicuous
physical adversarial attacks via Infrared dot direction on the
carrier’s face. The loss in this work is optimized by adjusting
light spots in line with the model on the attacker’s photo. The
attacker could then evade detection by adjusting the positions,
sizes, and strengths of the dots.
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Motivated by the differences in image-forming principles
between cameras and human eyes, Shen et al. [78] pro-
posed the VLA attack against FR models. In a similar study,
Nguyen et al. [55] studied the feasibility of directing real-time
physical attacks on FR systems by adversarial light projec-
tions using a web camera and a projector. In this approach,
the authors captured the adversary’s facial image with a
camera and used one or more target images to (1) adjust the
camera-projector setup according to the attack environment
and (2) create a digital adversarial pattern. The digital pattern
is then projected onto the adversary’s face in the physical
domain with a projector to evade recognition. Although this
work’s objectives are identical to the infrared-based adver-
sarial attacks [92], it does not necessitate creating a wearable
artifact, thus, offers a more comfortable alternative setup to
direct physical attacks on FR models.

Another study [80] proposed to target the public Face
ID model LResNet100E-IR, ArcFace@ms1m-refine-v2, by
AdvHat attack generation method in fixed (full-face pho-
tos with uniform light) and variable (different angles of
the face rotation and light conditions) settings. Similarly,
Pautov et al. [93] examined the security of the same recogni-
tion system and proposed to print, add (as face attributes) and
photograph adversarial patches; the snapshot of an individual
with such attributes is then delivered to the classifier to alter
the correctly recognized class to the desired one. In this
work, patches were either various parts of the attacker’s face,
like nose or forehead or some wearable accessories such as
eyeglasses.

3) GEOMETRY-ORIENTED
Prevalent intensity-based adversarial attack methods, which
manipulate the intensity of input images directly, are com-
putationally cheap but sensitive to spatial transformations.
A small rotation, translation, or scale variation in the
input image could result in a drastic change in similarity
in these methods. Due to this limitation, a new class of
attacks was initiated to generate geometry-based adversarial
examples.

Dabouei et al. [83] proposed the FLM method to craft
adversarial faces almost 200 times quicker than traditional
geometric attacks. They further introduced GFLM as the
extended version of the fast geometric perturbation genera-
tion algorithm. Fig. 7 demonstrates an overview of the pro-
posed fast geometry-based adversarial attack [83].

Song et al. [94] focused on attacks that mislead the FR
networks to detect someone as a target person, not misclassify
inconspicuously. They introduced an Attentional Adversarial
Attack Generative Network (A3GN ) to generate adversarial
examples similar to the original images while having the
same feature representation as to the target face. To cap-
ture the target person’s semantic information, they appended
a conditional variational autoencoder and attention mod-
ules to learn the instance-level correspondences between
faces.

FIGURE 7. Fast landmark manipulation method application to produce
adversarial landmark locations, with which the ground truth image
spatially transformed to a natural adversarial image. As shown in green
and red colors, the ground truth image is correctly classified, whereas the
adversarial image is misclassified to a wrong class [83].

Utilizing GANs, Deb et al. [56] crafted natural face
images with a barely distinguishable difference from target
face images. They proposed the AdvFaces adversarial face
synthesis method to craft minimal perturbations in the promi-
nent facial regions. This method comprises a generator, a
discriminator, and a facematcher to automatically generate an
adversarial mask added to the image to obtain an adversarial
face image. Table 1. presents a general overview of different
adversarial example generation approaches regarding their
orientation.

C. COMPARISON OF DIFFERENT ADVERSARIES ON
EVALUATION PROCESS
This section compares different adversarial example gener-
ation techniques in terms of their evaluation process and
corresponding utilized metrics.

Goswami et al. [71] evaluated the verification performance
of CNN-based FR algorithms, including OpenFace, VGG-
Face, LightCNN, and L-CSSE [95], and one commercial-
off-the-shelf recognizer (COTS) in the presence of image
processing based adversarial distortions on the PaSC [96]
and MEDS [97] databases. They reported experimental
results based on the genuine accept rate (GAR) (%) of the
attacks at 1% false accept rate (FAR). Overall, they demon-
strated that deep learning-based algorithms could experi-
ence higher performance drop as opposed to the non-deep
learning-based COTS when any distortion is introduced in
the data.

Dong et al. [72] compared the performance of the Evo-
lutionary Attack method with all existing decision-based
black-box attack generation methods, including the boundary
attack method [98], optimization-based method [99], and an
extension of NES in the label-only setting (NES-LO) [100].
On the LFW and MegaFace datasets, the authors made
this comparison against SphereFace, CosFace, and ArcFace
FR models. For all methods, they measured the distortion
between the adversarial and original images by mean square
error (MSE) to evaluate the performance of different meth-
ods. Experimental results demonstrated that the proposed
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TABLE 1. Comparison of different adversarial attack generation algorithms on the orientation and Evaluation process.

method could converge much faster and achieve smaller dis-
tortions compared with other methods consistently across
both tasks (i.e., face verification and identification), both
attack settings (i.e., dodging and impersonation), and all face
models.

Zhong and Deng [85] evaluated the transferability of tar-
geted attacks between the ResNet-50 model trained on four
datasets of CASIA-WebFace, MS-Celeb-1M, VGGFace2,
and IMDb-Face [101]. They defined the goal of the attack as
to generate adversarial examples from the source images and
planned to obtain face embedding representations of source
images closer to those of target images than the distance
threshold of the FR systems. Accordingly, they computed
the Euclidean distance of normalized deep features to obtain
ROC curves and identified distance thresholds for judging
whether a pair of source/target images is positive or negative.
In this study, the attack is defined as a success (hit) when the
embedding distance between the source image and target is
less than the threshold. Authors used Fast Target Gradient
Sign Method (FTGSM) [41] and Iterative Target Gradient
Sign Method (ITGSM) [41] to generate label-level adversar-
ial examples and FFM and FIM to generate feature-level
adversarial examples. Being more effective in terms of the
transferability, authors selected FIM as the baseline method
and further improved it by incorporating the transferabil-
ity enhancement methods [86]–[88]. Created strong base-
line method was then compared with the proposed DFANet
method. Based on the comparisons, the authors verified the
superiority of the DFANet method and that most of the suc-
cessful hit rates of adversarial examples generated by this

approach could be improved to approximately 90% between
the four deep FR models.

Garofalo et al. [89] utilized the Facescrub dataset [102] for
their in-depth evaluation, as this dataset offers a high quantity
of identities and samples per identity. They described the
strength of the authenticator by false negative rate (FNR),
false positive rate (FPR), and classification error (CE). Exper-
imental results demonstrated that with the most successful
attack, an impressive mean CE of 40.11% could be achieved,
which was an increase in mean authentication error of almost
37% over the not targeted system, while the mean FPR
increase was shown to be over 40%. In addition, the most
successful attack deployment showed to lead to the CE
of 51.23% on the test set, making the face authentication
system entirely useless.

Chatzikyriakidis et al. [81] evaluated the proposed
P-FGVM method on two CNN-based face classifiers: (1) a
simple architecture model and (2) a fine-tuned model with
transfer learning based on the pre-trained VGG-Face CNN
descriptor, using the VGG-16 architecture [43]. They calcu-
lated the mean structural similarity index (MSSIM) between
the de-identified and original facial images as well as the
L2 norm of the adversarial perturbation as the metrics for
measuring the visual quality of the results. Comparing with
the baseline I-FGVM and I-FGSM methods, against the face
classifiers described above and on a subset of the CelebA
dataset, the authors demonstrated that the proposed method
could produce de-identified images that are much closer
to the original ones while having better misclassification
error than the competing methods (3% and 1.7% increase in
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misclassification rate as comparedwith I-FGVM and I-FGSM
methods, respectively).

Kwon et al. [82] considered the FaceNet recognition
system as the target model; they trained their method on
VGGFace2 and tested it on the LFW dataset. Authors evalu-
ated the efficiency of the proposed method by measuring the
attack success rate (SR) of the enemy classifier, the accuracy
of the friend classifier, and the average distortion, demon-
strating the values of 92.2%, 91.4%, and 64.22, respectively.
Reporting such values, they claimed that the objectives of
their work were achieved successfully.

Sharif et al. [76] evaluated their adversarial exam-
ple generation method in both digital-environment and
physical-realizability experiments. They measured the SR
of the attack as the fraction of attempts to achieve the
goal. To compute statistics that generalize beyond individ-
ual images, they performed each attack on three images
of each subject and reported the mean SR across those
images. In digital-environment experiments, attacking differ-
ent DNNs under the white-box scenario, the attacker was
able to dodge recognition or impersonate targets in almost all
attempts with the mean SR of 100%. In Physical-realizability
experiments, where subjects were asked to wear eyeglass
frames and their images captured thereafter, the first three
authors participated and for each of them, five sessions were
considered. In the first session, the subjects did not wear the
eyeglass frames, and non-adversarial images were classified
correctly, with the mean probability of the correct class across
the classification attempts above 0.85. In the second and
third sessions, they wore eyeglass frames to attempt dodging
against DNNs. Themean probability assigned to the subjects’
class dropped remarkably from above 0.85 to less than 0.03,
considering different cases. This was equivalent to achieving
SRs of 100% (except for one experiment which resulted in
an SR of 97.22%). In the fourth and fifth sessions, the sub-
jects wore frames to attempt impersonation against DNNs.
Considering different cases, more than 87.87% of the images
collected in these sessions were misclassified by DNNs (with
the mean probabilities of the targets greater than 0.75).

In [91], Sharif et al. assessed dodging and imperson-
ation attacks against VGG-Face and OpenFace models.In the
evaluation stage, they reported the accuracies of DNNs and
SRs of the attacks. Using AGNs, in the digital domain all
attempts succeeded with a mean SR of 100% in all dodging
cases and greater than 88% in all impersonation attacks.
In physical-realizability experiments, for dodging attacks,
authors reported the AGNs’ SR of 81% and 100% in the
worst and best cases, respectively, and the mean probability
assigned to the correct class of 0.40 and 0.01, correspond-
ingly. For impersonation attacks, they reported the AGNs’
SR of 53% and the mean probability assigned to the target
of 0.22.

Zhou et al. [92] examined the effectiveness of their pro-
posed technique against the FaceNet model on the LFW
dataset. They used L2 distance to weight the distance between
two feature vectors generated by their model, and adopted

the threshold 1.242 over the LFW dataset. In this way, a pair
of faces with distance below the threshold were recognized
as from the same person, otherwise two distinct individuals.
The authors observed that the original distances, i.e., the
distance between the embedding of the attacker and the victim
before launching the attack, were all above the threshold.
Hence, an authentication system could recognize that there
was not a victim in the corresponding photo. On the other
hand, the algorithm could result in adversarial examples that
theoretically make distances fall below the threshold. In this
work, theoretical distance means the distance between the
calculated adversarial example and the victim. More impor-
tantly, the authors demonstrated that the attacker could indeed
implement those adversarial examples by using the proposed
device and consequently fool the authentication system. They
verified this by measuring the distances after the attack that
got below the threshold.

Shen et al. [78] conducted extensive experiments on
the CusFace [78] and LFW datasets and against FaceNet,
SphereFace, and dlib models. Authors generated adversar-
ial examples using FGSM and VLA methods, separately.
On the FaceNet model, they demonstrated that for the
non-targeted attacks in physical scenarios, VLA could signif-
icantly improve the SR over the FGSM. For targeted attacks,
however, the proposed method could achieve a reasonable
SR. Experimental results explained that the region-level color
areas in perturbation frames generated by the VLA are more
robust helping to obtain more effective adversarial examples.
Generated adversarial examples were also used to evaluate
with other face recognizers of SphereFace and dlib. The
results of FGSM indicated that the attack SR against dlib and
SphereFace is less than that against FaceNet, as FGSM is a
white-box approach and the adversarial examples targeting
FaceNet may not fit for other recognizers. However, as the
VLA is agnostic to face recognizers, it could exhibit a similar
performance against the three recognizers.

Nguyen et al. [55] evaluated their approach against
FaceNet, SphereFace, and one commercial-off-the-shelf FR
system and confirmed the models’ vulnerability to the light
projection attacks. They used a similarity score threshold
corresponding to FAR of 0.01% to determine if the attack is
successful or not. Conducting impersonation and obfuscation
experiments on live subjects and against the FaceNet system,
the authors reported the highest SRs of 93.3% and 100%,
respectively. This is while the lowest SR values were achieved
against the commercial-off-the-shelf FR system, indicating
the more vulnerability of the deep FR systems against gen-
erated attacks.

Komkov and Petiushko [80] evaluated the success and
characteristics of the attacks in fixed and variable condi-
tions. On the CASIA-WebFace dataset, they verified that their
approach could easily confuse the LResNet100E-IR Face ID
model. As the evaluation metrics, they explored baseline sim-
ilarity and final similarity which they defined as cosine simi-
larity between ground truth embedding and embedding for a
photo with a hat, and cosine similarity between ground truth
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embedding and embedding for a photo with an adversarial
sticker, respectively. In experiments with the fixed condition,
they observed that adversarial stickers could significantly
reduce the similarity to the ground truth class. In experiments
with various conditions, where the robustness of the proposed
approach to different shooting conditions aimed to be exam-
ined, although final similarity demonstrated to increase in
each case/condition, the attack observed to work and almost
all final similarities were shown to be less than the baseline
similarities.

Pautov et al. [93] evaluated their method against Arc-
Face on CASIA-WebFace dataset and photos of the first
and second authors of this work. They showed that with their
simple attacking technique they could deceive the FR sys-
tem in the digital and physical worlds. Experimental results
demonstrated that though the similarity of the embedding
corresponding to the photo of the attacker with an applied
patch with ground truth class can reach just slightly below the
similarity of that embedding with desired class, the FRmodel
could not recognize the attacker as the ground truth class.
Authors also discovered that the position of a patch, as well
as its size, dramatically affects the success of the attack in the
physical domain.

Dabouei et al. [83] evaluated the performance of the pro-
posed FLM and GFLM methods for the white-box attack
scenario. They trained the FaceNet model on VGGFace2 and
CASIA-WebFace datasets and assessed its performance on
the CASIA-WebFace dataset. The authors defined several
experiments to investigate the importance of different regions
of the face. From the results, they observed that with the
attacks guided through these methods, the SR of more than
99.86% could be achieved. The computation time of these
algorithms found to be noticeable too. The average time
of generating adversarial faces for the FLM and GFLM
was observed to be 125 and 254 milliseconds respectively,
which is considerably shorter than the computation time of
stAdv [84] (27.177 seconds on average).

Song et al. [94] examined the proposed method by train-
ing the model on CASIA-WebFace and evaluating it on
LFW datasets. They compared their approach with stAdv
and GFLM methods and observed that a satisfactory attack
SR could be archived via their proposed method. Overall,
the authors demonstrated the excellent performance of A3GN
by a set of evaluation criteria in physical likeness, similarity
score, and accuracy of recognition on different target faces.

Deb et al. [56] quantified the effectiveness of their pro-
posed adversarial example generation methods via attack
SR and structural similarity index (SSIM). Authors trained
AdvFaces on CASIA-WebFace and tested it on the LFW.
They found that in comparison with the state-of-the-art
adversarial example generation methods of FGSM, PGD,
A3GN , and GFLM, AdvFaces can generate adversarial
faces similar to the test images to be matched against the
gallery images. While evading the state-of-the-art FR mod-
els (FaceNet, SphereFace, ArcFace) and two commercial-
off-the-shelf machers (COTS-A and COTS-B), generated

images were demonstrated to attain attack SRs as high
as 97.22% and 24.30% for obfuscation and impersonation
attacks, respectively. They reported the structural similarities
between adversarial and test images along with the time taken
to generate a single adversarial image and demonstrated that
with their proposed AdvFaces method, a computation time
of 0.01 seconds and MSSIM of 0.95 and 0.92 could be
achieved for obfuscation and impersonation attacks, respec-
tively. Reported SSIM values and computation time were
respectively higher and lower than those achieved by the other
methods revealing the superiority of the AdvFaces method
over them. Different evaluation metrics that were utilized
in the reviewed studies are presented in the last column
of Table 1.

D. COMPARISON OF DIFFERENT ADVERSARIES ON
ATTRIBUTES
This section compares different adversarial example genera-
tion techniques in terms of attack attributes of capacity, speci-
ficity, transferability, and kind of employed perturbation.

1) THE CAPACITY
Table 2. summarizes two primary attribute information, i.e.,
the capacity and the specificity of the attackmethods. Regard-
ing the capacity attribute, we found that most of the attack
generation techniques are white-box attacks. In the scenario
of black-box attacks, focusing on CNN model orientation,
Dong et al. [72] considered a black-box decision-based attack
setting and demonstrated that their approach could converge
fast and fool the target model with fine distortions. In [85]
an operative black-box adversarial attack was generated
against commercial APIs and further step was taken explor-
ing the transferability of feature-level adversarial exam-
ples against deep CNN-based FR models (Section IV-B.1).
Goodman et al. [90] proposed the Advbox toolbox, which
showed its ability to support black-box attacks against FR
systems. Regarding physical attacks orientation, authors
in [78] proposed the VLA against black-box FR systems.
Nguyen et al. [55] focused on real-time light projection-based
attacks considering both white- and black-box attack set-
tings. In geometry-oriented attacks, Deb et al. [56] demon-
strated that faces generated by the AdvFaces adversarial face
synthesis method could evade several black-box contem-
porary face-matching techniques while achieving unprece-
dented attack SRs.

2) THE SPECIFICITY
Considering the specificity of adversarial example generation
techniques, Table 2. represents that most attack methods
are both targeted and non-targeted. Hence, the general-
ization is practically considered regarding this attribute.
In the scenario of non-targeted attacks, which are easier to
implement, Garofalo et al. [89] concentrated on the poi-
soning attack design, Komkov and Petiushko [80] focused
on the evasion purpose of paper sticker projection on the
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TABLE 2. Comparison of different adversarial attacks on capacity and
specificity attributes.

hats, and Dabouei et al. [83] prioritized the speed of their
landmark-based adversarial example generation algorithm.

3) THE TRANSFERABILITY
The transferability of attack methods was explored by some
studies [56], [80], [85], [91]. Zhong and Deng [85] explored
the vulnerability of CNN-based FR models to transferable
attacks. They observed that their proposedDFANet technique
could enhance the transferability of existing attack methods.
Sharif et al. [91] found that attacks against the OpenFace
architecture could successfully fool the VGG architecture
in only a limited number of attempts (10–12%), whereas
dodging against VGG can lead to successful dodging against
OpenFace in at least 63% of attempts. They also argued that
the generated universal attacks could transfer between archi-
tectures with similar success. Komkov and Petiushko [80]
demonstrated that a paper sticker’s projection on the hat
with their proposed reproducibleAdvHatmethod could easily
confuse Face ID model LResNet100E-IR. They expressed
that the proposed method is transferable to other Face ID
models, taken from InsightFace Model Zoo,7 which have dif-
ferent architectures, loss functions, and datasets for training
in comparison to the LResNet100E-IR. Deb et al. [56] veri-
fied that faces generated with their AdvFaces adversarial face
synthesis method are model-agnostic and transferable and
can evade several black-box new face matching techniques.

4) THE PERTURBATION
Though universal perturbations make it easier to create adver-
saries in real-world applications, all except one reviewed
attack methods in this paper have demonstrated to generate
image-specific perturbations. In [89], authors generated uni-
versal dodging with a small number of eyeglasses that many
subjects can use to evade recognition. This is despite the
fact that universal perturbation generation against FR models
seems to be a potential research path and is worth investing

7 https://github.com/deepinsight/insightface/wiki/Model-Zoo

some time to avoid noise reformation any time input samples
are altered (Section VI-D).

V. DEFENSE AGAINST ADVERSARIAL EXAMPLES
As novel approaches for crafting adversarial examples are
proposed, research is also directed to confront adversaries
aiming to moderate their consequence on a target deep net-
work’s performance. Accordingly, several defense strategies
have been defined to increase the security of at-risk FR
models.

A. DEFENSE OBJECTIVES
The objectives of defense strategies could be generally cate-
gorized into the following:

Model architecture preservation is a primary considera-
tion when constructing any defense techniques against adver-
sarial examples. With this objective, the minimal alteration
should be exerted on model architectures.

Accuracy maintenance is a primary factor considered to
keep the classification outputs almost unaffected.

Model speed conservation is another factor that should
not be affected during testing with the deployment of defense
techniques on large datasets.

B. DEFENSE STRATEGIES
Generally, the defense strategies against the adversarial
attacks can be divided into three categories: (1) altering
the training during learning, e.g., by injecting adversarial
examples into training data or incorporating altered input
throughout testing, (2) changing networks, e.g., by chang-
ing the number of layers, subnetworks, loss, and activa-
tion functions, and (3) supplementing the primary model
by external networksto associate in classifying unseen sam-
ples. The methodologies in the first category are not con-
cerned with the learning models. However, the other two
categories directly deal with the NNs themselves. The dif-
ference between ’changing’ a network and ’supplementing’ a
network by external networks is that the former changes the
original deep network architecture/parameters during train-
ing. Simultaneously, the latter keeps the original model intact
and attaches external model(s) to it in testing. The taxonomy
of the described categories is also displayed in Fig. 8. The
remainder of this section is organized consistent with this
taxonomy.

FIGURE 8. A general categorization of adversarial detection methods
aimed at defending FR systems against adversarial attacks.

1) ALTERING TRAINING/TEST INPUT
Agarwal et al. [13] presented an efficient adversarial
detection method to identify an image-agnostic universal
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perturbation. This method operates on (1) the pixel values
and (2) the projections obtained from principal component
analysis (PCA) features, as test inputs which are coupled with
SVM classifier to detect perturbations. The proposed solution
is considered in the first category due to flattening, hence
alters the training database’s images to form a row vector used
either as the pixel values or dimensionally reduced vectors.
The authors evaluated the effectiveness of this approach by
two perturbation algorithms, universal perturbation, and a
variant of it, called fast feature fool [103]. Doing exper-
iments with three different databases, MEDS, PaSC, and
Multi-PIE [104], and four different DNN architectures, VGG-
16, GoogLeNet, ResNet-152 [45], and CaffeNet [105], they
showed that more straightforward approaches, such as the one
proposed, can yield higher detection rates for image-agnostic
adversarial perturbation. Another research [106] proposed
a defense strategy based on an ensemble of classification
from domain transformed input data. According to this
approach, input images are transformed into a grayscale for-
mat, cropped, and rotated to pass the classifier, the predictions
of which assembled to create the ensemble decision. The
goal of this research was to discover a method that does
not necessitate any retraining. On the VGGface2 dataset,
experiments showed that domain transformation is useful to
suppress the impact of adversarial attacks on face verification
tasks.

2) CHANGING THE NETWORK
Goswami et al. [14] proposed two defense algorithms: (1) an
adversarial perturbation detection algorithm, which utilizes
the CNN intermediate filter responses, and (2) a mitiga-
tion algorithm, which incorporates a specific dropout tech-
nique. In the former, authors compared the patterns of the
in-between representations for original images with corre-
sponding distorted images at each layer. They applied the
differences of the two patterns to train a classifier that can
categorize an unseen input as an original/distorted image.
In the latter, they selectively dropped out the most affected
filter responses of a CNN model, i.e., filter responses for
in-between layers that reflect the most sensitivity towards
noisy data to lessen the impact of adversarial noise. Sub-
sequently, they made a comparison with unaffected filter
maps. Using the VGG-Face and LightCNN networks, authors
assessed the detection and mitigation algorithms according to
a cross-database protocol; they performed training only with
the Multi-PIE database and accomplished testing MEDS,
PaSC, and MBGC [107] databases. Across all distortions on
the three databases, it was shown that the proposed detec-
tion algorithm maintains high true-positive rates even at low
false-positive rates, which are desirable for the system. Also,
it was observed that by discarding a certain fraction of the
most affected in-between representations with the proposed
mitigation algorithm, better recognition outputs could be
achieved.

In another study, a blockchain security mechanism is pre-
sented to protect against FR models’ attacks [108] presented.

Traditional blocks of any deep learning models, such as
CNNs, are converted into blocks similar to the blockchain
blocks to offer fault-tolerant access in a distributed setting.
In this way, tampering in one specific component alerts the
entire system and easily detects ’any’ probable alteration.
Experiments revealed the proposed network’s resilience to
both the deep learning model and the biometric template,
using Multi-PIE and MEDS databases.

Su et al. [109] proposed a deep Residual Generative Net-
work (ResGN) to clean adversarial perturbations for face
verification. They suggested an innovative training frame-
work composed of ResGN, VGG-Face, and FaceNet; they
presented a joint of three losses: a pixel loss, a texture
loss, and a verification loss, to optimize ResGN parame-
ters. The VGG-Face and FaceNet networks contribute to
the learning procedure by providing texture and verifica-
tion losses, respectively, hence, improve the verification per-
formance of cleaned images fundamentally. The empirical
results validated the effectiveness of the proposed method on
the LFW benchmark dataset. Zhong and Deng [75] offered
to recover the local smoothness of the representation space
by integrating a margin-based triplet embedding regulariza-
tion (MTER) term into the classification objective so that
the acquired model learns to resist adversarial examples. The
regularization term consists of a two-phase optimization that
detects probable perturbations and punishes those using a
large margin in an iterative approach. Experimental outcomes
onCASIA-WebFace, VGGFace2, andMS-Celeb-1Mdemon-
strated that the proposed method elevates network robustness
against both feature-level and label-level adversarial attacks
in deep FR models.

According to the concept of feature distance spaces
explored in [110], Massoli et al. [111] proposed a detection
approach based on the trajectory of internal representations,
i.e., hidden layers’ neuron activation, also known as deep
features. They argued that the representations of adversar-
ial inputs follow a different evolution for genuine inputs.
Specifically, they collected deep features during the forward
step of the target model, applied average pooling over deep
features to achieve a single features vector at each selected
layer, and computed the distance between each vector and
the class centroid of each class at each layer, to acquire an
embedding that represents the trajectory of the input image in
the features space. Such a trajectorywas finally fed to a binary
classifier or adversarial detector. As the adversarial detector,
two different architectures of a multilayer perceptron (MLP)
and a long-short term memory (LSTM) network were con-
sidered in this work. The authors conducted the experiments
on the VGGFace2 dataset and the state-of-the-art Se-ResNet-
50 [52]. To assess the efficiency of the proposed approach,
they showed the receiving operating characteristics (ROC)
curves from the adversarial detection considering targeted
and non-targeted attacks for each architecture. They reported
the area under the curve (AUC) values relative to each attack.
Accordingly, the AUC values were very close for the tar-
geted attacks, whereas, in the case of non-targeted attacks,
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the LSTM performance was shown to be considerably better
than the MLP.

Recently, Kim et al. [112] proposed a low-power, highly
secure always-on FR processor for verification applications
onmobile devices. This processor operates based on three key
features of (1) a branch net-based early stopping FR (BESF)
method to prevent adversarial attacks and consume low
power, (2) a unified processing element (PE) for point- and
depth-wise convolutions with layer fusion to reduce exter-
nal memory access and (3) a noise injection layer (NIL)
incorporated between bottleneck layers to make the network
more robust against adversarial attacks with lower external
memory access. They demonstrated that under the FGSM and
PGD, BESF could result in high recognition accuracies while
reducing the average power consumption significantly. They
also showed that the PE reduces the external memory access,
and the NIL could further lessen the FGSM and PGD attack
SRs. Overall, this processor resulted in 95.5% FR accuracy
in the Labeled Faces in the LFW dataset.

3) SUPPLEMENTING EXTERNAL NETWORK
Xu et al. [113] proposed a feature squeezing strategy that
moderates the search space available to an adversary by
coalescing samples correspond to different feature vectors in
the original space into a single sample. Adding two external
models to the classifier network, they explored two feature
squeezing approaches by (1) decreasing the color bit depth
of each pixel and (2) spatial smoothing. Goswami et al. [14]
expressed that this approach is simple and operative for
high-resolution images with detailed data; however, it may
not be operational for low resolution cropped faces frequently
used in FR settings. In [114], an open-source Python-based
toolbox, termed as SmartBox, is proposed to benchmark
the function of adversarial attack detection and mitigation
algorithms against FR models. The detection approaches
included in this toolbox are: ‘Detection via Convolution Filter
Statistics,’ ‘PCA-based detection,’ ‘Artifacts Learning’ and
‘Adaptive’ Noise Reduction,’ which are respectively con-
sidered in ‘Changing the Network,’ ‘Altering Training/Test
Input,’ and ‘Supplementing External Networks’ defense cat-
egories. We put this study under the ‘Supplementing External
Networks’ category since it covers the last two and hence,
the majority of SmartBox detection methods.

While most of the current defense methods either assume
prior knowledge of specific attacks or may not operate
well on complex models due to their underlying assump-
tions, a new window was opened to adversarial detection
techniques by leveraging the interpretability of DNNs [15].
Tao et al. [15] proposed a detection technique called Attacks
meet Interpretability ( AmI) in the context of FR practice.
This technique features an innovative bi-directional corre-
spondence inference amongst face attributes and internal
neurons, using attribute-level mutation and neuron strength-
ening/weakening. More precisely, critical neurons for indi-
vidual attributes are identified, and the activation values are
enhanced to amplify the reasoning part of the computation.

In contrast, other neurons’ activation values are weakened
to suppress the uninterpretable part. Employing three differ-
ent datasets, VGG-Face, LFW, and CelebA, AmI applied to
VGG-Face, with seven different kinds of attack. Extensive
experiments represented that the proposed technique could
successfully detect adversarial samples with a true-positive
rate of 94% on average, which is significantly higher than
what was achieved with the state-of-the-art reference tech-
nique, called feature squeezing [113]. Similarly, the FPR
of the AmI technique, is lower than the reference work,
demonstrating its high effectiveness in this endeavor. A gen-
eral overview of different adversarial example detection
approaches, along with their category, is provided in Table 3.

VI. CHALLENGES AND DISCUSSION
Although several adversarial example generation methods
and defense strategies have been proposed and developed
in FR’s realm, various problems and challenges need to be
addressed. This section summarizes the potential challenges
that threaten this field. We categorize the challenges into four
groups based on the literature reviewed above.

A. PARTICULARIZATION/SPECIFICATION OF
ADVERSARIAL EXAMPLES
As described in this study, several image-, face-, and feature-
level adversarial example generation methods have been
proposed to fool FR systems; however, these methods are
challenging to construct a generalized adversarial example
and can only achieve good performance in a certain evalu-
ation metrics. These evaluation metrics are mainly divided
into three categories: The SR to generate adversarial exam-
ples, the robustness of the FR models, and specific attributes
of the attacks, such as the perturbation amount and degree
of the transferability. To explain briefly, the SR of an attack,
known as the most direct and effective evaluation criterion,
is inversely proportional to the magnitude of perturbations.
The robustness of FR models is related to the classification
accuracy. The better the design of the FR model, the less it
is vulnerable to adversarial examples. Regarding the attacks’
attributes, too small perturbations on the original examples
are difficult to construct adversarial examples, whereas too
large perturbations are easily distinguished by human eyes.
Therefore, a balance between constructing adversarial exam-
ples and the human visual system should be achieved. On the
other hand, within a certain perturbation range, the transfer
rate of adversarial examples is proportional to the magnitude
of adversarial perturbations, i.e., the greater perturbations
to the original example, the higher the transfer rate of the
constructed adversarial examples. Considering these facts,
the amount of perturbation to be considered on the origi-
nal images, and the design of model architecture becomes
critical.

Similarly, the variations in imaging conditions investigated
in different works are narrower than can be encountered in
practice. i.e., they are happened to be in controlled lighting,
distance, etc. These conditions could be applied to some
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TABLE 3. Adversarial example detection approaches.

practical cases (e.g., an FR system deployed within a build-
ing). However, other practical scenarios are more challeng-
ing, needing the attacks to be tolerant of a more extensive
range of imaging conditions.

These matters inhibit the defenders from designing gen-
eralized detection techniques and encourage them to propose
efficient defenses against confined attacks. To overcome such
challenges, a comprehensive experimental setup should be
considered, possibly via scheming a standard platform as a
benchmark setup setting, so that all evaluation metrics are
measured simultaneously to report the efficiency of gener-
ated adversarial examples. Also, the research space should
be focused more on (1) the amount of perturbation to be
considered on the original images, (2) the design of FR
models’ architectures to be targeted, and (3) the level of
transferability of generated adversarial examples. As demon-
strated in Table 2, the vulnerability of existing FR models to
adversarial attacks in a black-box manner has been studied
less, revealing the lack of transferability exploration.

B. INSTABILITY OF FR MODELS
Though the introduction of deep FR systems has brought
benefits, it has increased the attack surface of such systems.
Implementing image distortion-based adversarial attacks, for
example, a substantial loss in the performance of deep
learning-based systems observed, compared with the appli-
cation of shallow learning-based commercial-off-the-shelf
matchers for the same evaluation data. Accordingly, the inte-
gration of only those architectures that are robust against
evasion is strongly advocated. The need to develop robust
models to increase adversarial examples’ generalizability has
been expressed in the previous paragraph, along with other
influencing factors. However, this obligation is restated sepa-
rately to emphasize its importance when taking steps toward
generating more black-box attacks. In these circumstances,
security concerns for developing more robust FR models will
be raised.

C. DEVIATION FROM THE HUMAN VISION SYSTEM
Adversarial attacks on vision systems exploit the fact that
systems are sensitive to small changes in images to which
humans are not. It will be a good idea to develop algorithms
that reason images more similar to humans. In particular,
those approaches that classify images based on their attributes
rather than on their pixels’ intensities may become more
practical. Such approaches may train classifiers to recognize
the presence or absence of describable aspects of visual
appearances, like gender, race, age, and hair color, and extract
and compare high-level visual features, or traits, of a face
image that are insensitive to pose, illumination, expression,
and other imaging conditions.

Profound regard to human vision physiology may open
another window to research space as well. For example,
the VLA manifested a successful implementation of physical
adversarial attacks, in the design of which an attempt was
made to emulate the human visual system.

D. IMAGE-AGNOSTIC PERTURBATION GENERATION
The existing adversarial example generation methods are
remarkably demonstrated to be image-agnostic, and the lack
of universal perturbation generation against FR models is
strongly noticed. An FRmodel’s capability to attack different
target faces simultaneously would be the by-product of gen-
erating universal perturbations, which is an essential concern
in numerous studies that have been conducted in this regard.

VII. CONCLUSION
This article presented a comprehensive survey in the course
of adversarial attacks against intelligent deep FR systems.
Despite the outstanding performance of advanced FR model,
they have been vulnerable to imperceptible adversarial input
images that lead them to modify their outputs entirely. This
fact has opened a new window to numerous recent contribu-
tions to devise adversarial attacks and countermeasures in the
FR systems. This article reviewed these contributions, mainly
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concentrating on the most effective and inspiring works in
the literature. A taxonomy of existing attack and defense
methods is proposed based on different criteria. We also
discussed current challenges and potential solutions in adver-
sarial examples targeting FRmodels. Hope this work can shed
some light on the key concepts to encourage progress in the
future.
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