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ABSTRACT A robust generalized labeled multi-Bernoulli (GLMB) filter is presented to performmultitarget
tracking (MTT) with unknown non-stationary heavy-tailed measurement noise (HTMN). The HTMN is
modeled as a multivariate Student’s t-distribution with unknown and time-varying mean. The proposed
filter relaxes the restrictive assumption that the mean of HTMN is zero, and can effectively deal with MTT
under the condition that the mean of HTMN is unknown and time-varying. The variational Bayesian (VB)
approximation is applied in the GLMB filtering framework with the augmented state. The marginal
likelihood function is obtained via minimizing the Kullback-Leibler divergence by the variational lower
bound. The simulation results demonstrate that the proposed filter can effectively track multiple targets in
both linear and nonlinear scenarios when the mean of HTMN is unknown and time-varying.

INDEX TERMS Generalized labeledmulti-Bernoulli filter, multitarget tracking (MTT), variational Bayesian
(VB), non-stationary, heavy-tailed measurement noise (HTMN), unknown and time-varying mean.

I. INTRODUCTION
Multitarget tracking (MTT) involves the estimation of the
number of unknown and time-varying targets, their trajecto-
ries, and kinematic states in real-time from the measurement
sequences in the presence of uncertainties in detection, clut-
ter, and data associations. So far, three of the most prominent
MTT approaches have been used to perform MTT, such as
Joint Probabilistic Data Association (JPDA) [1], [2], Mul-
tiple Hypotheses Tracking (MHT) [3], and Random Finite
Set (RFS) [4], [5].

The RFS approach is essentially a multitarget Bayesian
(MTB) filter that recursively propagates the posterior
multitarget densities. To alleviate the computational com-
plexity from the joint probability distribution and multiple
integrals, three approximate filters, including the probability
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hypothesis density (PHD) filter [6], cardinality PHD (CPHD)
filter [7], and multitarget multi-Bernoulli (MeMBer) [4], [8]
filter, have been developed. However, the aforementioned fil-
ters are not true multitarget trackers, since they cannot obtain
distinguishable target trajectories. To overcome this problem,
a rigorous generalized labeled multi-Bernoulli (GLMB) filter
is presented in [9], [10]. By utilizing a first-order approximate
matching model to approximate the GLMB posterior dis-
tribution to the labeled multi-Bernoulli (LMB) distribution,
the LMB filter is proposed in [11]. An efficient approxima-
tion of the GLMB filter which preserves both the PHD and
cardinality distribution of the labeled posterior is developed
in [12]. Note that an efficient implementation is proposed
in [13], which combines the prediction and updating into
a single step and further implements only one truncation
for each iteration. Subsequently, a much cheaper truncation
based on Gibbs sampling is presented in [14]. This filter
also combines the GLMB filter prediction and update steps
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TABLE 1. Acronyms and nomenclatures.

into a single joint operation and will be referred to as the
‘J-GLMB filter’ in the rest of the paper. Its complexity is
linear in the number of measurements and quadratic in the
number of hypothesized labels, whereas the original solution
in [13] is cubic at best in both cases. The J-GLMB filter
has been applied not only to extended target tracking [15]
and multi-sensor MTT [16], [17], but also to large-scale
multi-object tracking [18] and multiple objects tracking in
unknown backgrounds, such as clutter rate and detection
probability [19]. Furthermore, a multi-scan version of the
J-GLMBfilter is proposed to performmulti-object smoothing
in [20].

For the MTT applications, it is generally assumed that
the measurement noise is a zero-mean Gaussian white noise
sequence. However, in radar tracking systems, the mea-
surement tends to be disturbed by heavy-tailed measure-
ment noise (HTMN), which is a non-Gaussian noise with a
heavy-tailed probability density function (PDF) caused by the
irregular changes of electromagnetic wave reflections [21].
The HTMN may lead to a significant decline in the tracking
performance of those filters using the traditional Gaussian
modeling scheme [22], [23]. At present, the modelingmethod
of HTMN is mainly realized through the combination of
Gaussian noise and other noise distributions. The HTMN
was described as a weighted sum of two Gaussian distribu-
tions in [22]–[26]. One Laplace distribution and one small
variance Gaussian distribution were employed to character-
ize the HTMN together in [21], [27] and [28]. Moreover,
a Student’s t-distribution mixture GLMB filter, in which
both the process and measurement noises are modeled as
the Student’s t-distributions with zero-mean, known scalar
matrix and degrees of freedom, is proposed in [29] to deal

with heavy-tailed process noise and measurement noise in
nonlinear MTT systems. A PHD filter based on the Student’s
t-distribution for MTT with HTMN is proposed in [30]. The
variational Bayesian (VB) approach is utilized to deal with
significant intractability caused by the Student’s t-distribution
in the PHD filtering framework. Similarly, a novel CPHD
filter for extended targets tracking with HTMN is presented
in [31]. To obtain multitarget trajectories, a Gaussian (Nor-
mal) Gamma inverse Wishart Gamma distribution mixtures
LMB (NGIWG-LMB) filter is proposed in [32] to perform
MTT for stationary HTMN, as well as a Student’s t mix-
ture LMB (STM-LMB) filter for MTT with heavy-tailed
process and measurement noises is presented in [33]. Fur-
thermore, a novel LMB filter is presented in [34] for
jump Markov systems to track multiple maneuvering targets
under HTMN.

However, in practice, the measurement bias resulted from
sensor faults may lead to non-stationary measurement noise.
For the HTMNwith unknown and time-varyingmeasurement
bias, Huang et al. modeled the measurement noise as a Stu-
dent’s t-inverse-Wishart distribution and proposed a robust
Kalman filter which can adaptively estimate themeasurement
bias in [35]. However, the degree of freedom (DOF) of the
noise distribution is a known fixed value. Actually, the DOFs
of noises are usually unknown. Also, the Gaussian-Gamma
distribution is selected as the conjugate prior distribution for a
univariate Gaussian distribution in which the mean and preci-
sion are both unknown, but it is not suitable for a multivariate
Gaussian distribution with unknown mean and precision.
To the best of the authors’ knowledge, there is no research
on MTT problems under unknown non-stationary HTMN.

In this paper, a robust J-GLMBfilter based on the Student’s
t-distribution and VB approach is presented for MTT with
unknown non-stationary HTMN. The measurement noise
is modeled as a multivariate Student’s t-distribution with
unknown and time-varyingmean. The Student’s t-distribution
is written as the mixtures of Gaussian, Gaussian-inverse-
Wishart, and Gamma distributions, of which the auxiliary
variable is modeled as Gamma distribution conditional on
the DOF. Besides, the DOF is also modeled by the Gamma
distribution. To address the problem of MTT with unknown
non-stationary HTMN, the target state is augmented by
the parameters of the Student’s t-distribution with unknown
and time-varying mean, kinematic state, and target label.
And then the predicted and updated intensities are repre-
sented as Gaussian, Gaussian-inverse-Wishart, Gamma, and
Gamma (NNIWGG) distributionmixtures. In the update step,
the VB approach is employed to decouple the augmented
state. To obtain a closed-form implementation of the pro-
posed robust J-GLMB filter, the updated density is derived
via the VB approach to ensure that it has the same form
as the prediction one. Furthermore, the VB lower bound is
utilized to approximate the predictive likelihood. Simulation
results show that the effectiveness of the proposed robust
J-GLMB filter under unknown non-stationary HTMN and its
robustness compared with the existing filters.
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The paper is organized as follows. Section II develops a
Bayesian hierarchical model for the Student’s t-distribution
with unknown and time-varying mean and provides a
brief introduction to the GLMB RFS and GLMB fil-
ter. Section III presents the proposed robust J-GLMB
filter based on the Student’s t-distribution for unknown
non-stationary HTMN. Simulation results and comparisons
are followed in Section IV. Finally, conclusions are drawn
in Section V.

II. BACKGROUND
A. PROBLEM FORMULATION
A linear state-space model at time k can be formulated using
the following equations:

xk = Fxk−1 + wk−1 (1)

zk = Hxk + εk (2)

where xk ∈ Rn and zk ∈ Rm are the state and measurement
vectors, respectively; andF ∈ Rn×n andH ∈ Rm×n represent
the state transition and observationmatrices, respectively, and
wk ∈ Rn denotes the Gaussian process noise with a mean of
E{wk} = 0 and a covariance matrix of E{wkwT

l } = Qkδkl ,
where δkl is the Kronecker Delta function; and εk ∈ Rm

denotes the non-stationary HTMN. The initial state x0 ∈ Rn

has a Gaussian distribution with mean m0 and covariance
matrix P0. It is assumed that x0, wk , and εk are mutually
independent.

The research shows that the Student’s t-distribution can
better model the HTMN [36]. Compared with the Gaus-
sian distribution, the Student’s t-distribution is more suit-
able to match the heavy-tailed non-Gaussian distribution.
Therefore, the existing filters generally employ the Student’s
t-distribution with zero mean to model the HTMN [30]–[34].
However, the sensor failure or severe disturbance often
leads to an unknown measurement bias, which makes the
heavy-tailed noise non-stationary [35]. To this end, we adopt
the Student’s t-distribution with unknown and time-varying
mean to describe the non-stationary HTMN. Therefore,
the multivariate Student’s t-distribution [37] is utilized to
describe εk , that is,

p(εk ) = St(εk ;µ,R, v) (3)

with

St(εk ;µ,R, v)

=

0
( v+m

2

) [
1+ 1

v (εk − µ)
TR−1(εk − µ)

]− v+m
2

(πv)
m
2 0( v2 )

√
det(R)

(4)

where µ, R, and v represent the mean vector, the scale matrix
and the DOF, respectively, and 0(·) denotes the Gamma
function and det(·) denotes the determinant operator. When
v → ∞, the Student’s t-distribution reduces to a Gaussian
distribution with mean vector µ and covariance matrix R.
That is the Student’s t-distribution can be regarded as a gen-
eralized Gaussian distribution. It should be noted that µ is

unknown and time-varying, and R and v are unknown in this
paper.

B. BAYESIAN HIERARCHICAL MODEL
To derive the closed form expressions of the posterior PDF
for (1) and (2), it is necessary to model the likelihood
p(zk |x,µ,R, v) and the one-step predicted PDF p(x|z1:k−1).
According to (2) and (3), p(zk |x,µ,R, v) is formulated as

p(zk |x,µ,R, v) = St(zk ;Hx+ µ,R, v). (5)

However, due to the non-stationarity of HTMN, the mean
vector µ, scale matrix R and DOF v cannot be obtained
accurately. To this end, theVB approach is utilized to estimate
the above unknown parameters adaptively. The Gaussian-
inverse-Wishart distribution [38] is selected as the prior dis-
tribution for µ and R to ensure that the posterior PDF and the
prior PDF have the same form, that is,

p(µ,R|z1:k−1) = N(µ; ηk|k−1, βk|k−1R)

×IW(R; tk|k−1,T k|k−1) (6)

where ηk|k−1, βk|k−1R, tk|k−1 and T k|k−1 are, respectively,
the mean vector, covariance matrix, DOF and the inverse
scale matrix of p(µ,R|z1:k−1).

Similarly, the Gamma distribution is selected as the prior
distribution of v,

p(v|z1:k−1) = G(v; ak|k−1, bk|k−1) (7)

where ak|k−1 and bk|k−1 denote the shape parameter and rate
parameter of p(v|z1:k−1), respectively.
Under the Gaussian approximation to posterior PDF,

the one-step predicted PDF is updated as a Gaussian distri-
bution using the Chapman-Kolmogorov equation, i.e.,

p(x|z1:k−1) = N(x;mk|k−1,Pk|k−1) (8)

where the state mean vectormk|k−1 and the covariance matrix
Pk|k−1 are obtained by the time-update step of Kalman filter
as follows,

mk|k−1 = Fmk−1 (9)

Pk|k−1 = FPk−1FT
+ Qk . (10)

Assume that x, µ, R and v are mutually independent. And
in order to derive p(µ,R|z1:k−1) and p(v|z1:k−1), a forgetting
factor ρ ∈ (0, 1] is used to describe the dynamic uncer-
tainty of µ, R and v. Under the principle of keeping the
expected value unchanged and the variance increased by ρ−1

times, and according to the properties of Gaussian distribu-
tion, inverse-Wishart distribution and Gamma distribution,
the dynamic models of each parameter can be obtained

ηk|k−1 = ηk−1, βk|k−1 = βk−1/ρ (11)

tk|k−1 = ρtk−1, T k|k−1 = ρT k−1 (12)

ak|k−1 = ρak−1, bk|k−1 = ρbk−1. (13)

A new state-space model based on the multivariate Stu-
dent’s t-distribution with unknown and time-varying mean
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incorporates (5)-(8). However, considering the Student’s
t-distribution does not have a rigorous closed-form solu-
tion, the posterior PDF is not available. To solve the prob-
lem, by introducing an auxiliary variable λ, the likelihood
p(zk |x,µ,R, λ) as shown in (5) can be expressed as the
following Bayesian hierarchical model [39],

p(zk |x,µ,R, λ) = N(zk ;Hx+ µ,R/λ) (14)

p(λ|v) = G(λ; v/2, v/2). (15)

To sum up, the state estimation problem with unknown
non-stationaryHTMN is transformed into the state estimation
in a hierarchical model based on the multivariate Student’s
t-distribution with (6)-(8), and (14)-(15). And it can be seen
from (15) that λ can be completely determined by v.
Remark: Bayesian hierarchical model is a structured sta-

tistical model which utilizes the Bayesian method to estimate
posterior distribution parameters. It can be used to establish a
hierarchical model for complex statistical problems to avoid
overfitting problems caused by excessive parameters.

C. LABELED RFS AND GLMB FILTER
In order to incorporate target trajectories in the framework
of the MTB filtering, the labeled RFS is introduced in [9].
For each target, the state x ∈ X is augmented by a unique
label ` = (k, i), where k is the time of birth and i ∈ N is
a unique index to distinguish targets born at time k . Then,
the label space of a new target born at k time is denoted
as Lk = {k} × N. Consequently, the labeled state x =
(x, `) ∈ X × Lk can denote a new target born at time k ,
where X and L represent the state space and label space,
respectively. Likewise, the labeledmultitarget state is denoted
as X = {x1, . . . , xn} = {(x1, `1), . . . , (xn, `n)} ⊆ X × L,
where `1, . . . , `n are distinct from each other.

Define the projection L : X× L→ L. For a labeled state
x, L(x) = L((x, `)) = `. Likewise, for a labeled multitarget
state X , L(X) = {L(x) : x ∈ X}, and the labels must be
distinct, i.e., δ|X |(|L(X)|) = 1. For simplicity, the distinct
label indicator is defined as 1(X) = δ|X |(|L(X)|).
According to [9], [10], a GLMB RFS is distributed as

π (X) = 1(X)
∑
I ,ξ

ω(I ,ξ )δI [L(X)]
[
p(ξ )

]X
(16)

where I ∈ F(L) is a set of track labels, ξ ∈ 4 denotes
a history of association maps, each p(ξ )(·, `) is a proba-
bility density on X, and each ω(I ,ξ ) is non-negative with∑
I ,ξ
ω(I ,ξ )

= 1.

Each component (I , ξ ) in (16) consists of a weight ω(I ,ξ )

that only depends on the labels of the multitarget state X and
a multitarget exponential

[
p(ξ )

]X
, which is the product of the

single target probability densities.
In the original GLMB filter, if the prior multitarget density

is a GLMB of the form (16), then the predicted and posterior

multitarget densities are still GLMBs of the forms

π+(X+) = 1(X+)
∑
I+,ξ

ω
(I+,ξ )
+ δI+ [L(X+)][p

(ξ )
+ ]

X+
(17)

πZ+(X) ∝ 1(X)
∑
I ,ξ

∑
θ

ω
(I ,ξ,θ )
Z+ δI [L(X)]

[
p(ξ,θ)Z+

]X
(18)

where θ is the associationmap,2(I ) denotes the set of associ-
ation maps with label domain I . For more details, the readers
can refer to [9], [10].

III. ROBUST J-GLMB FILTER FOR UNKNOWN
NON-STATIONARY HTMN
To estimate the kinematic state of the target and param-
eters of the Student’s t-distribution, they are expressed as
an augmented target state in a hybrid state space, and the
corresponding joint PDF can be expressed as an NNIWGG
model. However, in the Bayesian filtering framework, there
is no analytical solution for the joint posterior PDF, so the
VB approach is used to approximate it. Furthermore, the sin-
gle target spatial PDF is denoted as the NNIWGG model
and propagated under the framework of the J-GLMB filter.
By minimizing the Kullback-Leibler divergence, the varia-
tional lower bound is taken as the approximate solution of the
marginal likelihood. Therefore, we introduce this NNIWGG
density to give an implementation of the extended version
of the J-GLMB filter, referred to as the NNIWGG-J-GLMB
filter in this paper.

A. SINGLE TARGET TRACKING WITH THE NNIWGG
MODEL
In this paper, the target state augmentation approach is
adopted in the J-GLMB filter. Therefore, the augmented state
is defined as follows

ζ , (x,µ,R, λ, v) ∈ R∗ (19)

where ζ denotes an augmented state, R∗ is the hybrid state
space and R∗ = Rn

× Rm
× Rm

+ × R+ × R+, Rn and
Rm represent n-dimensional and m-dimensional real vector
space respectively,Rm

+ is the space ofm×m positive-definite
matrices, R+ denotes the space of positive real numbers,
× represents the Cartesian product.
According to the Bayes’s rule, given the measurement

set zk at time k , the joint posterior PDF p(ζ |z1:k ) can be
calculated by

p(ζ |z1:k ) =
p(zk |ζ )p(ζ |z1:k−1)

p(zk |z1:k−1)
(20)

where p(zk |z1:k−1) =
∫
p(zk |ζ )p(ζ |z1:k−1)dζ is the marginal

likelihood.
It can be seen from Section II. B that the posterior PDF of

a single target with the augmented state can be expressed as
the NNIWGG model in the hybrid state space, i.e.,

p(ζ ) = p(x)p(µ|R)p(R)p(λ|v)p(v)
= N(x;m,P)N(µ; η, βR)IW(R; t,T )

×G(λ; v/2, v/2)G(v; a, b)
, NNIWGG(ζ ;φ) (21)
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where φ = (m,P, η, β, t,T , a, b) is a variational parameter
set of the NNIWGG density.

To formulate the recursive estimate of both target state and
Student’s t-distribution parameters, we assume that the single
target transition density is Markovian and can be factorized
as

f (ζ |ζ ′) = f (x|x′)f (µ|µ′)f (R|R′)f (λ|v)f (v|v′) (22)

where f (ζ |ζ ′) denotes the transition density of the augmented
state. Then, the Bayesian prediction for an NNIWGG form
can be given by Lemma 1.
Lemma 1: Given the joint prior PDF p(ζ ′) =

NNIWGG(ζ ′;φk−1) at time k − 1, where φk−1 = (mk−1,

Pk−1, ηk−1, βk−1, tk−1,T k−1, ak−1, bk−1), the predicted
PDF p+(ζ |z1:k−1) under the transition density of (21) is still
an NNIWGG form given by

p+(ζ |z1:k−1) = NNIWGG(ζ ′;φk|k−1) (23)

with φk|k−1 = (mk|k−1,Pk|k−1, ηk|k−1, βk|k−1, tk|k−1,
T k|k−1, ak|k−1, bk|k−1) and the parameters are calculated
by (9)-(13).

Since it is challenging to obtain an analytical solution
for the joint posterior PDF p(ζ |z1:k ) as shown in (20),
hence, an approximate PDF can be achieved by the
VB approach. An approximate solution of the joint posterior
PDF p(ζ |z1:k ) can be given by Lemma 2.
Lemma 2:According to themean field theory [39], the joint

posterior PDF p(ζ |z1:k ) can be factorized as

p(ζ |z1:k ) ≈ q(x)q(µ,R)q(λ)q(v) (24)

with

q(x) = N(x;mk ,Pk ) (25)

q(µ,R) = N(µ; ηk , βkR)IW(R; tk ,T k ) (26)

q(λ) = G(λ; v/2, v/2) (27)

q(v) = G(v; ak , bk ) (28)

and given the initial value for each variational parameter as
follows t (0)k = tk|k−1+1, T (0)

k = T k|k−1, a
(0)
k = ak|k−1+0.5,

b(0)k = bk|k−1, η
(0)
k = ηk|k−1, β

(j)
k = βk|k−1, c

(0)
k =

d (0)k = 0.5ak|k−1/bk|k−1, E(0)[µ] = ηk|k−1, E
(0)[R−1] =

t (0)k

{
T (0)
k

}−1
, E(0)[λ] = c(0)k /d

(0)
k , E(0)[v] = a(0)k /b

(0)
k ,

the parametersmk ,Pk ,ηk ,βk ,tk ,T k ,ak ,bk can be calculated by
performing the following iterative procedure, where the j-th
iteration is given by

R̃
(j)
k =

{E(j−1)[R−1]}
−1

E(j−1)[λ]
(29)

K (j)
k = Pk|k−1HT

(
HPk|k−1HT

+ R̃
(j)
k

)−1
(30)

m(j)
k = mk|k−1 + K

(j)
k (zk−Hmk|k−1−E(j−1)[µ]) (31)

P(j)
k = (In − K

(j)
k H)Pk|k−1 (32)

η
(j)
k = ηk|k−1 +W

(j)
k (z̃(j)k − µk|k−1) (33)

β
(j)
k =

βk|k−1

1+ βk|k−1E(j−1)[λ]
(34)

W (j)
k =

(
1−

1

1+ βk|k−1E(j−1)[λ]

)
Im (35)

z̃(j)k = zk −Hm
(j)
k (36)

t (j)k = tk|k−1 + 1 (37)

T (j)
k = T k|k−1 + E(j−1)[λ]A(j−1)

k (38)

A(j−1)
k = HP(j)

k H
T
+
[z̃(j)k − ηk|k−1][z̃

(j)
k − ηk|k−1]

T

βk|k−1E(j−1)[λ]+ 1
(39)

c(j)k =
E(j−1)[v]+ m

2
(40)

d (j)k =
E(j−1)[v]+tr

(
B(j)
k E(j)[R−1]

)
2

(41)

B(j)
k = (z̃(j)k − η

(j)
k )(z̃(j)k − η

(j)
k )

T
+HP(j)

k H
T
+ P(j)

µ (42)

P(j)
µ = β

(j)
k T

(j)
k /t

(j)
k (43)

C(j)
k = P(j)

k + (m(j)
k −mk|k−1)(m

(j)
k −mk|k−1)

T
(44)

D(j)
k = (η(j)k − ηk|k−1)(η

(j)
k − ηk|k−1)

T
+ P(j)

µ (45)

a(j)k = ak|k−1 + 0.5 (46)

b(j)k = bk|k−1 − 0.5− 0.5E(j)[ln λ]+ 0.5E(j)[λ] (47)

E(j)[µ] = η(j)k (48)

E(j)[R−1] = t (j)k
{
T (j)
k

}−1
(49)

E(j)[λ] = c(j)k /d
(j)
k (50)

E(j)[ln λ] = ψ(c(j)k )− ln(d (j)k ) (51)

E(j)[v] = a(j)k /b
(j)
k (52)

E(j)[ln v] = ψ(a(j)k )− ln(b(j)k ) (53)

where ψ(·) is the digamma function [27], the required expec-
tations as shown in (48)-(53) can be calculated from (26)-(28)
respectively.

The iterative procedure is terminated when the following
convergence conditions are satisfied∥∥∥m(j)

k −m
(j−1)
k

∥∥∥
2∥∥∥m(j)

k

∥∥∥
2

≤ τ or j > Nmax, j ∈ 1, 2, . . . ,Nmax

(54)

where τ denotes an iteration threshold, Nmax is the maximum
iteration number, and ‖M‖2 means the 2-Norm of vectorM .
If (54) holds, the j-th iteration of each parameter is substituted
into (25)-(28) respectively, and the final approximate poste-
rior densities can be obtained.

The Lemma 2 is proved in Appendix A.
Using the Corollary 1 in [32], the following relation holds

N(zk ;Hx+ µ,R/λ)NNIWGG(ζ ;φk|k−1)

≈ q(zk )NNIWGG(ζ ;φk ) (55)

94442 VOLUME 9, 2021



L. Hou et al.: Robust GLMB Filter for MTT With Unknown Non-Stationary HTMN

where q(zk ) is the variational lower bound calculated as
in (54).

It can be obtained by substituting (9)-(13) and (29)-(53),
which satisfies the convergence condition into (56). For ease
of description, the exponential term is derived from the sub-
traction of two parts.

q(zk ) = exp {L1 − L2} (56)

where the first part L1 in the exponential term of (56) is given
by

L1 = −
2m+ n

2
ln(2π)+

m
2
E[ln λ]−

1
2
tr
(
E[λ]E[R−1]Bk

)
−
1
2
ln |Pk|k−1| −

1
2
tr
(
P−1k|k−1Ck

)
−
m
2
lnβk|k−1

−
1
2
tr

(
E[R−1]
βk|k−1

Dk

)
+
tk|k−1
2

ln |T k|k−1|

−
m+ 1
2

tk|k−1 ln 2− ln0
(
tk|k−1
2

)
−
m+ tk|k−1 + 3

2
E[ln |R|]−

1
2
tr
(
E[R−1]T k|k−1

)
+
1
2
E [ln v]+

1
2
E[v]+

(
1
2
E[v]− 1

)
E[ln λ]

−
1
2
E[v]E[λ]+ ak|k−1 ln bk|k−1 − ln0(ak|k−1)

+(ak|k−1 − 1)E[ln v]− bk|k−1E[v] (57)

while the second part L2 can be calculated as follows

L2 = −
m+ n
2

ln(2π )−
1
2
ln |Pk | −

n
2
−
m
2
lnβk

−
m
2
+
tk
2
ln |T k | −

m
2
tk ln 2− ln0

(
tk
2

)
−
m+ tk + 2

2
E[ln |R|]−

1
2
tr
(
E[R−1]T k

)
+ck ln dk − ln0(ck )+ (ck − 1)E[ln λ]− dkE[λ]

+ak ln bk − ln0(ak )+ (ak − 1)E[ln v]− bkE[v]. (58)

The derivation of q(zk ) is given in Appendix B.

B. THE ROBUST J-GLMB FILTER
To carry out MTT under unknown non-stationary HTMN,
the VB approach is introduced into the J-GLMB filtering
framework, and then the robust J-GLMB filter which can
jointly estimate the unknown parameters in the augmented
state is proposed. From the point of view of Bayesian fil-
tering, the key of the proposed algorithm is to recursively
estimate the joint posterior multitarget density p(ξ )(ζ , `) with
the augmented state. Then, the multitarget state of the robust
J-GLMB filter is extended to a hybrid state space 3 =
{(ζ , `)i}(i = 1, 2, . . . ,N ), where N is the number of target
states. The multitarget measurement can be modeled as RFS,
Z = {z1, z2, . . . , z|Z|}, where z1, . . . , z|Z| denote observations
of individual measurements and |·| is the cardinality of a
collection. The joint recursion between the components of
two GLMB filtering densities is provided by Proposition 1.

Proposition 1: If the joint posterior multitarget density at
time k is a GLMB of the following form

π (3) = 1(3)
∑
I ,ξ

ω(I ,ξ )δI [L(3)]
[
p(ξ )

]3
(59)

where I ∈ F(L), ξ ∈ 4, then the joint posterior multitarget
density at time k + 1 is still a GLMB of the form

πZ+ (3) ∝ 1(3)
∑

I ,ξ,I+,θ+

ω(I ,ξ )ω
(I ,ξ,I+,θ+)
Z+ δI+ [L(3)]

[
p(ξ,θ+)Z+

]3
(60)

where I+ ∈ F(L+), θ+ ∈ 2+, and

ω
(I ,ξ,I+,θ+)
Z+

= 12+(I+)(θ+)
[
1− P̄(ξ )S

]I−I+[
P̄(ξ )S

]I⋂ I+

×[1− rB,+]B+−I+rB+
⋂
I+

B,+

[
ψ̄

(ξ,θ+)
Z+

]I+
(61)

p(ξ,θ+)Z+ (ζ +, `+)

=
p̄(ξ )+ (ζ +, `+)ψ

(θ+(`+))
Z+ (ζ +, `+)

ψ̄
(ξ,θ+)
Z+ (`+)

(62)

p̄(ξ )+ (ζ+, `+)

=1L(`+)

〈
PS (ζ , `+)f+(ζ+|ζ , `+), p

(ξ )(ζ , `+)
〉

P̄(ξ )S (`+)
+1B+ (`+)pB,+(ζ+, `+) (63)

ψ̄
(ξ,θ+)
Z+ (`+)

=

〈
p̄(ξ )+ (ζ+, `+), ψ

(θ+(`+))
Z+ (ζ+, `+)

〉
(64)

P̄(ξ )S (`)

=

〈
p(ξ )(ζ , `),PS (ζ , `)

〉
(65)

ψ
(θ+(`+))
Z+ (ζ+, `+)

=


PD(ζ+, `)g(zθ+(`+)|ζ+, `+)

κ(zθ+(`+))
, θ+(`+) = {1, . . . , |Z+|}

1− PD(ζ+, `), θ+(`+) = 0
(66)

where Z+ = {z1:|Z+|} denotes the multitarget measurement
RFS at time k + 1 from detected targets, and PS (ζ , `) and
PD(ζ+, `) represent the survival probability and the detec-
tion probability respectively,f+(ζ+|ζ , `+) is the single target
Markov transition kernel, g(zθ+(`+)|ζ+, `+) is the single tar-
get likelihood for zθ+(`+) given (ζ+, `+), and κ(zθ+(`+)) is the
clutter density function. In addition, the label space for new
targets is B+, rB,+(`+) is probability that a new object with
label `+ is born, and pB,+(x+, `+) is the distribution of its
kinematic state.

C. CALCULATION OF PARAMETERS
To obtain a closed-form formula of the robust J-GLMB filter,
the following assumptions are given.
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Assumption 1: Suppose that each target follows the NNI-
WGG model as (21) and the measurement model as (5).
Assumption 2: The survival probability and detection prob-

ability are independent of the augmented state and label, that
is,

PS (ζ , `) = PS (67)

PD(ζ , `) = PD. (68)

Assumption 3: Suppose that the target birth model has the
same form, namely that of an LMB distribution at every time
step, and the target birth intensity can be represented as an
NNIWGG form

pB,+(ζ , `) =
JB(`)∑
j=1

w(j)
B (`)NNIWGG(ζ ;φ(j)B (`)) (69)

where φ(j)B (`) = (m(j)
B (`),P(j)

B (`), η(j)B (`), β(j)B (`), t (j)B (`),
T (j)
B (`), a(j)B (`), b(j)B (`)), JB(`), and w

(j)
B (`) are the given model

parameters that determine the shape of the birth intensity.
Based on the above assumptions, Lemma 1, and Lemma 2,

the GLMB component parameters can be calculated by
Proposition 2. For the sake of simplicity and compactness,
the labels ` and `+ are omitted.
Proposition 2: Suppose the joint posterior multitarget den-

sity is shown in (59), where the single target density is the
NNIWGG form

p(ξ )(ζ ) =
J (ξ )∑
i=1

w(ξ,i)
k−1NNIWGG(ζ ;φ(ξ,i)k−1) (70)

where φ(ξ,i)k−1 = (m(ξ,i)
k−1,P

(ξ,i)
k−1, η

(ξ,i)
k−1, β

(ξ,i)
k−1 , t

(ξ,i)
k−1 ,T

(ξ,i)
k−1,

a(ξ,i)k−1, b
(ξ,i)
k−1), then the single target predicted density p̄

(ξ )
+ (ζ+)

can be obtained

p̄(ξ )+ (ζ+) = 1L(`+)
J (ξ )∑
i=1

w(ξ,i)
S,k|k−1NNIWGG(ζ+;φ

(ξ,i)
S,k|k−1)

+1B+ (`+)pB,+(ζ+) (71)

where φ(ξ,i)S,k|k−1 = (m(ξ,i)
S,k|k−1,P

(ξ,i)
S,k|k−1, η

(ξ,i)
S,k|k−1, β

(ξ,i)
S,k|k−1,

t (ξ,i)S,k|k−1,T
(ξ,i)
S,k|k−1, a

(ξ,i)
S,k|k−1, b

(ξ,i)
S,k|k−1), in which each parame-

ter can be computed by Lemma 1.
Proof: Substituting (32), (65), (67) and (70) into the first

term on the right-hand side of (63), and exchanging the order
of integral and summation, and using Lemma 1 to obtain the
first term on the right-hand side of (71), while the second term
on the right-hand side of (63) is shown in (69).
Proposition 3: Suppose that the predicted single target

density p̄(ξ )+ (ζ+) at time k can be represented as the following
NNIWGG form

p̄(ξ )+ (ζ+) =
J (ξ )+∑
i=1

w(ξ,i)
k|k−1NNIWGG(ζ ;φ(ξ,i)k|k−1) (72)

where φ
(ξ,i)
k|k−1 = (m(ξ,i)

k|k−1,P
(ξ,i)
k|k−1, η

(ξ,i)
k|k−1, β

(ξ,i)
k|k−1, t

(ξ,i)
k|k−1,

T (ξ,i)
k|k−1, a

(ξ,i)
k|k−1, b

(ξ,i)
k|k−1), then the posterior single target

density p(ξ,θ+)Z+ (ζ +) in (60) can also be formulated as the
NNIWGG form

p(ξ,θ+)Z+ (ζ +)=
1

ψ̄
(ξ,θ+)
Z+

J (ξ )+∑
i=1

w(ξ,θ+)
Z+,i NNIWGG(ζ+;φ

(ξ,θ+)
Z+,i ) (73)

where φ
(ξ,θ+)
Z+,i = (m(ξ,θ+)

Z+,i ,P
(ξ,θ+)
Z+,i , η

(ξ,θ+)
Z+,i , β

(ξ,θ+)
Z+,i , t

(ξ,θ+)
Z+,i ,

T (ξ,θ+)
Z+,i , a

(ξ,θ+)
Z+,i , b

(ξ,θ+)
Z+,i ), and the normalization constant is

given by

ψ̄
(ξ,θ+)
Z+ =

J (ξ )+∑
i=1

w(ξ,θ+)
Z+,i (74)

For θ+(`+) = 0, we have

w(ξ,θ+)
Z+,i = w(ξ,i)

k|k−1(1− PD) (75)

m(ξ,θ+)
Z+,i = m(ξ,i)

k|k−1,P
(ξ,θ+)
Z+,i = P(ξ,i)

k|k−1 (76)

η
(ξ,θ+)
Z+,i = η

(ξ,i)
k|k−1, β

(ξ,θ+)
Z+,i = β

(ξ,i)
k|k−1 (77)

t (ξ,θ+)Z+,i = t (ξ,i)k|k−1,T
(ξ,θ+)
Z+,i = T (ξ,i)

k|k−1 (78)

a(ξ,θ+)Z+,i = a(ξ,i)k|k−1, b
(ξ,θ+)
Z+,i = b(ξ,i)k|k−1 (79)

If θ+(`+) > 0, then

w(ξ,θ+)
Z+,i = w(ξ,i)

k|k−1
q(ξ )i (zθ+ )PD
κ(zθ+ )

(80)

where the approximate likelihood q(ξ )i (zθ+ ) can be calculated
using m(ξ,θ+)

Z+,i , P(ξ,θ+)
Z+,i , η(ξ,θ+)Z+,i , β(ξ,θ+)Z+,i , t (ξ,θ+)Z+,i , T (ξ,θ+)

Z+,i , a(ξ,θ+)Z+,i ,

and b(ξ,θ+)Z+,i according to (56). The final values of these param-

eters are obtained by (29)-(53) given φ(ξ,i)k|k−1.

IV. SIMULATION RESULTS
The proposed NNIWGG-J-GLMBfilter is compared with the
existing NGIWG-LMB filter [32], STM-LMB filter [33] and
GM-J-GLMBfilter [10]. Both the optimal sub-pattern assign-
ment (OSPA) [40] and OSPA(2) (OSPA-on-OSPA) [18], [41]
distances are utilized to evaluate the performance of all
four filters. For the OSPA distance, the cut-off parameter
is c = 100m, the order parameter is p = 1, and for the
OSPA(2) distance, the window length is set to Lw = 10.
Note that the OSPA(2) distance not only accounts for errors
in both localization and cardinality, but also captures track
labeling errors. Therefore, the OSPA(2) distance is more rig-
orous, and it is particularly suitable to be applied to eval-
uate the performance of the labeled RFS filters. In partic-
ular, the OSPA(2) distance reduces to OSPA distance when
Lw = 1, that is, the OSPA distance is a special form of the
OSPA(2) distance.

A. LINEAR SCENARIOS
The linear MTT scenarios are the same as that in [32]. The
single target state is given by xk = [px,k , ṗx,k , py,k , ṗy,k ]
which contains position vector (px,k , py,k ) and velocity
vector (ṗx,k , ṗy,k ). Each target follows a linear Gaussian
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model with the Markov transition density f (xk|xk−1) =

N (xk ;Fxk−1,Qk−1), where F = I2 ⊗
[
1 T
0 1

]
, Qk−1 =

σ 2
w

[
T 4/4 T 3/3
T 3/3 T 2

]
⊗ I2, and the sampling interval T = 1s,

the standard deviation of the process noise is σw = 5m/s2,
the identity matrix of dimension n× n is denoted by In, and
⊗ is the Kronecker product between two matrices of arbitrary
size.

The measurement model with unknown non-stationary
HTMN is formulated as

zk =
[
1 0 0 0
0 0 1 0

]
xk + εk . (81)

The unknown non-stationary HTMN εk is generated as
follows [35]

εk ∼

{
N(ηk ,R0) with probability − Pg
N(ηk , 100R0) with probability Pg

(82)

where Pg is the probability of non-stationary HTMN out-
liers, and R0 = diag([100m2, 100m2]) is a nominal variance
matrix, the true mean vector is given by

ηk =


[10m; 10m] k ∈ (0, 25s]
[20m; 20m] k ∈ (25s, 50s]
[30m; 30m] k ∈ (50s, 75s]
[10m; 10m] k ∈ (75s, 100s]

(83)

It should be noted that this model reduces to the stationary
HTMN as shown in [32] when ηk = [0; 0].

The clutter is modeled as a Poisson RFS with the intensity
function κ(z) = λcVu(z), where λc is the expected number
of false alarms per scan, V and u(·) represent the volume of
the surveillance region and the uniform density, respectively.
Further, the survival probability is given by PS = 0.99,
and the detection probability PD and the average number
of clutter λc are separately specified by different simulation
experiments.

The birth targets are modeled as an LMB RFS with param-
eters πB = {rB, p

(i)
B (ζ )}4i=1, where the existence probabilities

rB = 0.03, and the spatial distribution of the birth targets
follows an NNIWGG model

p(i)B (ζ ) = NNIWGG(ζ ;φ(i)B ) (84)

where φ
(i)
B = (m(i)

B ,PB, ηB, βB, tB,TB, aB, bB) with
m(1)
B = [0.1,0,0.1,0]T, m(2)

B = [400,0,− 600,0]T, m(3)
B =

[−800,0,− 200,0]T, m(4)
B = [−200,0,800,0]T, PB =

diag([102, 102, 102, 102]), while ηB = [0; 0], βB = 1,
tB = 5, TB = diag([102, 102]), aB = 5, bB = 1. In addition,
the mixture terms for each hypothesized track are pruned and
merged with a pruning threshold of Tm = 10−5, a merging
threshold Um = 4 m, and a maximum number of mixture
terms Jmax = 100. Moreover, the hypotheses are pruned with
a pruning threshold of Th = 10−4 and the maximum number
of GLMB components is capped at Hmax = 103.

Fig. 1 gives the true trajectories, measurements and state
estimates of a single trial obtained by the four filters with
Pg = 0.10, PD = 0.95, λc = 20, ρ = 0.90, and
Nmax = 5. It is shown that the proposed NNIWGG-
J-GLMB filter achieves satisfactory tracking results.
However, the other three filters have lost part of the target
trajectories, among which the trajectories loss of the GM-
J-GLMB filter is the most serious. The simulation results
indicate that the proposed filter can provide the best tracking
accuracy in almost all the time. These results are reasonable,
since the measurement noise is approximated by a Student’s
t-distribution with unknown and time-varying mean.

As described in Fig. 2, the estimated cardinality for these
filters with Pg = 0.10, PD = 0.95, λc = 20, ρ = 0.90, and
Nmax = 5 averaged over 100 Monte Carlo (MC) trials. It is
apparent that the four filters can provide unbiased cardinality
estimates at the beginning of the tracking, however, the cardi-
nality estimates of the other three filters except the proposed
NNIWGG-J-GLMB filter are underestimated because of the
trajectories loss. As expected, the proposed filter can cor-
rectly estimate the number of targets in the whole tracking
period. This mainly because the proposed filter is robust to
the HTMN and adaptive to non-stationary noise.

Fig. 3a and Fig. 3b respectively show the average OSPA
and OSPA(2) distances over 100 MC trials. Obviously,
the proposed filter has the smallest OSPA and OSPA(2) dis-
tances for almost all the time. As shown in Fig. 3a, when
targets appear and disappear, the OSPA distances of the
four filters yield significant peaks. Fig. 3b shows the GM-
J-GLMB filter has the smallest OSPA(2) distance in the ini-
tial period, while after 25s, the proposed filter can achieve
the best performance. There are two main reasons: firstly,
in the initial 25s, the deviation from zero-mean is relatively
small, and secondly, both the NGIWG-LMB filter and the
proposed filter need to learn the noise parameters online
via the VB approach, hence their corresponding tracking
accuracies may not be ideal at this initial stage. However,
the OSPA(2) distance of both the NGIWG-LMB filter and
the proposed filter are smaller than that of the GM-J-GLMB
filter and STM-LMB filter with the change of the mean of
non-stationary HTMN. It can be found that the OSPA(2) and
OSPA distances have a common trend, and both of them
indicate that the proposed filter has the best performance.
In addition, the OSPA(2) distances of the four filters are
significantly larger than their corresponding OSPA distances,
because the OSPA(2) distance penalizes incorrect labelling
behavior which is not considered in the OSPA distance [40].

To further verify the effectiveness of the proposed fil-
ter, the performances of the four filters are compared with
different λc, PD and Pg. Both of the OSPA and OSPA(2)

distances are the average results over 100 MC trials, and the
true target trajectories in each MC trial remain unchanged,
but the measurements and clutter are generated randomly and
independently.

Fig. 4a and Fig. 4b respectively show the average OSPA
and OSPA(2) distances when λc varies from 5 to 60 with
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FIGURE 1. The ground truth (black lines) and estimated trajectories
(colored labels) of the four filters.

FIGURE 2. The true and estimated cardinality for the four filters over time.

FIGURE 3. OSPA and OSPA(2) distances for the four filters over time.

Pg = 0.10, PD = 0.95, ρ = 0.90, and Nmax = 5.
The simulation results indicate that the tracking accu-
racy of the four filters decreases with the increase of λc,
however, the NNIWGG-J-GLMB filter always has the best
tracking accuracy compared with the other three filters.

Fig. 5a and Fig. 5b respectively give the average OSPA and
OSPA(2) distances at the probability of detection levels 0.60,
0.70, 0.80, 0.90, 0.95 and 0.98 with Pg = 0.10, λc = 10,
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FIGURE 4. Average OSPA and OSPA(2) distances of the four filters with
different λc .

ρ = 0.90, Nmax = 5. As can be seen from the figures,
the performance of the four filters is significantly improved
with the increase of PD. These findings suggest that the
proposed filter can still show good performance even at low
detection probability.

Fig. 6a and Fig. 6b respectively display the average OSPA
and OSPA(2) distances for Pg = 0, 0.02, 0.10, 0.20, 0.30,
0.40 when PD = 0.95, λc = 10, ρ = 0.90, Nmax = 5. It can
be seen that the performance of the four filters decreases with
the increase of Pg, however, the proposed filter still has the
smallest OSPA and OSPA(2) distances. When Pg = 0, that
is, there is no non-stationary HTMN, the GM-J-GLMB filter,
STM-LMB filter and NGIWG-LMB filter have comparable
OSPA and OSPA(2) distances. This is mainly because when
there is no non-stationary HTMN, the measurement noise as
shown in (82) follows a Gaussian distribution with unknown
mean. Moreover, the NGIWG-LMB filter and STM-LMB
filter will reduce to the GM-LMB filter. Since the proposed
filter has unknown mean Student’s t-distribution measure-
ment noise model, while the other three filters formulate
the measurement noise as zero-mean Gaussian distribution
and Student’s t-distribution respectively. It is worth noting
that the OSPA distance and OSPA(2) distance differences

FIGURE 5. Average OSPA and OSPA(2) distances of the four filters with
different PD.

between the four filters are prone to increase with the increase
of Pg, which suggests that the proposed filter is robust to
non-stationary HTMN.

To sum up, the tracking accuracy of the STM-LMB filter
is similar to that of the GM-J-GLMB filter. Although the
process and measurement noises of the STM-LMB filter are
modeled as Student’s t distribution to handle the heavy-tailed
noises [33], the non-stationary heavy-tailed noise is consid-
ered in this paper. In this case, the STM-LMB filter still can
not achieve ideal tracking accuracy.

To illustrate the influence of Nmax and ρ on the perfor-
mance of the proposed filter, the average OSPA and OSPA(2)

distances under different Nmax and ρ are compared when
other parameters are fixed.

Fig. 7 gives the average OSPA and OSPA(2) distances of
the proposed filter with different Nmax. It can be seen that
the proposed filter can achieve relatively small average OSPA
and OSPA(2) distances after Nmax = 3 iterations, and it
has the best performance when Nmax = 5. In conclusion,
the results show that Nmax will affect the performance of the
proposed filter, but this effect can be almost ignored when
Nmax ≥ 3.
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FIGURE 6. Average OSPA and OSPA(2) distances of the four filters with
different Pg.

FIGURE 7. Average OSPA and OSPA(2) distances of the NNIWGG-J-GLMB
filter with different Nmax.

Fig. 8 provides the average OSPA and OSPA(2) dis-
tances of the proposed filter with different ρ over 100 MC
trials. It is suggested that the OSPA and OSPA(2) dis-
tances are not very sensitive to ρ when it is greater
than 0.85, and a good performance can be achieved
when ρ ∈ [0.85, 1].

FIGURE 8. Average OSPA and OSPA(2) distances of the NNIWGG-J-GLMB
filter with different ρ.

B. NONLINEAR SCENARIOS
To further evaluate the performance of the NNIWGG-
J-GLMB filter in nonlinear scenarios with unknown
non-stationary HTMN, the Taylor series approximations of
nonlinear state function f (·) and measurement function h(·)
can be obtained by extended Kalman filter (EKF).

The nonlinear scenarios are employed as in [32]. The
bearing-range sensor is placed at (0, 0), and it is assumed that
the sensor receives measurements containing non-stationary
HTMN, namely zk = [θk , rk ]T, and the sensor has the
following function

zk =

[
arctan py,kpx,k√
p2x,k + p

2
y,k

]
+ εk (85)

The non-stationary HTMN εk can be obtained by

εk ∼

{
N(µk ,Rk ) with probability 1− Pg
N(µk , 25Rk ) with probability Pg

(86)

where Rk = diag([2(π/180), 10])2 is the nominal measure-
ment noise variance matrix. Moreover, the true mean vector
of measurement noise can be represented by

µk =


[(π/180) rad; 5 m], k ∈ (0, 30 s]
[2(π/180) rad; 10 m], k ∈ (30 s, 60 s]
[(π/180) rad; 5 m], k ∈ (60 s, 100 s]

(87)

The birth target model is an LMB RFS with param-
eters πB = {r (i)B , p

(i)
B (ζ )}4i=1, where r (i)B = 0.03, and

the single target PDF is modeled as the NNIWGG model
as shown in (84) with m(1)

B = [−1500, 0, 250, 0, 0]T,
m(2)
B = [−250, 0, 1000, 0, 0]T, m(3)

B = [250, 0, 750, 0, 0]T,
m(4)
B = [1000, 0, 1500, 0, 0]T, PB = diag6([50, 50,

50, 50, (π/180)]T)2, ηB = [0; 0], βB = 1, tB = 5, TB =
diag([5, π/180]T)

2
, aB = 5, bB = 1. The remaining parame-

ters are the same as that in Section IV-A.
Fig. 9 gives the true trajectories, measurements and esti-

mated trajectories of a single trial obtained by the four filters
with Pg = 0.10, PD = 0.95, λc = 20, ρ = 0.90, and
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FIGURE 9. The ground truth (black lines) and estimated trajectories
(colored labels) of the four filters.

FIGURE 10. The true and estimated cardinality for the four filters over
time.

FIGURE 11. OSPA and OSPA(2) distances for the four filters over time.

Nmax = 5. The EK-GM-J-GLMB filter, EK-STM-LMB filter
and EK-NGIWG-LMB filter all have target trajectories loss
in the tracking period, while the proposed filter can estimate
all target trajectories correctly, as is shown in Fig.9.

It can be seen from Fig.10 that the change of the
mean of non-stationary HTMN makes it impossible for the
three existing filters to get correct cardinality estimations,
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especially after 40 s, there is an obvious underestimation
with the increase of the number of targets and the continuous
change of HTMN mean. By contrast, the cardinality estima-
tion of the proposed EK-NNIWGG-J-GLMB filter is better
than that of the above three filters.

Fig.11a and Fig.11b respectively show the comparison of
the average OSPA and OSPA(2) distances of the four filters.
It can be seen that the proposed filter has the smallest average
OSPA and OSPA(2) distances, that is, the proposed filter has
the best tracking accuracy among the four filters.

V. CONCLUSION
A robust J-GLMBfilter referred to as theNNIWGG-J-GLMB
filter is proposed for MTT under non-stationary HTMN
in this paper. To handle unknown non-stationary HTMN,
we develop the measurement model using the Student’s
t-distribution with unknown and time-varying mean. The
mean vector and scale matrix of measurement noise are
modeled as a Normal-IW distribution, while the DOF and
the auxiliary variable are modeled as Gamma distributions.
Hence, the target state is augmented by the noise parameters
and kinematic state, and the NNIWGG-J-GLMB filter is
derived by applying the VB approach. The proposed filter
is implemented by expressing the joint posterior multitarget
density as mixtures of the Gaussian, Normal-IW, and Gamma
distributions. The proposed filter is investigated by MTT
scenarios with unknown non-stationary HTMN. Simulation
results suggest that the proposed NNIWGG-J-GLMB fil-
ter can perform an improved performance than that of the
GM-J-GLMB filter, STM-LMB filter and NGIWG-LMB fil-
ter for unknown non-stationary HTMN in both linear and
nonlinear scenarios.

APPENDICES
APPENDIX A
PROOF OF LEMMA 2
Proof: Assume that the variables in ζ are mutually inde-

pendent. Exploiting (20), the joint posterior PDF can be
written as

p(ζ |z1:k ) ∝ p(zk |ζ )p(ζ |z1:k−1)

= p(zk |x,µ,R, λ)p(x|z1:k−1)

×p(µ,R|z1:k−1)p(λ|v)p(v|z1:k−1) (88)

Substituting (6)-(8), and (14)-(15) into (88) yields

p(zk , ζ |z1:k−1)

∝ N(zk ;Hx+ µ,R/λ)N(x|mk|k−1,Pk|k−1)

×N(µ; ηk|k−1, βk|k−1R)IW(R; tk|k−1,T k|k−1)

×G(λ; v/2, v/2)G(v; ak|k−1, bk|k−1)p(z1:k−1) (89)

Unfortunately, since the state x, unknown parameters µ, R
and v, and λ are coupled, it is challenging to get an available
analytical solution for the joint posterior PDF.

By means of the VB approach, the log marginal likelihood
ln p(zk |z1:k−1) can be expressed as

ln p(zk |z1:k−1) = L(q(x)q(µ)q(R)q(λ)q(v))

+KL(q(x)q(µ)q(R)q(λ)q(v) ‖ p(ζ |z1:k ))

(90)

where KL(·) represents the Kullback-Leibler divergence
between the true posterior PDF p(ζ |z1:k ) and the approxi-
mated PDF q(x)q(µ)q(R)q(λ)q(v), namely,

KL(q(x)q(µ)q(R)q(λ)q(v) ‖ p(ζ |z1:k ))

=

∫
q(x)q(µ)q(R)q(λ)q(v) ln

(
q(x)q(µ)q(R)q(λ)q(v)

p(ζ |z1:k )

)
dζ

(91)

and L(q(x)q(µ)q(R)q(λ)q(v)) is the variational lower bound
of ln p(zk |z1:k−1) specified as

L(q(x)q(µ)q(R)q(λ)q(v))

=

∫
q(x)q(µ)q(R)q(λ)q(v) ln

(
p(zk , ζ |z1:k−1)

q(x)q(µ)q(R)q(λ)q(v)

)
dζ

(92)

According to (91), the approximated PDF can be obtained
by minimizing the KL divergence which is always non-
negative. As shown in (90), minimizing the KL divergence
is equivalent to obtaining the lower bound of ln p(zk |z1:k−1).
Therefore, a fixed-point iteration is used to achieve the
approximations of q(x), q(µ,R), q(λ) and q(v) by iteratively
solving the following equations,

ln q(x) = Eµ,R,λ,v[ln p(zk , ζ |z1:k−1)]+ Cx (93)

ln q(µ,R) = Ex,λ,v[ln p(zk , ζ |z1:k−1)]+ Cµ,R (94)

ln q(λ) = Ex,µ,R,v[ln p(zk , ζ |z1:k−1)]+ Cλ (95)

ln q(v) = Ex,µ,R,λ[ln p(zk , ζ |z1:k−1)]+ Cv (96)

where E$ [·] denotes the expectation operation with respect
to$ , and Cx, Cµ,R, Cλ and Cv are the constants independent
of the state x, the mean vector µ and the scale matrix R,
the auxiliary variable λ, and the DOF v, respectively.

Substituting (89) into (93), we have

ln q(x)

= ln N(x;mk|k−1,Pk|k−1)

−
1
2
(zk −Hx− E[µ])TE[λ]E[R−1](zk −Hx− E[µ])

+Cx (97)

Define the modified scale matrix R̃k as

R̃k = {E[R−1]}
−1
/E[λ] (98)

Substituting (98) into (97) yields

ln q(x) = ln N(x;mk|k−1,Pk|k−1)

+ ln N(zk ;Hx + E[µ], R̃k )+ Cx (99)

Exploiting (99), the posterior PDF q(x) is given by

q(x) ∝ N(x;mk|k−1,Pk|k−1)N(zk ;Hx+ E[µ], R̃k ) (100)
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According to (100) and the Bayes’s rule, and using
the measurement update of the Kalman filter, we can
obtain (25), (29)-(32).

Substituting (89) into (94) gives

ln q(µ,R) = ln N(µ; ηk|k−1, βk|k−1R)

+ ln N(µ; zk −Hmk ,R/E[λ])

−
1
2
E[λ]tr

(
HPkHTR−1

)
−

1
2
tr
(
T k|k−1R−1

)
−
m+ tk|k−1 + 1

2
ln |R| + Cµ,R (101)

The approximated density of µ conditioned on R is given
by [39]

ln q(µ) = ln N(µ; ηk|k−1, βk|k−1R)

+ ln N(µ; zk −Hmk ,R/E[λ])+ Cµ (102)

Let z̃k = zk−Hmk , and exploiting the Gaussian identities,
q(µ) is given as

q(µ) = N(µ; ηk , βkR)+ Cµ (103)

where ηk and βk are given by (33)-(36).
Then we consider the approximated density of R via calcu-

lating the expectation with respect to R and subtracting (102)
yields

ln q(R) = −
m+ tk|k−1 + 1+ 1

2
ln |R|

−
1
2
tr
{(
T k|k−1 + E[λ]Ak

)
R−1

}
+ CR (104)

where Ak is given in (39). According to (104), q(R) is formu-
lated as

q(R) = IW(R; tk ,T k ) (105)

where tk and T k are given by (37) and (38), respectively.
Substituting (89) into (95), we get

ln q(λ) = (
E[v]+ m

2
− 1) ln λ

−
1
2
λ
(
E[v]+ tr

{
BkE[R−1]

})
+ Cλ (106)

where Bk is given in (42). According to (106), (40)-(41) and
(52)-(53) can be obtained. In addition, q(λ) is formulated as
(27).

Substituting (89) into (96), we obtain

ln q(v) =
v
2
ln
v
2
− ln0(

v
2
)+ (

v
2
− 1)E[ln λ]

−
v
2
E[λ]+ (ak|k−1 − 1) ln v− bk|k−1v+ Cv

(107)

Using Stirling’s approximation: ln0(v/2) ≈ [(v− 1)/2]
ln(v/2)− (v/2), ln q(v) can be rewritten as

ln q(v) = (ak|k−1 +
1
2
− 1) ln v

−(bk|k−1 −
1
2
−

1
2
E[ln λ]+

1
2
E[λ])v+ Cv

(108)

According to (108), (28) and (46)-(47) can be obtained.

APPENDIX B
DERIVATION OF (56)
Proof: According to (90)-(92), the marginal likelihood

p(zk |z1:k−1) can be obtained approximately from

p(zk |z1:k−1) ≈ q(zk ) = exp (L(q(x)q(µ)q(R)q(λ)q(v))) (109)

For simplicity, L(q(x)q(µ)q(R)q(λ)q(v)) is represented
by L in the following derivation. And then, L can be formu-
lated as

L = E [ln p(zk , ζ |z1:k−1)]− E [ln (q(x)q(µ)q(R)q(λ)q(v))]

(110)

where E[·] indicates Ex,µ,R,λ,v[·]. In addition, let L1 ,
E [ln p(zk , ζ |z1:k−1)], and L2 , E [ln (q(x)q(µ)q(R)q(λ)q(v))],
respectively.

Substituting (89) into the first part on the right of (110)
gives

L1 = E[lnN(zk ;Hx+ µ,R/λ)]

+E[lnN(x;mk|k−1,Pk|k−1)]

+E[lnN(µ; ηk|k−1, βk|k−1R)]

+E[ln IW(R; tk|k−1,T k|k−1)]

+E[lnG(λ; v/2, v/2)]

+E[lnG(v; ak|k−1, bk|k−1)] (111)

where

E[lnN(zk ;Hx+ µ,R/λ)]

= −
m
2
ln(2π )−

1
2
E[ln |R|]

+
m
2
E[ln λ]−

1
2
tr
(
E[λ]E[R−1](z̃k − ηk )(z̃k − ηk )

T
)

−
1
2
tr
(
E[λ]E[R−1]

(
HPkHT

+ Pµ
))

(112)

z̃k

= zk −Hmk (113)

E[lnN(x;mk|k−1,Pk|k−1)]

= −
n
2
ln(2π )−

1
2
ln |Pk|k−1|

−
1
2
tr
(
P−1k|k−1E[(x−mk|k−1)(x−mk|k−1)T]

)
= −

n
2
ln(2π )−

1
2
ln |Pk|k−1|

−
1
2
tr
(
P−1k|k−1

[
Pk + (mk −mk|k−1)(mk −mk|k−1)T

])
(114)

E[lnN(µ; ηk|k−1, βk|k−1R)]

= −
m
2
ln(2π )−

1
2
E[ln |R|]−

m
2
lnβk|k−1

−
1
2
tr

(
E[R−1]
βk|k−1

[Pµ + (ηk − ηk|k−1)(ηk − ηk|k−1)
T]

)
(115)
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E[ln IW(R; tk|k−1,T k|k−1)]

=
tk|k−1
2

ln |T k|k−1| −
m
2
tk|k−1 ln 2− ln0

(
tk|k−1
2

)
−
m+ tk|k−1 + 1

2
E[ln |R|]−

1
2
tr
(
E[R−1]T k|k−1

)
(116)

E[lnG(λ; v/2, v/2)]

=
1
2
E
[
ln
v
2

]
+

1
2
E [v]

+

(
1
2
E [v]−1

)
E[ln λ]−

1
2
E [v] E[λ] (117)

E[lnG(v; ak|k−1, bk|k−1)]

= ak|k−1 ln bk|k−1
− ln0(ak|k−1)+ (ak|k−1−1)E[ln v]− bk|k−1E[v] (118)

The second term on the right of (110) can be calculated by

L2 = E[lnN(x;mk ,Pk )]+ E[lnN(µ; ηk , βkR)]

+E[ln IW(R; tk ,T k )]+ E[lnG(λ; ck , dk )]

+E[lnG(v; ak , bk )] (119)

where

E[lnN(x;mk ,Pk )]

= −
n
2
ln(2π )−

1
2
ln |Pk |

−
1
2
tr
(
P−1k E[(x−mk )(x−mk )T]

)
= −

n
2
ln(2π )−

1
2
ln |Pk | −

n
2

(120)

E[lnN(µ; ηk , βkR)]

= −
m
2
ln 2π −

1
2
E[ln |R|]

−
m
2
lnβk −

1
2
tr

(
E[R−1]
βk

E[(µ− ηk )(µ− ηk )
T]

)
= −

m
2
ln(2π )−

1
2
E[ln |R|]−

m
2
lnβk −

m
2

(121)

E[ln IW(R; tk ,T k )]

=
tk
2
ln |T k | −

m
2
tk ln 2

− ln0
(
tk
2

)
−
m+ tk + 1

2
E[ln |R|]−

1
2
tr
(
E[R−1]T k

)
(122)

E[lnG(λ; ck , dk )]

= ck ln dk − ln0(ck )+ (ck − 1)E[ln λ]− dkE[λ] (123)

E[lnG(v; ak , bk )]

= ak ln bk − ln0(ak )+ (ak − 1)E[ln v]− bkE[v] (124)

Substituting (111) and (119) into (110), and exploiting
(97)-(108), the likelihood function q(zk ) can be approxi-
mately calculated as (56).
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