
Received April 29, 2021, accepted May 4, 2021, date of publication June 23, 2021, date of current version July 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3078028

Nonparametric Model-Based Online Junction
Temperature and State-of-Health Estimation
for Insulated Gate Bipolar Transistors
XIANGXIANG LIU 1, TIANLEI JIAO 2, DIGANTA DAS 3, (Member, IEEE),
IJAZ HAIDER NAQVI 4, (Member, IEEE), AND MICHAEL PECHT 3, (Life Fellow, IEEE)
1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300000, China
2Beiyang Hongyun (Tianjin) Cyber Technology Ltd., Tianjin 300000, China
3Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA
4Department of Electrical Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan

Corresponding author: Tianlei Jiao (tianleijiao@gmail.com)

This work was supported by the Joint Doctoral Training Foundation of Hebei University of Technology (HEBUT).

ABSTRACT Insulated gate bipolar transistor (IGBT) is widely used in power equipment, it generally
works in complex circuit profiles and it is very difficult to measure or predict the thermal parameters of
the module in real-time and evaluate the corresponding health status in the transient process. This paper
develops a novel approach for solder-layer condition monitoring of IGBTs. In the approach a time-series
nonparametric model of a power module is constructed, the current power and ambient temperature data
are used to deduce the health state junction and case temperature. Three groups of time-series insulated
gate bipolar transistors (IGBTs) data are used to train and verify the time-series nonparametric model for
online conditions, the results show that the developed method has high accuracy. Compared with traditional
methods, the time series non-parametric model method not only saves characteristic experiments but also
saves the process of mathematical model construction. Besides, the proposed method also has the advantages
of strong generalization and low equipment requirements which is useful for actual working conditions.
Thereafter, another nonparametric model is built, the predicted junction temperature is used to estimate the
collector voltage in the health state, and the percentage deviation of the measured collector voltage from
the estimated voltage is used to do the state-of-health estimation of the IGBT and its accuracy is verified by
the experiment result.

INDEX TERMS IGBT, time-series ANN, state-of-health, junction temperature, artificial intelligence.

I. INTRODUCTION
Power inverters are one of the most reliability-critical parts
in power electronic systems such as photovoltaic (PV) sys-
tems and wind-power generation systems. For example, an
investigation of wind turbines showed that the power elec-
tronic frequency converters caused 13% of the failures and
18.4% of the downtime of the monitored wind turbines [1].
Insulated-gate bipolar transistors (IGBTs) are estimated to be
responsible for 34% of all inverter failures, indicating that the
reliability of power electronics is highly correlated with the
reliability of the IGBT module [2], [3]. Improved diagnostics
and prognostics of the IGBT module can significantly reduce

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

the downtime and the operational cost of overall PV and wind
power generation systems.

Wear-out is the most dominant failure mechanism of power
semiconductor devices and themain reason for that is thermo-
mechanical stress caused by junction temperature fluctua-
tion [4]. Online junction temperature estimation leads to
the state of health estimation. There are a few methods for
measuring and estimating the junction temperature. The first
method is the optical method which typically uses an infrared
(IR) camera. Dupont et al. [5] used an IR camera to map the
temperature distribution across the chip surface. The main
drawback of this method is that the equipment is expen-
sive and not suitable for measurements over a long dura-
tion. The second method is the physical attachment method.
The attachment materials include thermocouples and optical
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fibers. Piton et al. [6] presented an experimental set-up based
on optical fibers to measure IGBT chip temperatures online.
The drawback of this method is that it destroys the module
package, which limits its usage range. The third method is the
electrical parameter method. In this method, a temperature-
sensitive electrical parameter (TSEP) is used for the junction
temperature evaluation. Yuan et al. [7] proposed a self-
calibration method by using the voltage derivative (dV/dt).
Zhang et al. [8] used the reverse voltage peak between the
auxiliary emitter and power emitter as a TSEP. The advantage
of this method is it doesn’t need to destroy the package
and the accuracy is high by choosing a suitable TSEP. The
drawback is that it can only be applied only in low-current
situations (usually less than 0.1 A) to avoid self-heating.
Some studies established models for online junction temper-
ature estimation. Eleffendi and Johnson [9] estimated online
junction temperature by Kalman filter with the auxiliary of
collector voltage. Ouhab et al. [10] established an analytical
electro-thermal model, which can be used during in-service
conditions to predict the junction temperature. Junction tem-
perature is critical for the state-of-health estimation of IGBT,
but it is general accepted that directly junction temperature is
very hard and intrusive It is necessary to do online junction
temperature in more effective ways.

Several papers have concentrated on state-of-health esti-
mation and remaining useful lifetime prediction for the online
condition. In particular, Hu et al. [11] investigated junction
and case temperatures at different delamination degrees and
an assessment method based on the case temperature differ-
ence is established to do the IGBT degradation assessment.
The method only works under a stable power or a fundamen-
tal frequency power, which might be part of a qualification
test. However, the actual working environment of IGBT can
be much more complex. Quan et al. [12] proposed a multi-
label classification learning model based on ISODATA for
the multi-feature parameters of power semiconductor device
IGBT, the method is proven that it is better at adapting to
the IGBT health classification evaluation than general clus-
tering algorithm. Ma et al. [13] proposed a health monitoring
method by harnessing the inverter operational characteristics
and degradation-sensitive electrical parameters to address the
IGBT wire bonding faults. The approach obtains both the
wire bonding failure features and junction temperature from
the terminals of an IGBT module to do online health mon-
itoring. Zhang et al. [14] used static and dynamic electrical
parameters of IGBT devices as fault precursory the degrada-
tion characteristics of on-state voltage drop and the threshold
voltage is used for state-of-health estimation. Yang et al. [15]
proposed an online IGBT junction temperature measurement
method based on the on-state voltage drop. It monitors the
on-state voltage drop of IGBT and extracts IGBT junction
temperature online. Besides, the influences of the measure-
ment circuit temperature variations and IGBT load current
variations are compensated based on the off-state stage of
the IGBT. The two methods described above note that the
on-state collector voltage is highly related to the junction

temperature, and the real-time collector voltage can be pre-
dicted by the online junction temperature supposing the mod-
ule is in a healthy state. As a result, using the difference
between the predicted value and the measured value, one can
assess the state-of-health in real time. Patil et al. [16] pro-
posed a prognostic approach by comparing collector voltage
before and after degradation. The on-state collector voltage
is highly related to the degradation of the module, but the
real-time change of the collector voltage before and after
degradation still needs to be explored. Ye. et al. [17] used
the miller platform voltage for online condition monitoring
of metal oxide semiconductor field-effect transistors and then
predicted the remaining useful lifetime by this parameter.
Choi and Blaabjerg [1] studied the effect of junction temper-
ature swing duration and modeled a relevant lifetime factor.
Zhang et al. [18] proposed a long short-termmemory (LSTM)
recurrent neural network (RNN) to learn the degradation
trajectories of lithium-ion batteries, which is an application of
the nonparametric method for lifetime prediction. Although
there are relevant research on the state-of-health assessment
and key thermal parameters prediction of different devices,
the fast thermal response curve prediction and real-time
state-of-health estimation of the module still need to be
explored.

Machine learning and deep learning are widely used in
anomaly detection and automate design, numerous studies
have focused on these problems, for example, Zhao et al. [19]
constructed a deep auto-encoder network to detect early
faults in continuously monitored wind turbines. Netam and
Yadav [20] proposed non-contact technology for operation-
state monitoring based on artificial neural networks (ANN).
Li et al. [21] applied ANN and K-means clustering for the
prediction of IGBT current, then verified that the method
can replace the electrical stimulation. Dragicevic et al. [22]
proposed an automated design of power electronic systems
using a nonparametric model. Although a lot of progress has
been made, these methods above did not consider time-series
parameters for data prediction but which is very valuable.
This paper established a time-series nonparametric model
under varied conditions to predict the junction temperature
and do the state-of-health estimation.

The rest of the paper is organized as follows. Section II
presents the overall process flowchart. Section III describes
the established process of the thermal simulation model.
Section IV presents the process of establishing the time-
series nonparametric model and compares the results from
the simulation model. Section V shows the online state-of-
health estimation prediction process. Section VI presents the
conclusions.

II. FLOWCHART OF THE OVERALL PROCESS
As discussed in Section I, it is not easy to obtain the real-time
junction temperature during working time. To obtain some
real-time data, an accurate simulation model is established in
advance. The data is then used for training and testing the
time-series nonparametric model.
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FIGURE 1. Junction and case temperature prediction based on the
simulation model.

FIGURE 2. Junction and case temperature time-series nonparametric
mode.

Figure 1 shows the flowchart to establish a simulation
model. In the process, a K calibration coefficient and the
temperature cooling curve are required to obtain the ther-
mal resistance and thermal capacitance, which are the main
parameters of the thermal simulation model.

Thereafter, a time-series nonparametric model was devel-
oped. When establishing the time-series nonparametric
model, it requires only a segment of time-series ambient
temperature and power. The output is the time-series junction
temperature and the case temperature. In figure 2, Ta is the
ambient temperature, P is power, Tj is the junction tem-
perature, and Tc is the case temperature. After establishing
the time-series nonparametric model, it predicts real-time
junction temperature and case temperature by given ambient
temperature and power.

The process for training and testing the model is
shown in Figure 3. Two different time-series nonparametric
models—the artificial neural network (ANN) model and the
long short-term memory (LSTM) model—are compared for
this specific problem. These two methods show a similar root
mean square error (RMSE) of less than 0.3 ◦C and 0.4 ◦C
respectively. The time-series ANN model was chosen for its
higher accuracy. Section IV shows the details of establishing
the time-series nonparametric model. The time-series histori-
cal data for training and testing the time-series nonparametric
model is obtained by the simulation model. The data helps
to justify whether the time-series nonparametric model can
predict the temperature in different situations when only real-
time inputs are given.

FIGURE 3. Establishing a time-series nonparametric model.

FIGURE 4. State-of-health estimationpredictionby the nonparametric
model.

The overall process of predicting temperature and state-of-
health estimation is shown in Figure 4. There is a time-series
nonparametric model for junction and case temperature
prediction and a nonparametric model for collector volt-
age prediction and state-of-health estimation. The junction
temperature, case temperature, and collector voltage under
healthy conditions are predicted based on the real-time ambi-
ent temperature and power. Therefore, by comparing the
measured collector voltage and predicted collector voltage,
the mean value of the difference between the measured value
(which indicates the degradation state of the module) and
the predicted value (which indicates the healthy state of the
module) is used to quantify the state-of-health in real-time.
Junction temperature is an intermediate variable, the collector
voltage in the healthy state is able to deduced under dynamic
working conditions and its difference with the measured
value is for the state-of-health estimation.

III. THERMAL SIMULATION MODEL
Thermal resistance is a heat property and a measurement of
the temperature difference by which an object or material
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FIGURE 5. IGBT thermal transfer process.

resists a heat flow. The heat transfer process is shown in
Figure 5. Thermal resistance is defined in equation 1. Tj is
the junction temperature, Tc is the case temperature, and P is
power.

Rth =
Tj − Tc
P

(1)

Thermal capacitance is the ability of the body to store
thermal energy, as expressed in equation 2. In the equation,
Q is the thermal energy transferred.

Cth =
Q

Tj − Tc
(2)

According to the similar characteristics of an electrical
circuit, thermal resistance and thermal capacitance are intro-
duced in a thermal circuit. The thermal model is fitted by
nth order Foster or Cauer model. To obtain the thermal
model, the temperature cooling curve is necessary, as shown
in equation (3).

Tjc↓ = P
n∑
i=1

Rie
−
−t
RiCi (3)

where Tjc↓ is the junction temperature during the cooling
stage, t is the time, and n is the order of the fitted Foster
model.

As Zjc = Tjc↑/P, the transient thermal impedance curve
is obtained by normalizing the temperature response curve
with power, and it is shown in equation (4). Tjc↑ is the tem-
perature during the heating stage. It is not straightforward to
characterize the temperature increasing stage due to the self-
heating of the chip. Therefore, the temperature cooling stage
is usually used that is when the high current is turned off and
a small current is turned on. The temperature cooling stage is
obtained by measuring the collector voltage and applying the
K calibration coefficient.

Zjc =
n∑
i=1

Ri(1− e−
−t
RiCi ) (4)

The process for obtaining K calibration is as followed.
the IGBT module was placed in a thermal chamber at a
temperature of 40 ◦C for about 10 min. The first temperature
and voltage points were obtained with a current of 0.1 A. The
process was then repeated 3 times at temperatures of 55 ◦C,
70 ◦C, and 85 ◦C.

FIGURE 6. Mean square error of different-order model.

The model of MMG75SR120B (70 A/1200 V) IGBTmod-
ules is used to obtain the K calibration parameter, the result
is expressed in Equation (5).

Vce = −0.0021Tj + 0.6082 (5)

where Vce is collector voltage, Tj is junction temperature.
After the K calibration was obtained, the measured voltage

with a small current (0.1 A) was applied in the thermal
cooling stage, then it was converted to an accurate junction
temperature.

The junction-to-case thermal resistance was obtained by a
transient dual interface method. The temperature in the cool-
ing stage was measured twice with and without putting grease
on the interface, and the separate point of these two cooling
curves indicates the interface of the module and the heatsink,
the cooling curve before that points is the temperature cooling
curve of the module and after that point is the cooling curve
of the heatsink. After the thermal cooling curve of the module
is obtained, it is used for the thermal resistance and thermal
capacitance estimation.

The Foster model is used to represent the thermal transfer
process, multiple values of n in the Foster model ranging from
n = 2 to n = 5 were used to fit the transient thermal process,
the mean square error (MSE) of the regression fit is used for
making the number-accuracy trade-off.

The MSE result of different orders of the Foster model is
shown in Figure 6, number 4 is the elbow points of the MSE
curve, therefore, the fourth-order Foster model was selected
as the thermal simulation model. The result also shows that
the Foster model represents the thermal response process
accurately and MSE is less than 1.2 × 10−5 in transient
process, therefore the simulation junction temperature is used
to represent actual junction temperature.

Once n = 4 is finalized, the simulation data was compared
with the other measurement data in the thermal cooling stage.

Figure 7 shows the thermal response curve of the junction-
to-case temperature, it shows a strong agreement between the
thermal simulation model and the measurement results in the
transient process, where the fourth-order model was used in
the transient junction temperature simulation.
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FIGURE 7. Fourth-order model simulation and measurement result.

FIGURE 8. Equivalent thermal network simulation circuit diagram.

FIGURE 9. Experiment setup and circuit diagram for IGBT module.

Figure 8 is a simulation schematic of a Foster model in
MATLAB/Simulink. Four-order of the thermal model was
adopted for junction-to-case temperature and another order
was adopted for case-to-air temperature, thereafter, the gra-
dient descent method was used to fit the thermal resistance
R5 and heat capacitance C5 value.

To verify the validity of the case temperature results.
An experimental case temperature data is compared with
the simulated data. The measurement setup is shown in
Figure 9, The IGBT module is installed in a chamber shown
in Figure 9a and wired using the circuit diagram shown
in Figure 9b. The measurements can be controlled from out-
side of the chamber using a control panel. The IGBT device
under test (DUT), was powered by two supplies, a program-
controlled test power supply of 5 V/200 A and a gate-foot
program control power supply of 0–15 V. The gate pin series
resistance of 10 �/2 W was used to limit the input current

TABLE 1. Thermal resistance and thermal capacitance results.

FIGURE 10. Simulation and experiment results of case temperature.

whereas a current transformer (RIS) of 150mA–300 A was
used at the source terminal.

The case temperature was measured in working conditions
with gate signal 20s per cycle at 50% duty, a current of 50 A,
and a blocking voltage of 100 V. The comparison of the simu-
lation data andmeasurement data is shown in Figure 10. In the
transient process, the RMSE of simulation and measured data
is 0.6 ◦C, the case temperature is accurately simulated in the
transient process.

Table 1 shows the parameter values. R1 to R4 are
the junction-to-case thermal resistances, and C1 to C4 are
the junction-to-case thermal capacitances. R5 and C5 are the
case-to-air thermal resistance and thermal capacitance.

Through the above theoretical analysis and simulation
results of IGBT transient thermal response, it is found that
the thermal response curve of IGBT junction temperature and
case temperature is greatly affected by the timing param-
eters. Theoretically, the time series nonparametric model
captures not only the relationship between the parameters
but also the relationship between the thermal parameters at
different times. It should have a good prediction effect for
the parameters with delay characteristics such as thermal
response. To verify the above theoretical analysis, a time
series nonparametric model is constructed to observe the
prediction effect of thermal response parameters of the time
series nonparametric model under different thermal loads.

To acquire the training and testing data for the non-
parametric model, the simulation model is used as it is power-
ful enough to represent the experimental data under varying
conditions. It should be noted that to obtain the simulation
model of the IGBT, the K calibration coefficient and accurate
measurement of junction temperature in the cooling process
are required. However, the nonparametric model only needs
a period of real-time data to establish the model, and then the
junction temperature and case temperature will be predicted
at any given temperature and power.
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FIGURE 11. Time-series nonparametric model framework for IGBT.

IV. ESTABLISHMENT OF TIME-SERIES
NONPARAMETRIC MODEL
The framework of the model for training and estimating data
with time series attributes is shown in Figure 11. In the
process of constructing the time series nonparametric model,
the P(t),T (t)

a ,T
(t)
c ,T

(t)
j of the current time are sorted into a

data block as input data, T (t+1)
j is sorted as the output data,

the weight and bias between the parameters at the current time
and those at the future time will be used for the subsequent
junction temperature prediction. In the case of predicting the
case temperature and junction temperature at the same time,
P(t),T (t)

a ,T
(t)
c ,T

(t)
j at the current time are sorted into a data

block and taken as the inputs of the model, T (t+1)
c ,T (t+1)

j
are the outputs data block, they will be used to predict the
subsequent junction and case temperature of the module.

To simplify the description, the input layer of neuro
P(t),T (t)

a ,T
(t)
c ,T

(t)
j are represent by x1, x2, x3, x4 separately,

the neurons in the middle layer are a(p)n , superscript p is the
number of layers where neurons are located, and subscript n
is the sequence number of neurons in this layer. The neurons
in the output layer are T (t+1)

c (x) and T (t+1)j (x). In the forward
propagation, the calculation formula of each neuron is shown
in equation (6).

a(2)n = g(
m∑
1

θ
(k)
i,j xj) (6)

where a(2)n is the second layer of number n neurons value, θ (k)i,j
is weight from k layer to k + 1 layer, subscript i represents
the sequence number of k + 1 neurons connected by the
weight, subscript j represents the sequence number of the
layer k neurons connected by the weight, The weight matrix
can be expressed as θ (k), g(x) is the activation function. If the
number of neurons in layer k is sj, the number of neurons in
the k+1 layer is sj+1, then the dimension of the weight matrix
is sj+1 × (sj + 1).

The calculation formulas of neurons in the output layer are
shown in equations (7) and (8).

Tc (x) = a(3)1 = g(θ (2)10 a
(2)
1 + θ

(2)
11 a

(2)
2 + . . .+ θ

(2)
1n a

(2)
n ) (7)

Tj (x) = a(3)2 = g(θ (2)20 a
(2)
1 + θ

(2)
21 a

(2)
2 + . . .+ θ

(2)
2n a

(2)
n ) (8)

where n is the number of neurons in the hidden layer.

The error of each layer in backpropagation is shown in
equations (9) and (10).

δ
(3)
j = a(3)j − yj (9)

δ(2) = (θ (2))
T
δ(3) × g

′

(z(2)) (10)

where superscript of δ(k)j is the layer, subscript k is the

sequence number of neurons in the layer. a(3)j is the third layer
of the neuron network, it is the last layer of the neural network
Tc(x) and Tj(x). δ(2) is the slopematrix of the damage function
in the second layer of the neural network at each neuron. z(2)

is the intermediate variable that facilitates the calculation of
the slope of the weight.

The updated weight is calculated, as shown in
equation (11).

1
(k)
m,j(u+ 1) = 1(k)m,j(u)+ a

(k)
j δ

(k+1)
m (11)

where 1(k)i,j (u + 1) are updated parameters, 1(k)i,j (u) are

parameters before updated, a(k)j is the learning rate, super-
script k is the layer, subscript j is the order number of neurons
in this layer, subscriptm is the number of groups of input data.

The partial derivative of the loss function is obtained by
equation (12).

∂

∂θ
(k)
m,j

J (θ) =
1
m
1
(k)
m,j + λθ

(k)
i,j (12)

where J (θ ) is the loss function.
In the follow-up prediction process, the established time

series nonparametric model takes the measured power and
ambient temperature of the module as the input, which can
quickly predict the junction and case temperature of the mod-
ule. Comparing with the traditional model, the time-series
method takes the correlation between two adjacent states into
account, it has good applicability for the prediction of thermal
response value which has delay characteristics.

The framework construction and implementation of time
series ANN are completed in MATLAB. The neurons of
the hidden layer are set to 50 to make a time consumption-
accuracy trade-off.

In the process of training, 70% of the data is used for
training, 15% is used for validation, and 15% for testing. The
Levenberg-Marquardt method is used to iterate 1000 times.
The MSE of both the training, validation and test data
decreases to less than 10e−4 after 1000 times.
Three groups of data are obtained by simulation, one for

establishing the time-series nonparametric model and the
other two (test data A and test data B) for testing the model
under two different conditions. Each group of data records
time-series data of junction temperature, case temperature,
ambient temperature, and power of 3000 s.

As mentioned in Section III, the simulation model simu-
lates time-series junction temperature and case temperature
by real-time power and ambient temperature. These four
parameters of time-series data obtained from simulation data
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FIGURE 12. Junction and case temperature simulation results of the
training data.

are used as ground truth for training and testing the time-
series nonparametric model.

There are two cases in which the time-series nonparametric
model is used. In the first case, the junction temperature is
predicted when the case temperature is monitored. In the sec-
ond case, the junction temperature and case temperature are
predicted when the case temperature is not monitored. The
details are introduced in the next two sections.

A. TEMPERATURE ESTIMATION CASE I
Recall that in case I, the junction temperature is predicted
when the case temperature is known. In this case, the ambient
temperature settings of the test data set A are: amplitude 35,
bias 15, frequency 0.04pi, and phase 0. The power settings
are amplitude 35, bias 85, frequency 0.01pi, and phase 0.

Figure 12 presents the data used to establish the time-series
nonparametric model. The ambient temperature and power
are given, and the junction temperature and case temperature
are simulated by the simulation model.

In the process of training and testing, the initial input
of the model has six parameters, which are power and the
ambient temperature at the current moment, the power and the
ambient temperature, the junction temperature, and the case
temperature at the previous moment. The output is the current
junction temperature. The predicted junction temperaturewill
be used as the input parameter to calculate the junction tem-
perature for the next moment.

To showcase the generalization of the method, the other
two groups (test data set A and test data set B) in completely
different states are used for testing. The ambient temperature
and power settings of the test data are different. The ambient
temperature settings of the test data set A are: amplitude 35,
bias 15, frequency 0.04pi, and phase 5. The power settings
are amplitude 35, bias 85, frequency 0.01pi, and phase 7. The
time-series data is shown in Figure 13.

The junction temperature results of the test data set A are
shown in Figure 14. The RMSE of simulation results and
predicted results is 0.28 ◦C.

The ambient temperature settings of the test data set B are
amplitude 30, bias 15, frequency 0.001pi, and phase 7. The
power settings are amplitude 33, bias 85, frequency 0.03pi,
and phase 3. The time-series data are shown in Figure 15.

FIGURE 13. Junction and case temperature simulation results of test
data A.

FIGURE 14. Junction temperature prediction result of the time-series
nonparametric model for test A.

FIGURE 15. Junction and case temperature simulation results of test
data B.

Figure 16 shows the time-series nonparametric model
predicted junction temperature comparing with simulation
results The RMSE of simulation results and predicted results
is 0.22 ◦C.

When the ambient temperature, power, and case temper-
ature are continuously monitored, the process of junction
temperature prediction is effectively verified by the time-
series nonparametric model. It indicates that the time-series
nonparametric model is a very useful method for online
junction prediction when the case temperature is monitored.
However, the case temperature cannot be monitored online
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FIGURE 16. Junction temperature prediction results of the time-series
nonparametric model for test B.

FIGURE 17. Junction and case temperature prediction results of the
time-series nonparametric model (500 neurons) for test A.

for some cases, it is necessary to test whether the junction
temperature and case temperature can be predicted accurately
when the case temperature is not monitored.

B. TEMPERATURE ESTIMATION CASE II
In this section, the time-series nonparametric model is used
to predict the junction temperature and case temperature in
real-time, when the case temperature cannot be monitored.

In the process of training and testing, the same six parame-
ters were used which are power and the ambient temperature
at the current moment, the power, the ambient temperature,
the junction temperature, and the case temperature at the
previous moment. The output is the junction temperature and
the case temperature at the current moment.

The 50 neurons time-series nonparametric model was tried
at first, the RMSE of the time-series nonparametric predicted
model and simulation model is as high as 1 ◦C. To improve
the prediction accuracy, the number of neurons was increased
to 500. The junction temperature and case temperature of test
data set A obtained are shown in Figure 17. The RMSEs of the
simulation and predicted results for the junction temperature
and case temperature are 0.11 ◦C and 0.11 ◦C, respectively.

The predictions of the junction temperature and case
temperature of test data set B are shown in Figure 18.
The RMSEs of simulation results and predicted results for

FIGURE 18. Junction and case temperature prediction results of the
time-series nonparametric model (500 neurons) for test B.

FIGURE 19. Comparison of the time-series ANN predicted results and
LSTM predicted results with actual results.

junction temperature and case temperature are 0.10 ◦C and
0.09 ◦C respectively.
It is evident that for the model with 500 neurons, the junc-

tion temperature prediction accuracy in the transient process
is high. It indicates that the time-series nonparametric model
is accurate for online junction temperature. Besides, the pro-
cess of establishing the time-series nonparametric model is
simpler than that of the simulation model. The time-series
nonparametric model is established only by using a segment
of real-time state data.

The comparison results of time-series ANN and LSTM are
shown in Figure 19. The RMSEs of time-series ANN pre-
dicted result and LSTM predicted result with actual junction
temperature are separately 0.3 ◦C and 0.4 ◦C.

In the above analysis, the simulation data are used to
analyze the prediction results of the time series nonparametric
model and verify the results effectively. To further verify the
prediction accuracy of the time series nonparametric model
for predicting the experimental result, the experimental data
of case temperature in transient process and prediction data of
time series nonparametric model are selected for comparison.
The comparison results are shown in Figure 20. It shows that
the RMSE result of the time series nonparametric model and
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FIGURE 20. Comparison between the experimental results and the
prediction results of time series nonparametric mode.

the experimental data is 0.4 ◦C, which indicates that the time
series nonparametric model has high accuracy in predicting
the transient case temperature of the module. Comparing with
the data in Figure 10 when using the simulation model to
estimate case temperature, the RMSE of time-series nonpara-
metric model result to experimental result is 0. 2◦C smaller.
In all, supposing that the thermal response is a Foster likely

model which is theoretically accepted, the time-series non-
parametric model is proven that it captures the relationship
of different parameters in different timing and the RMSE of
Foster model and time-series nonparametric model predicted
result is less than 0.3 ◦C. Supposing that all the model error
and system error are considered, the experimental data is
used to obtain both simulation model and non-parametric
model, the RMSE of simulation result to experimental result
is 0.6 ◦C, and RMSE of time-series nonparametric model
is 0.4 ◦C, which shows that the time-series nonparamet-
ric model works better than the traditional thermal model.
The time series nonparametric model has higher predicting
accuracy than the traditional thermal model for the thermal
response curve prediction which has delay characteristics,
and its robustness of this method is proved by the theoretical
analysis of thermal characteristics and its applicability to
different scenarios.

The junction temperature changes very fast in the dynamic
process. It is generally accepted that measuring it directly
with high accuracy in the dynamic process is very hard. The
equivalent thermal network model obtained by the transient
double interface method is the optimal prediction method
when the case temperature is known. The MSE of the fourth-
order Foster thermal model for the description of the transient
thermal response curve is less than 1.2× 10−5. Its ability for
describing the dynamic process has been verified by theory
and experiment, so the simulated junction temperature is used
as the equivalent measured junction temperature. Time-series
nonparametric model has been discussed above to show its
accuracy for predicting the junction temperature.

Noted that the paper focus on condition monitoring the
chip solder layer only, the different thermal characteristic
caused by bond wire degradation is not considered in the
paper and should be further explored.

FIGURE 21. The relationship of junction temperature, collector voltage,
and power.

V. NONPARAMETRIC MODEL AND STATE-OF-HEALTH
ESTIMATION PROGNOSTIC
In this section, the nonparametric model is used to predict
the junction temperature and case temperature of the module
in real-time without considering the module degradation.
The results above prove that the RMSE results of the pre-
dicted junction temperature and case temperature have strong
agreement with the actual measurement results of the mod-
ule. Therefore, the accurately predicted junction temperature
and case temperature of the module in the healthy state are
obtained by using the time series nonparametric model when
given the power and ambient temperature.

The difference between the estimated value and the mea-
sured value is used to estimate the state-of-health as shown
in Figure 4, that is because the estimated value is equiva-
lent to the time-series data before the module aged, while
the measured value is the real-time value after the module
degraded

In the actual operation of IGBT, the collector voltage can
be measured in real-time, and the measurement accuracy is
high. Therefore, the interdependence of junction tempera-
ture, collector voltage, and collector current is established
through the experimental data, then the relationship can be
transferred to the relationship of junction temperature, col-
lector voltage, and power. The nonparametric model is used
for collector voltage prediction by junction temperature and
collector current, it is used to replace the look-up table.
Thereafter, the real-time collector voltage is estimated by
the junction temperature and current through the second
nonparametric model. The junction temperature is measured
by the thermocouple attaching method, the IGBT package
is perforated from the side, and the thermocouple is in
direct contact with the IGBT module chip. The relationship
between junction temperature, collector voltage, and power
is shown in Figure 21. Thereafter, the second nonparametric
model is finalized and the real-time collector voltage value
is obtained by giving the real-time junction temperature and
current.
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FIGURE 22. Simulated junction temperature and case temperature by
ambient temperature and power.

FIGURE 23. Nonparametric model predicated junction and case
temperatures of IGB.

The real-time power and ambient temperature and simu-
lated junction temperature and case temperature are shown
in Figure 22.

The junction temperature predicted by the nonparametric
model is shown in Figure 23, when power, ambient tempera-
ture, and case temperature are given. The RMSE between the
predicted value by the nonparametric model and simulation
system is 0.05 ◦C. It indicates that the nonparametric model
has the same effect as the simulation model for the prediction
of in-service junction temperature.

Once the junction temperature has been estimated, the real-
time collector voltage is obtained using the nonparametric
model. The result is compared with the measured collector
voltage and the result is shown in Figure 24.

In Figure 24, the solid line is the measured collector volt-
age value, that is, the real-time voltage value of the module
and the dotted line is the collector voltage predicted by the
nonparametric model under the healthy state.

The state of health of IGBT is the condition of a module
compared to its ideal conditions, it is estimated by. parameter
average percentage deviation and the units of state-of-health
is percent points. A module’s state of health is assumed
to be 100% at the time of manufacture and will decrease

FIGURE 24. The predicted and simulated collector voltage of real-time
dataset one.

FIGURE 25. The predicted and simulated collector voltage of real-time
dataset two.

over time and use. The module state-of-health is determined
by monitoring the average percentage deviation in collector
voltage value from the expected voltage. The formula for the
voltage percentage deviation is shown in Equation (13).

P =
1
n

n∑
i=1

Vd(i)− Vh(i)
Vh(i)

(13)

where Vd is the measured real-time voltage value, Vh is
the real-time voltage value predicted by the nonparametric
model, n is the number of data points. The average percentage
deviation of these 1500 points is 2.56%.

After another period of aging, the second real-time data
is measured, the result of the measured collector voltage and
predicted collector voltage is shown in Figure 25, the average
percentage deviation of these 1500 points is 3.02%. And the
module stopped working after less than 10 hours.

By analyzing the data of eight aging modules, it is found
that the voltage increment of the module is 3.01%, 2.92%,
3.12%, 3.23%, 2.81%, 3.28%, 3.20%, and 3.18% respectively
before the catastrophic failure. The 99.5% lower limit of
the one-sided confidence interval of the voltage increment
percentage is calculated. For ∀θε2, when the inequality
P {θ > θ1} ≥ 1 − α is satisfied, the one-sided confidence
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FIGURE 26. The probability density function of voltage increment
percentage.

FIGURE 27. Experimental and predicted collector voltage before and after
agin.

interval of 1 − α is (θ1,∞), and the one-sided lower confi-
dence limit is θ1.

For a normal distribution population with unknown mean
and variance, the formula is X̄−µ

S/
√
n ∼ t∝(n−1), the lower limit

of the one-sided confidence interval of the module is obtained
as X̄ − S

√
n t∝(n − 1), the probability distribution density

function of the module is obtained as shown in Figure 26.
The lower limit of one-sided confidence interval with 99.5%
confidence interval is 3.09%.

When the voltage value increases by 3.09%, the module
has a 99.5% probability of catastrophic failure. Therefore,
when the equivalent voltage data of the module increases by
3.09%, the cumulative damage of the corresponding module
is 1.

To further verify the method, experimental data are used
to do the comparison with the predicted data. The power,
ambient temperature, and collector voltage of a mission pro-
file before the module experience catastrophic failure were
collected. Then, the collector voltage in the health state was
deduced in that specific mission profile by the collected data
of power and ambient temperature. Because the predicted
data indicates the collector voltage when the module was
in a healthy state. and the data of the same mission profile
before the module aged were compared with it and the results

of predicted collector voltage and measured ones are shown
in Figure 27. It shows that the predicted collector voltage is
in good fit with that of the measured healthy state data. While
the on and off time in the mission profile is set, the power and
ambient temperature collected before and after aging have
errors within 1 W and 1 ◦C. The predicted collector voltage
tracked in trend with the measured data after aging and it is in
good fit with measured data before aging, which indicates the
effectiveness of the method. After verifying the effectiveness
of the method, the measured collector voltage value before
failure and predicted collector voltage are compared and the
percentage voltage deviation increases by 3.11%. It can be
seen from the figure that the aging state of the module can be
predicted by the difference between the predicted collector
voltage and the measured collector voltage under a certain
mission profile.

VI. CONCLUSION
This paper proposes a time series non-parametric model
method for time series data prediction. The method captures
the relative relationship of time series features of multi-
dimensional feature parameters by directly inputting the
time series data which is collected in the complex working
condition. The method solves the personalized parameter
prediction and real-time parameter prediction problem, and
the state-of-health of the module is evaluated based on the
real-time parameter prediction. In the approach a time-series
nonparametric model of the IGBT module is proposed and
constructed, the measured power and ambient temperature
data are used to deduce the health state data junction and
case temperature, and the difference between the monitoring
junction temperature or case temperature data is compared
with the predicted data to judge the real-time health state
of the module. Compared with traditional methods, the time
series non-parametric model method is good for implemen-
tation, it not only saves characteristic experiments but also
the process of mathematical model induction and time series
state equation derivation.

The method proposed in this paper has good expansibility.
Because the data measurement method applied to training
is simple, the time series data of each parameter of the
module in the health state is collected before the module is
packaged, and the data is stored as the personalized health
data of the module. It then provides the basis for the later
real-time junction temperature prediction and state-of-health
evaluation easily. Compared with the traditional method of
uniform parameters of the equivalent thermal model, this
method considers personalized differences of modules and
provides a new method for health assessment of modules
under different mission profiles, which has high practical
value for modules with long service time.
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