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ABSTRACT The ability to detect elephant flows in the forwarding device itself, i.e., a switch, facilitates
the deployment of new advanced applications such as load-balancing, per-flow QoS management, etc.
Sketches and Space Saving summarization techniques are used for elephant flow detection. However, their
memory and computing requirements force the cooperation of an external controller device, due to the scarce
resources of current programmable switches. To overcome this limitation, we adapt Sketch and Space Saving
elephant flow detection techniques to operate with instant notification and sampled traffic. We evaluate
the performance of the resulting techniques with three real traffic traces. The use of sampling allows the
identification of a large share of the total traffic corresponding to the elephant flows with a low memory
footprint and a reduction of the computing requirements in two orders of magnitude compared to unsampled
versions. In turn, we observe a slight increase in the number of false positives and the number of flow
notifications.

INDEX TERMS Sampling, elephant flows, sketches, space saving.

I. INTRODUCTION
Many recent network mechanisms leverage on the detection
of large and long-lasting flows. Network performance can be
improved by applying to these flows specific routing policies,
queue management disciplines or by reshaping them. For
example, a load-balancing application can be implemented
as follows: The traffic traversing a switch is inspected in
order to identify large flows; once a flow is detected, the
rest of the packets belonging to this flow are forwarded to an
alternative path already configured in the switch. This implies
that the switch may automatically route packets belonging to
these flows through a different path, even without any inter-
vention of an external controller device. Such a mechanism
requires both tracking per-flow information at wire speed
and identifying the large flows that deserve the differentiated
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treatment. Programmable switches are a natural fit for this
operation, as they enable flexible packet-to-flow processing
without sacrificing performance [1], [2].

Elephant flows can be defined based on size and duration:
an elephant flow is a flow with a minimum frequency or size
that lasts for at least D seconds [3]. Elephant flow detection
techniques adopted by the networking community were ini-
tially developed for item summarising in the context of stream
data processing. They are mainly based on sketches or on
counters. However, these techniques may not be suitable for
both autonomous operation in the switch and the constrained
memory and processing capacities available at these devices,
that must usually be shared with other functions also key
for network operation. In fact, most elephant-flow detec-
tion solutions require the cooperation of an external device,
which receives information from the switch, and processes
it to identify large and long-lasting flows. In this paper we
propose and evaluate the use of sampling for implementing
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sketch and counter-based elephant flow detection exclusively
in programmable switches, without the need of any external
processing device.

The main families of programmable hardware switches
are Network Processing Units (NPU) and pipeline archi-
tectures (Reconfigurable Match-Action Table, RMT). NPU
switches provide a set of low-level instructions designed for
packet processing. Alternatively, RMT switches implement
a feature-rich pipeline with function blocks implemented in
silicon in which different paths are activated according to
matches with packet attributes. RMT switches provide higher
performance than NPU ones, but are less flexible, as the
operations to perform depend on the particular stages imple-
mented in the hardware. Note that both NPU and RMT are
restricted in the amount of operations that can be performed
at wire speed, and by the small amount of fast memory
they include. We can think of the computing and memory
resources as a limited budget that has to be distributed among
the different switch functions, so the lower the hardware
resources assigned for flow identification, the better.

In this paper we adapt the sketch and counter-based tech-
niques to work with traffic samples in order to reduce
the hardware requirements of elephant flow detection per-
formed (exclusively) in the data plane. We consider as a
reference application the re-routing of elephant flows through
an alternative path installed on the switches of an ISP [4],
[5]. The requirement to operate as a fully data plane imple-
mentation, i.e., an implementation which does not need to
send data to an external device such as a Software-Defined
Networking (SDN) controller, results in a different trade-off
with most current flow characterization proposals. In order
to operate efficiently, we adapt the algorithms discussed to
sampling.

To evaluate the performance of our solution, we use three
sets of real traces captured at ISP egress links as inputs to
emulate sketch and counter-based heavy-hitter detection. In
this way, we are able to assess the application of these tech-
niques to a system operating with Internet traffic, such as pro-
posed in [4] and [5]. Although the use of sampling decreases
the accuracy of the data stream frequency estimation, we are
able to find a significant set of flows that contribute to most
of the traffic.

The paper is structured as follows:We next review the state
of the art related to elephant flow detection in programmable
switches. In Section III we describe the modifications of the
summarizing techniques required to operate with sampled
traffic. Then we present the experiments performed for the
different elephant flow identification techniques with real
traces, varying memory and sampling rates, and discuss the
results. We end with the conclusions and future work.

II. RELATED WORK: ELEPHANT FLOW DETECTION IN
PROGRAMMABLE SWITCHES
Many elephant flow detection techniques derive from item
summarising in the context of stream data processing.

FIGURE 1. Example of a 5-tuple flow identifier mapping to two table
sketches.

We next present the two main families of techniques, namely
sketch-based and counter-based.

Sketch-based techniques aim to keep track of the traffic
transmitted by flows in a low memory footprint. Sketches
track the packet frequency (or accumulated size) of a flow
without storing its 5-tuple flow identifier, corresponding to
the protocol and source/destination addresses and ports. An
array [(1, 1), . . . (d,w)] of depth d (i.e., d tables or sketches)
and width w is allocated to store the frequency count. Similar
to bloom-filters, sketches use d different hash functions com-
puted over the flow identifier tuple to point to the different
memory locations in which flow frequency (size) is updated,
as depicted in Figure 1. This occurs every time a new item
arrives. For Count Min Sketch (CMS [6]), the final frequency
value is the minimum of the values of the matching entries
over the different positions associated to the same flow. Note
that this minimum value is not affected even if the result of
one of the d hashes is the same for two different flows. To
allow concurrent access to memory, it is typical that each
hash address points to an entry in a separate memory bank.
Thus, the time required to update the flow counters is small
and bounded. While the update process is quite efficient for
sketch structures, the reverse mapping from entries to flow
identifiers, required to get the flows complying with an ele-
phant flow definition, is challenging and requires additional
information. An example for this complexity is illustrated by
FlowRadar [7], that includes an additional column in each
sketch with a XOR of all the flow identifiers mapped in that
entry over a period of time. The operation to get the flows and
the frequency count corresponding to each flow is performed
out of the switch, in the controller.

The interest in the use of sketches to perform flow summa-
rization (including elephant flow detection) in programmable
switches has resulted in a sheer number of recent proposals
[2], [7]–[14]. The cited papers share the following archi-
tecture: the programmable switch is engineered to annotate
in the sketches per-flow statistics for each received packet,
at wire speed; periodically, the tables are conveyed to an
external device, a controller, that extracts the relevant infor-
mation, starting with the reverse mapping from entry to flow
identifier. Any processing related to flows, such as detect
attacks, compute traffic matrices, etc., is performed in the
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controller. If the switch has to be configured accordingly to
the output of the sketch processing, e.g., to re-route or discard
the packets of a flow, the controller is responsible to perform
this configuration.

There are a number of differences between these proposals
and ours. First, our focus is on elephant flow detection,
formulated as a binary decision – a flow is or is not an
elephant flow. The aforementioned sketch proposals are more
flexible in the results they can provide. Notably, many are
able to provide a precise characterization of the frequency of
the flows involved, for which they can prove tight bounds.
Finally, we highlight that our solution can operate in an
standalone fashion, as the switch can detect and manage
elephant flows autonomously, without the need to interact
with any external device. Thus, it reduces the requirements
for the capacity of managing devices, and the solution is not
affected by high loads in the network through which control
data is conveyed [10]. In turn, the requirement of standalone
operation challenges the orchestration of the scarce resources
at the switches, computing capacity and memory, promoting
the use of aggressive approaches such as sampling.

IDEAFIX [15] is a sketch-based mechanism to detect ele-
phant flows in the switch’s data plane that is aligned to our
problem formulation. To detect elephant flows, IDEAFIX
proposes an instant notification strategy: every time a packet
is processed, it checks if the corresponding (current) flow
exceeds a minimum threshold on both the size and the dura-
tion, and in that case it generates a notification. IDEAFIX can
be implemented in both NPU and RMT architectures, and it is
a full data plane implementation of an elephant flow tracking
and notification solution. In our proposal we adopt the instant
notification approach, we adapt it to Space Saving elephant
flow detection, and we combine it with sampling.

ConQuest [16] is a sketch-based architecture that performs
wire-speed traffic summarization fully at the data plane. Con-
Quest aims to detect the flows contributing most to queue
occupation in the switches. As a full data-plane implemen-
tation, the switch can autonomously take actions based on
the queue measurement, for example, to set the ECN bit for
specific flows. They operate at shorter timescales and track a
much lower number of flows than the rest of the architectures
described in the paragraphs above. Although they note that
the approach could be used for heavy hitter detection, it is
neither described how, nor its performance reported.

Counter-based techniques follow a different approach than
sketches to track flow frequency. In this case, the 5-tuple
flow identifier is stored and associated to its corresponding
packet (or byte) counter. Then, the emphasis is set on the
way the limited number of entries are managed. Amongmany
realizations of the main idea, we focus on Space Saving [17]
(SS) to illustrate the principles of counter-based techniques.
SS allocates a table of k entries. When a packet arrives and
its flow identifier was already present in the table, the cor-
responding counter is updated. If there is no match, the flow
identifier is inserted in the place of the entry with the lowest
counter value. However, the counter for the new flow is not

zeroed, but it starts with the value of the counter of the
previous flow. Then new flows can remain in the table if
its instantaneous rate is high enough, and old elephant flows
that stagnate – so that their instantaneous rate is low – are
eventually evicted. One concern of SS performance is related
to the process of performing the flow lookup in the table.
To ensure bounded-time operation, CAM memory should
be available. The other critical operation for performance is
the selection of the entry with minimum value, in case the
packet flow identifier was not in the table. Note that this last
operation should be performed at the speed at which packets
belonging tomice flows arrive, i.e., close towire speed.While
a linked list could be used for maintaining the order of the
elements, SSH [18] is a Space Saving implementation in
which the flows with minimum count (of packets or bytes)
are tracked by means of a heap structure. The heap structure
is a binary tree in which each child node has a higher (count)
value than its parent. Tracking the minimum value entry in
this data arrangement is more efficient than doing so in a
linked list. We later build our Space Saving implementation
using this heap-based data structure.

Regarding to the type of switches in which SS can be
deployed, the main difficulty is to efficiently select the entry
with minimum value. This operation is better suited for NPU
switches than for RMTpipelined architectures, as in this latter
case it may require more cycles than allowed per stage.

The first effort to accommodate SS into a RMT architecture
is HashPipe [1]. In this proposal, tracked flow counters are
stored into one of d different tables. Packets matching an
entry in any of the tables are used to update the counters
appropriately, as for regular SS. However, when a packet
does not match an existing entry, the entry to be evicted is
selected as follows: A candidate entry is randomly selected
from the first table and the new flow is inserted there. For
the flow previously present in the first table (lets call it F1),
a random entry in the second table is selected (namely F2).
The flow (either F1 or F2) with higher counter is assigned
to the entry at the second table; the other is checked against
the value of a random entry at table 3, repeating the process
until a flow (with a counter value lower than the rest of the
entries randomly selected) is evicted. The resulting process
is bounded in time, but the accuracy in the identification of
large flows, that depends on the proper selection of the flow
with minimum value, is reduced.

Precision [19] is a variant of HashPipe that improves
the accuracy in keeping track of large flows by recirculat-
ing packets to previous stages without incurring in memory
access violations. Neither HashPipe or Precision consider the
use of sampling to reduce the cost of managing the data
structure used to track flows.

III. SAMPLING-ENABLED ELEPHANT FLOW DETECTION
As described in Section II, previous proposals to detect
elephant flows that operate fully in the data plane, either
based on sketches [15] or on counters [1], [19], do not use

94124 VOLUME 9, 2021



P. R. Torres, Jr. et al.: Elephant in Room: Using Sampling for Detecting Heavy-Hitters

FIGURE 2. Algorithm for CMSS update.

sampling.1 By using sampling, we aim to reduce the amount
of resources required to detect elephant flows. We adopt an
elephant flow definition based on size and duration similar to
Mori et al. [3], that also considers sampling: an elephant flow
is a flow that is sampled at least s times using sampling rate S,
and lasts for at least D seconds. This definition is now used
to produce new sketch-based and counter-based mechanisms.
We note that our objective is to find a significant set of
long-lasting flows accounting for the largest possible share
of traffic, and we are not interested in determining the exact
size or duration for each of these flows (for this discussion,
we refer to Mori et al. [3]).
In order to circumvent the need for off-line processing to

identify elephant flows, the mechanisms we propose report
these flows at the very moment the sampled packet both
exceeds a threshold count and lasted for a minimum duration.
Thus, they perform instant notification as IDEAFIX does.

1Proposals considering sampling [9], [13] require off-line processing to
generate the resulting list of flows, so they are not suitable for full data plane
operation.

A. CMS SAMPLED
We next describe in detail our sketch-based mechanism:
When a packet is sampled, several hash functions are applied
to the flow identifier to obtain the entry to update at each of
the d sketches. Each entry stores a packet (or byte)Counter,
two timestamps, onewith the time of the first (FirstTS) and
last (LastTS) updates for the entry, and a Notified bit.
A notification occurs when the minimum of both the count
of sampled packets and duration across all tables exceed its
corresponding threshold and the notified bit is unset; then,
the notified bit is set to prevent further notifications for the
same flow. LastTS is used to clear the state for the entries
of a flowwhen the time since the last received packet exceeds
the flow reset time, to allow table entry reuse. We call this
strategy CMSS, for CMS-Sampled. The algorithm is shown
in Figure 2.

CMSS is able to generate a notification once the thresholds
in duration and size are exceeded. Note that the same flow
may be notified several times only if there are periods of inac-
tivity in which the flow was evicted from the data structure
and included back again.
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FIGURE 3. Algorithm for SSHS update.

B. SSH SAMPLED
Our counter-based mechanism is a variation of SSH [18],
a Space Saving implementation in which the flows with min-
imum count (of packets or bytes) are tracked by means of a
heap structure. We refer to it as SSHS, for SSH-Sampled. The
heap structure is a binary tree in which each child node has
a higher value than its parent. The implementation maps this
structure in an array, with a counter value at HEAP[k] (parent)
lower than the value at HEAP[2× k + 1] and HEAP[2× k + 2]
(children) for all k , k ≥ 0. For the sake of comparison,
non-existing elements are considered to be infinite. The most
interesting property of a heap is that its smallest element is
always at the root, HEAP[0]. As for CMSS, SSHS reports ele-
phant flows instantaneously, once a sampled packet exceeds

both a packet count and duration thresholds. Each entry also
contains a notification bit and two timestamps for tracking
flow duration and recent activity. The SSHS algorithm is
shown in Figure 3.

The maximum packet’s processing time in SSHS largely
depends on the BALANCETREE(T) function. The maximum
number of operations that can be required to rebalance the
structure when a new element is inserted (i.e., a sampled
packet for a new flow arrives) grows with O(Wlog(W )), with
W the number of entries in the managed table. As the table
size W grows, it is more unlikely that an RMT switch could
accommodate this operation in its tight processing schedule.
Thus, when large tables are used, the SSHS strategy could
only be implemented in NPU switches.
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As for CMSS, SSHS is also able to generate notifications
when both the thresholds in duration and size are exceeded.
However, for SSHS, it is also possible to generate a notifica-
tion to indicate that a flow is no longer being tracked. Thus,
SSHS allows bounding the maximum number of flows an
application manages to the size of the table. Note that CMSS
is not designed to provide this feature, as it would involve a
table-to-flow mapping that is costly to implement in the data
plane.

C. IMPLEMENTATION CONSIDERATIONS
The natural path for implementing SSHS and CMSS is to
code them in P4 [20]. P4 is the most popular abstraction for
programmable switches, defined by a target-independent lan-
guage. It is suited for a wide range of hardware device types,
allowing for example to program RMT devices by speci-
fying match-action primitives in different pipeline stages.
The primitives are implemented according to the hardware
capabilities of the target architecture, by the mediation of a
hardware-specific compiler. Sketch and variations of space
saving have been implemented in P4, and tested in different
real hardware devices [1], [15], [19]. We have coded an early
prototype of CMSS, that is available at [21].

Another implementation consideration is the cost of the
sampling operation for programmable switches, that should
be low. In many cases, the hardware architectures can effi-
ciently implement the random selection of a packet according
to a given sampling rate, as reported for sFlow [22] devices.
If this is not the case, the cost of taking a decision for every
incoming packet can be replaced by deciding the number
of packets to skip until the next sample, as described for
Nitrosketch [13].

IV. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
We have developed a Python simulator implementing CMSS
and SSHS, along with CMS and SSH.2 For the strategies
using sketches, we consider two variants with different num-
ber of tables: depth 2 (CMS-2 andCMSS-2), theminimum for
sketch operation, and 5 (CMS-5 and CMSS-5), as selected by
Nitrosketch [13]. The hash functions used, one for each depth
level, must be mutually independent hash functions. Another
requirement for the hash functions is that they must have a
larger result domain than the number of table entries. Both
conditions are fulfilled by the use of a crc-32 hash function
with different initial parameters.

All implementations, included unsampled ones, are engi-
neered to operate in instantaneous notification mode.

The parameters that can be configured for each strategy
(CMS, SSH, CMSS, SSHS) are:

• Elephant flow’s minimum duration D.
• Elephant flow’s minimum size measured in bytes, B, for
unsampled strategies (CMS and SSH), and minimum

2https://bitbucket.org/torresweb/suleiman/

FIGURE 4. Traffic accounted for an elephant flow detection with and
without sampling. For experiments involving sampling, we account the
traffic after the flow is identified as an elephant, i.e., p7, p8, . . . p12,
as these packets would be affected by the notified application (even
though some of them are not sampled). For non-sampled elephant
detection, traffic accounting starts after p9.

number of packets sampled s and sampling rate S for
sampled ones (CMSS and SSHS).

• Amount of memory allocated for the data structures.
• Elephant flow’s reset time r . This parameter is used to
clear flows as described in Section III.

To compare the strategies, we focus on the following
results:
• Amount of traffic accounted after the flows are cate-
gorized as elephants. Figure 4 depicts an example of
elephant flow detection in both unsampled and sampled
strategies. The traffic that corresponds to the same ele-
phant flows defined according to the unsampled def-
inition of elephant flows is the true positive traffic.
We can also extend these reasoning to flows, to iden-
tify true positive flows. Besides, the traffic spuriously
identified as elephant, which does not comply with the
unsampled definition, is the false positive traffic. We
assume that the utility for the application (e.g., traffic
engineering) is maximum when the identified traffic
adheres to the size-duration elephant flow specification,
i.e., the unsampled definition. Thus, we aim to capture
as many true positive flows as possible. The number of
false positive flows should be kept as low as possible,
as its notification triggers application activity that is not
justified by the size of the flow.

• Number of memory accesses. We count the number of
memory accesses to flow entries, as the time to perform
this operation dominates the whole algorithm execu-
tion. This number is used to estimate the computing
requirements at the switch for the detection of elephant
flows. The bigger the number, the lower the computing
resources available for other tasks.

• Number of flow notifications. Each notification triggers
an action in the application – either internal or exter-
nal to the switch. Flow notifications are only useful
when they correspond to elephant flows according to
the size-duration specification, and should be avoided
for other flows. Additionally, the same flow may be
notified many times, if the flow is evicted from the flow
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FIGURE 5. Ratio of managed traffic for RNP, CAIDA Dir-A and CAIDA Dir-B datasets. 1KB, 16KB, 32KB, 512KB and 8MB are the memory size for
each configuration. Dim colors represent true positives and full colors false positives.

tracking table, and then returned. The number of flow
notifications should be kept as low as possible, as they
trigger additional computations.

We now describe the experiments. We first define a refer-
ence elephant flow pattern, that results from the processing of
the input traces without sampling and with unlimited mem-
ory. For this case, we set D and B to the values indicated in
IDEAFIX, i.e., D = 10s and B = 10MB. This reference
pattern is used to identify true positive and false positive
traffic and flow notifications. Flow reset time is r = D. The
values of D and r are the same for CMS, SSH, CMSS and
SSHS. We vary the memory available to represent different
types of switches/configurations.

In our implementation, the memory allocated to represent
the information corresponding to a flow in SSH (and SSHS)
is the IP addresses and ports of the flows (12 bytes for
IPv4 addresses), a 4-byte counter (except for one bit used
to track notifications), and two 4-byte timestamps, indicating
the arrival time of the first packet of the flow and the last
time a packet was received, to prevent notifications for flows
inactive for long time. Thus, 24 bytes are required per flow.
For CMS and CMSS, the flow identifier is not required.
Then, we only need to allocate a 4-byte counter (including
a notification bit) and two 4-byte timestamps for each table
entry. The first timestamp records the time for the first packet
of the flow, and the other the time for the last packet of the
flow. The second timestamp is used to determine whether the
new packet corresponds to an exiting flow or to a new flow.

For a given memory size and summarization strategy,
we vary the number of entries according to its corresponding
row size.Memory size varies from very small (1KB), medium
(16KB, 32KB), large (512KB) and very large (8 MB).

TABLE 1. Summary for RNP and CAIDA datasets.

We consider 1:256, 1:1024, 1:8192 and 1:32768 sampling
rates. Finally, the minimum number of samples to detect an
elephant flow, s, is set to 3 (our experiments show that s = 2
results in too few flows and there is no significant difference
for s values ranging from 3 to 8).
We feed the simulator with three real traces, see Table 1,

two obtained from CAIDA [23] and one from RNP.3 The
CAIDA datasets were captured in the Equinix datacenter in
New York, with CAIDA Dir-A corresponding to traffic from
Sao Paulo to New York and CAIDA Dir-B to the opposite
direction. The RNP dataset is the outgoing traffic captured at
the Curitiba Point of Presence.

Results are obtained from different executions over a 5-min
period selected from each of the available traces, for a total
number of 10 executions4 for every set of parameter values.

B. RESULTS AND ANALYSIS
1) MANAGED TRAFFIC
In Figure 5 we show the traffic share associated to the ele-
phants flows over the total amount of traffic for each detection
method.

Many different configurations with sampling rates
1:256 and 1:1024 provide a large share of the maximum
achievable true positive traffic for each trace. With sampling

3RNP is the National Research and Educational network of Brazil
4We found that the 95% confidence interval is in all cases below 6% for the

parameter with higher variation, the number of false positive notifications.
The interval is lower for the rest of the reported results.
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FIGURE 6. Logarithm of memory accesses per second for RNP, CAIDA Dir-A and CAIDA Dir-B datasets. 1KB, 16KB, 32KB, 512KB and 8MB
are the memory sizes for each configuration.

FIGURE 7. Total number of notifications per second for RNP, CAIDA Dir-A and CAIDA Dir-B datasets. 1KB, 16KB, 32KB, 512KB and 8MB are the
memory sizes for each configuration. Dim colors represent true positives and full colors false positives. In addition, negative values are used to
represent false positive notifications.

rates of 1:8192 or larger, the amount of managed traffic
drops, specially for CAIDA traces. In most cases, being equal
the rest of parameters, SSH(S) performs better in terms of
amount of traffic managed than any CMS(S) option. This
observation is consistent with previous studies [1]. When this
is not the case, the difference is relatively small. This holds
for all traces, and specially for small memory footprints.
Note that when memory is scarce (16KB, 32KB) the use of
small sampling rates (1:256 or 1:1024) results in more traffic

than for the corresponding unsampled case. The low-pass
filter function performed by sampling compensates for the
difficulties of CMS(S)/SSH(S) to operate in low memory
scenarios.

When the two flavors of CMS(S) are compared, in general
CMS(S)-2 provides better results than CMS(S)-5.

Themaximum amount ofmanaged traffic is not necessarily
achieved with the configuration with largest memory. This is
because elephant flows are notified before the time specified
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by the minimum number of bytes transmitted and duration.
First, the sampling procedure to detect flows can result in
flows being notified before they would be in a non-sample
scenario (see Figure 4). In addition, more notifications can
also result from inaccuracies of the sketch and space saving
schemes such as entry collisions and the inheritance of the
counter values from dismissed flows. All these factors con-
tribute to the number of false positives.

2) COMPUTATION COST
Computation cost is estimated in terms of the memory access
rate. We use a logarithmic y-axis in Figure 6 to show the
results. 1:256 sampling consistently shows a reduction of two
orders of magnitude in the computing resources. Then, as the
sampling rate increases, the gain decreases. The amount of
allocated memory does not have a relevant impact in this cost.

While the total number of memory accesses is similar
for CMS(S) and SSH(S), it is worth to note that the latter
experiences a higher variability in the number of accesses
required to process an incoming packet, that accounts for the
identification of the minimum counter in the table.

3) NOTIFICATION RATE
The reference for the notification rate is the value required to
track the real elephants: 4.9 notifications/s for RNP, 6.6 for
CAIDA Dir-A and 5.0 for CAIDA Dir-B. The additional
overhead is due to repeated notifications for the same flow
identifier or notifications of non-elephant flows (false posi-
tive notifications).
The number of notifications per second is depicted

in Figure 7. Note that the y-axis is logarithmic. Notifications
are always well below a thousand per second.

False positive notifications are inherent to the use of flow
summarizing strategies and appear when no sampling is
applied. However, the use of sampling can increase its preva-
lence. In particular, in some cases, false positives exceed in an
order of magnitude the number of true positive elephant flows
(e.g., for CAIDA-B, sampling rate of 1:256). As sampling rate
grows, false positives are reduced.

V. CONCLUSION AND FUTURE WORK
We have evaluated the performance of two new families of
mechanisms that are suited for elephant flow detection with
the scarce resources available in programmable switches,
taking advantage on the use of sampled traffic. The resulting
mechanisms allow the detection of elephant flows fully in the
data plane. Sampling-enabled versions of sketch and counter
based algorithms provide a whole set of new trade-offs
between the share of managed traffic, the amount of memory
required, the number of operations devoted to per-packet
processing and the number of notifications to an external
application.

We show by using three real traces with very different
traffic patterns that most of the traffic associated to elephant
flows can be detected and notified to interested applications
in real-time, exclusively with data plane primitives, with

restrained memory and computing requirements. In partic-
ular, if memory is at least 512KB, sampling at 1:256 or
1:1024 provides a large traffic share with low per-packet pro-
cessing costs and reasonable increase in the number of notifi-
cations. At this operating point, space saving and sketches
perform similarly. With less memory, e.g., 16KB, SSHS
achieves a similar fraction of managed traffic at the cost of an
increase in the number of notifications. Sampling combined
with a very small table (1KBmemory) can manage half of the
traffic for the three traces considered (while the traffic drops
almost to 0 for the equivalent unsampled case). Increasing
the sampling rate to 1:8192 or beyond reduces too much
the amount of traffic managed for all traces, so it is not
recommended.

While the results provided in the paper inform about
the different trade-offs involved in fully data-plane elephant
detection, future work should involve deploying these mech-
anisms in hardware and evaluate the real performance that
can be achieved. Note that each target hardware imposes
its specific requirements in terms of available memory type
(SRAM, CAM) and size, number of operations that can be
executed per stage (for an RMT switch), or impact in the
overall performance/managed traffic if there are not strict
duration limits for data packet processing. This analysis will
indicate which data structure sizes are feasible with cur-
rent technology and its real performance. While we expect
CMS(S) to allow implementations with large tables in both
RMT and NPU switches, we are interested in evaluate the
limits imposed in RMT architectures for SSH(S) table sizes,
lower than for CMS(S).

Continuing with future work, we are interested in evaluat-
ing the feasibility of applying CMSS and SSHS to datacenter
traffic traces. Kandula et al. [24] report that most of the traffic
is associated to a small fraction of flows that last more than
10s. However, the possible high elephant flow count may
exceed current switch capacities, so that additional conditions
may be required to select the heaviest flows.

To improve accuracy in the detection of elephant flows,
samples belonging to TCP flows can be inspected to obtain
TCP sequence numbers. This information can be used to
infer more accurately the number of transferred bytes. Such
approach has been proposed for Planck [25] and Opensam-
ple [26].
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