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ABSTRACT This paper discusses the problem of choosing the effective process parameters of electron
beam welding (EBW). To that end, the research team has developed a mathematical model that applies
machine learning to predict the effective process parameters. Since predicting process parameters requires
a regression model, this research uses regression analysis algorithms such as the ridge regression and the
random forest regressor. The paper analyzes whether these algorithms are applicable to the problem and tests
the accuracy of their predictions. To generalize the approach and strengthen the justification of choosing the
hyperparameters of the regression algorithms studied herein and considering the high variability of these
hyperparameters, the multiobjective optimization technique applicable for this combinatorial problem - an
(evolutionary) genetic algorithm - is proposed to determine effective sets of hyperparameters. All the models
successfully addressed the task, achieving a forecasting accuracy of at least 89%. The article presents the
final form of the ridge regression model describing the dependence of the weld’s depth and width: for the
weld depth, there is a 2nd degree polynomial dependence with a regularization of 10−5, and for the weld
width, there is a 3rd degree polynomial dependence with a regularization of 10−4. An automated system
based on this approach that accurately predicts the process parameters is proposed herein. In addition to
performing basic modeling functions, the proposed system allows the visualization of the model-predicted
data in the form of an interactive plot. This function could be useful for technologists by allowing them to
determine the process parameters that ensure the required weld dimensions. Adopting the proposed EBW
parameter prediction method in practice will provide decision support for cases when engineers need to test
the EBW process or to start making new products.

INDEX TERMS Electron beam welding, choice of process parameters, software, decision support, predic-
tion, ridge regression, random forest, genetic algorithm, algorithm ensembles, machine learning.

I. INTRODUCTION
Currently, the processes of making permanent joints in vari-
ous aerospace products using electron beam welding, induc-
tion soldering, or diffusion bonding are based on reusing
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preparation and equipment operation parameters that have
been well tested before.

Thus, an important part of the process consists of cali-
brating such parameters and testing them to see whether the
results are reproducible and the final products are reliable.
However, when one needs to make a different type of joint or
the quality of joints needs improvement, then the engineering
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staff needs not only to calibrate and test a new process but
also to conduct pilot studies to find the parameters that will
make a product of suitable quality. These are costly steps to
take as they take some equipment runtime and working hours
on the part of process designers and process testing staff.
In addition, each experiment will ultimately and knowingly
result in destroying a specimen when testing the quality of
permanent joints.

In particular, this paper analyzes the calibration and testing
of the process parameters of electron beam welding (EBW).

If the process is a closed system that has various inputs
and outputs, then we can model it mathematically and use the
model as a tool to predict and optimize the process param-
eters. The goal here was to develop a mathematical model
to predict the process parameters of electron beam welding
to provide decision support and therefore help choose better
process parameters in both local or global optimum seeking.
This, in turn, will help calibrate the process faster and reduce
the costs of pilot studies. Such an approach is expected to
bring both cost and quality improvements.

In essence, this problem is a regression problem. Regres-
sion problems are solvable by the following methods:

- Polynomial Regression With L2 Regularization: A poly-
nomial regression can be used, e.g., to run quick statisti-
cal testing of cooling systems [1] or to predict energy
efficiency [2]. The ridge regression can be used to
find the extreme value indices [3] and to solve other
problems [4]–[8].

- Random Forest: This algorithm has been used suc-
cessfully to estimate battery capacity [9] and for
mapping [10], [11].

These are common prediction algorithms. The ridge
regression has been proven to be an effective wind speed and
power predictor [12], precancerous cervical lesion vs normal
cervical tissue differentiator based onmethylationmicroarray
data [13], or a gas compression index predictor [14]. The lasso
regression has been proven effective in prediction model test-
ing [15], predicting Indian banks’ failures [16], and predict-
ing malignant pleural mesothelioma patients’ survival [17].
In addition, random forests can effectively predict the results
of a transplantation surgery [18], a building’s energy con-
sumption rate [19], sugar cane yields [20], or traffic [21].
Python, a programming language, [22]–[24] was used in this
research since it had previously been proven to be great for
machine learning [25] including regressions, and because
of scikit-learn [26]–[28], a Python module that contains
convenient machine learning libraries suitable for various
ML tasks [29], [30].

In [31], to solve the problem of making clinical deci-
sions, the authors used the extreme machine learning method.
The effectiveness of this method was assessed according to
the specified criteria. The approach proposed in this work
achieved high efficiency. The authors of [32] propose an
alternative learning scheme for the extreme machine learning
method, which is based on the chaotic moth-flame opti-
mization strategy. The approach developed by the authors

can be used in medicine for the diagnosis of diseases.
The study in [33] considers an approach for solving the
prediction problem based on the kernel extreme learning
machine, which uses the fruit fly optimization algorithm.
The diagnostic approach proposed by the authors consid-
ered in [34] for detecting paraquat poisoning is based on
the extreme learning machine, and the method includes two
stages: gas chromatography-mass spectrometer provides raw
data and chaos enhanced gray wolf optimization algorithm is
adopted to search the optimal feature sets.

The proposed algorithms are common prediction algo-
rithms. By applying different statistical data processing
approaches and algorithms, one can build approximated
dependencies to help engineering staff make better-educated
choices regarding the ranges of variable parameters for test-
ing, whether it is a new process or an existing process that
needs to be improved. This paper analyzes how the above
could be accomplished for products made by electron beam
welding. In addition, the key concept behind algorithms,
methods, and software is their versatility.

II. MATERIALS AND METHODS
The input data were collected from experiments conducted to
improve the process of making an EBW product comprising
two parts of nonhomogeneous materials.

The EBW unit involved in the experiments was designed
to provide deep vacuum electron beam welding of assem-
blies made of stainless steel, titanium, aluminum, or special
alloys. This EBWunit was capable of reproducing the process
parameters using the available control system.

Welding was performed on simulation samples whose
parameters matched those of the intended product.

To make the welding process less energy-intensive,
the research team lowered the welding current (IW), raised
the focus current (IF), increased the welding speed (VW)
and changed the sample surface to electron optics
distance (FP).

The parameters were optimized to minimize the weld
dimensions: depth and width.

As part of this research, the team conducted 72 experi-
ments. The accelerating voltage was constant at 19.8 to 20 kV.
The collected data (welding parameters and weld dimensions
in the cross-sections of all specimens) are hereinafter referred
to as the dataset.
The purpose was to find a mathematical pattern [31] that

could explain how the process parameters (IW, IF, VW,
and FP) were correlated with the weld dimensions (depth and
width).

Table 1 provides the dataset statistics.
Thus, we obtained the following:
- A dataset represented by:

L =
{
xiwi , xifi , xvwi , xfpi , ydepthi , ywidthi

}n
i=1 ,

where
n is the number of experiments,
xiw is the welding current, mA,
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TABLE 1. Dataset statistics.

xif is the focus current, mA,
xvw is the welding speed, rpm,
xfp is the distance to the electron optics, mm,
ydepth is the weld depth,
ywidth is the weld width, and
xεQ4, yεQ, and Q are sets of positive rational numbers.
- The model f (X ), which is used to predict the values for
each element, where x is the process parameters.

To score the quality of the model f(X), the team used the
following regression metrics:

- Mean standard error (MSE),
- Mean absolute error (MAE), and
- Coefficient of determination R2 (R2).
MAE assessed by nsamples is written as:

MAE
(
y, ŷ
)
=

1
nsamples

nsamples−1∑
i=0

∣∣yi − ŷi∣∣ ,
where ŷ is the predicted value of the i-th sample, yi is the
corresponding actual value.

MSE assessed by nsamples is written as:

MSE
(
y, ŷ
)
=

1
nsamples

nsamples−1∑
i=0

(yi − ŷi)2.

R2 represents the fraction of variance (from y) is calculated
as:

R2
(
y, ŷ
)
= 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

,

where ȳ = 1
n

n∑
i=1

yi,

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

m2
i ,

yi is the corresponding actual value for the total n.

A. SOURCE DATA ANALYSIS
In the initial stage, a set of source data was analyzed; and a
correlation matrix was built for the electron beam welding
process parameters, which is shown in Figure 1.

Based on the values of the paired correlation coefficients,
the following conclusions can be drawn:

- IW and IF have a high level of negative correlation
(−0.86),

FIGURE 1. Correlation matrix of the EBW parameters.

- IW and FP have a high level of positive correlation
(0.84), and

- IF and FP have a very high level of negative correlation
(−0.98).

For the remaining factor pairs, the correlation level is low
or very low.

Thus, since some process parameters exhibit a high cor-
relation level, the use of the least squares method (LSM) is
complicated by the unstable estimates of the multivariate lin-
ear regression coefficients. Accordingly, in its original form,
the LSM is poorly applicable for the set problem of building
an electron beam welding process model. To improve the
causality and reduce the variance in estimates, the LSM
modified with L2 regularization - the ridge regression (ridge)
- was used.

Along with the ridge, the efficiency of another popular
algorithm - the random forest regressor [32] - was studied
herein.

B. RIDGE
The ridge model was used as implemented in scikit-
learn 0.22.2 of Python 3.8.

Once the dataset was analyzed and a correlation matrix
was constructed, we obtained the following cross-parametric
correlations:

- IW and IF were highly correlated (−0.86),
- IW and FP were highly correlated (0.84), and
- IF and FP were very highly correlated (−0.98).
Thus, the process parameters exhibited high levels of cor-

relation. Therefore, to improve the causality and reduce the
variance in estimates, regularization had to be applied, which
in this case was L2 regularization.

A simple linear model has the following coefficients:

w =
(
w1, . . . ,wp

)
,

wherew – coefficients in the linear model, and p – the number
of coefficients.
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The model can be constructed by minimizing the residual
sum of squares between X and y:

min
w
‖Xw− y‖22 ,

where X – the vector of input values, and y – the output.
Scikit-learn has a linear model with L2 Ridge regulariza-

tion. It addresses the issues of the usual least squares by
applying a coefficient penalty. The ridge coefficients mini-
mize the residual penalty of the sum of squares:

min
w

(
‖Xw− y‖22 + α ‖w‖

2
2

)
,

where α – a complexity parameter.
The complexity parameter (alpha) α ≥ 0 controls the

shrinkage: the greater α is, the greater the shrinkage, making
the coefficients more collinearity resistant.

Next, the authors used the polynomial features function
to create a polynomial regression. This function generates
a new matrix of elements that comprises all the polynomial
combinations of elements to a degree that is equal to or less
than the specified degree. By expanding the hypothesis space
to all the polynomials where p degree = p, the linear model
is written as:

f (X) = w0 + w1x1 + w2x2 + . . .+ wpxp + w12x21
+w22x1x2 + . . .+ wp2x1xp + . . .+ wppx2p + . . . .

If degree = 2, the linear model for all the four parameters
will be written as:

f (X) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w11x21
+w12x1x2 + w13x1x3 + w14x1x4 + w22x22
+w23x2x3 + w24x2x4 + w33x23 + w34x3x4 + w44x24 .

First, we standardized the dataset by applying the stan-
dard scaler function. Dataset standardization is a common
requirement found across many machine learning estimators
as the estimators might perform poorly if some parameters
are significantly non-Gaussian.

The standard estimate for each variable h from the training
set is calculated as:

z =
(h− u)

s
,

where u is the mean of the training sets, s and is the standard
deviation of the training sets.

The ridge hyperparameters that need to be fit to find the
best solution are the following:

- the polynomial degree; and
- alpha, the strength of regularization.

C. RANDOM FOREST REGRESSOR
The random forest is a meta estimator that runs a series of
tree classifiers on different subsamples of a dataset and then
applies averaging for more accurate prediction and control
alignment. The subsample size always matches the initial size
of the input set [33].

Random forests reduce the variance of forest estimates.
Individual decision trees tend to exhibit high variance and
overfit. Injected randomness in forests results in decision
trees that have multiple disparate prediction errors. Some
errors can be eliminated by taking themean of the predictions.
Random forests reduce the variance by combining different
trees and sometimes by slightly increasing the bias. In prac-
tice, the variance is often reduced substantially, producing a
better general model.

Scikit-learn contains the Random Forest Regression (RFR)
as an RF implementation. RFR contains an averaging algo-
rithm based on randomized decision trees Extra-Trees. The
algorithm is a perturbation and merger method devised
specifically for trees [34].
RFR builds each tree of the ensemble from a subsample

taken by bootstrapping from the training set. In addition,
when splitting each node while constructing a tree, the best
split is determined based on all input parameters.

Bootstrapping is a method that consists of the following.
Let there be a setX sizedN . Let us evenly retrieveN elements
from the set and return them. That means we will retrieve
a random element N times from the set assuming that the
probability N to retrieve one element is equal for each ele-
ment. Each time, we retrieve an element from all N existing
elements. We denote a new sample as X1. The process is
repeated M times to generate M subsamples X1, . . . ,XM .
Now that we have a sufficient number of subsamples, we can
estimate different statistics of the initial distribution.

The algorithm that constructs a random forest of N
(n_estimators) trees is as follows:

For each n = 1, . . . ,N , do the following:
1. Generate a sample Xn via bootstrapping.
2. Build a decision tree bn on the sample Xn:

a. Select the best feature according to the specified
criterion, and then split the tree using it. Repeat
this step until the subsample is depleted.

b. Build the tree until each leaf has nomore than nmin
elements (min_samples_leaf) or until the tree has
reached a certain depth (max_depth).

c. For each split, first select m random features
(max_features) from n original features. Further
optimal subsampling is performed only over the
selected features.

The final decision is the mean:

a (x) =
1
N

N∑
i=1

bi (x),

where N – number of trees in random forest algorithm,
bi – parameters of the polynomial (resolving tree), x – inputs;
and i = 1,N .

The RFR hyperparameters that need to be fit to find the
best solution are the following:

- n_estimators (NE): how many trees are in the forest,
- criterion (CR): the function that measures the quality of
tree splitting or branching (MSE or MAE),
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FIGURE 2. Generalized scheme of the procedure for configuring hyperparameters.

- max_depth (MD): maximum tree depth,
- max_features (MF): maximum number of features for
splitting,

- min_samples_leaf (MSL): minimum number of ele-
ments per leaf, and

- min_samples_split (MSS): minimum number of ele-
ments for splitting an inner tree node.

D. OPTIMIZING MODEL HYPERPARAMETERS
To estimate the quality of the f (X ) model, the following
metrics have been used in the study:

- Mean absolute error, and
- Coefficient of determination R2.

At the EBW process simulation stage, the optimal hyper-
parameters of themachine learningmodels have been chosen.

To universalize the approach and strengthen the justifi-
cation of choosing the hyperparameters of the regression
algorithms studied herein, as well as considering the high
variability of these hyperparameters, the multiobjective opti-
mization technique applicable for this combinatorial problem
- an (evolutionary) genetic algorithm - has been proposed to
determine the effective sets of hyperparameters. The genetic
algorithm and its variants are widely used to solve complex
optimization problems, including a multiobjective statement
of problems, which for this case involves considering a pair
of criteria - the complexity of the resulting regression model

and the estimation of the model’s accuracy according to the
quality criterion chosen.

The generalized scheme of the procedure for tuning hyper-
parameters of regressionmodel (Figure 2) involves the execu-
tion of procedures of a multicriteria genetic algorithm (GA)
over a set of solutions, for which an estimate of the model’s
quality with given values of hyperparameters is obtained.

In the study, the results of which are described herein, the
following estimation techniques were used to calculate the
criteria for each set of the regression algorithm hyperparam-
eters to unify the calculations and generalize the approach
(it, in fact, allows considering the system as an open one
capable of integrating other regression methods).

- To estimate the regression model complexity when
implementing the genetic algorithm, a 10-fold calcula-
tion procedure was performed using the model built with
the current (estimated) set of hyperparameters in 10%
of the points available for such an estimation. The
described procedure to ensure statistical and compu-
tational stability was implemented in special software
and hardware ‘sandbox’ - a computing environment
with exclusive computing power designed to calculate
the regression model. Equal computing power was pro-
vided for all regression analysis methods and the models
they generated. The model complexity estimate was the
average (machine) time of performing the procedure
described.
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- The regression model accuracy was estimated using the
chosen criterion - the mean error (square or absolute)
calculation. To save computational resources for imple-
menting the genetic optimization algorithm and the time
to perform the appropriate experiments, the model val-
ues, calculated based on the results of the procedure for
estimating the first (as described above) criterion, can be
used.

The use of a genetic algorithm to determine an effective
set of hyperparameters is obviously associated with multi-
fold estimation regression models obtained for each set of
hyperparameters of the algorithms considered. However, this
approach seems to be justified since even considering the
possible limitations introduced for some hyperparameters,
a complete enumeration of their combinations, in fact, implies
a complete factorial, the number of experiments in which will
be enormously large. Moreover, each of these experiments
will also require calculating the above-described criteria.
The efficiency of the genetic algorithm as a heuristic opti-
mization algorithm, which is expressed, among other things,
in its ability to generate solutions when considering relatively
small volumes of search domain subspaces, is its well-known
advantage.

Considering the multiobjective statement of the problem,
the genetic algorithm has generated a set of solutions approx-
imating the Pareto frontier for the problem to be solved.
According to the study objectives, a set of effective hyperpa-
rameters comprised those that ensured the maximum regres-
sion model accuracy (the 2nd criterion) while meeting the
criterion limitation on the computation time (the 1st criterion),
corresponding to the requirements imposed by the technolog-
ical system for which the computation was performed.

When searching for hyperparameters of regressionmodels,
the following settings of the genetic algorithm is used:

- Method of decisions (individuals in the population) cod-
ing: bit string,

- Population size: 50 individuals,
- Maximum number of search steps: 200 steps,
- Selection: tournament with a tournament size of
5 individuals,

- Crossing type: single point,
- Proportion of offspring in the new population (reproduc-
tion - crossover fraction): 0.9,

- Mutation type: uniform with rate equal 0.01.

The rest of the optimization procedure settings are used
in the ‘‘Use default’’ value of the MATLAB Optimtool
environment.

Setting the genetic algorithm hyperparameters is beyond
the scope of the study, the results of which are described
herein, and is the subject of separate research.

III. EXPERIMENTAL OPTIMIZATION OF REGRESSION
MODELS
The models were configured and trained separately for ydepth
and ywidth over the set of parameters X .

The success of training the model with optimal
hyperparameters on the full dataset is measured as
train_score.

Cv_score represents the estimation of the model prediction
accuracy using cross-validation. Cross-validation comprises
5 blocks.

To improve the validation accuracy, the following algo-
rithm is implemented:

1) Set K = 1.
2) Set i = 1.
3) Randomly shuffle the DSi dataset.
4) Calculate the Si estimate for the DSi dataset using the

cross_val_score function from the scikit-learn package.
5) If i < K , then set i = i+1 and go to step 3. Otherwise,

go to the next step.
6) Calculate the final estimate.

Scv_scoreK =
1
K

K∑
j=1

Sj.

7) Check the fulfillment of the inequality

0.9 ≤
Scv_scoreK

Scv_scoreK−1
≤ 1.1 :

a. If the inequality is met, then the estimate
is Scv_scoreK . The computation is finished.

b. If the inequality is not met, then set K = K + 1
and go to step 2.

The computing system that was used to conduct the exper-
iments had the following characteristics:

- Central processing unit: Intel Core i9-9900.
- Memory: 16 GB of DDR4 2133 MHz.
- Video card: Sapphire Radeon RX 580.
- Operating system: Windows 10.

A. FINDING THE HYPERPARAMETERS OF THE RIDGE
MODEL
1) RIDGE MODEL FOR YDEPTH
The hyperparameter degree was selected from the following:
1, 2, 3, 4, 5, and 6. The hyperparameter alpha was selected
from the following: 10−8, 10−7, 10−6, 10−5, 10−4, 10−3,
10−2, 10−1, 1, and 10.

The optimal hyperparameters were found using Grid-
SearchCV, where the MAE was the metric for scoring each
test, and five-fold CV was conducted. Table 2 shows top ten
results.

Table 2 uses the following notation: mean_test_score is the
mean test score.

We then plotted the degree curves at alpha = 10−5,
as shown in Figure 3. The alpha curves were plotted at
degree = 2, as shown in Figure 4.
The optimal hyperparameters were the following:

degree = 2, and alpha = 10−5. Table 3 presents the test
results.
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FIGURE 3. Degree curves.

TABLE 2. Best results of optimizing the ridge hyperparameters for ydepth.

TABLE 3. Ridge model scores for ydepth.

2) RIDGE MODEL FOR YWIDTH
The hyperparameter degree was selected from the follow-
ing: 1, 2, 3, 4, 5, and 6. The hyperparameter alpha was
selected from the following: 10−8, 10−7, 10−6, 10−5, 10−4,
10−3, 10−2, 10−1, 1, and 10. The optimal hyperparame-
ters were found using GridSearchCV, where the MAE was
the metric for scoring each test, and five-fold CV was
conducted.
Table 4 shows top ten results in descending order.

TABLE 4. Best results of optimizing the ridge hyperparameters for ywidth.

Table 4 uses the following notation: mean_test_score is
the mean test score. The degree curves were plotted at
alpha = 10−4, as shown Figure 5.

As the Figure shows, starting from degree = 3, the score
virtually did not change. Thus, degree = 3 was used further
on so as not to complicate the model.

The alpha curves were plotted at degree = 3, as shown
in Figure 6.

The optimal hyperparameters were the following:
degree = 3, and alpha = 10−4. Table 5 presents the test
results.

B. OPTIMIZING HYPERPARAMETERS FOR THE RANDOM
FOREST REGRESSOR (RFR)
1) RFR MODEL FOR YDEPTH
The hyperparameters were selected from the following
ranges:
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FIGURE 4. Alpha curves.

FIGURE 5. Degree curves.

• NE: from 10 to 100 with a step size of 10;
• CR: MSE or MAE;
• MD: 4, 6, 8, 9, 10, 11, or 12;
• MF: from 1 to 4 with a step size of 1;
• MSL: from 1 to 4 with a step size of 1; and
• MSS: from 2 to 5 with step size of 1.
At MD = 0, tree nodes expand to the point that

all leaves are clear or until all leaves are less than
the MSS.

The optimal hyperparameters were found using Grid-
SearchCV, where the MAE was the metric for scoring each
test, and five-fold CV was conducted. Table 6 shows the top
ten results in descending order.

Table 6 uses the following notation: mean_test_score is the
mean test score.

The NE curves were plotted using (CR = MSE, MD = 8,
MF = 3, MSL = 1, and MSS = 2), as shown in Figure 7.
The MD curves were plotted using (NE= 80, CR=MSE,

MF = 3, MSL = 1, and MSS = 2), as shown in Figure 8.
TheMSS curves were plotted using (NE= 80, CR=MSE,

MD = 8, MF = 3, and MSL = 1), as shown in Figure 9.
The optimal hyperparameters were the following: NE =

80, CR =MSE, MD = 8, MF = 3, MSL = 1, and MSS = 2.
The process parameters had the following significance: 4%

for xiw, 30% for xif , 47% for xvw, and 19% for xfp.
Table 7 presents the test results.

92490 VOLUME 9, 2021



V. S. Tyncheko et al.: Software to Predict Process Parameters of EBW

FIGURE 6. Alpha curves.

TABLE 5. Ridge model scores for ywidth.

TABLE 6. Best results of optimizing the RFR hyperparameters for ydepth.

2) RFR MODEL FOR YWIDTH
The hyperparameters were selected from the following
ranges:
• NE: from 10 to 100 with a step size of 10;
• CR: MSE or MAE;
• MD: 4, 6, 8, 9, 10, 11, or 12;
• MF: from 1 to 4 with a step size of 1;

TABLE 7. RFR model scores for ydepth.

TABLE 8. Best results of optimizing the RFR hyperparameters for ywidth.

• MSL: from 1 to 4 with a step size of 1; and
• MSS: from 2 to 5 with a step size of 1.
At MD = none, the tree nodes expand to the point that all

leaves are clear or until all leaves contain less than the MSS.
The optimal hyperparameters were found using Grid-

SearchCV, where the MAE was the metric for scoring each
test, and five-fold CV was conducted.

Table 8 shows the top ten results in descending order.
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FIGURE 7. Curves of n_estimators.

FIGURE 8. Curves of max_depth.

Table 8 uses the following notation: mean_test_score is the
mean test score.

The NE curves were plotted using (CR =MAE, MD = 6,
MF = 1, MSL = 1, and MSS = 2), as shown in Figure 10.
The MD curves were plotted using (NE= 60, CR=MAE,

MF = 1, MSL = 1, and MSS = 2), as shown in Figure 11.
TheMSS curveswere plotted using (NE= 60, CR=MAE,

MD = 6, MF = 1, and MSL = 1), as shown in Figure 12.
The optimal hyperparameters were the following: NE =

60, CR=MAE, MD= 6, MF= 1, MSL= 1, and MSS= 2.
The process parameters had the following significance:

15% for xiw, 28% for xif , 42% for xvw, and 15% for xfp.
Table 9 presents the test results.

C. DISCUSSION OF THE RESULTS
Thus, the research produced the following machine learning
models to solve the regression problem:

TABLE 9. RFR model scores for ywidth.

1. Ridge, and
2. Random forest regressor.
The experimental research derived the following optimal

hyperparameters for the ridge regression:
1. for ydepth: degree = 2, and alpha = 1e-5; and
2. for ywidth: degree = 3, and alpha = 1e-4.
The experimental research derived the following optimal

hyperparameters for the RFR:
1. for ydepth: NE = 80, CR = MSE, MD = 8, MF = 3,

MSL = 1, and MSS = 2; and
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FIGURE 9. Curves of min_samples_split.

FIGURE 10. Curves of n_estimators.

TABLE 10. Model scores as tested by cv_score.

2. for ywidth: NE = 60, CR = MAE, MD = 6, MF = 1,
MSL = 1, and MSS = 2.

Table 10 summarizes the scores of the final models.
As the table shows, the proposed methods have similar

scores in terms of the coefficient of determination and the
mean absolute error. The table also shows that the proposed
method solves the regression problem fairly well.

All models have successfully handled the task, show-
ing forecasting accuracy of at least 89%. With a com-
parable simulation quality, the ridge method is the least
resource-intensive method since it requires less computa-
tional space. As a result, the ridge regression was chosen as
mathematical support for a process decision-support tool for
electron beam welding [35]–[37].

The experimental results have shown that the model
obtained using the ridge regression based on the source data
given in Section 1.2 to describe the dependence of the weld
depth (fdepth(X )) on the input parameters has a polynomial
degree of 2 and a degree of regularization of 10−5:

fdepth (X) = w0 + w1xiw + w2xif + w3xvw + w4xfp
+w11x2iw + w12xiwxif + w13xiwxvw + w14xiwxfp
+w22x2if + w23xif xvw + w24xif xfp + w33x2vw
+w34xvwxfp + w44x2fp.
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FIGURE 11. Curves of max_depth.

FIGURE 12. Curves of min_samples_split.

The 3rd-degree polynomial and a degree of regularization
of 10−4 have shown the best results in simulating the weld
width (fwidth(X )):

fwidth (X) = w0 + w1xiw + w2xif + w3xvw + w4xfp
+w111x3iw + w112x2iwxif + w113x2iwxvw + w114x2iwxfp
+w122xiwx2if +w123xiwxif xvw + w124xiwxif xfp+w133xiwx2vw
+w134xiwxvwxfp + w144xiwx2fp + w222x3if + w223x2if xvw

+w224x2if xfp + w233xif x2vw + w234xif xvwxfp + w244xif x2fp
+w333x3vw + w334x2vwxfp + w344xvwx2fp + w444x3fp.

IV. AUTOMATED DECISION SUPPORT SYSTEM FOR
ELECTRON BEAM WELDING
A. SYSTEM DESIGN
Based on the experimental study of the efficiency of data
analysis methods as a predictionmodel, in this program, ridge

was used as it was the fastest model. The application has been
written to support decisions in configuring electron beam
welding.

The application communicates with the EBW experiment
database and can add or remove experiments, train prediction
models, plot data, and predict the results of applying different
process parameters.

Figure 13 shows the possible scenarios.
The app has a single interface present on its home screen.

Figure 14 shows the flowchart.
As shown in the flowchart, the app first checks whether

the database needs to be revised. Then, the user revises
the database by adding or removing experiments or just
adds/removes an experiment straight away, if needed. Then,
the app trains the predictive model. The following outputs
are rendered in separate fields: quality scoring, data visual-
ization, and EBW parameters (beam current, welding speed,
accelerating voltage, focus current, and beam diameter).
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These fields are needed for the next step of predicting the
weld dimensions.

B. HOW THE AUTOMATED SYSTEM WORKS
The application is an automated workstation for an EBW
engineer.

It has the following functions:
• View the experiment table,
• Add an experiment,
• Remove the last experiment,
• Configure and train a predictive model automatically,
• Visualize model-predicted data, and
• Predict the weld dimensions provided the EBW process
parameters.

The application has the following requirements:
• Operating system: Windows 7 or newer;
• Python 3.6 or newer; and
• Python packages: Scikit-learn 0.22.2, Pandas 1.0.3,
NumPy 1.18.2, and Matplotlib 3.2.1 or newer.

To start the program, run main.py. This will open the home
screen. Figure 15 shows the main screen.

Figure 16 shows the Add/remove experiment
window.

Click Train Model in the Prediction screen to cause the
app to automatically configure and train a model on the
full experiment database, and the prediction accuracy will
be shown on the screen. Plot Data plots an interactive curve
on model-predicted outputs. In Model Prediction, specify the
desired EBW parameters and click Predict to see the weld
dimensions predicted by the model for the given process
parameters.

The main screen shows a summary of the experiments in
the Information field. Data Table shows the complete list of
all the EBW process experiments. Add Experiment will add
or remove the last experiment.

When clicking the Train Model button in the Prediction
section, the program automatically establishes and trains the
model based on the overall experimental database available
as of the moment the button is clicked, and the prediction
accuracy is displayed.

TheData Plot section allows visualizing themodel-predicted
data in the form of an interactive plot (Figure 17).

The values of the parameter chosen in the form
(Figure 5, Data Plot section) are plotted on the abscissa. The
weld depth/width is plotted in millimeters on the ordinate.
Other process parameters can be changed, and the changes
in the weld dimensions (depth and width) can be observed
on a real-time basis. When the model is generated, the tech-
nologist can determine the process parameters ensuring the
required weld dimensions. E.g., at a weld depth prescribed
by the technology, choose an electron beam welding mode
at which the minimum weld width will be achieved, or vice
versa.

In the Model Prediction section, the EBW process param-
eters of interest should be specified, after clicking the Predict

FIGURE 13. Diagram of the process decision-support tool use cases.

FIGURE 14. Flowchart of the application.

button, the program shows the trained model-predicted weld
dimensions for the parameters specified.

V. EXPERIMENTAL STUDY
To evaluate the efficiency of the approach proposed for solv-
ing the problem of predicting the weld properties in the
normal operating mode, a study was performed based on the
previously obtained sets of 10 process parameters that did not
participate in building the models.

The model and experimental data comparison results are
given in Table 11.

Computation of the determination coefficients gave the
below values:

- the weld depth - 0.89, and
- the weld width - 0.91.
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TABLE 11. Comparison of the model and experimental data.

FIGURE 15. Main screen.

FIGURE 16. Add/remove experiment window.

Accordingly, we can conclude whether the model is good
quality and on the possibility of its practical use to solve
the problem of predicting the electron beam welding modes
with parameters other than those used when training the
model.

FIGURE 17. Data plot window.

Using the approach proposed, the process parameters were
chosen for electron beam welding of a product made of
titanium alloy VT-14 with a thickness of 1.2 mm, which dif-
fered from those represented in the training dataset: welding
current - 45 mA, welding speed - 10 rpm, focus cur-
rent - 141 mA, and sample surface to electron optics
distance - 80 mm.

The experiments were performed on the following
equipment:

- electron beam gun,
- 60, 30 kV accelerating voltage source,
- controlled high-precision positioning arm drive,
- vacuum chamber with a negative pressure
system,

- MT-Turbo 65D/0/8 KF40M MTM turbomolecular
pumping system,

- differential air pumping system, and
- ISO63 solenoid vacuum valve.
As a metallographic examination result, weld joint

microslices have been obtained for four specimens, which are
shown in Figure 18.

The simulated and experimentally obtained weld depth and
width are given in Table 12.

The experimental results allow us to conclude that the
model built using the approach proposed herein provides high
reliability in solving the problem of predicting the electron
beam welding process parameters.
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TABLE 12. Experiment and simulation results.

FIGURE 18. Metallographic examination results: a - specimen 1, b - specimen 2, c - specimen 3, and d - specimen 4.

VI. CONCLUSION
The research team developed and trained machine learning
models to predict the process parameters of electron beam
welding. Ridge and RFR models were used to predict these
parameters.

The experimental research derived the following optimal
hyperparameters for the ridge regression:
• for ydepth: degree = 2, and alpha = 1e-5; and
• for ywidth: degree = 3, and alpha = 1e-4.
The experimental research derived the following optimal

hyperparameters for RFR:

• for ydepth: NE = 80, CR = MSE, MD = 8, MF = 3,
MSL = 1, and MSS = 2.

• for ywidth: NE = 60, CR = MAE, MD = 6, MF = 1,
MSL = 1, and MSS = 2.

The methods solve the regression problem fairly well. The
ridge regression is far less computationally complex than the
RFR while the prediction accuracy does not differ signifi-
cantly. Therefore, the former is a more suitable solution for
predicting the EBW process parameters.

Python 3.6 and its Scikit-learn 0.22.2, Pandas 1.0.3,
NumPy 1.18.2, andMatplotlib 3.2.1 packages were then used
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to implement an EBW decision support system to help engi-
neers better configure the parameters when implementing a
new process configuration or improving the quality under an
existing one.

Themain aim of this study is to show to specialists from the
aerospace industry that the implementation of state-of-the-art
models could help them to highly increase the efficiency of
technological process parameter searches.

The future directions of this study are the implementation
of other highly efficient methods for establishing regression
models and the development of embedded systems to support
decision-making of aerospace industry technologists. For
example, with an increase of the experimental data volume,
it is possible to use such a bio-inspired method for construct-
ing regression models as artificial neural networks.
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