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ABSTRACT Recurrent Neural Networks (RNNs) and transformers are deep learning models that have
achieved remarkable success in several Natural Language Processing (NLP) tasks since they do not rely on
handcrafted features nor enormous knowledge resources. Named Entity Recognition (NER) is an essential
NLP task that is used in many applications such as information retrieval, question answering, and machine
translation. NER aims to locate, extract, and classify named entities into predefined categories such as person,
organization and location. Arabic NER is considered a challenging task because of the complexity and
the unique characteristics of Arabic. Most of the previous research on deep learning based-Arabic NER
focused on Modern Standard Arabic and Dialectal Arabic, which are different variations from Classical
Arabic. In this paper, we investigate deep learning-based Classical Arabic NER using different deep neural
network architectures and a BERT based contextual language model that is trained on general domain
Arabic text. We propose two RNN-based models by fine-tunning the pretrained BERT language model to
recognize and classify named entities from Classical Arabic. The pre-trained BERT contextual language
model representations were used as input features to a BGRU/BLSTM model and were fine-tuned using
a Classical Arabic NER dataset. In addition, we explore variant architectures of the proposed BERT-
BGRU/BLSTM-CRF models. Experimentations showed that the BERT-BGRU-CRF model outperformed
the other models by achieving an F-measure of 94.76% on the CANERCorpus. To the best of our knowledge,
this is the first work that aims to recognize named entities in Classical Arabic using deep learning.

INDEX TERMS NER, named entity recognition, classical arabic, BGRU, BLSTM, BERT, CRF, deep

learning, natural language processing.

I. INTRODUCTION

NER is an NLP task that involves identifying and classify-
ing named entities in a given text where named entities are
pre-defined semantic categories such as person name, loca-
tion name, and organization name. NER was first introduced
in the 1990s as an information extraction task in the Message
Understanding Conferences (MUC) [1]. It plays an essential
role in several NLP tasks such as information retrieval, ques-
tion answering, machine translation and text summarization.
Therefore, investigating an accurate NER system can serve as
a source of information for different NLP applications [1].
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There is a fair amount of literature concerning NER
research in English, Chinese, and other widely spread lan-
guages. Earlier NER models were generally based on three
approaches, which are rule-based, machine learning-based
and hybrid-based NER. Rule-based NER depends on a set
of handcrafted rules extracted by experts in linguistics [2].
Machine learning-based NER relies on feature-engineering
and statistical models. While hybrid-based NER combines
both rule-based and machine learning-based approaches.
Recently, with the breakthrough of multi-layered neural net-
works, deep learning-based approaches achieved noticeably
high performance in many NLP tasks including NER [3].
Deep learning is considered a subfield of machine learning,
which uses neural networks of multiple layers. It is a multi-
stage approach that can discover and learn the structure and
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representation of unlabeled and unstructured data such as
images and documents [4], [5].

The massive growth of Arabic content on the internet
caused a heightened need for constructing accurate and
robust NLP tools for Arabic. Arabic is considered the offi-
cial language of the Arab World and is used over a region
of 22 countries [6]. It is a Semitic language that is rich
in vocabulary, morphology and complex syntactical struc-
tures. Arabic exists in different forms including Classical
Arabic (CA), Modern Standard Arabic (MSA) and Dialectal
Arabic (DA). CA is the original Arabic language spanning
from the seventh until the early eleventh century CE [7].
While MSA is a variation of CA that is commonly used
in formal contexts such as formal communications, books
and news articles. On the other hand, DA is a variation of
MSA that is used in everyday life communications. Although
CA is not commonly used nowadays, it continues to receive
great attention from scholars and common Muslims because
it is the language of the Quran (the holy book of Islam), the
Hadith (the sayings of Prophet Muhammad) and the Islamic
heritage.

Arabic NER is considered a challenging task compared
to other languages since it is a morphologically rich lan-
guage that enables suffixes and prefixes to be conjunctions,
prepositions and pronouns such as the word ‘) sexiil 3 wale-
tana’amo, which means ““and so that you can rejoice”. More-
over, capitalization of proper nouns, which is considered a
considerable NER feature in some languages is not allowed
in Arabic. Furthermore, Arabic relies on short vowels (dia-
critics) to determine the correct word sense. However, it is
usually written without vowels, which causes the problem of
word sense ambiguity. For example, the word ““_u 2" could
mean “u’R” lesson or “(wY” has studied [1]. In addi-
tion, the shortage of datasets and other reliable resources
for Arabic introduces another major challenge facing Arabic
NER [1].

CA differs from MSA with regard to NER in the sense
that it comprises a rich set of named entities that are now
abandoned in MSA, especially in the Islamic domain. In addi-
tion, many named entities in CA are now changed in MSA.
For example, the word “em:"’ ylmlm, which is the name of
a well-known religious place, is now changed to ‘4z’
AlsEdyh [8]. On the other hand, many named entities have
evolved in MSA due to cultural and social changes in the
Arab world. Generally speaking, Arabic has gone through
remarkable lexical, morphological and syntactical changes
between its classical and modern periods [7].

Machine learning-based NLP tasks suffer from poor
training data, especially for low recourse languages such
as Arabic, which causes inadequate model generalization.
Transfer learning overcomes this problem by transferring
knowledge across domains or tasks. It aims to extract the
knowledge from one or more source tasks in order to apply
it to other target tasks. The concept of transfer learning is
based on the fact that people can intelligently apply knowl-
edge learned previously to solve new problems faster or with
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better solutions [9]. In transfer learning, a model is trained
on a large dataset and then this pretrained model is used to
conduct learning for another downstream task [10]. There
are two strategies to use pretrained language models for
down-stream tasks, which are feature-based and fine-tuning.
In feature-based transfer learning, the language model is used
as an off-the-shelf feature extractor where the parameters of
the model are frozen. This approach requires more complex
task-specific model architectures to achieve good accuracy.
While in fine-tuned transfer learning, the parameters of the
language model are fine-tuned using the down-stream task
dataset, which reduces the time to train the down-stream task
model. This approach is more suitable for downstream NLP
tasks with relatively small dataset sizes, resulting in notable
performance improvement for these tasks [11].

In most NLP tasks, it is important to extract the
semantic and syntactic knowledge from the used training
data. Non-contextual pretrained language models such as
Word2vec [12], Glove [13], and Fasttext [14] represent each
word in the input sequence in a single vector that combines
all contextual meanings of that word. Whereas contextual
pretrained language models take the context into consider-
ation by representing each word using more than one vec-
tor based on the position of that word in the context. For
example, non-contextual word embeddings would produce
one vector for the word “present’” despite that it may have
different meanings such as “gift”, “exist”, and ‘““‘show”. This
is due to the fact that they cannot understand the context in
which the word appears in. On the other hand, contextual
word embeddings successfully address this issue by taking
the entire input sentence into consideration while calculating
the equation for the embeddings. This results in representing
each word with different vectors based on its context. Contex-
tual language models have shown that such representations
are able to achieve noticeably high performance in many
NLP tasks. Bidirectional Encoder Representation from Trans-
former (BERT) is one of the contextual language models
that can be fine-tuned. Its basic component is a multilayer
bidirectional transformer encoder that takes into considera-
tion both left and right contexts of a given word in the input
sentence [15].

In our previous work [16], we used BGRU over fine-tuned
BERT model for MSA NER and the results were promising.
In thiswork, we fine-tune a pre-trained BERT language model
for the task of Classical Arabic NER using deep learning.
First, we fine-tune the vectors produced by the pre-trained
BERT using a CA NER task-specific dataset rather than using
them directly. Fine-tuning reduces the time for training the
down-stream task model since a considerable part of the train-
ing was performed by the pre-trained language model. After
that, the BERT representations are forwarded to a deep learn-
ing model for further sequence modelling. Two RNN models
are investigated in this work; Bidirectional Long Short-Term
Memory (BLSTM) and Bidirectional Gated Recurrent Unit
(BGRU). The output of the BLSTM/BGRU is then passed to
a CRF layer to get the probability distribution over the tags.
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The proposed models are then trained and evaluated using a
CA NER dataset (CANERCorpus) [8]. Finally, the resulting
models are evaluated against different baselines to assess their
performance. To the best of our knowledge, this is the first
work that tackles the extraction of CA named entities using
deep learning.

The rest of this paper is organized as follows. Section II
presents a background of the scientific concepts related
to this research. Section III describes the proposed BERT-
BGRU/BLSTM-CRF model architecture for Classical Arabic
NER. Section IV describes the used dataset, the baseline
models, the experimentation setup, and the evaluation mea-
sures used. Section V presents and discusses the results of the
evaluation. Finally, Section VI summarizes the conclusions
and future work.

Il. RELATED WORK

Recent NER research studies have utilized deep learning,
which demonstrate its powerful capacity for feature abstrac-
tion. RNN-based models such LSTM and GRU are the most
dominating used models in NLP. In addition, Bidirectional
RNNs (BRNNs) proved their effectiveness in solving many
NLP tasks since they process the input sequence from both
sides, obtaining potentially richer representations and cap-
turing patterns that may have been missed by unidirectional
RNNs. Li et al. [17] studied the performance of several
deep learning models in the field of biomedical NER. Their
study showed that bidirectional models outperformed unidi-
rectional models for different model architectures including
word embedding only, character embedding only, and a con-
catenation of word and character embedding.

BLSTM with CRF (BLSTM-CRF) is the commonly
used architecture in NER task [18]-[23]. However, sev-
eral research studies proved that BGRU has compa-
rable, and sometimes better, performance compared to
BLSTM [17], [24]-[26]. BGRU has been used to tackle
NER in several languages including Indonesian, Bengali,
and Czech [27]-[29]. On the other hand, Convolutional
Neural Networks (CNNs) have been also used in NER,
Wang et al. [30] utilized a hierarchical CNN to extract con-
text information by applying a gating mechanism into
the convolutional layer. In addition, [31] used bidirec-
tional gated CNN for Chinese NER. Gao et al. [32] pro-
posed attention-based Iterated Dilated CNNs that benefits
from a concatenated input obtained from different embed-
dings including pre-trained Fasttext embedding, BLSTM
based character embedding, POS embedding, and position
embedding.

Different word embedding models have been investigated
in NER research. Many NER studies [18], [33]-[36] have uti-
lized word2vec, including both of its models: Skip-gram and
CBOW successfully. Fei et al. [37] and Xiaofeng et al. [38]
used pre-trained Glove model with BLSTM-CREF. Fasttext
has been used by [39] and [40] for Japanese NER and
Biomedical NER, respectively. In addition, word2vec, GloVe,
and Fasttext vector representations have been combined

VOLUME 9, 2021

by several research studies. Kagan Akkaya and Can [41]
used different levels of word embeddings, which include
word-level word embeddings obtained by word2vec and char-
acter n-gram level word embeddings obtained by Fasttext.
Zhang et al. [42] merged pre-trained Glove and word2vec
vectors. Although most of the research studies in NER used
the pre-trained word embeddings as features, fixing the val-
ues of the vectors during model training, there exist some
studies that fine-tuned these pre-trained embeddings during
the training process [43]-[44]. To reduce the impact of Out
of Vocabulary (OOV) words, word level representations are
concatenated with character level representations. Commonly
used character embedding models such as CNN, BLSTM
and BGRU were investigated by [28], [45]-[48]. Ever since
BERT [15] contextual language model was introduced and
obtained high performance in many NLP tasks [49], many
deep learning-based model architectures were introduced to
fine-tune it for NER. Li et al. [50] demonstrated that adding
a BLSTM-CRF layer on top of the fine-tuned pre-trained
BERT model performed better than only fine-tuned BERT.
In addition, combining dictionary features and radical fea-
tures improved the model performance. A BGRU-CREF layer
on top of fine-tuned BERT model also achieved good
results [51], [52]. Yan et al. [52] added a multi-head attention
layer on top of BGRU layer to increase the context-dependent
semantic vector. On other hand, Straka et al. [29] results
showed that combining the representation of FastText, BERT
and Flair for Czech NER outperformed the BERT only ver-
sion of their models.

Regarding Classical Arabic, and to the best of our knowl-
edge, there exist no studies related to Classical Arabic NER
using deep learning. Sajadi and Minaei [53] used a machine
learning approach to classify named entities into person,
location, and organization tags. Part of Speech (POS), Base
Phrase Chunking (BPC), Gazetteer, and keywords were used
as features to improve the model’s performance. Their model
achieved 96.04% and 67.01% F-measure values on NoorCorp
and ANERcorp, respectively. In addition, Harrag et al. [54]
used a rule-based approach for extracting named entities
from prophetic narration texts (Hadith). The authors used
finite state transducer to assign a conceptual label among
a set of labels that include: Num-Kitab, Title-Kitab, Num-
Bab, Title-Bab, Num-Hadith, Saned, Matn, Taalik, and Atraf.
Their model achieved a 52.00% F-measure value on a set
of prophetic narrations texts from Sahth Al-Bukhari cor-
pus. On the other hand, there exist several research studies
concerning deep learning-based MSA and DA NER in the
literature. BLSTM-CRF was the most used model [55]-[60].
In addition, adding character embeddings showed an increase
in the performance of many Arabic NER models. This is
due to the fact that Arabic has a complex morphological
system, making it prone to the OOV problem. Awad et al. [57]
enhanced their model prediction by 1.05 F-measure points
when concatenating a CNN character embedding layer with
their word embeddings to solve the problem of OOV. Gridach
and Haddad [61] improved their model’s performance by
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FIGURE 1. Proposed model architecture.

1.61 F-measure points when using BGRU model for character
representations.

Other research studies attempted to overcome the prob-
lem of lacking sufficient training data for Arabic. Helwe
and Elbassuoni [59] used deep co-learning, which is a
semi-supervised learning approach that can be trained using
both labeled and unlabeled data. Their model used two clas-
sifiers that learn from each other using two different views of
the data. Furthermore, the attention mechanism demonstrated
its effectiveness in many NLP applications such as machine
translation. It helps with long input sequences by giving
a relative importance for each input word. Ali et al. [62]
improved their MSA NER model by adding a self-attention
layer on top of the encoder in order to provide high or
low consideration to words based on their involvement
in the creation of the sentence meaning [63]. Ali and
Tan [64] used seq2seq model with BLSTM as an encoder
and decoder model for MSA NER; their model outperformed
the BGRU-CRF model by [61] and the BLSTM-CRF model
by [57]. A recent study [65] applied transfer learning with
deep neural networks to build a Pooled-GRU model for MSA
NER. Their model outperformed the BLSTM-CRF model
proposed by [66]. AraBERT [67] is a pretrained BERT model
for Arabic that outperformed the BLSTM-CRF model pro-
posed by [66] and BERT multilingual for MSA NER.
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Ill. PROPOSED MODELS ARCHITECTURES

The architecture of deep learning based NER models com-
monly consists of three main layers: the input representation
layer, the encoder layer and the prediction layer. In this work,
we fine-tune a pre-trained Arabic BERT model for our input
representation. We use BGRU as a context encoder layer and
CRF as a prediction layer. Fig. 1 illustrates the architecture of
our model.

A. INPUT REPRESENTATION
BERT by Devlin ef al. [15] is based on a multilayer bidirec-
tional transformer encoder that takes into account both left
and right contexts. The used transformer network is devel-
oped by [68] and depends on parallel attention layers. BERT
is based on two tasks: masked language models and next
sentence prediction task. Around 15% of the tokens in the
input sequence are randomly masked in the masked language
model task. Model uses the multi-layered context to predict
the target token and the final hidden vectors corresponding
to the masked tokens are fed into an output Softmax over the
vocabulary. On the other hand, the next sentence prediction
task is used to encode the relationship between two consecu-
tive sentences.

Following the Devlin et al. [15], [CLS] and [SEP] tokens
should be added at the beginning and end of each input
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sentence. BERT relies on WordPiece tokenizer to deal with
OOV words since WordPiece segments every unknown word
into sub-words. BERT uses token embedding to encode the
current word embedding, segment embedding to encode the
index embedding of the sentence and position embedding to
encode the index embedding of the current word position.
All three embeddings are then summed to produce the final
BERT representations: the word-level representation and the
[CLS] sentence representation.

Arabic pre-trained BERT model, AraBERTvO0.1 [67], is
trained on 70 million sentences constructed from the man-
ually scraped Arabic news websites for articles and two
publicly available large Arabic corpora: the 1.5 billion words
Arabic Corpus and the Open Source International Arabic
News Corpus (OSIAN). The used dataset was of size 24GB
covering news from different media in different Arab regions,
and therefore can be representative of a wide range of topics
discussed in the Arab world. The total size of the vocabulary
was 64k tokens.

On the other hand, character-level representations can also
be used to handle OOV words by representing it as the
sum of its character n-gram vectors. When dealing with
the OOV words, the relative importance of character rep-
resentation will increase because word representation will
be some random values. Character embeddings capture the
important morphological and shape information that will
help especially with rich morphology languages such as Ara-
bic [61], [63]. In addition, it has the ability for exploiting
sub-word-level information such as: prefixes and suffixes.
There are two basic architectures that are widely used to
extract character-level representations, which are 1D-CNN
and RNN.

In this work we investigate the performance of CNN as a
character embedding model. CNN is used to produce a word
representation by looking at its character-level in order to
learn word morphology.

Each word in the input sequence is segmented into its
characters. The maximum word length is set to 13 characters,
which is the average length of the words in the corpus.
As shown in Fig.2, each character is passed into a randomly
initialized embedding layer to obtain its representations using
a vector with dimension d.

Word w with length 1 is transformed into a matrix C of
size d*1. Convolutional filter H of size d*n is created where
n is the filter width and the values within H are randomly
initialized. The convolutional operation between C and H is
performed to obtain a feature map f with a size of | —n—+1 as
shown in (1), where (C, H) is the Frobenius inner product.

fi=(Clxi:i+n—1], H) (1)
Then, Max-pooling operation (2) is performed to extract

a single feature for all feature maps. yy; is the character
representation of a word w given by the filter H.

vy = max (f;) 2)
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FIGURE 2. CNN based characters embedding model.

This process is repeated several times with different con-
volutional filters and their outputs are appended to obtain the
final representation of the word.

B. CONTEXT ENCODER LAYER

In NER task, it is commonly to use RNN as context encoder
model. It processes the input sequence in order where shuf-
fling or reversing the timesteps affect the extracted repre-
sentations from the sequence. The longer the input sequence
gets, the less accurate RNN becomes because it is difficult for
the network to memorize far away from previous time steps
outputs [5]. This problem is called the vanishing gradient
problem. LSTM and GRU are variations of RNN that help in
handling the vanishing gradient problem and can learn long
dependency input.

In NER task, both past and future information is useful
for prediction. For that, we evaluate the impact of BLSTM
and BGRU models as context encoder models after obtaining
word embeddings from the BERT model.

1) LSTM

LSTM is composed of a cell state (memory) and three gates
that control the flow of information into and out of the
network. The input gate controls what information from a
new input should be kept in the memory. The forget gate
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controls what information from the previous timestep cell
state should be forgotten. The output gate decides what infor-
mation should be passed as output at each timestep [5]. The
gates are updated according to the following equations.

it = o (Wilhe—1, x¢]by) 3
¢/t = tanh(Welhe—1, x¢] 4 be) 4
fe = o(Welhe—1, x¢] + by) (%)
ot = 0 (Wolh¢—p, X¢] + bo) (6)
Cr = ft*Cz—l + i % C/t @)
hy = of tanh(c;) )

where x; denotes the input at timestep t, #,_1 is the hidden
state of the previous timestep t — 1. W;, W, Wy, and W,
denote the weights for the input gate, cell state, forget gate,
and output gate, respectively. ¢’y refers to candidate values
to be added to the output of the input gate at timestep t. c;
and h; denote the cell state and the hidden state after time
step t. i;, f;, and o; denote the input gate, the forget gate
and the output gate, respectively. b;, b., by, and b, denote the
bias parameters for the input gate, cell state, forget gate, and
output gate, respectively.

2) GRU
GRU uses two gates: update and reset gates. The update gate
decides what information should be used in the next time
step input. While the reset gate uses the previous time step
output to decide what information should be deleted and what
information is of use to the current time step input [4], [5].
The update gate, reset gate, and hidden state A, at time step
t are updated using the following equations.

v = o (Wylhe—1, x] + by) )
re = o(Welhe—1, x¢] + by) (10)
W = tanh(W s [hi—1 % r;, x;] + b) (11)
e = (1= u,Y i + e s (12)

where Wy, W, and W denote the weights for the update gate,
the reset gate and the cell state, respectively. by, by and b
denote the bias parameters for the update gate, the reset gate
and the cell state, respectively. u; denotes the update gate
while r¢ denotes the reset gate.

3) BLSTM AND BGRU

In both BLSTM and BGRU, the input sequence is read one
word at time by the forward layer from left-to-right and the
words from the other side are read by the backward layer.
Then, the forward layer h’: hidden state and the backward
layer hf hidden state are combined to represent the final
hidden state i, such as b, = I, @ h? [5].

C. TAG PREDICTION LAYER: CRF

The tag sequence that corresponds to the input sequence is
produced by the prediction layer. A fully connected layer
(dense layer) is fed with hidden state i, to get the score of
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each tag. The output of this layer is a matrix (A) with size k xn
where n indicates the number of words in the input sequence
and k is the number of possible named entity tags each word
can have. The nth entry of each row in this matrix represents
the score of the kth tag for the nth word.

Although the encoder can consider the context information
of sentences, it cannot consider the dependencies between
tags. CRF was proposed [69] to ensure the validity of the pre-
dicted tags by learning the relationship between adjacent tags.
It jointly makes tagging predictions where the probability of
assigning a tag to a word depends on the features of that word
and the previously assigned tag. The transition matrix 7 that
contains the score from one tag to another is a parameter in
the CRF layer where T} ; represents the probability of moving
from tag i to tag j. This matrix has two extra tags, which are
the start and end tags. The size of this matrix is (k+2)*(k+2).
For a given input sequence X, to calculate the score of the
labels sequence, ¥ = [y1,y2,...,¥k] (13) is used. A; is
the output matrix of the encoder. The probability of label y;
given the input x; is calculated by (14), which is a Softmax
function used to assign a probability for each tag sequence.
Yx represents all possible tag sequences for a sentence x.
During training, the log-probability (15) of the correct tag
sequence should be maximized. Then the output sequence
with the maximum score is predicted by (16).

k k—1
score(r,y) = ) Awi+ ) Tyiyici (13)

escore(x, y)

S O
log (P (x,y)) = score (x,y) — lOg(Zerx es(x’y’)) (15)

y* = argmax;cy,score(x, y) (16)

P(x,y) = (14)

IV. EXPERIMENTS

We have conducted a series of experimental studies to evalu-
ate our proposed models against two baselines, which include
BERT and BERT-CRE. In addition, we investigate other
different architectures include stacking encoder layers and
utilizing a CNN based-character embedding model.

A. DATASET

We used the CANERCorpus as our dataset, which is a
Classical Arabic NER corpus [8] that is manually anno-
tated by human experts. It contains more than 7,000 Hadiths
(Prophet Muhammad’s sayings) from Sahih Al-Bukhari book
that are annotated using 20 named entity classes. These
classes include person (Pers), location (Loc), organization
(Org), measurement (Meas), money (Mon), book (Book),
date (Date), time (Time), clan (Clan), natural object (NatOb),
crime (Crime), day (Day), number (Num), God (Allah),
prophet (Prophet), religion (Rlig), sect (Sect), paradise (Para),
hell (Hell), month (Month) and other (O). The corpus con-
tains around 72,108 named entities and 258,264 words. Fig. 3
shows the number of named entities in each tag. In this
work, we only consider person (Pers), God (Allah), prophet
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Org 9
Sect 17
Day 31
Month 77
Time 102
Mon 139
Meas 147
& Book 1 183
S
Z Rlig 1 184
€ Hell 1 245
§ Pare 1 294
£ Date 1 59
g NatOb 1 670
Clan m 767
Loc m 1,349

Prophet mmmmm 6,502
Allah s 7 811
Num s 13 707
Pers S 30 159

Number of tokens

FIGURE 3. CANERCorpus tags distribution based on the number of
occurrences in the dataset.

(Prophet), location (Loc), clan (Clan), date (Date), natural
object (NatOb) and other (O) named entities since the rest
are insufficient to train the model. We have excluded the
number (Num) named entities since 93.33% of them were
page numbers, which will trivially cause improvement in the
model performance.

1) PREPROCESSING

Sentences boundaries in the CANERCorpus dataset are not
marked with a dot. In order to overcome this, we have calcu-
lated the average sentence length in Sahih Al-Bukhari book,
which is 38 words, and use it to denote the boundaries of
the sentences by adding a dot after every 38 words. Before
marking the end of the sentence, we make sure that the
last word 1is labelled with other (O) named entity to avoid
cutting related entities. In addition, and in order to achieve
high accuracy results, the dataset was cleaned by removing
punctuations, other special characters, and diacritics signs
(;:,:,j). We also enclose each input sentence after tokenization
between [CLS] and [SEP] tokens. As for tokens tagging,
we assign the tag for the first sub-token only and the rest
of the sub-tokens are considered as padding. For example,
the word ‘45yL_.’ SIAth is tokenized as [3##' ,'<2a'] and its
given tags would be [‘O’, ‘PAD’]. Finally, we split the dataset
into three datasets; we used ~80% as training dataset, ~10%
as validation dataset and ~10% as testing dataset. Table. 1
shows the named entities distribution in each dataset.

B. BASELINE MODELS

To the best of our knowledge, Classical Arabic NER have not
yet been explored using deep learning. Therefore, we have
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TABLE 1. Named entities distribution over training, testing and validation
datasets.

Named Entity Training  Testing  Validation Total
Pers 31,875 3,758 3,526 39,159
Allah 6309 778 724 7,811
Prophet 5,259 712 531 6,502
Loc 1,086 116 147 1,349
Clan 589 103 75 767
NatOb 551 63 56 670
Date 476 75 45 596
Other 151643 18931 16882 187459
Total 197788 24536 21986 244313

TABLE 2. Value of the models hyperparameters.

Parameter Value
Number of epochs 10
Maximum length size 54
LSTM/GRU hidden units 200
Batch size 32 for training and 8 for testing and
validation
Optimizer Adam
Learning rate le-4
Dropout 0.5,0.2
Character embedding 20
dimension
CNN filter 50

investigated the performance of our proposed models, BERT-
BLSTM/BGRU-CREF, over two baseline models; the first is
a fine-tuned pre-trained BERT model that is combined to
a fully connected layer with Softmax function. The second
baseline is a fine-tuned pre-trained BERT model followed by
a CRF layer. Moreover, we have evaluated the performance
of the proposed models when adding CNN-based character
embeddings and when stacking two BLSTM/BGRU layers.

C. EXPERIMENTATION SETUP

We used Pytorch API for the model implementation and
all the experiments were run on the Google Colab platform
(https://colab.research.google.com/) with a Tesla T4 GPU.
We used the training dataset for training our models and
utilized the validation dataset to choose the hyper-parameters.

The used values for the models’ hyperparameters are shown
in Table. 2.

D. EVALUATION MEASURES

To evaluate the performance of our proposed models, we used
different measures; precision, recall, and F-measure. Equa-
tion (17) presents the precision, which measures the number
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TABLE 3. BERT-BLSTM/BGRU-CRF models performance.

Named
Model Entity Precision Recall F-measure
BERT- Pers 98.96% 98.85% 98.90%
BLSTM-CRF Allah 99.07% 97.89% 98.48%
Prophet 98.63% 98.16% 98.39%
Loc 92.24% 89.94% 91.07%
Clan 87.77% 98.28% 92.70%
NatOb 87.30% 91.73% 89.43%
Date 86.40% 87.26% 86.78%
Other 99.62% 99.65% 99.63%
Overall 93.75% 95.22% 94.42%
BERT- Pers 99.01% 98.80% 98.90%
BGRU-CRF Allah 99.07% 98.09% 98.58%
Prophet 98.46% 97.85% 98.15%
Loc 92.41% 89.64% 91.00%
Clan 89.13% 98.71% 93.67%
NatOb 87.62% 93.00% 90.20%
Date 87.47% 88.52% 87.95%
Other 99.62% 99.66% 99.64%
Overall 94.10%  95.54% 94.76%

of correct named entities recognized by the model out of
the overall recognized entities. Equation (18) presents the
recall, which measures the number of correct named entities
recognized by the model out of the overall entities in the
corpus. Equation (19) presents the F-measure, which is used
to balance the antagonistic relation between precision and
recall [3], [70].

. TP
Precision = —— (17)
TP + FP
TP
Recall = ——— (18)
TP + FN
. (Precision x Recall)
F-measure = — (19)
(Precision + Recall)

where TP, FP and FN refer to true positives, false positives
and false negatives, respectively.

V. RESULTS AND DISCUSSION

To get a more accurate evaluation of our model, we have
trained it for 5 times and then calculated the average preci-
sion, recall, and F-measure. This is to overcome the effect of
random initialization of weights that is associated with neural
networks.

To explore the performance of our proposed
BERT-BLSTM/BGRU-CRF models and show the effect of
different architectures. We have conducted a series of com-
parative experiments; first the BERT-BLSTM-CRF model
has been run and then the BERT-BGRU-CRF model. Table. 3
presents the details of the BERT-BLSTM-CRF and BERT-
BGRU-CRF models results. As shown in Table. 3 both mod-
els have the same performance in person (Pers) named entity
tag. BERT-BLSTM-CREF outperformed in prophet (Prophet)
and location (Loc) named entities while BERT-BGRU-CRF
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TABLE 4. Results obtained by BERT-BGRU-CRF model against the
baseline models.

Model Precision Recall F-measure
BERT (baseline 1) 94.09% 94.93% 94.45%
BERT-CRF (baseline 2) 94.04% 95.44% 94.68%
BERT-BGRU-CRF 94.10% 95.54% 94.76%
BERT-BLSTM-CRF 93.75% 95.22% 94.42%
BERT-Stacked BLSTM-CRF 93.35% 95.37% 94.29%
BERT-Stacked BGRU-CRF 93.99% 95.10% 94.48%
BERT-CNN-BGRU-CRF 94.03% 95.31% 94.62%

TABLE 5. Results obtained by BERT-BGRU-CRF model with BERT
fine-tuning and using BERT as a feature extractor.

Model Precision Recall F-measure
BERT (fine-tuning) 94.10% 95.54% 94.76%
BERT (feature extractor) 88.61% 93.96% 90.96%

outperformed in the remaining named entities. For the overall
model performance, BERT-BGRU-CRF model outperformed
by 0.34 F-measure points.

Table. 4 shows the comparison results obtained by com-
paring the BERT-BGRU-CRF model against the baseline
models. The first row presents the performance of fine-tuned
BERT with only a linear layer that has a Softmax function
to model tags probabilities. The second row denotes the
performance of BERT with a CRF layer. The third and fourth
rows show the performance of the proposed models BERT-
BLSTM/BGRU-CREF. The fifth and sixth rows present the
performance of the BERT-BLSTM/BGRU-CRF with stack-
ing two layers of BLSTM/BGRU. The final row denotes
the best model performance (BERT-BGRU-CRF) with a
CNN character embedding model. As shown in Table. 4,
BERT-CRF model outperformed BERT with linear layer by
0.23 F-measure points which reflect the effectiveness of the
CRF algorithm in considering the dependencies between
tags. Moreover, adding a BGRU layer to learn more context
information improved the performance by 0.08 F-measure
points. However, concatenating CNN character embedding
representations to the pre-trained BERT model representa-
tions resulted in declining the model’s performance. This
confirms that the word-piece tokenizer in BERT obviates
the need for a character embedding model to deal with
the OOV issue. On the other hand, stacking deep learning
models also showed a decline in the performance of our
best model, BERT-BGRU-CREF, although it was supposed to
increase the representations at different levels of abstraction
across layers [4]. However, this was not the case with our
proposed model, where stacking more layers did not improve
the model’s performance. Fig. 4 shows the training loss of
a single BGRU based model compared to the two-stacked
BGRU-based model.
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1.8
1.6
14
1.2

0.8
0.6
0.4
0.2

Training loss
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Epoch

==@==BERT-BGRU-CRF BERT-Stacked BGRU-CRF

FIGURE 4. BERT-BGRU-CRF and BERT-stacked BGRU-CRF models training
loss.

TABLE 6. Example of BERT-BGEU-CRF output using a random sentence
from the testing dataset.

Word Pre:i;;ted A;:;;al Word Pretdai;ted Aggal
& Pers Pers olild (0} (0]
ie ) Pers Pers SIBEN Prophet Prophet
o (6} (¢} Jas o (6]
= Pers Pers L (0} (6]
(BTSN Pers Pers Oy o (o)
Ju 0] (o) Ju 0] (0]
s 0 0 o) 0 ¢}
s Prophet Prophet ol o) 0]
ha o) o) a5 o o)
] Allah Allah AL Allah Allah
e 0 0 RO 0 0
plas (6} (¢} 4iS (6} (6]
1ok (o) (0] il o) 0]
Lo (6} O s O (6]
ol o (0] eSis ¢} o

Table. 5 shows the effect of fine-tuning the pre-trained
BERT model against using the model directly as a feature
extractor. Fine-tuning the pre-trained BERT model increased
the performance of our proposed model by 3.8 F-measure
points, which proves the effectiveness of fine-tuning BERT
parameters with CANERCorpus Classical Arabic NER
dataset rather than using them directly.

Table.6 illustrate an example of BERT-BGEU-CRF output
for a randomly chosen sentence from the testing dataset.
The chosen sentence contains four named entity tags. The
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TABLE 7. Example of BERT-BGEU-CRF output using randomly selected
samples from KSUCCA [7].

Word Pre:iai;ted Af;;al Word Pre;lai;ted A;;ugal
Y (0] (0] o] Prophet  Prophet
L (0] (0] e O o)
e Prophet Prophet Pl Prophet Prophet
u 0 0 e 0 0
ol (6] (6] g (0] (0]
Lelans o) (0) P (0] O
sl 0 0 Yy 0 ¢
L 0 0 Al Loc Loc
| gala (0] (6] (0] (6]
e (0) (0) e Pers Pers
H 0 0 i Pers Pers
el (6] (6] o Pers Pers
<y Allah Allah dia Pers Pers
ilsd (6] (6] o= (6] (6]
6] (0) (0) Sulll Pers Pers
Lala (0) (0) o Pers Pers
Useld (0) (0) R Pers Pers
(6] (6] Ja (6] (6]
o Pers Pers ), (0) O
wle Pers Pers dy NatOb NatOb
=0 (0] (0) il (@) (@)
il Allah Allah sS (0] (0]
Legic 0 0 el 0 0
ol 0 0 SF 0 0
Jm Prophet Prophet  dunaall Loc Loc

columns in Table.6 present the words in the sentence, the pre-
dicted tags by the BERT-BGRU-CRF model, and the actual
tags of the sentence in the CANERCorpus Classical Arabic
NER dataset, respectively.

Moreover, examples of the output of the BERT-
BGRU-CRF model with randomly chosen sentences from
The Quran, Sahih Muslim, and another Classical Arabic doc-
ument are illustrated in Table.7. These sentences are selected
randomly from KSUCCA [7], which is a raw Classical Arabic
corpus. The Actual tags were annotated by two native Arabic
speakers.

VI. CONCLUSION AND FUTURE WORK
In this paper, we investigated the performance of fine-
tunning pre-trained BERT model on Classical Arabic NER
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using variant neural network architectures. Our experi-
ments show the effectiveness of fine-tuning pre-trained
BERT language model for languages with rich morphology
and low resources, specifically in NER task. We experi-
mented on 6 different model configurations based on BERT.
In the first experiment, we found that BERT-BGRU-CRF
outperformed BERT-BLSTM-CRF. Moreover, the BERT-
BGRU-CRF model performed better than the BERT alone
and BERT-CRF models. Furthermore, we investigated the
impact of adding CNN-based character embeddings and
stacking more than one BGRU layer, both showed declines
in the model’s performance. The proposed models have been
trained and evaluated with the CANERCorpus. Our best
model, BERT-BGRU-CRF, performance achieved a 94.76%
F-measure value. Our future work will be committed to apply-
ing additional features such as dictionary features to improve
our results. Also, using the pre-trained BERT model to do
other NLP tasks in Classical Arabic.
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