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ABSTRACT Downlink exposure to electromagnetic fields due to cellular base stations in urban environments
is studied using the stochastic geometry framework. A two-dimensional Poisson Point Process is assumed
for the base station distribution. Mathematical expressions of statistics of exposure are derived from a simple
propagation model taking into account the height of the base stations. The error on exposure made by taking
a limited number of base stations, instead of the whole set, is quantified. The relative impact of the model
parameters on the statistics of exposure is highlighted. The method is then applied and the model parameters
are calibrated using experimental data obtained by drive-tests in two Brussels municipalities, in Belgium,
for the 2100 MHz and 2600 MHz frequency bands. It is shown that the proposed model fits experimental
values, paving the way to a new methodology to assess general public exposure to electromagnetic fields,
for any frequency band. An insight is given on how to apply the methodology to a real case without access
to experimental data.

INDEX TERMS Cellular networks, exposure, Poisson Point Process, stochastic geometry.

I. INTRODUCTION
Electromagnetic field (EMF) exposure due to cellular
networks is classically evaluated empirically either through
in-situ measurements [1], drive-tests [2], [3] or sen-
sor networks [4]. Numerically, this evaluation, either
by using ray-launching softwares [5], ray-tracing soft-
wares [6] or other simulation methods based on propagation
models [7]–[9], is however difficult to obtain deterministi-
cally in a reasonable time. It is also subject to many uncer-
tainties (due to the number of base stations in operation,
the environment geometry, the presence of people and vehi-
cles causing shadowing. . . ). A deterministic computation of
EMF exposure at every point of the area under study is not
always required. Instead, statistical values are often looked
for, for instance to estimate the probability of exceeding
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some exposure thresholds, or to estimate the mean level of
exposure. Numerous studies developed statistical models for
exposure assessment as in [10] for 5G radio base stations
using massive MIMO or in [11] for a WiFi source in an
apartment, based on the Kriging method. There is however a
lack of models able to quickly, accurately and with a limited
number of parameters, determine exposure statistics in a real
environment of a scale larger than a few thousand square
meters, without a deterministic knowledge of the environ-
ment geometry. This paper aims to lay foundations of an
entirely new stochastic approach to assess exposure to elec-
tromagnetic fields due to cellular networks, using stochastic
geometry (SG) and a simple parametric propagation model.

Using SG in wireless communications is not a new con-
cept [12]. It has been applied in many fields, ranging from
automotive radar [13], to localization [14], including prob-
ability of coverage and spectral efficiency [15], cumulated
interference power [16] and outage probability [17] but to
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our knowledge, only one recent paper exploits it for expo-
sure assessment [18]. The latter is a first attempt to model
exposure in millimeter wave bands, based on empirical prop-
agation models. But neither in-depth theoretical study, nor
experimental validation of the proposed models are included.

EMF exposure is usually characterized in terms of incident
power density S (W/m2) [19], [20]. Power density may then
be translated into root-mean-square electric field strength
(V/m), as used in exposure standards:

E =
√
Z0 S (1)

where Z0 =
√

µ0/ε0 = 120π ≈ 377� is the impedance of
free-space.

In the first part of this paper, mathematical expressions are
derived to evaluate the statistics and cumulative distribution
function (CDF) of the power density emitted by a random
pattern of cellular base stations (BSs). The error made by
including only the few BSs closest to the calculation point
is evaluated. In the second part, we calibrate and validate the
model using experimental data obtained in twomunicipalities
of the Brussels-Capital Region, in Belgium, in the 2100 MHz
and the 2600 MHz frequency bands.

II. STOCHASTIC GEOMETRY MODEL OF EXPOSURE
A. EXPOSURE MODEL
In the SG approach, the BS spatial distribution for a given
cellular frequency band is considered as a random point
pattern with constant density λ in a given 2D region W ,
referred to as the window. According to [21], considering
together the BSs of all network providers as required for
exposure assessment, BS spatial distributions for any cellular
frequency band in European cities are well modeled using
homogeneous 2D Poisson Point Processes 8 ∈ R2 (PPP):
for any W , the number of points falling in W has a Poisson
distribution with mean λ · τ2(W), where τ2(W) is the area
ofW . It implies that measures do not depend on the location
in space where the computation is performed. More details
about stochastic geometry and its applications to cellular
networks can be found in Kingman’s book [22] or the paper
by Andrews et al. [17].

For any BS of the PPP, the incident power density S can be
deduced from a path loss model

S(r) =
A(

r2 + h2
)α/2 , (2)

where S(r) is the power density due to the BS located at
a horizontal distance r , h the height of the BS, α the path
loss exponent (typically ranging from 2 to 5) and A a mul-
tiplicative random variable modeling channel fading and the
effective isotropic radiated power (EIRP) of the BS. A can be
written A = p ·Bwith p = EIRP

4π and B is any random variable
modeling fading. In the following, the expected value of A,
E [A], will be noted A. It is worth noting that, in our approach,
the BS network is homogenized in the sense that BSs share
common features in terms of height and EIRP.

For all BSs of all network providers present in the PPP,
the power densities can be summed up, assuming that all
signals are uncorrelated, to get SWN , the total EMF power
density and hence the total exposure for the whole network
of BSs (WN) in a determined frequency band

SWN =
∑

i|BSi∈8

S(ri) =
∑

i|BSi∈8

A(
h2 + r2i

)α/2 . (3)

B. EXPOSURE DUE TO THE nth NEAREST BASE STATION
We start by studying separately the contribution of each BS
of the PPP. Let Sn = Sn(r) be the power density due to the nth

nearest BS to the calculation point. The probability density
function (PDF) of the distance rn to the nth nearest BS is given
by the Erlang distribution of order n [23]

f (rn) = 2
(λπ )n

(n− 1)!
r2n−1n e−λπr

2
n . (4)

The expected power density due to the
nth nearest BS is given in the following theorem.
Theorem 1: The expected power density due to the nth

nearest BS is

E [Sn] = A (λπ )
α/2 eλπh

2
σ n
{−α/2},

σ i
{x} =

i−1∑
l=0

(
−λπh2

)i−l−1
l! (i− l − 1)!

0̃1+l+x .

Proof: From the independence between A and the dis-
tance rn and from the use of the Erlang distribution (4) of
order n, it follows that

E [Sn] = A
2 (λπ)n

(n− 1)!

∫
∞

0

1(
r2 + h2

)α/2 r2n−1 e−λπr2 dr .
Using the change of variable r2 → t

λπ
− h2 and the

Binomial theorem, this expression becomes

E [Sn] = A
(λπ )n (λπ )α/2−1

(n− 1)!
eλπh

2
∫
∞

λπh2
t
− α/2

×e−t
n−1∑
l=0

(
n− 1
l

)(
t
λπ

)l (
−h2

)n−1−l
dt.

Theorem 1 is then obtained by using the upper incomplete
Gamma function 0(z, t) defined as

0(z, t) =
∫
∞

t
uz−1 e−u du, <(z) > 0. (5)

�
0̃i is used as a simplified notation of 0

(
i, λπh2

)
.

When α > 2, the incomplete Gamma function is not
properly defined since the first argument of the incom-
plete Gamma function is sometimes negative. In this case,
the Gauss continued fraction can nonetheless be used for
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numerical calculations [24]

0(z, t) =
tze−t

t +
1− z

1+
1

t +
2− z

1+
2

t +
3− z

1+
. . .

(6)

Simplifications can be made when considering the nearest
BS. They lead to the next corollary.
Corollary 1: The mean value of the power density due to

the nearest BS is

E [S1] = (λπ )
α/2 A eλπh

2
0
(
1−

α

2
, λπh2

)
.

Using Corollary 1, Theorem 1 can also be written as

E [Sn] = E [S1] ·4[1]
n (7)

where

4[1]
n =

σ n
{−α/2}

0̃1−α/2
=

n∑
l=1

(
−λπh2

)n−l
(l − 1)! (n− l)!

0̃l−α/2

0̃1−α/2
, (8)

using the change of index l+1→ l. Fig. 1 shows the ratio (8)
as a function of n. As can be seen from this figure, for the sets
of parameters that will be identified in section III, the nearest
BS provides the main contribution to exposure but the second
BS is also important since the ratio E [S2] /E [S1] is around
15%. From the fourth nearest BS, the contribution is lower
than 5% for both sets of parameters. Note that 4[1]

n is depen-
dent on the values of the model parameters. Nonetheless,
from this figure, we see that 4[1]

n has a nearly logarithmic
decay. A physical intuition can be given by observing the
following proposition.

FIGURE 1. Ratio between the mean value of the power density coming
from the nth nearest BS and the mean value of the power density coming
from the nearest BS as a function of n.

Proposition 1: The ratio between the expected values of
the inverse of the distance to the nth nearest BS, 1/rn, and the

inverse of the distance to the nearest BS, 1/r1, asymptotically
has a logarithmic decrease.

Proof: The expected value of the inverse of the distance
to the nth nearest BS, 1/rn, is, by using (4)

E

[
1
rn

]
=

0 (n− 1/2)
√
λπ (n− 1)!

.

The logarithm of the ratio between E [1/rn] and E [1/r1]
is then

log
E [1/rn]
E [1/r1]

= log
0
(
n− 1

2

)
(n− 1)!0

(
1
2

) = log
(2 (n− 1))!

22n−2 [(n− 1)!]2

Using Stirling’s approximation, the ratio becomes

log
E [1/rn]
E [1/r1]

= log
1

√
π (n− 1)

+ log (1+ ε1)− 2 log (1+ ε2)

with

ε1 = O
(

1
2(n− 1)

)
, ε2 = O

(
1

n− 1

)
.

This can be further simplified to give

log
E [1/rn]
E [1/r1]

= log
1

√
π (n− 1)

+ ε, ε = O
(
1
n

)
.

Taking the limit to the infinity leads to

lim
n→∞

log
E [1/rn]
E [1/r1]

= −
1
2
log n−

1
2
logπ.

�
Proposition 1 shows a logarithmic decrease. When rn � h,

which is usually quickly the case, Sn can be approximated
by A/rαn , therefore it is not surprising that4

[1]
n has a logarithmic

decrease.
We also give here as Theorem 2 and Corollary 3 the k th

moment and the variance of the power density received from
the nth nearest BS.
Theorem 2: The moment of order k of the power density

received from the nth nearest BS is

E
[
Skn
]
= Ak (λπ )

kα
2 eλπh

2
σ n
{−kα/2}.

Proof: The proof is obtained by a development similar
to the proof of Theorem 1. �
Theorem 2 enables to compute any moment of Sn. Again, this
equation can make E

[
Sk1
]
appear, generalizing 4[k]

n for the
order k .

E
[
Skn
]
= E

[
Sk1
]
·4[k]

n , (9)

4[k]
n =

σ n
{−kα/2}

0̃1−kα/2

=

n∑
l=1

(
−λπh2

)n−l
(l − 1)! (n− l)!

0̃l−kα/2

0̃1−kα/2

. (10)

Theorem 3: The variance of the power density received
from the nth nearest BS is

V [Sn] = (λπ)α eλπh
2
[
A2 σ n

{−α} − eλπh
2
A
2
(
σ n
{−

α
2 }

)2]
.
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Proof: The proof is immediate sinceV [Sn] = E
[
S2n
]
−

(E [Sn])2. �

C. EXPOSURE DUE TO THE n NEAREST BASE STATIONS
The mean value of the cumulated power density due to the
n nearest BSs, S[n], is given by Theorem 4. The k th-order
moment of S[n] is given by Theorem 5.
Theorem 4: The mean value of the cumulated power den-

sity due to the n nearest BSs, S[n] is

E
[
S[n]

]
= E

[
n∑
i=1

Si

]
= A (λπ )

α/2 eλπh
2

n∑
i=1

σ i
{−

α
2 }
.

Proof: This theorem follows directly from Theorem 1
and the assumption of uncorrelated BSs. �
The relative error made by truncating the network to the n

nearest BSs is shown in Fig. 2. By taking only the closest BS,
as often done in exposure studies, an error of around 10% is
committed for the sets of parameters calibrated in section III.
The error made by truncating the sum of power densities to
the first neighbors is dependent on α. The lower α, the higher
the relative error hence the number of neighboring BSs to take
into account. The whole-network reference E [SWN ] will be
derived in the following section.

FIGURE 2. Relative error between E
[
S[n]

]
(4) and E [SWN ] (6).

λ = 6 BS/km2, α = 3.25, h = 38 m, EIRP = 67.96 dBm.

Theorem 5: The moment of order k of the cumulated
power density due to the n nearest BSs is

E
[
Sk[n]

]
= Ak (λπ )k

α/2 eλπh
2 ∑
∣∣∣Ek∣∣∣=k

(
k
Ek

) n−1∑
p=1

(−1)p−1

×

 n−1∏
j=p+1

1

τ
(j)
(p+1)

  p∏
l=1

1

τ
(p)
(l)


×

[
0̃
τ
(n)
(1)
−

(
λπh2

)τ (p)(1)
0̃
τ
(n)
(p+1)

]

where we use the notations

τi = 1− ki
α

2
, τ

(b)
(a) =


b∑
i=a

τi if a ≤ b,

τ
(b)
(a) = 0 if a > b.

Proof: The proof is given in Appendix A. �
Note that the case k = 1 corresponds to Theorem 4.

Again, the variance of the distribution can be deduced from
Theorem 5.

D. WHOLE NETWORK
Well-knownmathematical results of signal-plus-interference-
to-noise ratio and power coverage studies [25]–[27] can be
adapted to study exposure. The expected value of the power
density (3) is given in the following theorem.
Theorem 6: The expected value of the total power density

SWN , distributed according to a PPP 8 ∈ R2, for the
propagation model (3) with a path loss coefficient α > 2,
is

E [SWN ] =
2πλA
α − 2

1
hα−2

.

Proof: The calculation is obtained by applying Camp-
bell’s formula [22]

E [SWN ] = λA
∫ 2π

0
dθ
∫
∞

0

1(
r2 + h2

)α/2 r dr .
�

Theorem 6 clearly shows the relative impact of the BS
density, the path loss exponent and the BS height on the mean
exposure. Similarly, the variance of the distribution is given
by Theorem 7.
Theorem 7: The variance of the total power density SWN ,

distributed according to a PPP 8 ∈ R2, for the propagation
model (3) with a path loss coefficient α > 2, is

V [SWN ] =
2πλA2

2α − 2
1

h2α−2

with A2 = EA
[
A2
]
.

Theorems 6 and 7 are valid no matter the fading distribu-
tion chosen for A.

To obtain the cumulative distribution function of (3),
the two-sided Laplace transform of the distribution, LSWN ,
is needed. The Laplace transform of the distribution of the
power density due to a limited number of BSs can be obtained
from a power series of the moments of the distribution, given
by Theorem 5, but no closed-form expression could be found.
The Laplace transform of SWN is given by the following
lemma.
Lemma 1: The Laplace transform of the total power den-

sity SWN is given by

LSWN (s)

= exp
(
2πλ
α

∫
∞

hα

(
EA

[
exp

(
−s

A
x

)]
− 1

)
x

2
α
−1dx

)
.

91780 VOLUME 9, 2021



Q. Gontier et al.: SG Approach to EMF Exposure Modeling

Proof: This can be calculated similarly to what is done
in [28], chapter 1. The definition of the Laplace transform
leads to

LSWN (s) = E
[
e−s SWN

]
= E8,A

[
exp

(
−s

∑
i∈8

A(
r2i + h

2
)α/2
)]

.

Using the probability generating functional [29], this leads
to

LSWN (s)

= exp

(
2πλ

∫
∞

0
EA

[
exp

(
−s A(

r2 + h2
)α/2
)
− 1

]
r dr

)
.

Finally, with the change of variable
(
r2 + h2

)α/2
→ x, this

expression becomes

LSWN (s)

= exp
(
2πλ
α

∫
∞

hα
EA

[
exp

(
−s

A
x

)
− 1

]
x

2/α−1dx
)
.

�
EA

[
exp

(
−s Ax

)]
corresponds to the Laplace transform

of A/x. The Laplace transform LSWN can therefore be calcu-
lated if the distribution of A is known. Theorems 8 and 9 give
respectively the Laplace transform for A deterministic and A
following an exponential distribution.
Theorem 8: The Laplace transform of the total power den-

sity for the no-fading case is

Ldeterm.
SWN (s)=exp

(
πλ h2

[
1−1 F1

(
−
2
α
; 1−

2
α
;
−s A
hα

)])
.

Proof: Under the no-fading hypothesis, i.e. for A deter-
ministic,

EA

[
exp

(
−s

A
x

)]
= exp

(
−s

A
x

)
.

Theorem 8 is then obtained using the relationship [30] in
combination with Lemma 1∫
∞

a

(
exp

(
b
z

)
− 1

)
zv−1dz

=
1
v
av [1−1 F1 (−v; 1− v; b/a)]

where 1F1(a; b; z) is the Kummer confluent hypergeometric
function. �
Proposition 2 corresponds to an excellent approximation

of the expression of Theorem 8 given by [27], which can be
used for numerical calculations.
Proposition 2: An approximation of the Laplace transform

of the total power density for the no-fading case is

Ldeterm.
SWN (s) ≈


e
πλ h2

∞∑
j=1

2 (−sA)j

hα j j! (jα − 2) ,

∣∣∣∣ s Ahα
∣∣∣∣ ≤ c,

e

πλ h2

− (s A)
2
α

h2
0

(
1−

2
α

)
+1


,

∣∣∣∣ s Ahα
∣∣∣∣ > c.

No analytical solution exists for c, the intersection point of
the two parts of the absolute value of this function. There is
a finite number of solutions. For numerical calculations, it is
preferable to take the largest solution in absolute value.
Theorem 9: Let A = p · B where p = EIRP

4π and B ∼
Exp(1), an exponential random variable with unit rate, so that
E [B] = 1. The Laplace transform of the total power density
for the Rayleigh-fading case is then

LRay.SWN (s)

= exp
(
−2πλ
α − 2

s ph2−α 2F1

(
1, 1−

2
α
; 2−

2
α
;
−s p
hα

))
.

Proof: For a Rayleigh fading,

EA

[
exp

(
−s

A
x

)]
=

1
1+ p s

x
.

This expression can be replaced in the Laplace transform
of Lemma 1. The change of variable x h−α − 1 → y then
leads to

LRay.SWN (s)

= exp
(
−2πλ
α

s ph2−α
∫
∞

0

1
y+s p h−α + 1

(y+1)
2
α
−1 dy

)
Finally, the expression of Theorem 9 is obtained using the

relationship [31]∫
∞

0
t−b+c−1 (t + 1)a−c (t − z+ 1)−a dt

=
0(b)0(c− b)

0(c) 2F1(a, b; c; z)

where 2F1(a, b; c; z) is the Gauss confluent hypergeometric
function. �

The CDF of SWN is then obtained numerically by applying
the inversion theorem [32] that we recall in the following
theorem.
Theorem 10: If S is a one-dimensional distribution func-

tion, its CDF is given by the following expression for which t
is real:

F(x) =
1
2
−

1
π

∫
∞

0

=
[
e−itx LS (−it)

]
t

dt.

Consequently, using the relationship E =
√
Z0 · S for

the x-axis, we finally obtain the CDF of E . A comparison
between CDFs with and without unit-rate Rayleigh-fading
is shown in Fig. 3. As expected, probabilities of exceeding
any electric field strength is lower in the Rayleigh-fading
case. The difference with the no-fading case is how-
ever small, as suggests the Kolmogorov-Smirnov distance
of 0.07 between the CDFs. In the following, we only work
under a no-fading hypothesis. To recall, the aim of this paper
is to introduce a simple and quick method for assessing
exposure, which can then be used to accurately study the
impact of an increase in base station density, for example.
The numerical calculation of the Laplace transform of SWN
being several orders ofmagnitude faster under the assumption
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FIGURE 3. CDF FEWN
with a Rayleigh fading and without fading.

λ = 6 BS/km2, α = 3.25, h = 38 m, EIRP = 67.96 dBm.

of no-fading, thanks to the approximation given by Propo-
sition 2, we will only work under this hypothesis in the
following. The fitting method proposed in the next section
would have been exactly the same if we had not worked
under this assumption. Exposure being slightly larger without
considering fading, the hypothesis is also consistent with
the conservative approach policy advocated by organizations
issuing guidelines to limit exposure to EMF. The CDF, for
different values of λ, α and h, are respectively shown in Fig. 4,
Fig. 5 and Fig. 6, making it possible to observe the impact of
these parameters on the shape of the CDF. Clearly, the path
loss exponent has the greatest impact on exposure.

FIGURE 4. CDF FEWN
for several values of λ. α = 3.25, h = 38 m, EIRP =

67.96 dBm.

III. EXPERIMENTAL RESULTS
Using the Brussels database of BS locations, the BS density
for each frequency band was calculated over a 4.5 km2-area
that is spread over two municipalities of Brussels, Belgium.
All network providers and all communication standards were
combined since we cannot differentiate by measurements
the technology used in a frequency band. The BS density is
16 BS/km2 and 6 BS/km2 for the 2100 MHz and 2600 MHz
bands, respectively.

FIGURE 5. CDF FEWN
for several values of α. λ = 6 BS/km2, h = 38 m,

EIRP = 67.96 dBm.

FIGURE 6. CDF FEWN
for several values of h. λ = 6 BS/km2, α = 3.25,

EIRP = 67.96 dBm.

Statistical distributions for the power density were exper-
imentally obtained by drive-tests in this Brussels area.
The comprehensive experimental set-up is described in [2].
A spectrum analyzer was mounted on a moving car, taking
calibrated measurements along the three polarization axes
in the 2100 MHz and 2600 MHz frequency bands with a
resolution bandwith of 3 MHz. A GPS was used to tag the
measurements with position. Measurements were averaged
over squared local areas of 2 m× 2 m. This size was chosen
heuristically, small enough to keep the spatial sampling rel-
evant, but large enough to smooth out fading. Measurements
were obtained for around 16 000 4 m2-squares. We focused
on the UMTS 2100, LTE 2100 and LTE 2600 bands:

S2100 =
2140.1 MHz∑

f=2110.3 MHz

Sf +
2169.7 MHz∑

f=2154.9 MHz

Sf (11)

S2600 =
2640 MHz∑

f=2620 MHz

Sf +
2690 MHz∑

f=2655 MHz

Sf (12)

where Sf is the power density measured at frequency f .
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Parameters of the model (1)-(3) under the no-fading
hypothesis have first been fitted by minimizing

K (θ)

=

(
Q05(θ)
Q05,exp

− 1
)2

+

(
Q10(θ)
Q10,exp

− 1
)2

+

(
Q25(θ)
Q25,exp

− 1
)2

+

(
Q50(θ)
Q50,exp

− 1
)2

+

(
Q75(θ)
Q75,exp

− 1
)2

+

(
Q90(θ)
Q90,exp

− 1
)2

+

(
Q95(θ)
Q95,exp

− 1
)2

+

(
µ(θ)
µexp
− 1

)2

(13)

where θ = (h, α,EIRP) is the 3-tuple of parameters. Qx is
the x%-quantile and µ the mean of the distribution of SWN
using θ. The notation ‘‘xexp’’ refers to statistics obtained from
the experimental distribution. The minimization of K (θ ) is an
exhaustive search onto a regular grid G = Ih × Iα × IEIRP
with Ih = [10; 60]m with a step of 1 m, Iα = [2; 5] with
a step of 0.05 and IEIRP = [56.0; 81.0]dBm with a step of
0.01 dBm. In a second phase, the median of the distributions
of heights and EIRPs, computed thanks to Brussels database,
were taken as values of h and EIRP in the model. The model
was then calibrated by minimizing K (θ) with the remaining
unknown parameter θ = α.
Statistical parameters of the distributions are listed

in Tables 1 and 2 for the 2100MHz and 2600MHz frequency

TABLE 1. Parameters of the statistical distributions of the power density
for the 2100 MHz frequency band, in the Brussels-Capital Region (Ixelles
and Etterbeek). Exp: experimental results. SG: CDF obtained by a
numerical Gil-Pelaez inversion. Qx ’s are the quantiles, µ the mean.

TABLE 2. Parameters of the statistical distributions of the power density
for the 2600 MHz frequency band, in the Brussels-Capital Region (Ixelles
and Etterbeek). Exp: experimental results. SG: CDF obtained by a
numerical Gil-Pelaez inversion. Qx ’s are the quantiles, µ the mean.

bands, respectively. The optimal sets of parameters θ for
the propagation model (3) are also listed in this table. Fixed
parameters, estimated a priori from the existing databases, are
marked with a star ∗ for clarity.

As seen in Fig. 7 and Fig. 8, the SG CDFs well fit the
experimental ones. The x-axis is expressed in terms of electric
field strength E instead of power density using (1). To esti-
mate goodness-of-fit, the two-sample Kolmogorov-Smirnov
(KS) distance, based on cumulative distribution functions,
is computed at the end of the table. The error between the
experimental and simulated distributions is of the order of
magnitude of the accuracy of the measuring device. Fitted
values for optimal parameters θ = (h, α,EIRP) are realistic
on physical grounds. Indeed, values obtained for h and EIRP
are very close to the medians of the database distributions.
Values of α for the two calibrations θ = (h, α,EIRP) and
θ = α are close whether or not the height and EIRP are fixed.
Parameter α is very close to path loss exponents from deter-
ministic models of the literature, computed in urban environ-
ments similar to Brussels. For example, Ichitsubo et al. [8]
obtained α = 3.1 for a center frequency of 2600 MHz and
the COST231 model [7] gives α = 3.55 for a BS height of
27 m up to 2 GHz, very close to 2100 MHz.

FIGURE 7. CDF of E for the network made of BSs from all network
providers in Brussels for the 2100 MHz band.

FIGURE 8. CDF of E for the network made of BSs from all network
providers in Brussels for the 2600 MHz band.

Two approaches can then be followed to estimate the
model parameters. The first approach requires pre-calibration
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with experimental data through the minimization of K (θ) in
the city of interest. If experimental data are not available,
the height, density and EIRP can be deduced from an antenna
database while the path loss exponent can be retrieved from
a similar path loss model in the literature, at the price of a
less good fitting to experimental CDFs. Note that the model
parameters must be determined once and for all: they can then
be used as a basis for studies such as BS densification, for
example.

Taking the distribution of the power density due to the near-
est BS, S1, leads to a mean power density of 1.39.10−4 W/m2

(computed from Corollary 1) instead of 1.72.10−4 W/m2

when considering all BSs (from Theorem 6) for the LTE
2600 frequency band with optimized h, α and EIRP param-
eters. Expressed in terms of the electric field strengths,
these values respectively correspond to 0.23 V/m and
0.25 V/m. Similarly, for the LTE 2600 band, the 50%- and
95%-quantiles of the electric field are respectively 0.08 V/m
and 1.51 V/m for the nearest-BS approximation against
0.13 V/m and 0.56 V/m when the whole set of BSs is
considered.

IV. CONCLUSION
In this paper, we have introduced the use of stochastic geom-
etry for exposure assessment. We have shown some general
mathematical expressions of the statistics of the power den-
sity, coming from a limited number of the network’s BSs or
from all BSs. In particular, we have obtained a numerical
CDF of the power density due to all BSs for a simple propaga-
tion model, when the BS pattern can be approached by a PPP.
We have then applied this framework to experimental mea-
surements realized in Brussels, Belgium.We have shown that
the model faithfully reproduces real-world values at 2.1 GHz
and 2.6 GHz, bands for which the base station densities are
very different. As this model only differs for the different
frequency bands in its parameters, i.e. density, height, EIRP
and path loss exponent, the model is generic and can be
applied to any 5G-like frequencies. However, the validation
would require measurements performed at these frequencies.

APPENDIX A
PROOF OF THEOREM 5
The k th moment of the resulting power density from the n
nearest BSs is given by

E
[
Sk[n]

]
= E

( n∑
i=1

S(ri)

)k
=

∑
k1+k2+...+kn=k

(
k

k1, k2, · · · , kn

)
E
[
Sk11 S

k2
2 · · · S

kn
n

]
=

∑
∣∣∣Ek∣∣∣=k

(
k
Ek

)
E

[
n∏
i=1

Skii

]
(14)

using the multinomial theorem [33], where(
n

k1, k2, k3, . . . , km

)
=

(
n
Ek

)
=

n!
k1!k2!k3! · · · km!

=
n!∏m
i=1 ki!

(15)

is a multinomial coefficient, generalization of the binomial
coefficients. To evaluate the quantity

E
[
Sm1
1 Sm2

2 Sm3
3 · · · S

mn
n
]
, (16)

we need to first introduce some notations and properties.
In the following, we define M =

∑n
i=1mi and we use the

properties

τi = τ
(i)
(i) , (17)

τ
(b)
(a) + τ

(c)
(b+1) = τ

(c)
(a) , (18)

for which the notation τ (b)(a) has been defined in the statement
of Theorem 5.
Moreover, we use, as previously, the change of variable

λπ
(
r2i + h

2
)
→ ti and the following lemmas involving the

upper incomplete Gamma function:
Lemma 2: The integration property of the incomplete

Gamma function is∫
∞

l
tb−1 0(z, t) dt =

1
b

(
0(b+ z, l)− lb 0(z, l)

)
.

Proof: The proof is immediate using an integration by
parts and the result lim

t→∞
tb 0(z, t) = 0. �

Lemma 3: In the particular case b = 1, Lemma 2 has a
simplified statement∫

∞

l
0(z, t) dt = 0(1+ z, l)−l 0(z, l).

Lemma 4: The recurrence formula of the incomplete
Gamma function is

0(z+ 1, t) = tz e−t + z0(z, t).

Proof: Using the definition of the incomplete Gamma
function twice and using an integration by parts, we
obtain

0(z+ 1, t) =
∫
∞

t
uz e−u du

=
[
−uz e−u

]∞
t + z

∫
∞

t
uz−1 e−u du

= tz e−t + z0(z, t).

�
Using the joint probability distribution for the n nearest

BSs

f (r1, r2, · · · , rn) dr1 dr2 · · · drn

= (2λπ)n e−λπr
2
n r1 r2 · · · rn dr1 dr2 · · · drn, (19)
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the quantity (16) can be expressed as

E
[
Sm1
1 Sm2

2 · · · S
mn
n
]

= AM (λπ )M
α/2 eλπh

2
∫
∞

λπh2
t−

α/2 m1
1

×

∫
∞

t1
t−

α/2 m2
2 · · ·

∫
∞

tn−1
t−

α/2 mn
n e−tn dtn · · · dt2︸ ︷︷ ︸
∗

dt1.

(20)

Let us extract the term underbraced by a star for
convenience.
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∞
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Using (18) and replacing (21) in (20), we obtain the
theorem:
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