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ABSTRACT Developing trustworthy rainfall-runoff (R-R) models can offer serviceable information for
planning and managing water resources. Use of artificial neural network (ANN) in adopting such models and
predicting changes in runoff has become popular amongmany hydrologists from a long time. However, since
the optimization is the most significant phase in ANN training, researchers’ attentiveness has been attracted
to the ANN’s biggest problem, i.e. its susceptibility of being blocked in local minima. Consequently, use of
genetic algorithms (GA), particle swarm optimization (PSO), firefly algorithm (FFA) and improved particle
swarm optimization (IPSO) approaches to increase the performance of ANN, have gained remarkable interest
among distinct modern heuristic optimization approaches. In this paper, the capability of four improvedANN
methods, hybrid GA-based ANN, PSO-based ANN, FFA-based ANN and IPSO-based ANN in modeling
rainfall-runoff (R-R) is investigated. IPSO has been used in order to increase the ability of PSO, where the
new positions of particles are dynamically adjusted using two procedures which is given form the velocity
obtained by PSO and proposed velocity in IPSO. The random normal grated number with a dynamical
scale factor is used to compute the new position of the best particles in proposed velocity. Daily R-R data
from six stations distributed in the Seybouse watershed located in semi-arid region in Algeria were used in
models’ development. The selection of the input data sets was carried out using the autocorrelation, partial
autocorrelation and cross correlation functions. The results of the four hybrid models were compared via
performance metrics, viz., Root Mean Square Error (RMSE), Pearson’s correlation coefficient (R), Nash
Sutcliffe Efficiency coefficient (NSE), and via graphical analysis (scatter plots, time series and Taylor
diagram). Outcomes of the analysis at all study stations disclosed that all the ANN models enhanced with
IPSO overachieved the GA-based ANN, PSO-based ANN and FFA-based ANNmodels in estimating runoff
for both training and testing periods. The outcomes of the study indicate that the IPSO hybrid metaheuristic
algorithm is the best technique in improving ANN capability in modeling daily R-R.

INDEX TERMS Rainfall-runoff models, artificial neural network (ANN), genetic algorithms (GA), particle
swarm optimization (PSO), firefly algorithm (FFA), improved particle swarm optimization (IPSO), Seybouse
watershed, semi-arid region.

I. INTRODUCTION
Since the dawn of time, water has been a predominant fac-
tor in the socio-economic development of human beings.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bo Pu .

It intervenes in the whole functioning of the natural envi-
ronment and represents a main life resource for many plants
and animals. However, with the demographic explosion,
the industrial growth and the various forms of life in sev-
eral areas worldwide, water requirements have considerably
increased; this has caused a mismatch between water demand
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and water supply; therefore, the problems of water avail-
ability became amplified and water resources become under
high pressure. As a result, appropriate management of these
resources becomes a major concern in order to minimize this
pressure or to bridge the hiatus between water availability
and demand [1]–[3]. In order to be eligible to arrange some
water management tactics to make it obtainable anytime,
a prediction of the interrelationship between the two main
components of the hydrological cycle rainfall and runoff
is necessary [4], [5]. Also, developing accurate models to
simulate rainfall-runoff process can help to manage water
scarcity problems. However, the rainfall to runoff conver-
sion is mightily nonlinear, stochastic and strongly complex
process [6], as there are several meteorological parameters
and other various subprocesses influence this complicated
system [7], [8]. Therefore, hydrologists and researchers have
developed various rainfall- runoff (R-R) models in order
to capture and represent this intricate phenomenon, where
the model selection has to be made according to its ability
and levels of complexity [9]. Generally, these models are
categorized into (i) the physics-based technique that offers
better understandability, but their accuracy is poor, and (ii)
the empirical or data driven technique based onmeasured data
that provides highly accurate results [10].

The artificial neural network (ANN) is one of these data-
driven approaches which was utilized in diverse fields such
as hydrology and water resources, it’s become advocated
due to its capability of tackling, modeling and forecasting
the problems that are nonlinear or stochastic within the R-R
system [11]–[17]. Since ANNs cannot represent the internal
structure of the catchment or even manage the environmental
data distributed related to the physical characteristics of the
basin, they do not replace conceptual watershed modeling.
However, they have been recognized as a applicable alterna-
tive to conceptual models for input-output forecasting, due to
several advantages amongwhich their computational speed in
simulation and forecasting [18] and their capacity of making
models easy to use and more accurate from complex natural
systems with large inputs [19]. The ANN is found to be a
very novel and useful model applied to problem-solving and
machine learning. As well as it has shown its power and
capacity to simulate the hydrological phenomena. Therefore,
ANN models are recommended for R-R modeling; due to
their simple structures and precision which help us to solve
problems related to water resources management.

As there are many apprenticeship algorithms that can be
applied to enhance ANN, it still leaves a large scope of
probabilities. Although extremely renowned in flood pre-
diction, there is no obvious conclusions declared regarding
to which model perform better in a given application [13].
Most of the researches have applied feed-forward and back-
propagation (FFBP) network in ANN model development.
In the last few years, several optimization tools have been
used to enhance the potential of the backpropagation algo-
rithm including the gradient descent (GD) which is com-
monly applied in backpropagation stage of the neural network

training process [20] and it’s formulated as reducing the error
between measured and predicted output at every iteration.
Nevertheless, the GD may suffer from convergence issues,
training method deceleration, stocking within local minima
and overfitting; if the model structure is intricate and the
parameter set is large, this results in poor performance of
ANN models [7], [10], [21]. Recently, several conventional
heuristic tools have been created to beat the deficiency of
gradient-based techniques and to facilitate the solution of
difficult optimization problems and obtain the optimal ANN
parameters in training; in order to enhancing its efficiency.
Among these tools: artificial bee colony algorithm (ABC),
biogeography-based optimization (BBO), differential evolu-
tion (DE), grey wolf optimizer (GWO), genetic algorithm
(GA), particle swarm optimization (PSO) and firefly algo-
rithm (FFA) etc. [22]. Even though the standard ANNmethod
is old, its hybrid versions with these metaheuristic algorithms
have been commonly used these days to solve complex
problems in various fields such as: modelling solar energy
system, injection molding process, rock engineering field,
rock fragmentation [23]–[26].

Genetic algorithms are among the most popular evolu-
tionary algorithms that are suitable for research, adaptabil-
ity and learning in a miscellaneous of application areas,
particularly for problems where nonlinear data and model
intricacy conduce to unworthy results. This algorithm has
been widely revealed to offer precise optimization solutions
for research difficulties through simulation development.
Conjointly with intelligence techniques, the GA has become
a powerful method of modeling and optimizing complex pro-
cesses [27]–[29], it is used as an enhancer of ANN parameters
to ameliorate the model’s efficiency [30], [31]. In addition,
GAs is population-based, and many modern evolutionary
algorithms are directly based on genetic algorithms or have
strong similarities. There are several studies on the applicabil-
ity of GA in the hydrological sciences. [32] utilized real code
GAs for training (ANN) R-R models, in order to anticipate
the quotidian flow which is more precise than the backpropa-
gation technique-based ANNmodels. [33] suggested an intel-
ligent hybrid model that is a combination of methods of data
preprocessing, genetic algorithms and Levenberg–Marquardt
(LM) algorithm to train feed-forward NN for runoff
prediction.

In the other hand, PSO has become one of the most widely
used swarm intelligence-based algorithms due to its simplic-
ity and flexibility. Rather than using mutation / crossover,
it uses real number chance and global communication
between particles in the swarm. Therefore, it is easier to
implement than GAs. It could also be used to optimize
irregular, non-linear systems and solve complex problems
and it has a high speed of convergence towards the ideal
solution on a certain iterations number. Moreover, PSO could
be involved as a training algorithm for ANNmodel [21], [34].
At this stage, satisfactory results in various studies have
also been obtained in the problems linked to hydrology.
[35] suggested a PSO-based perceptron approach to forecast
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water stage in the Shing Mun River in Hong Kong. [7]
proposed a new hybrid metaheuristic algorithm combin-
ing biogeography-based optimization (BBO), particle swarm
optimization (PSO) and grey wolf optimizer (GWO) inte-
grated with ANN and ANFIS (adaptive neuro-fuzzy infer-
ence systems) for modeling R-R process in the watershed
Fal at Tregony. [36], proposed three optimization algorithms
integrated with ANFIS, i.e. particle swarm optimization
(ANFIS-PSO), genetic algorithm (ANFIS-GA) and differen-
tial evolution algorithm (ANFIS-DE) for forecasting monthly
streamflow of Pahang River, located in a tropical climatic
region of Peninsular Malaysia. [10] applied PSO for training
ANN R-R model in Jardin river basin etc.

The swarm-based firefly algorithm (FFA) is receiving con-
siderable research attention, with a number of studies report-
ing favorable improvement in their modeling accuracy [37],
[38]. It is indeed a relatively newer optimization approach that
is straightforward with a strong potential to converge quicker
to optimum solutions than other intelligent techniques [39];
because the global and local optima of the predictor data
can be solved simultaneously and efficiently [40]–[43]. In
such optimization problems, it was experimentally seen to
surpass PSO. Lately [44] examined its validity to ANN
training in classification issues and compared its reliability
with GA and ABC. [45] developed an integrated adaptive
neuro fuzzy inference system with firefly algorithm (ANFIS-
FFA) to forecast monthly rainfall in Pahang River catch-
ment, Malaysia. [46] adopted a novel simulation approach
called multilayer perceptron-firefly algorithm (MLP–FFA)
for monthly streamflow forecasting at Ajichay watershed,
East Azerbaijani. [47] adopted a novel approach based on the
integration of support vector regression (SVR) and FFA for
rainfall predicting at two stations situated in a semi-arid area,
Iran.

Finally, a new version of the PSO algorithm which is
Improved PSO (IPSO) could solve multi-objective combina-
tion optimization problems in many researches. where it can
restrict the position change of original and new particles in
the iteration process and accelerate the convergence speed of
the algorithm [48]. [49] applied an improved PSO to train
artificial neural network (ANN) for water level prediction in
the Heshui Watershed in China. [50] introduced a new pre-
diction model for solar radiation, the model was essentially
based on an improved support vector regression (SVR) inte-
grated with IPSO, its application showed its superiority over
the other models (multivariate adaptive regression ’MARS’,
genetic programming ’GP’, SVR-PSO, SVR-GA, SVR-FFA
and M5 tree model).

As these algorithms have different advantages and spe-
cific processes in the modeling of complex phenomena and,
as their studies in hydrology, in particular R-R modeling, are
still at an early stage, and little research has been done on
these models to solve hydrological problems and real-time
flow forecasting, investigating these models in hydrology and
comparing them are highly recommended. On the other hand,
the capacity of evolutionary IPSO and FFA in improving

ANN efficiency in modeling R-R as well a study that groups
together all the algorithms mentioned above to model this
phenomenon has not been previously investigated. This gave
us impetus to prepare this research.

The principle aim of the present article is to investigate the
capability of ANN-IPSO in modeling R-R so as to provide
an efficient method for solving such a complex hydrological
problem. In order to assess the viability of the IPSO in
improving ANN efficiency, this method was compared with
the other three commonly used evolutionary metaheuristic
optimizers, GA, PSO and FFA inspired by nature by integrat-
ing into ANN as a training algorithm for R-R modeling in the
Seybouse Basin situated in a semi-arid region. Autocorrela-
tion and cross-correlation functions were applied to define
the optimal model input scenario. Daily actual R-R datasets
have been utilized to train and test the hybrid models (ANN-
GA,ANN-PSO, ANN-FFA andANN-IPSO). For the purpose
of identifying the most powerful ANN training algorithm,
the accuracy of the hybrid models was evaluated and com-
pared using performance metrics: Root Mean Square Error
(RMSE), Pearson’s correlation coefficient (R), Nash Sutcliffe
Efficiency (NSE) and graphical analysis: scatter plots, time
series and Taylor diagram. The recent advancement of this
research is to investigate the feasibility of a new structure for
an ANNmodel that is integrated with Improved PSO and FFA
as optimizers for R-R modeling.

The computer codes for all models’ combinations as well
the selection process of their architectures, were programmed
in MATLAB language (‘MATLAB R2018b’ purchased with
its complete platform and its licenses).

II. STUDY BASIN AND DATA ACQUISITION
A. STUDY ZONE
The Seybouse watershed is situated in Algeria’s North -
East, one of the constituents of the large hydrographic basin
named CONSTANTINOIS-SEYBOUSE-MELLEGUE [47];
it presents a significant latitudinal extension, where it occu-
pies an area of 6,471 km2. The main river, Oued Seybouse,
that drains this watershed, has a total length of 240 km,
it originates in the high plains of Heractas and Sellaoua and
ends in the coastal plain of Annaba to flow into the Mediter-
ranean. It is formed by the confluence of the wadis Cherf and
Bouhamdane at the level of Madjez Amar and receives two
other tributaries of unequal importance: the Oued Mellah and
the Oued Ressoul. A set of dams were erected on all the wadis
of Seybouse Watershed, intended mainly for irrigation and
water supply. These dams includeHammam-Debagh onWadi
Bouhamdane, Foum El Khanga on Wadi Cherf upstream,
Koudiat Harricha in Cherf downstream, Koudiat Mahcha in
basse Seybouse part and other small dams built on Wadi
Cherf upstream (Tiffech, Sedrata), Ben Badis on the El Heria
wadi which is a small tributary of the Bouhamdane wadi, and
M’djez El Bgar in the downstream Cherf. Overall, the water
resources of this basin are vital to support most economic
activities in the region. Figure 1 displays the location map of
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TABLE 1. Runoff stations’ details for Seybouse Catchment.

TABLE 2. Statistical characteristics of daily datasets for the six runoff
study stations.

Seybouse Watershed as well as the distribution of the various
hydrometric and rainfall stations in the six-sub basin used in
this study.

B. DATA ACQUISITION
The most measured components of the hydrological cycle
are precipitation and river flow, they are crucial for any
hydrological modeling [52], [53]. Thus, the database com-
piled of these two parameters in the six stations spread
throughout the catchment area of Seybouse at different peri-
ods for each one (due to the unavailability of data at these
stations for the same duration), were applied to simulate the
R-R relationship. Further information about these stations is
given in Table 1 and 2, while their locations are represented
in Figure 1.

In the aim of evolving the model, the primary stage is to
divide data into various categories for the model effectiveness
training and testing. The principal goal of such a stage is
for assuring that the model is functioning with a constant
degree of accuracy; in case it knows invisible data instead of
training. According to [54], the best results are attained if we
allocate 20-30% of the original data points for testing, and use
the remaining 80-70% for training. For this division, we get
accuracy estimates which are:
• valid – in the sense that they do not overestimate the

accuracy (i.e., do not underestimate the approximation error),
and

FIGURE 1. The case study site location, Seybouse Catchment located in
Algeria.

• are the more accurate among the valid estimates – i.e.,
their overestimation of the approximation error is the smallest
possible.

In this context, the data used in this research was cate-
gorized into two main parts; the first to train the models
with 80% of the data collected and the second to test the
calibrated models with 20% of the data to examine the model
performance. The entry dataset x∗ was normalized in the
scope [0.1, 0.9], Eq. (1):

0.1+
0.8(x − xmin)
(xmax − xmin)

(1)

where: x is the historical data, xmin and xmax are the
minimum and maximum values, respectively. All these
data were acquired from the National Water Resources
Agency (ANRH) of Algiers.

Where, Max, Min and Mean are the maximum, minimum
and average value of the observation series in training and
testing phases for each runoff station.

As shown in table 2, we have enough data points for the
six study stations, because more data points we use for the
models, the more precise the model estimates.

In fact, the accuracy also depends upon the model data
requirement, the quality of this data (which must be good)
and model setup equation that which type of is that either
lump or distributed all model have their own set of equations
and input requirements to run up that model. The best way
is that do adjust the model parameters until calibration and
validation results come better.

III. METHODOLOGY
A. ANN, GA, PSO, FFA and IPSO
1) ARTIFICIAL NEURAL NETWORK (ANN)
In recent years, the ANN-method has drawn considerable
interest from scientists for prediction of the systems that are
nonlinear; due to its highly learning potential without any
physical acquaintance of the process to be modeled [55].
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The primary principle of data handling ANNs is inspired
by the nervous biological system [56]. ANNs comprise of a
countless number of nodes that are linked together to address
multiple issues.

In the present study, the ANN is based on the multi-
layer perceptron structure (MLP). MLP typically composes
of three layers (input layer, hidden or intermediate layer,
and output layer) Figure 2 [57]. Every layer may contain
different neurons’ numbers that bind to each other with the
links named weights (w). the input layer nodes transmit the
input signal values to the intermediate layer nodes. Similarly,
the intermediate layer nodes transmit the signal values to the
output layer nodes. Eventually, the output layer displays the
results that have been simulated. Eq. (2) determines the output
of each layer:

y =
n∑
i=1

yiwi + b (2)

where y: the layer’s output, yi: the input of a layer; wi:
weights; and b: bias.

FIGURE 2. ANN architecture.

The logistic sigmoid and tangent functions are the more
ordinarily transfer functions used. [58] pointed that the train-
ing with tangent function is not only quicker than the training
with logistic sigmoid transfer function, but also the forecasts
found through tangent networks are marginally better than
those with logistic sigmoid transfer functions. [59] indicated
that it is more difficult to train ANNswith the sigmoid logistic
function thanANNswith the tangent function. [60] found that
in outflow estimation, the tangent sigmoid function worked
much better than the logistic sigmoid function.

As a result, the adopted activation function employed
in this study was the hyperbolic tangent sigmoid function,
Eq. (3)

f (S) =
2(

1+ e−2S
) − 1 (3)

In this paper, the ANN was adopted to predict the rainfall-
runoff process over several time horizons. Three algorithms,
termed genetic algorithm, particle swarm optimization and
firefly algorithm were applied to determine the improved set
of ANN variables. Further explanation of these techniques is
given in the following sections.

2) GENETIC ALGORITHM (GA)
TheGenetic Algorithm (GA), was first created by JohnHenry
Holland. This metaheuristic algorithm is a machine learning
model, that originates its behavior and habits from a descrip-
tion of evolutionary systems in nature, it has been utilized to
enhance the parameters of the control process that are compli-
cated and hard to fix by traditional optimization techniques.
This act is achieved by introducing by a computer, a sample
of individuals demonstrated by chromosomes (similar to the
chromosomes contained in human DNA) [61]. In nature,
the genetic information coding generally outcomes in off-
spring genetically similar to the parent. Sexual proliferation
makes it possible to create genetically radically dissimilar
offspring of the same general organisms. Straightforwardly,
a couple of chromosomes conflict at the molecular scale,
exchange set of genetic knowledge and separate each other.
This is named the recombination operation, that is called
in GA crossover duo to the manner in which the genetic
information goes from one chromosome to the other. Other
operators with bio-inspiration including mutation and regen-
eration. In the regeneration operator, two arbitrary nominees
are chosen and when the weak one is removed, the other is
doubled. In the mutation, a nominee will be silenced and
therefore an extremely low mutation rate can lead to genetic
deviation [62].

Because ANNs and GAs are popular methods that have
been used by various researchers to optimize nonlinear prob-
lems such as modeling and forecasting the rainfall-runoff
systems, a conjunction model between these two methods
is introduced (ANN-GA). This procedure adjusts artificial
neural network variables like momentum term and number
of intermediate layers’ neurons. However, this method may
take time in the training procedure, but the use of the genetic
algorithm tries to reduce error and inaccuracy considerably.
Consequently, this technique appears meaningful. In vari-
ous ANN structures, the GA technique improves the various
components of ANN such as neurons number in the hidden
layers; which is formed by the Levenberg-Marquardt training
method.

3) PARTICLE SWARM OPTIMIZATION (PSO)
PSO was first defined by Eberhart and Kennedy (1995). Its
idea stemmed from the social behavior of creatures in a
horde or swarm. Though it is originally created as a mech-
anism for simulating social behavior, the PSO technique
has been identified as a computational intelligence algo-
rithm closely linked to meta-heuristic evolutionary search
optimization algorithm [63]. The evolutionary methodology
acquired using Eq. (4) and (5) is the main feature of PSO
which differentiates it from other improvement algorithms.

−−→vnew =
−→v + r1c1 ∗ (

−−→pbest −
−→p )+ r2c2 ∗ (

−−→gbest −
−→p ) (4)

−−→pnew =
−→p +−−→vnew (5)

where vnew, v, pnew, and p signify the new velocity, current
velocity, new position, and current position, respectively, of a
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specific particle; c1 and c2 denote cognition and social coeffi-
cient respectively; pbest symbolizes the ideal or best position
of this particle, gbest is the best position that the swarm knows;
r1 and r2 are random numbers between 0 and 1 [64].

The introduction of certain arbitrary chosen particles is
the initial phase to solve optimization issues utilizing PSO
(initialize the ANN weights). Every particle (i.e. weight
ANN) is designated an arbitrary position and velocity.
A repeated process is applied over the next phase to figure out
the best possible solution; the pbest and gbest values of each
particle were registered in other verses throughout each inter-
action. Therefore, utilizing equations 3 and 4, the positions
of the particles vary based on their expertise and that of other
particles. Particle positions are updated until the best solution
is obtained [64].

As ANNs can be stocked in local minima, the integra-
tion of hybrid methods like ANNs based on PSOs becomes
encouraging. The PSO constituent of this kind of hybrid
model is capable of finding an overall minimum and further
research. Therefore, a hybrid ANN model based on PSO has
the benefits of these two techniques: in the quest field, PSO
will look for all the minimums and ANN will need them
to come up with the optimal solution. In ANN-PSO, every
particle (the ANN weight) is a frontrunner solution to reduce
the error. The enhanced weights are utilized for the network
training after improving the problem. In fact, the aim of
introducing the PSO to the ANN is to strengthen the training
process of the ANN.

4) FIREFLY ALGORITHM (FFA)
The firefly algorithm (FFA) is a new nature inspired meta-
heuristic process, established by Xin-She Yang in 2008 for
solving various optimization problems. The concept behind
FFA is that fireflies emit or produce light generated by chem-
ical processes, for mating purposes, the light-flashing activity
draws fireflies to each other [65]. It is important to note that,
the bright fireflies attract readily the less bright fireflies. This
mechanism could be generated as an enhancement algorithm
as the flashing-light can be programmed to be synchronized
with the optimized fitness function. Three rules are followed
by the firefly algorithm:
• All the fireflies are unisex.
• The less bright ones will move towards the brighter ones.
But, when a brighter one is no visible, fireflies will move
arbitrarily.

• A firefly’s brightness or light intensity is defined by the
land scape of the optimized objective function.

By knowing these rules, the firefly’s brightness and light
intensity form the fundamental basis of the FFA model’s
function. Eq. (6) and (7) signify the firefly’s intensity and
attractiveness, since each firefly demonstrates its particu-
lar attractiveness, reflecting its attractive prowess in the
swarm [66].

I = I0e−γ r
2

(6)

β(r) = β0e−γ r
2

(7)

At distance r, I denote the light intensity and β(r) the
attractiveness. At distance r=0, the light intensity becomes I0
and the attractiveness β0. γ is the light absorption coefficient
0.1 < γ < 10. The Cartesian distance between any two
fireflies is defined as:

rij =
∥∥xi − xj∥∥ =

√√√√ d∑
k=1

(xi,k − xj,k )2 (8)

where d denotes problem dimensionality, xi and xj are the
fireflies’ positions, and xi,k and xj,k are the kth component of
spatial coordinate. As already noted, fireflies are enticed to
each other, therefore, the next movement of firefly i can be
expressed in formula (9).

x t+1i = x ti + β0e
−γ r2i,j (xj − xi)+ α(rand −

1
2
) (9)

where xti is the solution vector or actual position of the firefly
i, the second term is due to attraction to a brighter firefly j,
and α(rand-1/2) represents the firefly’s arbitrary walk with
the randomization parameter α ∈ [0,1] [67].

As with PSO, firefly can readily be used to train ANN.
To optimize the ANN model weights, to achieve the opti-
mum parameter settings for ANN training and to reduce the
error ratio. Each firefly is employed to represent a candidate
solution to the ANN training problem (i.e. a vector of all the
weights and biases of an ANN). First, the population size
of candidate solutions is created for the problem in question
(the ANN’s weights). After this, the fireflies’ light intensity
is calculated and the attractive firefly (best candidate) is
found within the population. Afterwards, to move all fire-
flies towards the attractive one in the search area, calculate
for each firefly the attractiveness and distance. Eventually,
in the search area, the attractive firefly moves arbitrarily. This
procedure is replicated until a termination criterion is reached
(the maximum number of generations is achieved) [68].

5) IMPROVED PSO
In improved PSO, the particles are randomly adjusted using a
generated number by normal standard distribution (Normand)
as follows:

pnew = p+ vInew
vInew = r3[gbest − p]+ Normrand(0, 1)× γk (10)

where, vInew is the improved velocity which are adjusted for
new positions. vInew is determined based on best position of
particle (gbest ) and a random number generated by a normal
distribution with mean of 1 and STD of 0 (Normrand(0, 1)).
The normal random part is scaled using factor γk which is
determined by the following relation [69], [70]:

γk =

√
1−

k
NI

(11)

Factor γk is tended to 1 at first iterations and 0 at fill
iterations γk ∈ [0, 1]. As seen from the improved velocity,

VOLUME 9, 2021 92505



Y. Aoulmi et al.: Highly Accurate Prediction Model for Daily Runoff

the new positions of particles are adjusted using random nor-
mal process. Thus, the new and the best particles have not the
same positions. Consequently, it is reduced the chance to the
local optimum by compared to original PSO by this presented
optimization approach. The formulation of IPSO is presented
in Eq. (12) by using two random adjusting procedures given
by improved velocity presented in Eq. (10).

pInew =

{
p+ vInew r ≤ Pk
p+ vnew r > Pk

(12)

where, r ∈ [0,1] is a random number gendered by uniform
distribution between 0 and 1. In IPSO, the initial velocity and
its parameters are randomly determined as well as PSO.
Pk is named as adjusting particle rate, which is computed

as follows:

Pk = 0.2+ 0.8

√
k
NI

(13)

Pk is randomly provided a pattern for adjusting the
new particle using two formulations of PSO and IPSO.
By increasing Pk , the chance of applying improved velocity
for determining the new positions for particles is increased.
We commonly used this formula presented in Eq. (10) at final
iterations. Thus, it is a local search on the best position for
computing the global optimum results at final iterations.

As see in Eq. (12), it is applied two velocity terms for
adjusting the positions of the new particles while in the PSO,
we apply the velocity of particles using Eq. (4) which is
determined by using pbest and gbest; and this is the main
differences of PSO and IPSO.

B. INPUT COMBINATION AND MODEL DEVELOPMENT
1) INPUT COMBINATION
The input combination selection is considered as one of the
major factors effecting the model’s effectiveness. Therefore,
a proper input selection is essential before applying the
ANN models. For this study, an input scenario was created
and studied for the four hybrid ANN models based on the
autocorrelation function (ACF), the partial autocorrelation
function (PACF) and simple cross-correlation function (CCF)
which have been used to identify the number of effective lags
of antecedent rainfall and runoff. This method was proposed
by the several researches [36], [71]–[74] to determining the
optimal inputs for data driven methods.

The Table 3 is listing the CCF and PACF values of the
six stations studied, a representation example of these func-
tions (ACF, PACF and CCF) for one of the stations (station
‘Medjez-Amar II’ of the sub basin 3) is shown in Figure 3.

The CCF indicates that the precipitation at time t and
one lag are considerably effective on runoff compared to
the precipitation for two and three lags, while the other lags
have fallen within the confidence limit. Therefore, Rt−1 was
considered as one of the parameters included in the input
scenario used in the developed models. In addition, the PACF
in all the stations indicates that the first lag of runoff has
considerable effect, and that the second and third lags are very

TABLE 3. Partial autocorrelation and cross-correlation values of the used
data.

FIGURE 3. The autocorrelation (ACF), the partial autocorrelation (PACF)
functions of the runoff time series and cross-correlation function (CCF)
between runoff (Qt ) and rainfall at various lags with the 95% confidence
limit for ‘Medjez-Amar II’ Station.

near to the confidence limit (but in ‘Bordj-Sabath’ and ‘Ain
Berda’ stations, the lags Qt−2, Qt−3 and Qt−3 respectively are
within the confidence limit ∗). Therefore, these two entries
were ignored.

As the precipitation beyond the 2nd lag doesn’t really affect
the runoff at time t, as well as the runoff is not effective
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beyond the same lag. Therefore, the input combination con-
sidered for the scenario used in this research to model the
rainfall-runoff process is made up of Rt, Rt−1 and Qt−1 to
simulate the output Qt.

2) MODEL DEVELOPMENT
In the present study, four ANN models have been created
and compared with each other for modeling rainfall/runoff
task. The first model utilizing the (GA) for its training was
termed as ANN-GA, the second utilizing the PSO algorithm
was named ANN-PSO, the third using the (FFA), was called
ANN-FFA and the last using (IPSO) referred to ANN-IPSO.
In fact, since the efficiency of every model generally depends
on the appropriate variable’s determination, these three opti-
mization techniques have been combined with ANNmodel to
improve the calibration of its variables (optimize its weights
and biases).

The choice of the hidden layers’ numbers as well as the
neurons number was decided after performing different com-
binations. Indeed, we have been able to observe, through
several tests, that the rise in the number of intermediate layers
or that of neurons did not lead to an improvement in the
results, on the contrary it made the network more difficult
to stall and its training time longer. As well, a higher prob-
ability of converging to a local minima can be introduced,
so there is no notional justification for using more than two
intermediate layers [75], [76]. On the other side, the use of
too few nodes in the intermediate layers compared to the
intricacy of the problem data, will leads to the underfitting
and using too many neurons might result overfitting which
occurs when unnecessarily more neurons are presented into
the network [77], [78]. In this work, the use of a single hidden
layer was found to be enough to have simulation results of the
model with good convergence and performance [79], [80].
The ideal number of nodes in the intermediate layer has been
defined following a trial and error method (forward approach)
by changing the intermediate-layer neurons number [46],
[81]–[84], in this case, we start from an architecture with
2 nodes in the intermediate layer, after that, train and test the
ANN, then constantly increase the hidden neurons number.
We repeated the above procedure until training and testing
improved, then we retain the architecture which gives the
minimum of the error on the test base [76]. As a result,
the best ANN-GA, ANN-PSO, ANN-FFA and ANN-IPSO
architectures obtainedwerewith one hidden layer and 10 neu-
rons.

The four computer programs that show the development
process of the hybrid models were developed in MATLAB.
The Figure 4 depicts the procedure of how the GA, PSO, FFA
and IPSO algorithms optimize the ANN parameters.

During the application of GA, PSO, FFA and IPSO, several
parameters must be specified. A suitable selection of param-
eters influences the algorithm convergence rate. Table 4 dis-
plays the parameters values utilized for the four optimization
algorithms.

FIGURE 4. Flowchart of the suggested hybrid algorithms (a) ANN-GA,
(b) ANN-PSO, (c) ANN-FFA and (d) ANN-IPSO.

TABLE 4. Parameters utilized for the four evolutionary algorithms.

The parameters of IPSO and PSO are given a same in the
optimization process. however, the new position of particles
is determined with novel velocity relation which is computed
using the global best of particle and a normal random gener-
ated approach.

In IPSO, the improved velocity of particles is deceptively
combined with the velocity given from original PSO with a
self-adaptive random process as presented in Eq. (12).

3) STATISTICAL PERFORMANCE INDICATORS
The effectiveness of different predictive models is evalu-
ated through graphical interpretation (line, scatter and Taylor
diagram) and through performance indicators: Pearson’s cor-
relation coefficient (R), Nash Sutcliffe Efficiency coeffi-
cient (NSE) and Root Mean Square Error (RMSE). R varying
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from −1 to 1, evaluates the linear correlation between pre-
dicted and observed values, its values of 1 and 0 signify an
ideal fit and no statistical correlation between the data and
the line drawn across them, respectively. The NSE is utilized
to analyze the predictive accuracy of the hydrological models
(varies from−∞ to 1). The RMSE is used to estimate predict-
ing precision, which produces a positive value by squaring the
errors. The RMSE rises from zero for perfect predictions to
large positive values as the discrepancies between predictions
and observations become significantly large. Usually, the best
model forecasts are obtained when R, NSE, and RMSE are
close to 1, 1, and 0, respectively. The formulation of these
three-performance metrics could be defined as:

R =

n∑
1
(Qo,i − Q̂o)(Qp,i − Q̂p)√

n∑
1
(Qo,i − Q̂o)2

n∑
1
(Qp,i − Q̂p)2

(14)

NSE = 1−

n∑
1
(Qo,i − Qp,i)2

n∑
1
(Qo,i − Q̂o)2

(15)

RMSE =

√√√√√ n∑
1
(Qp,i − Qo,i)2

n
(16)

where n is the data number, Qo,i is the observed runoff, Qp,i

is predicted runoff, Q̂o is the average value of the observed
runoff and Q̂p is the average value of the predicted runoff [7].

IV. RESULTS, ANALYSIS AND DISCUSSION
In this chapter, a thorough assessment of ANN-GA, ANN-
PSO, ANN-FFA andANN-IPSO hybrid models in simulating
the output Qt using defined scenario (Rt, Rt−1 and Qt−1) is
presented and their efficiency in terms of numerous statistical
indicators during training and testing for the various study
stations is demonstrated in Table 5.

In the training stage (Table 5), it can be observed that for
all the hydrometric stations that are distributed in the study
basin, the ANN-IPSO model offers greater approximations
or simulated runoff values than the ANN-GA, ANN-PSO and
ANN-FFA models; by way of illustration, for ‘Medjez-Amar
II’ Station in the sub-basin B3, the ANNmodel trained by the
genetic algorithm (GA) gave a strong correlation coefficient
R (0.823), a good efficiency coefficient NSE (0.666) and
a low root mean squared error RMSE (0.744). Whereas,
the ANN which used particle swarm optimization as training
algorithm (PSO) has further improved these performance
statistics, where R became very strong (0.941), NSE very
good (0.868) and RMSE low (0.466). And for the hybrid
model ANN-FFA, the performance indicators became more
important (R = 0.961, NSE = 0.916 and RMSE = 0.425).
However, the ANN trained by Improved PSO performed as
the best model for R-R modeling, where R = 0.993, NSE =
0.985 and RMSE = 0.177. Also, the application of ANN-GA

TABLE 5. Performance indicators of optimal ANN-GA, ANN-PSO, ANN-FFA
and ANN-IPSO over training and testing periods.

model in the 2nd station ‘Bordj-Sabath’, provided values of
R (0.798), NSE (0.622) and RMSE (0.948) which are worse
compared to those provided by ANN-PSOwhere R, NSE and
RMSE are 0.918, 0.818 and 0.554, respectively. The ANN
model trained by the firefly algorithm (FFA) gave as well
good results compared to president models (R = 0.927,
NSE = 0.85 and RMSE = 0.64). Whereas, the ANN-IPSO
offered better performance values (R = 0.961, NSE = 0.923
and RMSE = 0.459).
The same remarks for exceeding the excellence of the

ANN model that utilizes IPSO as a training algorithm on
the ANN model that employs GA, PSO and FFA for the
training, are valid for the remaining stations (sub-basin
B2 ‘Moulin Rochefort’ Station, sub-basin B5 ‘Bouchegouf’
Station, sub-basin B6 ‘Mirebek and Ain Berda’ stations).

On the one hand, the disproportion of performance
between the two models of neural networks trained by GA
and PSO separately can be due to several reasons: The
implementation of GA is usually an intricate process that
involves evolutionary operations such as selection, crossover
and mutation. Also, the convergence velocity could be con-
siderably decreased if the size of the sample is big. However,
the PSO algorithm is easier to implement, and unlike GA,
it achieves its final variables values in lesser generations
(see Table 5), it converges faster, it has fewer parameters, and
it doesn’t have complex evolutionary operators like crossover
and mutation. Another important point was noted during the
simulation, which is the calculation time for GA is relatively
small contrasted to the PSO enhancer tool, even though it rises
proportionally to the number of PSO and GA generations.
Therefore, the bigger calculation time for PSO is resulting
to the interaction among the particles. On the other hand,
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the FFA has shown a more interesting ability than PSO and
GA to model this intricate phenomenon, so it has proven
to be an encouraging optimization algorithm; due to the
influence of the attractiveness function that is specific to
the firefly behavior. However, PSO is preferable than firefly
with regards to the time needed for the optimum value to be
produced.

Same results obtained by [65], where he found that par-
ticle swarm frequently exceeds conventional algorithms like
genetic algorithms, whereas in terms of effectiveness and
success ratio, the modern firefly algorithm is superior to both
PSO and GA.

While, the IPSO has potentially demonstrated that it is a
more powerful favorable optimization tool than FFA in solv-
ing optimization problemswhich are complex and non-linear.

An identical tendency is also noticed for the testing
phase, where the ANN-IPSO performed much better than the
ANN-GA, ANN-PSO and ANN-FFA models in terms of all
effectiveness indicators. Keeping the same example of the
stations as in the training stage, applying the ANN-GAmodel
in the ‘Medjez-Amar II’ Station of the sub-basin B3 gave a
very strong correlation coefficient R (0.916), an NSE (0.814)
and an RMSE of 0.621, whereas the use of the ANN-PSO
model improved these indices better where the value of R
increased further to 0.975, NSE to 0.926 and RMSE became
lower (0.394). Also, the ANN-FFA enhanced more the per-
formances indices to (R = 0.986, NSE = 0.942 and
RMSE = 0.341). However, the ANN-IPSO provided the
highest performance value (R = 0.987, NSE = 0.943
and RMSE = 0.052); these values confirm the excellence
of this model. For the ‘Bordj-Sabath’ Station of the same
sub-basin B3, the ANN-IPSO provided a correlation coeffi-
cient of 0.98 and anNSE of 0.96 and anRMSEof 0.245which
are much better than the R (0.978), NSE (0.896) and RMSE
(0.395) obtained by the ANN-FFA and largely higher than
those provided by the ANN-PSO (R = 0.971, NSE =
0.842 and RMSE = 0.947) and ANN-GA (R = 0.831,
NSE = 0.675 and RMSE = 0.971). All the observa-
tions discussed above about the efficiency of ANN-IPSO
model compared to ANN-GA, ANN-PSO and ANN-FFA
in testing period for the sub-basin B3, remain virtuous for
the remaining sub-basin stations. Compared to ANN-GA,
the ANN-IPSO improved the R-R modeling accuracy by
51%, 92%, 75%, 56%, 57% and 48% with respect to RMSE
for the Moulin Rochefort, Medjez-Amar II, Bordj-Sabath,
Bouchegouf, Mirebek and Ain Berda stations, respectively.
The corresponding percentages compared to ANN-FFA are
18%, 85%, 38%, 32% and 24% for the Moulin Rochefort,
Medjez-Amar II, Bordj-Sabath, Bouchegouf and Mirebek
stations, respectively. All these clearly prove the superiority
of the ANN-IPSO to the other alternatives in modeling R-R.

After analyzing and discussing the results obtained from
the two phases of the applied models, an important remark
can be deduced is that, the reliabilities of the models in the
training phase are significantly lower than that during the
testing phase (look at the R and NSE values in Table 5).

Perhaps the principal cause is that the more complicated
training data structure; that has a more distribution curve,
which include peaks of runoff and precipitation much higher
than the testing dataset.

The scatter plots for predicted and observed daily flow val-
ues for the six study stations during testing period provided by
the four hybrid models, are indicated in Figure 5. As clearly
observed, the linear trend of the ANN-IPSO is the nearest
to the line y=x compared to those of ANN-GA, ANN-PSO
and ANN-FFA. Similarly, the predicted flow’s time series
utilizing ANN-IPSO are compared with the observed ones
through the testing period (see Figure 6). A good fit and
a decent agreement are noticed between the observed and
predicted flow by the ANN–IPSO model.

The Taylor diagram
The Taylor diagram [85] were used to provide a visual

understanding of effectiveness measurements that plots for
the modeling results a set of points on a polar plot, the dia-
gram was used for demonstrating the spatial variation of the
expected flow by the ANN-GA, ANN-PSO, ANN-FFA and
ANN-IPSO over the observed value during testing period for
the six study stations. The standard deviation (SD) between
expected and observed values is defined by Taylor diagram
along the radial intervals with roots, and R values are defined
as angles of direction. The assumption is that on the Taylor
diagram, the observed values have an independent display
and the nearer the performance indicators of predictions to
the observed values, the stronger the model performance.
As illustrated in Figure 7, the results found by ANN-IPSO
are nearer to the observed one in comparison with ANN-GA,
ANN-PSO and ANN-FFA, which indicates higher accuracy
of this model as mentioned previously considering Table 5,
Figures 5-6.

The standard ANN method is successfully used in water
resources management issues. For example, estimation
and/or forecasting runoff and provide data for early warning
systems against the possible floods. As also mentioned in
the introduction section, standard ANN however has some
drawbacks such as training method deceleration, stocking
within local minima and overfitting. So, new metaheuristics
algorithms are needed to solve this issue and improve stan-
dard ANN efficiency. This has been confirmed by the results
found in this study after applying the hybrid models of ANN
trained separately by GA, PSO, FFA and IPSO, where they
revealed the superiority of the ANN-IPSO over the ANN-
FFA, ANN-PSO and ANN-GA in both training and testing
phases for the six stations distributed in the study basin. As a
result, the IPSO algorithm was able to improve the resolution
capabilities of this complex problem with a high convergence
speed compared to FFA, PSO and GA. Also, it could be used
to improve other abnormal troubles that change over time.
Such models can be used as a module in general hydrological
analysis models [10], [86], [87].

[88] used MLP–ANN and hybrid multilayer perceptron
(MLP–FFA) to forecast monthly river flow for a set of
time intervals using observed data. Their results show that
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FIGURE 5. Scatter plots of the observed and predicted daily runoff values during testing phase, produced by ANN-GA, ANN-PSO, ANN-FFA and
ANN-IPSO for the six stations.
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FIGURE 6. Time series of the observed and predicted daily runoff values during testing phase, produced by ANN-IPSO for the six stations.

FIGURE 7. Taylor diagrams displaying statistical comparison of the four models during testing period at the six study stations.

MLP–FFAmodel is satisfactory for monthly river flow simu-
lation in Ajichaywatershed (East Azerbaijani) in the province
of East Azerbaijan.

[86] compared particle swarm optimization and genetic
algorithm for daily rainfallrunoff modelling in Southeast
Queensland, Australia. The results indicated that the
ANN-PSO model significantly outperformed the ANN-GA
model in terms of convergence speed, accuracy, and fitness
function evaluation.

V. CONCLUSION
This paper developed a highly accurate prediction model
based on a combined artificial neural network-improved

particle swarm optimization algorithm (ANN-IPSO) approach
for a common problem in the field of hydrology involving
rainfall-runoff in semiarid basin. The developed approach
outperforms other existing techniques in the literature,
including genetic algorithm (GA), particle swarm optimiza-
tion (PSO) and firefly algorithm (FFA).

The daily rainfall and runoff data collected from Seybouse
watershed, Algeria, were used to establish all the developed
models. The model’s effectiveness was assessed based on
different statistical measures.

Overall, the study indicated that the GA, PSO, FFA
and IPSO algorithms can be employed in modeling the
rainfall-runoff process. However, the optimal results from an
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evolutionary standpoint, significantly proved the superiority
and the capacity of ANN-IPSO over ANN-GA, ANN-PSO
and ANN-FFA in terms of all statistical criteria and graphical
interpretation, where the input predictors are Rt, Rt−1 and
Qt−1.
These findings unquestionably confirm the effectiveness of

the IPSO algorithm in tuning the parameters of ANN model
and appreciably strengthen its forecasting performance. The
IPSO- based hybrid ANN model can thus be employed in
different functionalities and, more especially in hydrology
and its related disciplines. As a result, this study finding
indicates that the ANN model optimized by IPSO is more
powerful for R-R modeling and a better alternative to other
three metaheuristic-based models (GA-ANN, PSO-ANN and
ANN-FFA). It’s hoped that future research attempts R-R
modeling by testing the general potential of ANN-IPSO
method using datasets from different catchments.
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