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ABSTRACT In this paper, the problem of computing the number of degrees of freedom (NDF) of the field
radiated by a strip current along all the possible lines orthogonal to the source is addressed. As well known,
the NDF is equal to the number of singular values of the radiation operator that are before a critical index
at which they abrupt decay. Unfortunately, in the considered case, the solution of the associate eigenvalue
problem is not known in closed-form, and this prevents us from directly evaluating the singular values of the
radiation operator. To overcome this drawback, a weighted adjoint operator is exploited. The latter allows
obtaining an eigenvalue problem whose solution is known in closed-form but, at the same time, it modifies
the behavior of the singular values. However, since the change affects only the dynamics of the singular
values but not the critical index at which they abrupt decay, the NDF of the radiated field can be analytically
estimated by resorting to the weighted adjoint operator.

INDEX TERMS Dimension of data, eigenvalue problem, inverse source problem, integral equation, radiation
operator, singular values, NDF.

I. INTRODUCTION
The inverse source problem has several applications in
antenna analysis and synthesis [1]–[9]. From the mathemati-
cal point of view, it entails inverting a linear integral operator
called radiation operator. The latter relates the density cur-
rent J to the radiated field E which represent respectively the
unknown and the data of the inverse problem.

In order to evaluate the achievable performance in lin-
ear inverse problems, some common metrics are the point
spread function (PSF) [10], and the number of degrees of
freedom (NDF) [11]–[13]. In particular, the point spread
function provides the reconstruction of an impulsive source
or the synthesis of an impulsive field; instead, the number of
degrees of freedom represents at the same time the number
of independent functions required to represent the data with a
given degree of accuracy and the dimension of the unknowns
subspace that can be stably reconstructed [14].

Both the metrics depend on the geometric parame-
ters of the configuration and both are linked to the
singular values decomposition (SVD) of the radiation
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operator, which is a key mathematical tool widely used in
electromagnetics [15]–[20].

The link between the singular values decomposition and
the metrics mentioned above appears immediately clear con-
sidering that the point spread function can be expressed in
terms of the singular system of the radiation operator while
the number of degrees of freedom is given by the number of
relevant singular values of such an operator [21], [22].

However, the SVD of the radiation operator can
be exploited not only to evaluate the singular system,
the number of degrees of freedom, and the point spread
function [23]–[26] but also to find a discretization of the
radiation operator that exploits a non-redundant number of
samples [27]–[30].

In this article, the NDF of the near-field radiated by a
magnetic current strip is analytically computed. For a finite
observation domain parallel to the source, the NDF of the
near-field has been already computed in [31]. Here, instead,
the case where the observation domain is a truncated line
orthogonal to the source is dealt with.

A similar configuration was considered also in [32]
and [33]; however, there, the focus was the study of the depth
resolution and the analysis was limited to an observation
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domain centered with respect to the source. Differently, here,
the focus is on the analytical estimation of the NDF and the
case of an observation domain not centered with respect to
the source is also tackled.

Let us remark that the knowledge of the NDF for the con-
figuration described above gives insight on the forward and
on inverse source problems since it allows establishing both
the number of basis functions required to span the radiated
field and the number of coefficients in the current expansion
that can be stably recovered. Moreover, it is of great interest
also in phase retrieval [34] in the case where the phaseless
data are collected on multiple scanning lines parallel to the
source. In such a context, the knowledge of the NDF along the
directions orthogonal to the source allows finding the number
of scanning surfaces that provide independent information.
In fact, taking into account that the square amplitude of the
radiated field must be sampled with a step-length that is
the half of the radiated field, it is possible to retain that the
number of scanning surface that provide independent data
will be approximately equal to two times the NDF of the
radiated field.

For the considered configuration, the kernel of the asso-
ciate eigenvalue problem is space-variant; hence, the issue
of finding the NDF by studying the singular values behavior
of the radiation operator is quite difficult. To surmount this
drawback, at first, a weighted adjoint operator is introduced
and an asymptotic evaluation of the kernel of the eigenvalue is
performed. After, by acting a change of variables, the original
eigenvalue problem is recast in a new one.

If the observation domain is outside the source domain
or centered with respect to it, the new eigenvalue problem
involves a convolution operator with a sinc kernel. Hence, its
eigenvalues can be computed by exploiting the closed-form
results related to the Slepian-Pollak operator [35], [36].
At this stage, the NDF of the radiated field will be obtained
by observing that the presence of the weight function in the
adjoint operator affects only the dynamics of the eigenval-
ues but it does not change the position of the knee; hence,
the NDF corresponds to the number of relevant eigenvalues
of the sinc kernel.

Differently, if the observation domain is in front of the
source but not centered with respect to it, the kernel of the
new eigenvalue problem can be expressed by a sinc function
of difference type plus an error term that does not affect the
number of relevant eigenvalues. As it will be shown, also
in this case the presence of the weight function does not
affect the position of the knee in the eigenvalues diagram.
Hence, the NDF of the radiated field can be still evaluated
by referring to the integral operator with the sinc kernel.

Accordingly, our final result will be that of providing the
NDF of the near-field for each possible observation domain
orthogonal to the source. As it will be seen, for the considered
geometry the maximum value of the NDF is lower than that
achievable with an observation domain parallel to the source.

The article is organized as follows. In section II, at first,
the geometry of the problem is shown; after, the radiation

FIGURE 1. Geometry of the problem.

operator and its adjoint are introduced. In section III,
the expression of the kernel involved in the integral equa-
tion for the computation of the singular values of the
radiation operator is deduced. In section IV and V, the
above-mentioned kernel is evaluated respectively in the case
where the observation domain is located in the region outside
the source, and in the region in front of the source. Later,
it is shown how it is possible to recast such kernel in a form
more similar to a sinc kernel of difference type. In section VI,
the number of degrees of freedom of the radiated field is
found. A section of conclusion follows.

II. GEOMETRY OF THE PROBLEM
Amagnetic current J (x) = J (x) îy, supported on the set SD =
[−a, a] of the x-axis, radiates in a homogeneousmediumwith
wavenumber β.

The electric field radiated by such current has two compo-
nents: one along the x-axis, and another along the z-axis. The
x component of the electric field, E , is observed on a bounded
observation domain OD = [zmin, zmax] that is orthogonal to
the source, and located in near non-reactive zone along the
axis x = xo (see Fig. 1).

For the considered configuration, the radiation operator T
can be expressed as

T J =
∫ a

−a
z
e−jβ R(x

′,z)

R
3
2 (x ′, z)

J (x ′) dx ′ (1)

where

R(x ′, z) =
√
(xo − x ′)2 + z2

The adjoint operator T † is usually defined as

< T J , E >L2[zmin,zmax ] = < J , T †E >L2[−a,a] (2)

with < , >L2 denoting the scalar product in the functional
space L2 [37].

Here, instead, a weighted adjoint operator is introduced.
The latter is given by

T †
w E = T †wE =

∫ zmax

zmin
w(x ′, z) z

ejβ R(x
′,z)

R
3
2 (x ′, z)

E(z) dz (3)
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wherew(x ′, z) denotes a real positive continuous function that
pre-weights / pre-filters the data.

The use of the weighted adjoint has two effects. On one
hand, it simplifies the mathematical analysis of the radiation
operator. On the other, it changes the singular values decom-
position of the radiation operator. The latter would appear a
bad effect. However, since the weight function does not affect
the phase of the kernel of the adjoint operator, its presence
changes only the shape of the singular values but not the
critical index at which they abrupt decay. For such reason,
the weighted adjoint operator can be used in place of the usual
adjoint for evaluating the NDF of the radiated field.

III. PRELIMINARIES CONCEPTS FOR THE STUDY OF THE
RADIATION OPERATOR
With the aim to study the singular values behavior of the
radiation operator T , the eigenvalues of the auxiliary operator
T T †

w will be studied.
By virtue of the definitions (1) and (3), the latter can be

expressed as

T T †
wE =

∫ zmax

zmin
K (zo, z)E(z) dz (4)

where

K (zo, z) = zo z
∫ a

−a
w (x ′, z)

e−jβ [R(x
′,zo)−R(x ′,z)]

R
3
2 (x ′, zo)R

3
2 (x ′, z)

dx ′ (5)

By setting f (x ′, zo, z) = 1/ [R
3
2 (x ′, zo)R

3
2 (x ′, z)] and

φ(x ′, zo, z) = [R(x ′, zo)− R(x ′, z) ]/a, the kernel can be
recast in the following form

K (zo, z) = zoz
∫ a

−a
w (x ′, z)f (x ′, zo, z) e−jβ aφ(x

′, zo, z)dx ′ (6)

For zo = z, the exponential function in (6) is equal to one;
consequently, the kernel K (zo, z) can be exactly computed by
exploiting the integration by part method.

For each (zo, z) ∈ [zmin, zmax] × [zmin, zmax] : {zo 6= z}, if
βa � 1, the integral above can be evaluated by resorting to
an asymptotic approach. Since the choice of the asymptotic
technique is related to the presence/absence of stationary
points, it arises the problem of solving the equation

φ ′(x ′, zo, z) = 0 ∀x ′ ∈ [−a, a] (7)

where φ ′ indicates the derivative of φ with respect to x ′.
It is easy to show that if |xo| > a (or in other words if
the observation domain is outside the region of the source),
equation (7) does not admit any solution with respect to x ′ in
the set x ′ ∈ [−a, a]. Differently, if |xo| < a (or equivalently,
if the observation domain is located in front of the source)
then the point x ′ = xo is a solution of such equation (see,
once again, Fig. 1). For such reason, the cases |xo| > a and
|xo| < a will be analyzed separately in sections IV and V,
respectively.

IV. STUDY OF T T †
w IN THE CASE |xo| > a

In this section, at first, the kernel of the operator T T †
w in the

case where |xo| > a is evaluated. Later, it is shown how to
recast such operator in a form more similar to a convolution
operator with a bandlimited kernel of sinc type.
As seen before, for |xo| > a no stationary points appear in

the phase function; hence, the integral (6) can be asymptoti-
cally evaluated by taking into account only the contributions
of the endpoints [38]. Accordingly, if βa � 1 and |xo| > a
then ∀ (zo, z) ∈ [zmin, zmax] × [zmin, zmax] : {zo 6= z} the
kernel of T T †

w can be approximated by

K (zo, z)−
zoz
jβa

(
w(x ′, z)

f (x ′, zo, z)
φ ′(x ′, zo, z)

e−jβaφ(x
′,zo,z)

)∣∣∣∣x ′=a
x ′=−a

(8)

From equation (8), it follows that

K (zo, z)

≈ −
zoz
jβa

e−j
βa
2 (φa+φ−a)(

wa fa
φa ′

e j
βa
2 (φ−a−φa) −

w−a f−a
φ−a ′

e−j
βa
2 (φ−a−φa)

)
(9)

where the subscripts −a or a indicate that the correspondent
function has been particularized in x ′ = −a or x ′ = a.
As can be seen from (9), the operator T T †

w is space-variant.
In order to recast it in a form more similar to a convolution
operator, let us introduce the following variables

ζ (z) =
1
2a

(√
(xo + a)2 + z2 −

√
(xo − a)2 + z2

)
(10)

γ (z) =
1
2a

(√
(xo + a)2 + z2 +

√
(xo − a)2 + z2

)
(11)

which represent the two elliptic coordinates.
Thanks to the introduction of such variables, it results that

βa
2 (φ−a−φa) = βa (ζo−ζ ) and

βa
2 (φ−a+φa) = βa

(
γ (ζo)−

γ (ζ )
)
. Hence, by passing from the variables (zo, z) to the

variables ζo = ζ (zo) and ζ = ζ (z), it is possible to recast
(4) as below

T T †
wE =

∫ ζ (zmin)

ζ (zmax )
K (ζo, ζ )E(ζ ) dζ (12)

where

K (ζo, ζ ) ≈
z(ζo)z(ζ )
jβa

dz
dζ

e−jβa[γ (ζo)−γ (ζ )](
wa(ζ )fa(ζo, ζ )
φa ′(ζo, ζ )

e jβa(ζo−ζ )

−
w−a(ζ ) f−a(ζo, ζ )
φ−a ′(ζo, ζ )

e−jβa(ζo−ζ )
)

(13)

The full expressions of z(ζ ) and its derivative dz
dζ are

reported in appendix A.
At this stage, the kernel has still a complicate structure.

However, by approximating the amplitude factors as

z(ζo)fa(ζo, ζ )
φ′a(ζo, ζ )

≈
a

(xo − a)(ζo − ζ ) dzdζ
(14)
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FIGURE 2. Kernel of T T † in the variables (ζ, ζo) for a = 20λ, xo = 25λ,
zmin = 2.5λ (ζmax = 0.987), zmax = 40λ (ζmin = 0.497).

FIGURE 3. Kernel of T T †
w in the variables (ζo, ζ ) for a = 20λ, xo = 25λ,

zmin = 2.5λ (ζmax = 0.987), zmax = 40λ (ζmin = 0.497).

z(ζo)f−a(ζo, ζ )
φ′−a(ζo, ζ )

≈
a

(xo + a)(ζo − ζ ) dzdζ
(15)

and by choosing

w(x ′, ζ ) =
w(x ′)
z(ζ )

=
(xo − x ′)
z(ζ )

, (16)

it can be rewritten in simple and nice form

K (ζo, ζ ) ≈
2π
β
ejβa[γ (ζ )−γ (ζo)]

sin
(
βa (ζo − ζ )

)
π (ζo − ζ )

. (17)

The derivation of the approximations (14) and (15) is
shown in Appendix B.

Figures 2, 3 and 4 sketch respectively the kernel of
T T †, T T †

w , and the sinc kernel (17). The diagrams are in dB
and normalized with respect to its own maximum. As can be
seen from such figures, the sinc kernel is almost equal to the
actual kernel of T T †

w . Consequently, the eigenvalues of the
sinc kernel (17) approximate very well those of T T †

w . This is
confirmed also by Fig. 5 in which the eigenvalues of T T †,
those of T T †

w , and those of the sinc kernel (17) are depicted.
As can be seen from such figure, the eigenvalues of T T †

w
and those of the sinc kernel (17) have the same behavior;

FIGURE 4. Sinc kernel given by (17) for a = 20λ, xo = 25λ, zmin = 2.5λ
(ζmax = 0.987), zmax = 40λ (ζmin = 0.497).

FIGURE 5. Eigenvalues of T T †, T T †
w , and of the sinc kernel for

a = 20λ, xo = 25λ, zmin = 2.5λ (ζmax = 0.987), zmax = 40λ (ζmin = 0.497).

instead, the eigenvalues of T T †
w exhibit a different behavior

with respect to those of T T †. Despite this, the critical index
beyond which the eigenvalues abrupt decay is the same for
both the operators. This confirms that the use of the weighted
adjoint does not change the number of relevant singular val-
ues but it modifies only the dynamics of the singular values
by making them more flat.

From the above considerations, it follows that the number
of relevant eigenvalues of T T † (or in the words the NDF of
the radiated field) can be evaluated by determining the num-
ber of relevant eigenvalues of T T †

w which, in turn, exhibits
the same eigenvalues of the integral operator with the sinc
kernel (17).

Let us remark that despite the analysis developed above
holds both for xo < −a and xo > a, in the case where
xo < −a it may be convenient to define the variable ζ as the
opposite of (10). In such a way, the kernel expression remains
the same of (17) but the variable ζ attains positive values.

V. STUDY OF T T †
w IN THE CASE |xo| ≤ a

In this section, with reference to the case where |xo| ≤ a,
the kernel of T T †

w is first evaluated, and after it is recast in a
form suitable to be studied.
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Differently from the case of section IV, if |xo| < a the
asymptotic evaluation of the kernel contains not only the
contributions of the endpoints x ′ = −a and x ′ = a but also
the contribution given by the stationary point x ′ = xo [38].
Hence, if βa � 1 and |xo| < a an asymptotic evaluation
of the integral (6) which holds true ∀(zo, z) ∈ [zmin, zmax] ×
[zmin, zmax] : {zo 6= z} is given by

K (zo, z) ≈ zoz
(

wafa
−jβaφa ′

e−jβaφa −
w−af−a
−jβaφ−a ′

e−jβaφ−a

+

√
2π
βa

wxo fxo√
|φ′′xo |

e−jβaφxo ej
π
4 sign(−φ

′′
xo )
)

(18)

where
• φ ′′ indicates the second partial derivative of φ with
respect to the variable x ′,

• the subscripts −a, a, xo denote respectively that the
corresponding function has been particularized for x ′ =
−a, x ′ = a or x ′ = xo.

To further proceed in our analysis, let us restrict the atten-
tion to the case 0 < xo < a. In such circumstance, it is
convenient to recast the previous expression of K (zo, z) in the
form

K (zo, z)

≈ zoz e−j
βa
2 (φ−a+φxo )

(
w−af−a
jβaφ−a′

e−j
βa
2 (φ−a−φxo )

+

√
2π
βa

wxo fxo√
|φ′′xo |

ej
βa
2 (φ−a−φxo )ej

π
4 sign(zo−z)

)
−1Ka(zo, z)

(19)

where

1Ka(zo, z) =
zoz
jβa

wa(z)fa(zo, z)
φa′(zo, z)

e−jβaφa(zo,z). (20)

With the aim to obtain a kernel whose eigenvalues can be
computed in closed-form, let us introduce the variables

ζ (z) =
1

a+ xo

(√
(xo + a)2 + z2 − |z|

)
(21)

γ (z) =
1

a+ xo
(
√
(xo + a)2 + z2 + |z|) (22)

The latter allowwriting that a (φ−a−φxo ) = (a+xo)(ζo−ζ )
and a

(
φ−a(ζo, ζ ) + φxo (ζo, ζ )

)
= (a + xo)

(
γ (ζo) − γ (ζ )

)
.

Hence, by expressing (4) in terms of the variables ζo = ζ (zo)
and ζ = ζ (z), it results that

T T †
wE =

∫ ζ (zmin)

ζ (zmax )
K (ζo, ζ )E(ζ ) dζ (23)

where

K (ζo, ζ )

≈ −z(ζo) z(ζ )
dz
dζ

e−j
β(a+xo)

2

(
γ (ζo)−γ (ζ )

)
(
w−a(ζ )

f−a(ζo, ζ )
jβaφ−a′(ζo, ζ )

e−j
β(a+xo)

2 (ζo−ζ )

+

√
2π
βa

wxo (ζ )
fxo (ζo, ζ )√
|φ′′xo (ζo, ζ )|

ej
β(a+xo)

2 (ζo−ζ )e−j
π
4 sign(ζo−ζ )

)
+1Ka(ζo, ζ ) (24)

with

1Ka(ζo, ζ ) =
z(ζo)z(ζ )
jβa

wa(ζ )fa(ζo, ζ )
φa′(ζo, ζ )

dz
dζ

e−jβaφa(ζo,ζ ).

(25)

The expressions of z(ζ ) and dz
dζ are shown in Appendix C.

The first term of K (ζo, ζ ) can be expressed in terms
of a sinc function depending on the difference (ζo − ζ ).
In order to achieve this aim, let us first approximate the
amplitude term z(ζo) f−a(ζo, ζ )/φ−a′(ζo, ζ ) as in (15), and
fxo (ζo, ζ )/

√
φ′′xo (ζo, ζ ) as below

fxo (ζo, ζ )√
|φ′′xo (ζo, ζ )|

≈

√
a

2z(ζ )z(ζo)
sign(ζo − ζ )√∣∣∣ dzdζ ∣∣∣(ζo − ζ ) (26)

(see Appendix D for the derivation of approximation (26)).
Later, let us choose the following weight function

w(x ′, ζ ) =
w(x ′)
z(ζ )

≈

w−a−wxo
−a−xo

(x ′ − xo)+ wxo
z(ζ )

(27)

where

w−a =
π (a+ xo)

λ
, wxo =

√
a+ xo
2λ

. (28)

By taking into account of equations (15) (26) (28), and by
performing the following approximation

1
z(ζ )

√∣∣∣∣ dzdζ
∣∣∣∣ =

√
2

√
a+ xo

√
1+ ζ 2

1− ζ 2
≈

√
2

a+ xo
(29)

the kernel expressed in (24) can be approximated as follows

K (ζo, ζ )

≈ π e−j
β(a+xo)

2

(
γ (ζo)−γ (ζ )

)
e j

π
8 sign(ζo−ζ )

×

sin
(
β(a+xo)

2 (ζo − ζ )+ π
8 sign(ζo − ζ )

)
π (ζo − ζ )

+1Ka(ζo, ζ )

(30)

Since equation (18) does not work for zo = z, equation
(30) is not valid for ζo = ζ . An expression of K (ζo, ζ ) which
well approximates the behavior of the actual kernel ∀(ζo, ζ ) ∈
[ζmin, ζmax]× [ζmin, ζmax] is given by

K (ζo, ζ ) ≈ π e
−j β(a+xo)2

(
γ (ζo)−γ (ζ )

) sin (β(a+xo)2 (ζo − ζ )
)

π (ζo − ζ )
+1Ka(ζo, ζ ) (31)

Hence, for 0 < xo < a the kernel of T T †
w is made up

by two terms. The first one is proportional to a sinc kernel of
difference type, instead, the second term1Ka can be regarded
as an additive error.

Figures 6, 7 and 8 sketch respectively the actual kernel of
T T †, T T †

w , and the first term of (31). The diagrams are in dB

VOLUME 9, 2021 91653



R. Pierri, R. Moretta: NDF of Near-Zone Field on Line Perpendicular to Source

FIGURE 6. Kernel of T T † in the variables (ζo, ζ ) for a = 20λ, xo = 10λ,
zmin = 2.5λ, (ζmax = 0.920), zmax = 40λ (ζmin = 0.333) .

FIGURE 7. Kernel of T T †
w in the variables (ζo, ζ ) for a = 20λ, xo = 10λ,

zmin = 2.5λ (ζmax = 0.920), zmax = 40λ (ζmin = 0.333).

and normalizedwith respect to its ownmaximum.As it can be
seen from such figures, the kernel of T T † exhibits a different
decay with respect to the others. Instead, the kernel of T T †

w
and the sinc term in (31) strongly differ in the region outside
the main lobe whereas they are similar in the region of the
main lobe (in particular way for small andmedium values of ζ
and ζo). In this last case, the differences between the two dia-
grams are due essentially to the approximation made in (29),
and to the fact that we are neglecting the additive term 1Ka.
Despite the differences among Figs. 6, 7 and 8, the number

of significant eigenvalues is essentially the same in all the
three cases. This aspect is well shown in Fig. 9 which sketches
the eigenvalues of T T †, T T †

w and those of the integral oper-
ator with the sinc kernel. As it can be seen from Fig. 9,
the dynamics of the eigenvalues changes in each case, instead,
the position of the knee in the eigenvalues plot is always the
same. Accordingly, also for 0 < xo < a the number of
relevant eigenvalues of T T † can be computed by referring
to the integral operator with the sinc kernel corresponding to
the first term of (31).

It is worth noting that the study developed for 0 < xo < a
can be repeated in a dual way for−a < xo < 0. In such a case,
the terms of (18) that allow approximating the main lobe of
the kernel of TT †

w are those due to the endpoint x ′ = a and

FIGURE 8. Sinc kernel corresponding to the first term of (31) for a = 20λ,
xo = 10λ, zmin = 2.5λ (ζmax = 0.920), zmax = 40λ (ζmin = 0.333).

FIGURE 9. Eigenvalues of T T †, T T †
w , and of the sinc kernel for

a = 20λ, xo = 10λ, zmin = 2.5λ (ζmax = 0.920), zmax = 40λ (ζmin = 0.333).

to the stationary point x ′ = xo. Hence, after the introduction
of the variables

ζ (z) =
1

a− xo

(√
(xo − a)2 + z2 − |z|

)
(32)

γ (z) =
1

a− xo
(
√
(xo − a)2 + z2 + |z|), (33)

it is possible to approximate the kernel of TT †
w in the case

where −a < xo < 0 as below

K (ζo, ζ ) ≈ π e
−j β(a−xo)2

(
γ (ζo)−γ (ζ )

) sin (β(a−xo)2 (ζo − ζ )
)

π (ζo − ζ )
+1K−a(ζo, ζ ) (34)

As regards the eigenvalues behavior, the discussion already
made for the case 0 < xo < a works also for −a < xo < 0.
At this point, let us tackle the cases where xo = 0 and

xo = ± a. In such circumstance, the asymptotic evaluation
of the kernel of T T †

w can be expressed by only two complex
exponential functions; accordingly, it can be recast as a purely
sinc function.

A. THE CASE xo = 0
In this section, a closed-form expression of the kernel of
T T †

w in the case where xo = 0 is provided. In such a case,
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FIGURE 10. Kernel of T T † in the variables (ζo, ζ ) for a = 20λ, xo = 0λ,
zmin = 2.5λ (ζmax = 0.883), zmax = 40λ (ζmin = 0.236).

FIGURE 11. Kernel of T T †
w in the variables (ζo, ζ ) for a = 20λ, xo = 0λ,

zmin = 2.5λ (ζmax = 0.883), zmax = 40λ (ζmin = 0.236).

the asymptotic evaluation of K (zo, z) given by equation (18)
works ∀(zo, z) ∈ [zmin, zmax] × [zmin, zmax] : {zo 6= z}.
Furthermore, since xo = 0, it results also that

φa(zo, z) = φ−a(zo, z)
fa(zo, z)
φ′a(zo, z)

= −
f−a(zo, z)
φ′−a(zo, z)

(35)

Consequently, if the weight function w(x ′, z) is such that
wa(z) = w−a(z), the kernel (18) can be rewritten as

K (zo, z) ≈ zoz
(

2w−af−a
jβaφ−a ′

e−jβaφ−a

+

√
2π
βa

w0f0√
|φ′′0 |

e−jβaφ0ej
π
4 sign(−φ

′′

0 )

 (36)

where the subscript 0 denotes the correspondent function has
been particularized for x ′ = xo = 0.
The use of the variables ζ (z) and γ (z) defined in (21) and

(22), and the following choice of the weight function

w(x ′, ζ ) =
w(x ′)
z(ζ )

=

w−a − w0

−a
|x ′| + w0

z(ζ )
(37)

FIGURE 12. Sinc kernel given by (38) for a = 20λ, xo = 0λ,
zmin = 2.5λ (ζmax = 0.883), zmax = 40λ (ζmin = 0.236).

FIGURE 13. Eigenvalues of T T †, T T †
w , and of the sinc kernel for

a = 20λ, xo = 0λ, zmin = 2.5λ (ζmax = 0.883), zmax = 40λ (ζmin = 0.236).

where w−a = πa
λ
, w0 =

√
2a
λ

allow recasting the kernel of

T T †
w as below

K (ζo, ζ ) ≈ 2π e−j
βa
2

(
γ (ζo)−γ (ζ )

) sin (βa2 (ζo − ζ )
)

π (ζo − ζ )
. (38)

In Figs. 10, 11 and 12 the kernel of T T †, T T †
w , and the sinc

kernel (38) are sketched in dB and normalized with respect to
its own maximum.

Note that when xo = 0, the sinc kernel expressed by (38)
approximates well the actual kernel of T T †

w . The only differ-
ence between the two diagrams concerns the value of the two
kernels along the lines given by the equation ζo − ζ = n 2π

βa .
Along such lines, the sinc kernel is exactly zero, instead,
the actual kernel of T T †

w assumes a value that is−35 dBwith
respect to its maximum.

In Fig. 13 the eigenvalues of T T †, T T †
w and those of the

integral operator with the sinc kernel (38) are depicted.
As it can be seen from the figure, also in this case the number
of relevant eigenvalues is the same in all the cases. Conse-
quently, also for xo = 0 the number of relevant eigenvalues of
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FIGURE 14. Kernel of T T † in the variables (ζo, ζ ) for a = 20λ, xo = 20λ,
zmin = 2.5λ (ζmax = 0.939), zmax = 40λ (ζmin = 0.415).

FIGURE 15. Kernel of T T †
w in the variables (ζo, ζ ) for a = 20λ, xo = 20λ,

zmin = 2.5λ (ζmax = 0.939), zmax = 40λ (ζmin = 0.415).

T T † can be computed by referring to integral operator with
the sinc kernel (38).

B. THE CASES xo = a AND xo = −a
In this section, the operator T T †

w is studied in the case where
xo = a and xo = −a.
For xo = a, the point x ′ = a is at the same time an endpoint

and a stationary point; hence, the asymptotic evaluation of the
K (zo, z) is given by

K (zo, z) ≈ zoz
(

w−af−a
jβaφ−a ′

e−jβaφ−a

+
1
2

√
2π
βa

wafa√
|φ′′a |

e−jβaφaej
π
4 sign(−φ

′′
a )

)
(39)

Keeping in mind the definition of ζ (z) and γ (z) provided
respectively in (21) and (22), and choosing the weight func-
tion as below

w(x ′, ζ ) =
w(x ′)
z(ζ )

=

w−a − wa
−a− a

x ′ + wa

z(ζ )
(40)

FIGURE 16. Sinc kernel given by equation (41) for a = 20λ, xo = 20λ,
zmin = 2.5λ (ζmax = 0.939), zmax = 40λ (ζmin = 0.415).

FIGURE 17. Eigenvalues of T T †, T T †
w , and of the sinc kernel for

a = 20λ, xo = 20λ, zmin = 2.5λ (ζmax = 0.939), zmax = 40λ (ζmin = 0.415).

with w−a = 2πa
λ

and wa =
√

4a
λ
, it is possible to approximate

the kernel of T T †
w by the following expression

K (ζo, ζ ) ≈ π e
−jβa

(
γ (ζo)−γ (ζ )

) sin(βa (ζo − ζ ))
π (ζo − ζ )

. (41)

In Figs. 14, 15 and 16 the kernel of T T †, T T †
w , and the sinc

kernel are sketched in dB. Instead, in Fig. 17 the eigenvalues
of T T †, T T †

w and those of the sinc kernel (41) are shown. All
the considerations already made in the case xo = 0 hold true
also for xo = a.

The study of the operator T T †
w for xo = −a can be tackled

as the case xo = a. For xo = −a, the variables ζ and γ have
the expression given by (32) and (33), respectively. Despite
the definition of the variables ζ and γ is different by the case
xo = a, the formal expression of K (ζo, ζ ) will be once again
that provided by (41).

VI. NDF OF THE RADIATED FIELD
In the previous sections, it has been shown that the eigenval-
ues of T T † can exhibit a different dynamics from those of the
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FIGURE 18. Behavior of the transformation ζ (z) for different values of xo
when a = 20λ.

correspondent integral operator with a sinc kernel; however,
in each case, the position of the knee in the eigenvalues
plot occurs at the same index. For such reason, the number
of degrees of freedom (that corresponds to the number of
eigenvalues before the knee) can be evaluated by referring
to the integral operator∫ ζ (zmin)

ζ (zmax )
ejW (γ (ζ )−γ (ζo))

sin (W (ζo − ζ ))
π (ζo − ζ )

(.) dζ (42)

where

W =

βa for |xo| ≥ a

β
a+ |xo|

2
for |xo| ≤ a

(43)

By exploiting the Slepian-Pollak results in [35], it follows
that the number of degrees of freedom is given by

NDF =
W
π

(
ζ (zmin)− ζ (zmax)

)
(44)

where ζ (z) is defined as

ζ (z)

=



√
(xo + a)2 + z2 −

√
(xo − a)2 + z2

2a
forxo > a√

(xo + a)2 + z2 − |z|
a+ xo

for0 ≤ xo ≤ a√
(xo − a)2 + z2 − |z|

a− xo
for − a≤xo≤0√

(xo − a)2 + z2 −
√
(xo + a)2 + z2

2a
forxo < −a

(45)

In Fig. 18, the behavior of ζ (z) for positive values of
xo is sketched. By its definition, the diagram of ζ (z) for a
negative value of xo is exactly equal to the diagram of the
correspondent positive value of xo.
As can be seen from (44), the NDF depends only on the

wavenumber β = 2π
λ
, and on the geometrical parameters of

FIGURE 19. Geometry with combined observation domain (1 line parallel,
and 2 lines orthogonal to the source).

the configuration a, xo, zmin, zmax which are related to the size
of the source, the position of the observation domain, and its
extension.

Note that if ζ (zmin) and ζ (zmax) remain unchanged and
xo changes in the set xo ∈ [a,+∞] then the NDF
remains unchanged. Differently, if ζ (zmin) and ζ (zmax) remain
unchanged and xo changes in the set xo ∈ [0, a] then the NDF
increases with respect to xo.
Let us remark that if the observation domain was infi-

nite, the difference ζ (zmin) − ζ (zmax) would be equal to 1;
accordingly, the NDF would be at maximum (βa)/π . Since
in practical cases the observation domain is necessarily finite,
the NDF is always less than (βa)/π . Bearing in mind that the
set of all possible currents is well represented by (2βa)/π
independent functions, it follows that it is not possible to
retrieve the current with data collected only on a single line
orthogonal to the source (this, instead, is possible when the
observation domain is parallel to the source).

In order to retrieve the current, the data should be collected
on 2 scanning lines of infinite extension placed along the
axis xo = a and xo = −a. However, since the observa-
tion domains are necessarily limited, also a little observation
domain parallel to the source must be added (see Fig. 19).
In such a case, the NDF of the radiated field can be derived by
considering the result on the NDF provided here and that for
an observation domain parallel to the source shown in [31].

VII. CONCLUSION
In this paper, with reference to a magnetic strip current,
an analytical expression of the NDF of the radiated field over
a truncated line orthogonal to the source has been provided.

Since our study works in near zone for each value of xo,
it extends the results obtained for an observation domain cen-
tered with respect to the source located in Fresnel zone [32]
or in near zone [33].

Let us point out that although the analysis has been devel-
oped in the case of a magnetic current, the expression of the
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NDF of the radiated field remains unchanged for an electric
current. Indeed, in the case of an electric current, the kernel
of the radiation operator T differs by that in (1) only for the
amplitude but not for the phase (which represents the quantity
that really affects the NDF). Accordingly, a similar analysis
can be repeated by achieving the same result.

Before concluding, it is worth noting that this study, and
that developed in [31] represent the mathematical basis for
addressing configurations where the observation domain is
a generic curve. The latter are very interesting in applica-
tions since a generic curve of observation may represent
the trajectory followed by an UAV-based system for in-situ
evaluation of radiating systems [39]–[43]. More in detail,
the analysis made in [31] for an observation domain parallel
to the source is suitable to study also the case where the
observation domain is a smooth curve slowly varying (in such
case no stationary points appear in the kernel of the integral
equation involved in the computation of the singular val-
ues). Instead, the analysis developed here for an observation
domain orthogonal to source allows to study also configura-
tions where the observation domain is a smooth curve rapidly
varying (in such case a stationary point appears in the kernel
of the integral equation for the computation of the singular
values).

APPENDIX A
The TRANSFORMATION, ITS INVERSE, AND THE
DERIVATIVE OF THE INVERSE FOR THE CASE xo > a
In this appendix, with reference to the transformation

ζ (z) =
1
2a

(√
(xo + a)2 + z2 −

√
(xo − a)2 + z2

)
used for xo > a, the expression of z(ζ ) and dz

dζ is provided.
In particular, the inverse function z(ζ ) is given by

z(ζ ) =

√
(1− ζ 2)

(
x2o
ζ 2
− a2

)
(46)

while its derivative is provided by

dz
dζ
=
a2ζ − x2oζ

−3

z(ζ )
(47)

APPENDIX B
APPROXIMATION OF THE AMPLITUDE TERMS
z (ζo)fa (ζo, ζ )
φ′a (ζo), ζ

AND
z (ζo)f−a (ζ, ζo)
φ′−a (ζ, ζo)

In this appendix, it is shown how to derive the approximation
of the amplitude terms z(ζo)

fa(ζo,ζ )
φ′a(ζo,ζ )

and z(ζo)
f−a(ζo,ζ )
φ′−a(ζo,ζ )

made
in (14) and (15).

To obtain (14), the following approximation has been per-
formed

zofa(zo, z)
φ′a(zo, z)

≈
zofa(zo, z)|zo=z

φ′a(zo, z)|zo=z +
dφ′a(zo, z)

dzo

∣∣
zo=z

(zo − z)
(48)

Taking into account for the definitions of f (x ′, zo, z) and
φ(x ′, zo, z) provided in section III, it results that

zofa(zo, z)|zo=z =
z

[(xo − a)2 + z2]3/2
(49)

φ′a(zo, z)|zo=z = 0 (50)
dφ′a(zo, z)

dzo

∣∣
zo=z
=

z(xo − a)
a[(xo − a)2 + z2]3/2

(51)

Consequently, equation (44) can be rewritten as below

zofa(zo, z)
φ′a(zo, z)

≈
a

(xo − a)(zo − z)
(52)

By exploiting the equation zo − z =
dz
dζ

(ζo − ζ ), it results

that
z(ζo)fa(ζo, ζ )
φ′a(ζo, ζ )

≈
a

(xo − a)(ζo − ζ ) dzdζ
.

The same discussion has been repeated also to approximate
the term z(ζo)

f−a(ζo,ζ )
φ′−a(ζo,ζ )

.

APPENDIX C
The TRANSFORMATION, ITS INVERSE, AND THE
DERIVATIVE OF THE INVERSE FOR
THE CASE 0 ≤ xo ≤ a
In this appendix, with reference to the transformation

ζ (z) =
1

a+ xo

(√
(xo + a)2 + z2 − |z|

)
used for 0 < xo < a, the expression of z(ζ ) and dz

dζ
is provided. In particular, the inverse function z(ζ ) has the
following expression

z(ζ ) =
a+ xo

2

(
1
ζ
− ζ

)
(53)

while its derivative is given by

dz
dζ
= −

a+ xo
2

(
1
ζ 2
+ 1

)
. (54)

APPENDIX D
APPROXIMATION OF THE TERM

fxo (ζo, ζ )√
|φ′′xo (ζo, ζ )|

In this appendix, the approximation (26) is justified.
Taking into account for the definitions of f (x ′, zo, z) and
φ(x ′, zo, z) provided in section III, it results that

fxo (zo, z)√
|φ′′xo (zo, z)|

=
1
zzo

√
a

√
|zo − z|

(55)

Since zo− z =
dz
dζ

(ζo− ζ ), equation (55) can be rewritten

as below

fxo (ζo, ζ )√
|φ′′xo (ζo, ζ )|

=
1

2z(ζ )z(ζo)
2
√
a√∣∣∣ dzdζ ∣∣∣√|ζo − ζ | (56)
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By performing the following approximation

1
ζo − ζ

≈
2

√
|ζo − ζ |

sign(ζo − ζ ), (57)

it results that

fxo (ζo, ζ )√
|φ′′xo (ζo, ζ )|

≈

√
a

2z(ζ )z(ζo)
sign(ζo − ζ )√∣∣∣ dzdζ ∣∣∣(ζo − ζ ) . (58)
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