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ABSTRACT Mobile device cloud (MDC) is a collaborative cloud computing platform over which neigh-
boring smart devices form an alliance of shared resources to mitigate resource-scarcity of an individual
user device for running compute-intensive applications. A major challenge of such a platform is maximiz-
ing user quality-of-experience (QoE) at minimum cost while providing attractive incentives to workers’
mobile devices. In state-of-the-art works, either a voluntary task execution or merely resource-cost driven
mechanism has been applied to minimize the task execution time while overlooking payment of any
additional incentive to the worker devices for their quality services. In this paper, we develop a computational
framework for MDC where the afore-mentioned challenging problem is formulated as a multi-objective
linear programming (MOLP) optimization function that exploits reverse-auction bidding policy. Due to
the NP-hardness of MOLP, we offer two greedy worker selection algorithms for maximizing user QoE or
minimizing execution cost. In both algorithms, the amount of incentive awarded to a worker is determined
following the QoE offered to a user. Theoretical proofs of desirable properties of the proposed incentive
mechanisms are presented. Simulation results illustrate the effectiveness of our incentive algorithms com-
pared to the state-of-the-art approaches.

INDEX TERMS Incentive mechanism, mobile device cloud, quality of experience, reverse auction, user
satisfaction.

I. INTRODUCTION
With huge advances in recent years, mobile devices (e.g.,
smartphones, smartwatches, and tablets) have become ubiq-
uitous and are rapidly growing as a dominant computing
platform for users. These devices, which are equipped with
a plethora of embedded sensors (e.g., GPS, camera, audio,
proximity, and temperature), facilitate the running of many
compute-intensive mobile applications such as intelligent
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transportation, natural language translation, augmented real-
ity, and real-time health monitoring [1], [2]. Although the
divergence of mobile applications is increasing every day,
the execution performance is not yet sufficient due to resource
constraints, mainly in terms of limited CPU, memory and
battery capacity [3], [4]. To enhance the computation perfor-
mance of mobile applications, some researchers have intro-
duced mobile device cloud (MDC) [5]–[8] which is an oppor-
tunistic computation offloading technology that exploits idle
resources of stationary mobile devices; it is also sometimes
referred to as Mobile Ad-hoc Cloud [9], [10]. Mobile devices
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in a large scale stationary location (e.g., theater, shopping
mall, stadium, or restaurant) or onboard a vehicle (e.g., bus,
train, airplane) may collaboratively form a cloud service
infrastructure to perform text translation, healthcare data
processing, reality augmentation, etc. in real-time. A study
shows that mobile devices are kept in idle state approximately
89 % of the time, and during this period they consume not
more than 11 % of the available system resources [11].
The idle resources from such a plethora of mobile devices
present untapped computing opportunities [12]. The MDC
technology not only mitigates scarcity of computation
resources in cloudlet-based offloading mechanisms [3], [13],
[14] but also resolves communication latency of remote
clouds [1], [15], [16].

Typically, an owner of an application (i.e., a buyer device)
offloads an application code to the MDCmanager, and then it
is executed by different worker devices (i.e., sellers) having a
sufficient amount of idle resources. It is important to ensure
participation of nearby worker devices in such computation
system so as to exploit unused resources efficiently. In state-
of-the-art works, authors have focused on designing an MDC
framework, where the worker devices participate voluntar-
ily in the task execution process [6], [7], [12]. However,
these methods lack to attract a good number of reliable and
resource-rich workers in the resource-trading mechanism.
To overcome this problem, auction mechanisms have been
introduced to select resource-rich workers that minimize user
cost [17], [18] or maximize workers’ profit [19]–[21]. How-
ever, these works suffer from providing quality execution
through reliable workers. Moreover, it is still unexplored to
investigate the impact of user Quality-of-Experience (QoE)
for executing tasks in an MDC environment. The QoE metric
quantifies improvement of execution time of an offloaded
task observed by the user. Focusing only on minimizing exe-
cution cost leads selection of unreliable and/or poor workers,
hampering the user QoE. On the other hand, a worker device
expects payment in return of task execution that acts as a
compensation for dynamic usage of resources (e.g., CPU,
memory, and energy) and bandwidth charges. Furthermore,
an application user (i.e., buyer) might be motivated to pay
more only if s/he receives high quality execution supports
from worker devices. Hence, it is a pre-eminent concern to
design an incentive mechanism to enhance worker participa-
tion, while considering the resource capacity and reputation
of worker devices to execute the tasks with the aim of increas-
ing user quality-of-experience (QoE).

In this paper, we focus on the selection of reputed and
resourceful worker devices to execute tasks of an applica-
tion and incentivize them based on the quality of execution.
We consider an MDC system consisting of a cloudlet acting
as a cloud broker and a set of participating mobile devices
(i.e., user and workers), as shown in Fig. 1. The user device
has an application (with a set of individual tasks) that requires
offloading to the cloudlet for execution. After getting an
announcement from the cloudlet, a worker device expresses
its willingness to execute a certain task/tasks. Following the

FIGURE 1. Collaborative computation in a mobile device cloud.

reverse-auction bidding policy, the cloudlet then determines
an optimal mapping of the tasks to be executed on the worker
devices so as to maximize user QoE and minimize execution
cost. After successful execution of the assigned tasks, claimed
cost with additional incentives according to execution quality
are paid to the worker devices. The key contributions of this
work are summarized as follows:

• We design a framework for a QoE-aware incentive
mechanism to execute applications by workers in MDC.
To the best of our knowledge, this is the first work
to improve the user-QoE through incentivizing worker
devices in addition to their regular bid payment, accord-
ing to task execution quality.

• We formulate a multi-objective linear program-
ming (MOLP) function that determines the optimal
provisioning of application tasks on high performing
worker devices with the aim of increasing user QoEwith
reduced cost.

• Due to the NP-hardness of MOLP, we develop two
greedy task-worker assignment algorithms and incen-
tive mechanisms to facilitate resource sharing using
reverse-auction theory.

• The novelty of this work lies in paying additional incen-
tives to the workers following their offered qualities of
user task execution.

• The reliability and trustworthiness of the workers and
the correctness of the incentive mechanisms have been
proved theoretically.

• The performances of the proposed incentive mecha-
nisms were evaluated in MATLAB [22], and significant
improvements in user QoE and cost reduction were
demonstrated.

The remainder of this paper is organized as follows.
Section II presents state-of-the-art works in MDC and incen-
tive mechanisms. The computation framework is presented
along with our assumptions in Section III. Section IV for-
mulates the worker device selection and incentive disburse-
ment methods and presents a theoretical analysis. Section V
presents the simulation environment and experimental results
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of the proposed incentivemechanismswith comparative anal-
ysis. Finally, the paper is concluded in Section VI.

II. RELATED WORKS
The key idea of this work is to provide an incentive to MDC
workers according to execution quality of the tasks rendered
by them. However, state-of-the-art-works in the literature
have only disjointly addressed these two issues, as described
below.

A. TASK EXECUTION IN MDC
The increasing number of smartphones has brought an enor-
mous opportunity for code offloading to nearby mobile
devices. A significant number of recent works have demon-
strated the benefits of exploiting idle resources of nearby
mobile devices compared to executing applications on
remote clouds. To minimize the task completion time
Habak et al. proposed FemtoCloud [23], which is a dynamic
and self-configuring cluster head-based MDC architecture
coordinated by a cloudlet. The improvement was achieved
by applying priority-based task assignment and an earli-
est deadline heuristic on task assignment and result collec-
tion, respectively. Mao et al. [24] formulated a Lyapunov
optimization-based dynamic computation offloading algo-
rithm exploiting the resources of nearby energy harvesting
devices to minimize the task execution latency and task
failure of offloaded application tasks. However, these works
incurred a huge burden on the potential workers due to biased
assignment of tasks.

To optimize the application’s execution performance,
Le et al. provided a collaborative infrastructure among nearby
mobile devices by leveraging Wi-Fi Direct technology that
not only minimizes energy consumption but also expands
the hardware capability of mobile devices [8]. The simu-
lation results also reveal that task execution with nearby
mobile devices is more beneficial compared to remote cloud
server-based execution due to higher communication latency
of cellular networks.

Balasubramanian and Karmouch [9] exploited the
resources of nearby mobile devices to provide Infrastructure
as a Service in the Mobile Ad-hoc Cloud Computing envi-
ronment. They also outlined necessary architecture and algo-
rithms to create a pool of devices with dedicated resources
and efficient utilization of those resources. Later the authors
formulated a model to ensure the parallel execution of tasks
with a minimum number of worker devices [10]. A com-
position score was calculated based on the shared resources
of the device (CPU, Memory, and Storage) to guarantee the
selection of the best available devices for task execution.

Lin et al. [25] proposed a code offloading framework
named Circa that exhibits the feasibility of code offload-
ing in the proximity of nearby mobile devices exploiting
iBeacons, a wireless location-based transmitter system. The
system used an efficient and fair task allocation algorithm
to disseminate tasks of an application among reliable worker
devices.

In [26], Guiguis et al. delineated transient clouds, a collab-
orative computing framework for the offloaded execution of
tasks with the help of nearby mobile devices. The authors
explored centralized and distributed approaches to allocate
tasks among mobile devices according to their capabilities.
A modified Hungarian algorithm had been introduced in the
centralized approach to balance the workload and Distributed
Hash Tables were used to minimize the communication cost
in the distributedmechanism. To execute the application tasks
of multiple users, Ning et al. [27] considered both cloud and
edge devices to offload application tasks for minimizing exe-
cution delay of latency-sensitive applications and formulated
a MILP problem considering the resource contention among
the mobile users. In [28], Fernando et al. employed a pre-
emptive work-stealing mechanism on a set of worker nodes
to balance workload and minimize execution time. Consid-
ering user mobility, task properties, resources and energy
constraints, Saleem et al. [29] proposed a D2D-enabled task
assignment and power allocation mechanism to minimize the
task execution latency in MEC. To tradeoff between energy
consumption and service latency, Yadav et al. [30] proposed
an energy-efficient computation offloading and resource allo-
cation mechanism considering vehicular node mobility and
end-to-end latency deadline in Vehicular Fog Computing.
However, the models completely ignores the reliability of the
edge worker devices.

All the above-mentioned works significantly minimized
execution time by offloading tasks to nearby mobile devices.
Although these works focused on minimizing execution cost
based on worker’ bids and user budget, their worker selection
strategies completely ignored user QoE. Moreover, none of
these considered any incentive for the worker devices for
executing the tasks.

B. INCENTIVE MECHANISM IN MDC
The actual benefit of the emerging MDC technology can
only be utilized through effective participation of mobile
worker devices in the computation process. Introduction
of a reward mechanism can incentivize the use of mobile
device resources, increasing motivation for worker devices.
In the literature, mobile cloud-based computing systems have
exploited a reverse auction mechanism, where a buyer places
a request for a service and many sellers bid the minimum
value they must be paid for the service, and the bidder with
the lowest offer wins the auction.

In [6], Miluzzo et al. provided an outline of an incen-
tive mechanism for resourceful nearby mobile devices that
run compute-intensive offloaded tasks of an application in
an MDC system. Though the incentive mechanism consid-
ered execution cost parameters, such as waiting time and
bandwidth usage, few other influential parameters, such
as worker reputation, workload, and task interdependency,
were not considered in system design. On the contrary,
Noor et al. [17] proposed a task allocation strategy based on
worker reputation to assign tasks to different worker devices.
In [31], Yadav and Zhang proposed an adaptive energy-aware
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heuristic algorithm to detect overloaded hosts and a dynamic
VM selection algorithm to minimize the energy consumption
and to maximize the quality of service in a mobile cloud
computing environment. However, they neither provided any
incentive to reputed workers in the system, nor did they
consider QoE.

To incentivize worker devices, Duan et al. proposed a
homogeneous and a heterogeneous reward models for data
acquisition and distributed computation applications, respec-
tively [19]. Data acquisition applications exploited a Stack-
elberg game model and distributed computation applications
applied a procurement auction mechanism to incentivize
individual workers. In [18], Wang et al. considered a game
theoretic approach to find an equilibrium point for user cost
and worker profit for an optimal allocation of tasks in worker
devices. Though the system gives benefits to both buyer and
seller devices, it aims to minimize user cost in the context
of remote cloud price, which is often not practical. Consid-
ering resource capacity and task heterogeneity, Wang et al.
proposed two winning bid determination algorithms for het-
erogeneous and homogeneous task models, respectively to
execute the offloaded tasks in an MDC environment [20].
However, the bid winning worker devices were paid with
the immediate next bid of the corresponding task, leading
to overpayment of the workers. Later, Tang et al. [21], pro-
posed a broker-based double-sided bidding mechanism to
provide incentives to worker devices. The authors presented
two game theoretic algorithms to find an equilibrium point
that maximized the benefits for both user and worker devices.
However, none of the works appraised task dependency and
reputation of worker devices to execute tasks.

To encourage the participation of cloud service operators
and local edge servers for computational offloading in mobile
edge computing Liu et al. formulated a Stackelberg game that
maximizes the utilities of individual entities [32]. Wang et al.
proposed an auctionmodel to increase participation of mobile
devices that trades resources between task owners and worker
devices [33]. Resource allocation and price estimation were
determined through a distributed algorithm, while a payment
evaluation procedure detected dishonest sellers in the system.
Because bids were submitted privately to the selected partic-
ipants, the optimal result could not be guaranteed from the
system.

To stimulate service provisioning by edge clouds,
Wang et al. utilized market-based pricing model to design
a multi-round auction mechanism for the resource trading
between edge clouds and mobile devices that incentivizes
edge clouds for the allocated resources [34]. In [35], Li and
Cai considered the collaborative task offloading problem
as a social welfare maximization problem and applied a
prime-dual framework to develop an online incentive mech-
anism for the execution of offloaded tasks. Considering the
dynamic participation nature of the users and worker mobile
devices, He et al. proposed an auction-based incentivemecha-
nism for the execution of offloaded tasks that tried to optimize
the long-term system welfare without future information of

tasks [36]. However, none of the systems take into account
the reliability of the edge devices/clouds in the offloading
decision process that made the system vulnerable to the
successful execution of application tasks.

All the above works focused on a general objective to
minimize execution time and cost of a user where the work-
ers were compensated with the bid amount. There were no
consideration of additional payment as incentive following
quality execution of a task. Moreover, most of the works
not only ignored the reliability of devices while selecting
the workers but also neglected the inter-dependency among
the tasks. The key philosophy of this work is to select a
set of reliable worker devices to execute an application task
considering its dependency with others so as to minimize the
user execution cost and to maximize the quality of execution.
This novel strategy of rewarding worker devices with an
additional incentive for offering high quality execution would
help our system to attract more workers to participate and
makes such MDC system sustainable.

III. SYSTEM MODEL AND ASSUMPTIONS
This section introduces a novel computation framework for
an MDC system, interactions among its functional modules
and assumptions made for modeling the task execution. In the
remainder of the paper, without loss of generality, the terms
buyer and seller devices should be considered synonymous
to the terms user and worker devices, respectively.

A. COMPUTATION FRAMEWORK
We consider an MDC system with three different entities:
users (buyers), workers (sellers) and a cloudlet (broker),
which are working in two tiers. Mobile devices that are
running applications that require additional resources (CPU,
memory, etc.) for code execution, act as buyers and devices
providing the required computation resources act as sellers;
both reside at tier one. Interested seller devices bid for dif-
ferent application tasks based on their shareable resources.
As presented in Fig. 2, the allocation and distribution of these
tasks and resources are done by a cloudlet, which acts as the
central controller for task execution and resides in tier two.
The cloudlet also acts as a broker to select the winners from
a pool of candidate workers and their payment disbursement.
Detailed descriptions of four functional modules of our pro-
posed computation framework are appended below.

B. TASK PROFILER (TP)
The TP module receives an application with an allotted bud-
get (P) and an execution deadline through the task receiver
component. It then uses the workload analyzer component to
split the application into a set of atomic tasksM, where each
atomic task m ∈ M contains Sm number of instructions for
offloaded execution. The dependency estimation component
is responsible for determining the interdependency among
tasks [37] which is used to identify execution order, facili-
tating parallel execution. The TP then hands the tasks over to
the task advertisement component for advertising the tasks to
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FIGURE 2. Computation framework of the proposed incentive-driven
MDC system.

the worker devices. Each advertised task is a three-parameters
tuple denoted by < m,Sm, Tm >, where, m ∈M is the task
ID, Sm is its number of instructions and Tm defines the task
deadline. Based on the task size and historical transaction
prices, it also calculates maximum and minimum payable
amounts (Bmaxm and Bminm , respectively) for each task to guard
against bids from felonious workers [38]. The TP shares the
lists of advertised tasks information with the The TWA.

C. TASK-WORKER ALLOCATOR (TWA)
The TWA module is the core of the proposed system, and
it controls and coordinates functionalities of other modules.
It triggers the TP to collect user applications and submits
advertisements after profiling the application tasks. It collects
worker bids (B) through the bids coordinator component.
The worker devices send their device-specific information,
identified by the tuple new < k,Bk ,Rk , ηk ,Hk >, which
contains device identifier (k), workload capacity (Hk ), asso-
ciativity time (ηk ), and a set of bids (Bk ). Parameter Rk

is used to determine the aggregated resources required to
execute a single instruction, whereas the workload capacity
Hk indicates the maximum number of instructions that can
be handled by the worker [20], [33]. The associativity time ηk

indicates the expected amount of time the worker device will
stay in the vicinity. Associativity time of a worker device can
be calculated based on its contextual information and current
GPS location which has been exploited in [39]. A single
worker k ∈ K is allowed to bid for multiple tasksm ∈M, and
each bid Bkm ∈ B is represented by tuple < k,m, bkm,Qk

m >,
which contains execution cost (bkm) and execution quality
(Qk

m) promised by the worker k ∈ K. However, to win
a bid a worker device must have to satisfy the reputation
and computation resource constraint in addition to bid cost.
Moreover, a worker device will be entitled to execute multiple
tasks only if it has sufficient computational resources and the
tasks are sequential in order of execution.

All the collected bids and device information are then
transferred to the TWA module to determine the winners
among the submitted bids. After collecting all the bids from
different workers, the TWA matches the advertised list of
tasks with the corresponding worker bids to ensure that
no task remains unbidden. Notifications of winning bids
(W ⊆ B) are also dispatched through the same interface
to selected worker devices (V ⊆ K). The TWA module
interacts with the worker manager component to determine
the dependability of workers to execute tasks successfully
and to estimate the required cost. The worker manager com-
ponent evaluates submitted bids to determine the quality and
reliability of worker device through historical traces contain-
ing execution history and reputation information [40], [41].
After accumulating all information, it runs a worker selection
algorithm to determine the winners from the set of candidate
worker devices, and then it forwards the task-worker mapping
list to the execution coordinator (EC) to schedule the tasks in
order.

D. EXECUTION COORDINATOR (EC)
On reception of the task-worker mapping list from the TWA,
the EC calls the task dispatcher component to schedule the
tasks in order. This is to be noted that due to different com-
putation and communication resources, the worker devices
exhibits heterogeneous execution and communication laten-
cies. However, ordered scheduling of the tasks helps to dimin-
ish any synchronization latencies due to such issues. After
successful execution, results are collected and transmitted
back to the user device with a payment (P ′ ≤ P) disburse-
ment request. Failed executions are reallocated by the TWA
to the next available bidder. After the execution of all the
submitted tasks, reputation of the allocated worker devices
are updated according to their execution results and sent to
the TWA module to store in the worker manager database.

E. PAYMENT MANAGER (PM)
The PM receives the agreed amount of payment from the
user device through the payment receiver component. Upon
getting the successful execution notification from the EC,
the PM disburses the individual amount of payment (Pv) to
the corresponding winning worker devices v ∈ V according
to their bids along with incentives, if any, with the help of
the payment provider component. It also collects a certain
percentage of the worker bid cost as the utility (U0) of the
cloudlet, which is acting as a broker, coordinating all these
transactions and communication activities on behalf of the
user and worker devices.

The proposed incentivemechanisms trade among the seller
devices to execute application tasks of a buyerwith minimum
cost and maximum quality. The incentive mechanisms should
satisfy the following desirable properties:
• Computational efficiency: An incentive mechanism is
said to be computationally efficient if it can produce an
auction decision in polynomial time.
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• Individual rationality: The incentive mechanism must
ensure a positive utility to bid-winning worker devices
and the cloudlet to facilitate execution of application
tasks, i.e.,Uk

m > 0, ∀k ∈ K, ∀m ∈M; U0
m > 0, ∀m ∈

M, where Uk
m denotes the utility of worker k ∈ K

for task m ∈ M. This basic requirement is mandatory
to encourage the participation of worker devices in the
system.

• Truthfulness: An incentive mechanism is truthful if it
can guarantee that only the bidders declaring true costs
are eligible to win the auction. No bidder can increase
its utility by submitting a bid other than its actual cost.

• Budget balance: The incentive mechanism must guar-
antee that the total amount of payment P ′ charged by
different worker devices is within the budget allocation
P of a user for a certain application, i.e., P ′ ≤ P .

F. ASSUMPTIONS
Based on the state-of-the-art works, we have made the fol-
lowing assumptions in this work.

We assume a rooted tree of application tasks as the vertices,
and the linkages correspond to dependencies among the tasks.
Execution of the tasks begins from the root, where parallel
tasks start their execution simultaneously and dependent tasks
start execution after completion of the parent task [4], [37],
[42]. Hence, the execution performance of an application
mostly relies on the number of dependent and parallel tasks.
The overall execution delay is calculated considering both
execution times and communication latencies involved.

We assume there will be a sufficient number of worker
devices in the system to allocate all the application tasks,
and each task will be bid on by at least one worker. The
worker devices agree to execute tasks assigned to them,
and each device will execute one task at a time [18], [20].
However, it may execute multiple tasks of one application.
These worker devices are symmetric, independent, and risk
neutral, having no security or privacy violations. A worker
device may bid for multiple advertised tasks, where each bid
has been generated randomly considering given task size and
deadline. When a worker device submits quality information
in a bid, it includes communication latency with actual exe-
cution time [43].

We assume the systemwill be running on a trusted platform
where all executions will be in a secure environment and all
the device-cloudlet interactions will be governed by proper
authorization and authentication techniques [44]. We con-
sider a quasi-static behavior for mobility of the user and
worker devices to determine the associativity time (η), where
themovement of the devices will remain relatively unchanged
for a given period of time that is sufficient to execute the
allocated task and return the result to the cloudlet [8], [26],
[39]. In this work, current GPS location and contextual
information have been used to determine the associativity
time of a worker mobile device [39].

The major notations used in this paper are listed in Table 1.

TABLE 1. List of notations.

IV. PROPOSED INCENTIVE MECHANISM
Successful execution of application tasks greatly depends on
the selection of high performing and reputed worker devices.
The execution time of an application task also significantly
varies from one worker to another due to their resource het-
erogeneities, which offers varied QoE for users. This section
first details the design of an optimal selection process of
worker devices considering user QoE and task execution cost.
Due to the NP-hardness of the optimal solution, we then
develop greedy algorithms for task assignments on suitable
workers so as either to maximize QoE or minimize execution
cost. Finally, this section ends by presenting a QoE-aware
incentive payment mechanism and theoretical proofs of its
properties.

A. OPTIMAL SELECTION OF WORKER DEVICES
The competency of our proposed QoE-aware incentive mech-
anism mostly relies on efficient selection of worker devices
so that the overall execution quality is increased and cost is
decreased. The efficiency of application task allocations by
the TWA module on different worker devices also depends
on their reputations and resource availabilities. In addition to
that, interdependency among the tasks and costs demanded
by the worker devices for task execution are also important.
Thus, provisioning of application tasks on worker devices is a
multi-objective, multi-constrained problem. The next subsec-
tions describemethods for measuring user QoE and execution
cost metrics, followed by formulation of an optimization
framework for the problem.

1) USER QUALITY-OF-EXPERIENCE (QoE)
As discussed earlier, each task has an associated deadline Tm
determined by the cloudlet [45], within which the output of
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a task must be available to the cloudlet. Execution quality of
an application, as termed as service level agreement (SLA)
quality, is defined as the ratio of task execution time on the
worker device to that on user device. Therefore, quality for a
single task m ∈M being offloaded to device k ∈ K can be
calculated as

Qk
m = 1− (

T k
m + Lkm
Tm

), Qk
m ∈ (0, 1], (1)

where T k
m denotes task execution time, and Lkm indicates

communication latency between worker device k ∈ K and
the cloudlet during input and output transmission for task
m ∈ M. The task execution time T k

m is calculated by Sm
µk

,
whereµk represents the CPU speed of a worker device k ∈ K.
The ratio T k

m+Lk
m

Tm < 1 because execution delay cannot exceed
the deadline for any task. Now, combining the quality of all
tasks, the QoE observed by the user for an application can be
expressed as

Q =
1
|M|

|M|∑
m=1

Qk
m, Q ∈ (0, 1]. (2)

The target of our QoE-aware incentive mechanism is to
increase the value of Q for a user application.

2) COST OF EXECUTION
A worker device participating in task execution incurs a cost
due to usage of a certain amount of resources (CPU, memory,
bandwidth, etc.). Therefore, a payment for the used resources
is necessary to incentivize the worker device, promoting this
service model [20]. The cost to execute each task m ∈ M
is determined by the amount of resources utilized by the
task during task execution time. The amount of computation
resources (CPU clock speed) required to execute taskm ∈M
with task size Sm can be given as

Rm = Sm ×Rk , (3)

whereRk is the resources required by candidate device k ∈ K
to execute a single instruction. Then, the total cost is cal-
culated by considering cloudlet utility along with execution
cost. Now, considering Ck to be the cost of utilizing a unit
resource in device k ∈ K, the cost of executing task m ∈M
can be determined by

Ckm = Rm × Ck . (4)

After successful completion of a task, the corresponding
worker devices earn payments with incentives in line with
their execution qualities. From application task profiling and
worker selection to task dissemination, the cloudlet controls
and coordinates the whole process of execution in the MDC
system. Thus, our worker devices pay a certain proportion of
their bid amounts to the cloudlet as a coordinating utility. The
utility of the cloudlet for executing task m ∈M by candidate
device k ∈ K is

U0
m = bkm × λ, (5)

where bkm is the price of bidding by worker device k ∈ K
to execute task m ∈ M that contains a marginal profit with
accumulated costs for used resources and cloudlet payment,
and λ is the utility percentage that will be given to the cloudlet
for coordinating this task assignment and execution. The
value of this utility percentage is a system design parameter,
and it may vary from one cloudlet to another over a given
period. The total utility of the cloudlet U0 for providing
necessary support to execute all tasks of an application is
scaled by

U0
=

|M|∑
m=1

U0
m. ∀k ∈ K (6)

Therefore, the utility of candidate k ∈ K for executing a
single task m ∈M is

Uk
m = bkm − Ckm − U0

m, (7)

where Ckm is the actual cost of executing task m ∈ M on
device k ∈ K. Accumulating the cost of each task m ∈M in
the application, we can get total bidding cost of application
execution on the candidate devices, quantified as

CM =
|M|∑
m=1

|K|∑
k=1

bkm × y
k
m, (8)

where binary variable ykm ∈ {0, 1} takes value 1 if taskm ∈M
is executed on worker device k ∈ K and 0 otherwise. Hence,
the normalized bidding cost C of the user is gained by

C =
CM
P
, C ∈ [0, 1], (9)

where P is user-sanctioned budget for execution of the com-
plete application and is the summation of the maximum
allowable bid costs for each task m ∈ M, i.e., P =∑|M|

m=1 B
max
m . While selecting worker devices, the proposed

incentive mechanism aims to minimize this normalized exe-
cution cost for an application.

3) OPTIMAL OBJECTIVE FUNCTION
The selection of an optimal set of candidate devices for
offloading tasks of an application can now be formulated as

Maximize :Z = argmax
W∈P(B)

∑
∀w∈W

{β ×Q−(1−β)× C}, (10)

subject to:

CM ≤ P (11)

ηk ≥ max(T k
n )+ T k

m (1−8n,m), ∀n ∈ 5m (12)

�k
≥ γ, ∀k ∈ K (13)

|M|∑
m=1

Sm × ykm ≤ Hk , ∀k ∈ K, ∀m ∈M (14)

Uk
m > 0, ∀k ∈K,∀m∈M; U0>0, ∀m ∈M (15)∑

k∈K
ykm = 1, ∀m ∈M. (16)
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In the above formulation, the aim of the objective func-
tion (10)1 is to excel in task QoE while reducing execution
cost. It chooses a bid set W from the power set of bids
P(B), which optimizes the said parameters. Here, β is the
relative weight parameter, which works as a control knob. Its
value can be tuned to obtain different tradeoff levels between
application QoE and execution cost required by various types
of applications. Setting β = 1 translates it into a quality max-
imization problem, and β = 0 makes it a cost minimization
problem, while other values correspond to various quantified
levels of tradeoff between the two. The cloudlet determines
an appropriate value of β following user demands.

The budget constraint defined in (11) means that the total
payment of workers must not exceed the user-sanctioned
payment. The availability constraint (12) specifies the min-
imum amount of time a selected candidate device must stay
in the system. Here, 5m is the set of parents of a task m ∈
M and 8n,m is the percentage of dependency of a child
task m ∈ M on its parent n ∈ 5m [37]. The reputation
constraint (13) ensures that to win an auction for any task
m ∈ M, the reputations of each selected candidate must
be greater than a certain minimum threshold. The taskload
constraint (14) refers to the fact that a candidate device’s total
assigned taskload must be less than or equal to its specified
maximum capacity Hk . The utility constraint (15) ensures
that each device executing a task of an application will earn
positive revenue. The cloudlet will also earn positive utility
for supporting the execution service for each individual task.
Similarly, the atomicity constraint (16) confirms that a single
task will not be assigned to multiple candidate devices, and
each task should be executed only once.
Theorem 1: The proposed worker device selection problem

in (10) is NP-hard.
Proof: The optimization framework in (10) is a MOLP

because since it contains two conflicting objectives (i.e.,
maximizing quality and minimizing cost) with combinatorial
and continuous constraints. The worker selection problem
can be reduced to a multiprocessor scheduling problem (an
NP-complete scheduling problem) [46] by leveraging the
constraints and considering that all workers offer equal qual-
ity. Hence, the proposed MOLP problem is NP-hard and
cannot provide a polynomial time solution.

In a practical MDC platform, a typical application con-
taining approximately 10 − 15 individual tasks may gener-
ate thousands of bids. To find boundary values of worker
and tasks in a typical MDC environment, we simulate the
objective function in NEOS optimization server (2× Intel
Xeon e5-2698 @ 2.3GHZ CPU and 92GB RAM) with
β = 0.5. The graphs in Fig. 3 show that the computa-
tion time for a higher number of tasks and workers expo-
nentially increases due to exploring an enormous number
of task-worker assignments. For 20 tasks and 30 workers,

1Please note that (10) is not a typical multi-objective optimization prob-
lem; rather, it brings a tradeoff between the two conflicting objective param-
eters - quality and cost.

FIGURE 3. Computation time for optimal selection of workers.

FIGURE 4. Impact of weight parameter (β).

the run time exceeds 100 seconds, which might not be tol-
erable for a decision-making algorithm. In a separate exper-
iment, the impact of weight parameter (β) was studied for
12 tasks and 20 worker devices as shown in Fig. 4. The graphs
show that with the increasing β value, the user QoE increases
and the user payment saving amount decreases. Our further
studies on QoE and payment savings have been discussed in
Section V.
Since, the above formulation turns to be an NP-hard prob-

lem, we develop two greedy solutions for assigning tasks to
workers to overcome the problem.

B. GREEDY SELECTION OF WORKER DEVICES
To support real-time processing of user applications, this
section introduces light-weight greedy worker selection algo-
rithms focusing on either maximizing execution quality or
minimizing execution cost. Algorithm 1 selects workers that
maximize task execution quality while maintaining total cost
within the allocated budget. On the other hand, Algorithm 2
selects workers that demandminimum cost whilemaintaining
the required quality of execution. Detailed descriptions of the
algorithms are given in the following subsections.

1) MAXIMIZING TASK EXECUTION QUALITY
Algorithm 1 takes a set of bids B and a set of tasks M
as input and produces a set of winning bids W as output.
It uses a priority queue of bids B′ in descending order of
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Algorithm 1Worker Selection for Maximizing Quality
INPUT: Set of bids from all worker devices for all tasks,
B←

⋃
∀k∈K,∀m∈M Bkm

OUTPUT: Set of winning bids,W

1. Set W ← φ, M′
←M

2. Set Rk
u ← 0 ∀k ∈ K

3. Set Priority Queue, B′← φ

4. for all Bids Bkm ∈ B do
5. if ((bkm > Bminm && bkm < Bmaxm ) && (�k

≥

γ ) && (Qk
m > 0)) then

6. B′.push(Bkm) {Insert item following priority on
higher values of Qk

m}
7. end if
8. end for
9. while (B′ 6= φ && M′

6= φ) do
10. F ← B′.pop()
11. if (Rm +Rk

u < Hk && F .k ∩M′
6= φ) then

12. W ←W ∪ F
13. Rk

u ← Rm +Rk
u

14. M′
←M′

\ k | k ∈ F
15. end if
16. B′← B′ \ F
17. end while
18. returnW

their execution qualities (line 3). First, the algorithm prepares
a candidate bid set after pruning the bids that cannot meet
the minimum reputation and fall outside of the bid boundary.
These bids are sorted with higher quality values and stored in
the priority queue (lines 4− 8). Then, the task of the topmost
bid is assigned to the correspondingworker device that fulfills
the required resource requirements (lines 10 − 11). After
successful task assignment, the corresponding task and the
bid is removed from the queue and the procedure is repeated
until all the tasks assignment are completed (lines 9− 17).

2) MINIMIZING TASK EXECUTION COST
The algorithm selects worker devices that can satisfy execu-
tion constraints, ascertain minimum execution quality, and
reduce overall execution costs. Delay tolerant applications,
such as text translation, audio video transmission, online
forum, and blogging can compromise in terms of execution
quality, providing us the opportunity to minimize execution
cost.

Algorithm 2 follows similar steps of Algorithm 1, except
the priority queue B′ is based on minimum execution cost
(line 6). The algorithm selects all bids that provide minimum
task execution cost and ensures at least the minimum quality
(lines 4− 17).
What we unfold next is the process of providing additional

incentives to the high performing workers following their
offered qualities of task executions. Note here that the incen-
tive mechanisms are applicable for workers assigned tasks
either by MOLP system or greedy algorithms.

Algorithm 2Worker Selection for Minimizing Cost
INPUT: Set of bids from all worker devices for all tasks,
B←

⋃
∀k∈K,∀m∈M Bkm

OUTPUT: Set of winning bids,W

1. Set W ← φ,M′
←M

2. Set Rk
u ← 0 ∀k ∈ K

3. Set Priority Queue, B′← φ

4. for all Bids Bkm ∈ B do
5. if ((bkm > Bminm && bkm < Bmaxm ) && (�k

≥

γ ) && (Qk
m > 0)) then

6. B′.push(Bkm) {Insert item following priority on
lower values of bkm}

7. end if
8. end for
9. while (B′ 6= φ && M′

6= φ) do
10. F ← B′.pop()
11. if (Rm +Rk

u < Hk && F .k ∩M′
6= φ) then

12. W ←W ∪ F
13. Rk

u ← Rm +Rk
u

14. M′
←M′

\ k | k ∈ F
15. end if
16. B′← B′ \ F
17. end while
18. returnW

C. QUALITY-OF-EXPERIENCE-AWARE INCENTIVE
MECHANISM
Upon successful execution of all tasks of an application,
payment is calculated for disbursement to the corresponding
bid winners v ∈ V . A worker device is paid the bid amount
(bvm) and an additional incentive based on the executed task
quality (Q′vm), which is measured after task execution. This
incentive might play a vital role in motivating worker devices
to submit rational bids and increasing participation of valued
workers in the bidding process.

The entitlement of an incentive depends on two parameters.
Firstly, the bid cost must be less than the maximum budget for
the task (i.e., bvm < Bmaxm ). Secondly, the provided execution
quality of a task must be higher than the committed quality
(i.e., Q′vm > Qv

m). If these two criteria are fulfilled then
we calculate the amount of bonus quality provided by the
worker device, i.e., (Q

′v
m−Qv

m
Qv
m

). A worker device is given a
portion of the unused budget (Bmaxm − bvm) as an incentive for
the provided bonus quality. Otherwise, the worker will not
be entitled to any incentive amount. Thus, we calculate the
incentive amount σ vm as

σ vm=


(Bmaxm − bvm)×

Q′vm −Qv
m

Qv
m

, if bvm < Bmaxm

&& Q′vm>Qv
m.

0, otherwise.

(17)

Now, the cloudlet is responsible for computing the required
payment to the worker devices. A detailed description of the
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Algorithm 3 Incentive Payment for Winner Devices
INPUT: Set of winning bids,W , from Algo 1 or Algo 2.
OUTPUT: Payment Pv for winner device, v ∈ V ,
Total amount of payment, P ′ for the user application.

1. Set Pv
← 0,P ′← 0

2. V = {v | v is a winning device listed inW}
3. for all winning devices v ∈ V do
4. for all tasks m ∈M do
5. Calculate incentive amount, σ vm using Eqn. (17)
6. Pv

m← bvm + σ
v
m

7. Pv
← Pv

+ Pv
m

8. P ′← P ′ + Pv
m

9. end for
10. end for
11. return Pv,P ′

payment strategy for bid-winning worker devices is presented
in Algorithm 3.

After completion of all tasks, the cloudlet picks a worker
device and calculates incentives of each task executed by it
using (eq. 17), total payment for the task (Pv

m), and payment
for all the executed tasks (Pv). These steps are repeated for
all the worker devices (lines 3 − 7). Finally, the cloudlet
calculates the total actual payment (P ′) of the user and
disburses payments to individual workers upon reception of
actual payment from the user (line 8). We call the incentive
payment mechanism IMaxQwhen the workers are selected to
maximize task execution quality (in Algorithm 1) and IMinC
when theworkers are selected tominimize task execution cost
(in Algorithm 2).

D. UPDATING REPUTATIONS OF WORKER DEVICES
Reputations of worker devices are updated by the TWAmod-
ule based on the execution results of the tasks; this is impor-
tant for selecting winning devices in future task assignments.
To encourage truthful bidding, successful execution with the
offered quality provides a positive reputation, whereas failure
in maintaining the offered quality or deadline results in a
penalty to protect against dishonest activity of unqualified
workers.

To calculate the reputation of a winning device v ∈ V ,
the cloudlet first calculates the quality enhancement indicator
Evm of the executed task based on qualitiesQv

m andQ′vm offered
in SLA and provided by the worker, respectively.

Evm =


1, if Q′vm ≥ Qv

m

(1−
Qv
m −Q′vm
Qv
m

), if 0 < Q′vm < Qv
m

−1, unsuccessful.

(18)

The task quality enhancement indicator (Evm) is used to
calculate the reputation/penalty value gained for executing
the current task m ∈M as

�v
m = α × Evm × (−1)x

v
m × (−1)y

v
m , (19)

where α is a weight parameter used to put emphasis on the
currently availed reputation/penalty. In this work, the value
of α was set to 0.1, placing only a small significance on
the reputation achieved for executing the current task. The
binary variable xvm ∈ {1, 0} is used to represent service level
agreement (SLA) retention status. xvm is set to 1 if worker
device v ∈ V successfully executes taskm ∈M, maintaining
Q′vm ≥ Qv

m; otherwise, it is set to 0. Similarly, binary variable
yvm ∈ {1, 0} takes value 1 if task m ∈ M successfully
executed on the worker device v ∈ V and 0 otherwise. Finally,
the reputation of a worker device is updated for future task
assignments considering previous reputation as

�v
= max(0,min(�′v +�v

m, 1)). (20)

Equation (20) bounds the reputation for a worker device
v ∈ V between 0 and 1. In this work, the initial reputation
of a worker device was considered as 1.0 to encourage new
workers to participate in the MDC system. Note that (19)
and (20) jointly ensure that on-time successful execution
increases the reputation of a worker and that delayed or
failed execution causes a penalty for the device. In this way,
the dynamic reputation update of a worker facilitates our
proposed incentive mechanisms to select high performing
workers for task execution, increasing user QoE as well as
incentives for workers.

E. AN ILLUSTRATIVE EXAMPLE
This section presents an illustrative example on operation
processes of the proposed IMaxQ, IMinC and Optimal solu-
tions. Consider a scenario depicted in Fig. 5, where the
cloudlet divides an application into three tasks: M1, M2,
and M3 with allowable maximum execution costs 3, 5,
and 7 units, respectively. We also assumed that five worker
devicesK1−K5 available in the system bid for the designated
tasks shown by edges (in Fig. 5, labeled with bid cost and
committed quality). The instruction sizes and deadlines of the
tasks are labeled at the top and available resource capacities
and reputations of the worker devices are labeled at the
bottom.

The task assignment to different workers, their incentives,
and user cost savings have been shown in following Table 2.
It is to be noted here that the worker K2 could not win any
bid due to its poor reputation. Furthermore, as expected theo-
retically, the proposed IMinC has brought out the maximum
cost savings for the user and IMaxQ has offered the lowest
while the Optimal solution (with β = 0.5) has worked
out with competitive savings. We also notice that, in all
algorithms, tasks were executed satisfying the expected QoE
within the allocated budget. Finally, the amount of incentive
(σ vm) awarded to a worker is directly proportional to the
quality (Q′vm) it offers in executing a user task.

F. THEORETICAL PROOF OF DESIRABLE PROPERTIES
In this section, we provide theoretical proofs of the desirable
properties of the proposed incentive mechanisms, including
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FIGURE 5. An example scenario for task assignment.

TABLE 2. Bid winners, their incentives, and user cost savings.

computational efficiency, individual rationality, truthfulness,
and budget balance.
Lemma 1:The proposed incentivemechanisms run in poly-

nomial time, meaning they are computationally efficient.
Proof: In Algorithm 1, lines 4−8 run for all bids to check

the eligibility of bids and to prune bids that do not maintain
the required constraints, incurring a runtime complexity of
O(|B|). Inside the loop, candidate bids are pushed in a priority
queue (line 6) that has a runtime complexity of O(|B|log|B|),
totaling O(|B| × |B|log|B|). Lines 9− 17 add complexity of
O(|B|), and the remaining statements are executed in constant
time; hence, the overall runtime complexity of Algorithm 1 is
O(|M| × |K| × |M| × |K|log|M| × |K| + |M| × |K|) ≈
O(|M|2 × |K|2 log|M| × |K|), where M is the set of
application tasks andK is the set of available worker devices.
The runtime complexity of Algorithm 2 is the same as that of
Algorithm 1. Similarly, Algorithm 3 has a runtime complexity
of O(|M| × |K|).
Thus, the complexities of the algorithms are bounded by
|M| and |K|, so they are computable within polynomial time.
Lemma 2:The proposed incentive mechanisms are individ-

ually rational to the cloudlet and worker devices.
Proof: Consider the two following scenarios:

1) If a worker device k ∈ K wins no bid, it will have no
resulting cost, C′k = 0, payment Pk

= 0, and Uk
= 0.

In this case, the utility of the cloudlet U0
= 0.

2) If a worker device k ∈ K wins a bid, its utility is
calculated as Uk

m = Pk
m − Ckm − U0

m, where payment
is determined as Pk

m = bkm + σ . According to (5),
cloudlet utility (U0

m) will be nonzero for a successful
task execution by a worker device. Moreover, for a

successful execution by a worker device, payment will
be at least equal to the bid price. As worker devices bid
for a taskm ∈M including cloudlet payment (U0

m) and
its resource cost Ckm, bid price must be higher than U0

m+

Ckm, which has been ensured through constraint (15).
Therefore, in conclusion, it can be clearly seen that the
utility of a worker device and cloudlet will be nonzero.

Lemma 3:The proposed incentivemechanisms are truthful.
Proof: Let Uk

m and bkm denote the utility and bid price,
respectively, of a worker device k ∈ K if it bids with actual
cost Ckm, and let Ūk

m and b̄km denote the illegitimate utility and
bid price, respectively, caused by bad intension of a worker,
where bkm 6= b̄km. To prove this lemma, we must show that
only a truthful bid price can provide the maximum utility of a
worker device, i.e.,Uk

m ≥ Ūk
m, ∀b

k
m 6= b̄km. In this case, we first

consider Algorithm 2 (IMinC).
Assume that b̄km > bkm, a win of b̄km means that

the worker wins when it bids b̄km, and a loss of b̄km means
that the worker loses when it bids b̄km. Algorithm 2 confirms
that a worker with minimum bid cost wins the bid. Hence, b̄km
loses the bid in the presence of another bid that equals bkm,
and thus the utility Ūk

m = 0 and Uk
m > Ūk

m.
If b̄km = bkm, then a win of b̄km means that bkm also wins.

In this case, Uk
m = Ūk

m signifies that the actual bid is made by
a legitimate worker.

Lastly, if b̄km < bkm, then b̄
k
m wins the bid according to the

worker selection criteria. However, in this case, the expected
utility constraint Ūk

m < Uk
m is preserved.

Similarly, for Algorithm 1 (IMaxQ), workers offering
higher quality may submit overpriced bids. In this case, max-
imum bid cost (Bmaxm ) for a task m ∈ M is used to guard
against such dishonest activity and reject such bids during the
candidate worker set generation phase, which results in utility
Uk
m = 0 for worker k ∈ K. Moreover, the incentive (σ ) for

qualified execution induces extra profit to deserving workers.
For this reason, workers are motivated in bidding with actual
cost to increase the opportunities for a winning bid.

It is to be noted here that a worker might win a task by
misreporting both the quality and bid but it would be penal-
ized with a negative reputation due to failure in achieving the
committed quality.
Lemma 4: The proposed incentive mechanisms are budget

balanced.
Proof: The total amount of payment for a user to execute

all tasks is calculated as P ′ =
∑|M|

m=1 P
k
m, including their

incentive (lines 4−7 in Algorithm 3). If all payments of tasks
are equal to their maximum allowable bid prices (including
incentive σ , if any), then the total payment will be P ′ =
CM = P (according to (8)); otherwise, the payment will
be CM ≤ P ′ ≤ P . This means that the total cost of an
application execution will always be less than or equal to the
budget allocated by the user, i.e., P ′ ≤ P . Hence, the pro-
posed incentive mechanisms maintain the budget balance
property.
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V. PERFORMANCE EVALUATION
The performances of the proposed IMaxQ and IMinC algo-
rithms were compared with two state-of-the-art works (Min-
Cost [20] and First-Fit [47]) through numerical simulations
in MATLAB [22]. The Min-Cost algorithm employed a
least cost per unit resource mechanism to select the winning
bids. The workers that offer a minimum bid are selected for
the execution of tasks and the corresponding worker devices
were paid with the immediate next bid amount of the task.
On the other hand, First-Fit is a baseline method extracted
from [47] that greedily allocates tasks on worker devices with
sufficient resources without considering execution quality,
cost, or device reputation.

A. SIMULATION SETUP
We assumed that a number of user devices (buyers) issue
application code execution requests to a nearby cloudlet on
which there are 10− 100 connected worker devices (seller),
randomly distributed in a 50×50m2 area. A user application
ranging the size from 100K − 500K instructions is supposed
to execute in an MDC environment. Since the application
will be distributed to a number of worker devices, it is split
into a random size of smaller tasks containing instructions
from 5000 − 125000. Now, to execute these instructions,
worker devices are elected by the greedy algorithms in the
system. We consider the capacity of a worker is randomly
chosen from the range of 10, 000 − 1, 000, 000 units. For
simplicity, we assumed 1 unit of resources is required to
execute each instruction, where 1 unit of cost was estimated
for every 10,000 units of resources. The maximum amount
of bid (Bmaxm ) for a task has been calculated based on the
task size and the cost per unit of resources which has been
varied according to the task size. The value of (Bminm ) has
been set to 0 in all experiments. To generate the simulation
data, we have implemented an experimental testbed based
on our preliminary works [12], [37]. In the experiments,
the reputation threshold of a candidate worker was set to
0.6. The percentage of cloudlet utility λ, has been set to
20 %. All simulation experiments were conducted on a PC
with an Intel Core i5 2.2 GHz processor and 8 GB memory
running Windows 8.1. This is to note here that both the
greedy algorithms run in polynomial time and the runtime of
both algorithms is few milliseconds which has been ignored
in the calculation of task execution quality in the simulation
results.

To compare with the state-of-the-art works, at first, we esti-
mate the execution time for the whole application in the
user device. Then we compute improvement of QoE, pay-
ment savings, and user satisfaction based on execution time,
bid amount and number of successful execution (without
resubmission), respectively. Details of measuring each per-
formance metric are explained in section V-B. This is to note
that each simulation experiment was run for 500s, and the
results collected from 50 runs with different random seed val-
ues were averaged to plot each data point with corresponding

TABLE 3. Values of simulation parameters.

confidence interval in the graphs. A summary of the val-
ues and ranges of different simulation parameters is given
in Table 3.

B. PERFORMANCE METRICS
We focused on the following performance metrics to evaluate
the proposed methods and to compare them with other state-
of-the-art methods.

• Improvement of user QoE: The user Quality-
of-Experience (QoE) metric measures the task quality
improvement of an offloaded task observed by the
user. This gives the average percentage improvement
of execution time in MDC compared to that of the user
device. To compute it, at first, we estimate the execution
time of the whole application in the user device. Then,
we distribute the application among the selected worker
devices based on the proposed greedy allocation algo-
rithms. After getting the execution results, we compute
execution time (including communication latency) for
corresponding worker devices and the improvement of
user QoE using Eq. 2.

• User payment savings: The user payment savings
parameter reflects the surplus amount of the budget after
the completion of payment and incentive of the worker
devices. This is defined as the proportion of unused
payment compared to the sanctioned budget of a user
for a certain application execution; it is expressed as a
percentage, i.e., (1− P ′

P )× 100 %.
To compute it, at first, we estimate the maximum bud-
get (including cloudlet cost, bandwidth cost, resource
compensation, etc.) for the whole user application to be
executed in the MDC environment. Based on the bid
amount in auction and execution time, the cloudlet dis-
burses payments to the winner worker devices including
incentives. It is to note that the eligibility of incentives
is determined by Eq. 17. Finally, we compute the pay-
ment savings with respect to estimated budget and total
expenditure including incentives and bid cost.

• User satisfaction: This is the percentage of success-
fully executed tasks (without resubmission) out of all
offloaded tasks.
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FIGURE 6. Impact of varying number of tasks.

C. RESULTS
This subsection provides the experimental results and dis-
cussion on the comparative performances of the studied
systems.

1) IMPACT OF VARYING NUMBER OF TASKS
In this experiment, we fix the number of worker devices to
|K| = 50 and application size to 200K, and we vary the
number of tasks from 4 − 24. The number of instructions
in each task may vary from other tasks and due to fixed size
application, the number of instructions of an individual task
is reduced with increasing number of tasks.

Fig. 6(a) shows the improvement of user QoE achieved
by the proposed incentive algorithms compared to existing
approaches. We observe that the user QoE increases with the
number of tasks, and it reaches its peak point when the task
population is close to 12. This trend is reasonable since a
few capable workers are able to bid and win the tasks at the
beginning due to relatively large instruction size of the tasks.
When size of an individual task is decreased, the number of
capable worker devices for executing the task is increased
that facilitated more parallel execution and enabled their exe-
cutions on highly qualified workers till the saturation point.
After that, admission of an additional number of tasks in the
system forces it to allocate mid-level or even poor capacity
and/or low-quality workers to allocate for the execution of
tasks, causing degradation of user-QoE. The graphs also
depict that the proposed IMaxQ offers the highest quality
(35 %) as it is expected theoretically. Since IMinC and Min-
Cost prefer workers with low cost rather than high quality
and thus their performances are significantly less compared
to IMaxQ. Similarly, due to the random selection of workers,
First-Fit provides the worst user QoE among all.
On the other hand, in Figure 6(b), IMinC offers the highest

user payment savings with an increasing number of tasks
compared to all other incentive algorithms. In the beginning,
a few tasks containing higher instruction sizes were bid by
a limited number of capable workers at a high cost. Due
to this monopolistic competition, such execution leads to

small savings for the user. As the number of tasks increases,
the amounts of savings also rises in all algorithms. This is due
to the fact that more low-cost offering workers were able to
compete that assisted better worker selection and execution
quality with relatively lower bid cost, resulting higher cost
savings for the user. Nevertheless, further increase of tasks
(|M | >= 16) causes a sharp fall in savings since the system
is bound to select workers with high bid costs to accommo-
date the increasing number of tasks. By comparison, IMinC
provides the highest payment savings (31 %) andMin-Cost’s
user payment savings percentage is somewhat lower than that
of IMinC because it pays worker devices with the immediate
next bid winner’s cost. IMaxQ cannot provide low cost exe-
cution due to the selection of higher quality workers. Due to
the random selection of workers by First-Fit, it provides the
least payment savings.

We alsomeasured the satisfaction level of application users
offered by the studied systems through on-time execution
of tasks, as shown in Fig. 6(c). We observed that the user
satisfaction rates for all studied algorithms increased with the
number of tasks until peaking at approximately |M | = 12,
and then they started to decrease slowly. Initially, the size of
each task was relatively bigger due to a small number of tasks
in an application. As a result, a few number of resource-rich
workers were able to win the bid and provide successful
execution. Dividing the application intomore number of tasks
instigated more quality workers with a better reputation get a
chance to win bids, resulting in higher successful execution.
Further increasing the number of tasks implies that each task
contains a fewer number of instructions, demanding alloca-
tion to more workers of the system. This consequence dimin-
ishes user satisfaction due to allocations of tasks to relatively
poor workers. Hence, user satisfaction is increased slightly at
the beginning and is reduced gradually after reaching a pick
point. In comparison, IMaxQ and IMinC provide better user
satisfaction thanMin-Cost and First-Fit, and IMaxQ provides
the best. This is due to the consideration of worker reputation,
which allocates a task to reliable devices in addition to avail-
able computation resources. Moreover, lack of consideration
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FIGURE 7. Impact of varying number of worker devices.

of task dependency incurs unnecessary waiting time for a task
(dependent on a different one for data input) and hampers user
satisfaction inMin-Cost and First-Fit.

2) IMPACT OF VARYING NUMBER OF WORKER DEVICES
Availability of worker devices creates an opportunity to select
more appropriate resources for executing a task, resulting
in better system performance. To investigate the impact of
worker devices, we fix the number of tasks to |M| = 20
and application size to 200K and vary the number of worker
devices from 20− 100.
Figure 7(a) shows that increasing the number of worker

devices drives the average user QoE to rise sharply, and then
it slows until it reaches saturation. This is due to the fact
that with a fixed set of tasks (|M| = 20), increasing worker
devices create an opportunity to allocate resources frommore
qualified workers, resulting in better user QoE. However,
increasing worker devices cannot remarkably improve the
user QoE when the system contains many qualified workers
(|K| > 60) above the user demand. Our proposed IMaxQ
and IMinC algorithms show better performances compared
than the other. Task allocation to reputed workers with rich
computing resources provides the finest result for IMaxQ,
while IMinC sacrifices quality slightly to minimize execution
cost.

A completely opposite phenomenon is illustrated
in Figure 7(b), wherein the selection of worker devices with
minimum bid cost provides superior performance for IMinC
andMin-Cost compared to IMaxQ and First-Fit, while IMinC
provides the maximum savings for a user. This figure also
illustrates that user payment savings gradually increase due to
the availability of a large number of worker devices offering
relatively lower execution cost. However, availability of too
many qualified workers (|K| > 60) cannot improve the user
savings further as the system reaches saturation.

Similarly, increasing worker devices creates more oppor-
tunity to improve successful task execution rate, which facil-
itates higher user satisfaction, as shown in Figure 7(c). From
this figure, it is also evident that our proposed IMaxQ and

IMinC algorithmsmaintain significantly superior results than
the other algorithms due to the consideration of task depen-
dency, worker reputation, and available computing resources.

3) IMPACT OF VARYING TASK SIZE
In this experiment, we fixed the number of worker devices to
|K| = 50 and the number of tasks to |M| = 20 and classified
the application size into three categories: small (25K−50K ),
medium (100K − 200K ) and large (400K − 500K ) tasks.
As shown in Figure 8(a) and Figure 8(b), increasing the

size of a task results in degradation of both user QoE and
payment savings. This is due to the fact that increasing task
size reduces the percentage of qualified worker devices to
execute the task, resulting in relatively resource-poor workers
being hired. For this reason, user QoE and user payment
savings decrease with growing task size. However, due to
the consideration of worker reputation, task dependency, and
available computation resources, our proposed IMaxQ and
IMinC algorithms still outperform theMin-Cost and First-Fit
models, while IMaxQ has superior performance for user QoE
and IMinC providesmaximum cost savings. For the same rea-
son, user satisfaction also decreases with growing application
task size, as illustrated in Fig. 8(c). However, for allocation
of tasks to reputed worker devices, our proposed IMaxQ and
IMinC provide significantly better results compared to other
algorithms.

4) INCENTIVES FOR WORKER DEVICES
In this experiment, we plotted the average amount of incen-
tives received by different winning worker devices for execut-
ing a single application having 20 units of budget with fifty
worker devices (|K| = 50). Figure 9(a) shows the impact of
increasing the number of tasks on the distribution of amounts
of the worker bids, incentives and savings. Initially, size of
an individual task was relatively bigger. As a result, a few
workers were able to win the bid with high bid cost, resulting
small payment savings and incentives. Dividing the appli-
cation into more number of small-sized tasks invited more
quality workers with lower bid cost, resulting higher payment
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FIGURE 8. Impact of varying task sizes.

savings and incentives. However, further increasing number
of tasks diminishes payment savings and incentives due to
execution of tasks with relatively high bid cost workers.
More specifically, in such situation, number of good quality
workers is not enough to execute so many tasks. For the
same reason, the graph follows similar trend for user payment
savings. Comparatively, IMaxQ pays more incentive than
IMinC as it prefers higher quality. Incentive performances for
theMin-Cost and First-Fit algorithms are not presented here
because these algorithms do not pay any additional incentives
to workers above their bid amounts.

Similarly, increasing the number of worker devices causes
more competition among the workers with fixed number
of tasks (|M| = 20), resulting in higher user QoE with
small bid cost, as illustrated in Figure 9(b). Therefore,
the user gets the opportunity to pay a higher incentive for the
worker resources. However, further increasing the number
of workers (>70) resulted high quality execution from the
worker devices though the incentive amount is decreased.
At this point, due to high competition among the workers,
the difference between the SLA quality and the provided
quality of the workers becomes very little and hence the
incentive amount is decreased even though the payment
savings is increased. Though IMaxQ pays higher incentives
than IMinC, the savings amount in Figure 9(b) is much
higher compared to its counterpart shown in Figure 9(a).
It is worth noting that although our proposed IMaxQ and
IMinC algorithms provide incentives to workers, the savings
are still higher than from other state-of-the-art-works due
to the payment strategy. Our proposed resource allocation
algorithms provide payment as the workers bid price, whereas
other mechanisms use the next winner’s bid cost to pay
a worker, causing higher payment. However, our proposed
allocation algorithms incentivize only the qualified workers,
resulting in savings. Our in-depth look into the simulation
trace files also reveals that, due to the payment of addi-
tional incentives, the participation of resourceful workers
also increases gradually with the growing number of worker
devices and execution of tasks with these worker devices
upswing user-QoE.

FIGURE 9. Incentive for workers.

In summary, the amount of incentive received by a worker
device is proportional to how much less time it takes for it to
execute a task than the user deadline. Our in-depth analysis
on results in the simulation trace file revealed that approxi-
mately 40 % of the workers are incentivized with an ample
amount for offering excellent qualities of execution. More-
over, approximately 30 % of the workers are incentivized
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insignificantly due to bidding higher cost and offering just
above SLA quality. The remaining workers are given neg-
ligible (or zero) incentives for just-in-time execution. Such
a mechanism develops a win-win environment for users and
workers, increasing the sustainability of the MDC system.

VI. CONCLUSION
In this work, we developed a QoE and Incentive-aware
dynamic resource allocation framework for MDC, where
mobile worker devices are incentivized in line with their
execution qualities of user application tasks. Furthermore,
consideration of resource capacity, reputation, and bid cost
of worker devices helped our allocation algorithms to har-
vest maximum benefits (in terms of quality or cost) through
efficient utilization and management of the idle resources.
Incentivizing the worker devices proportional to offered task
execution quality significantly increased the participation of
the worker devices and improved the quality of experience
of the users. The simulation results clearly indicated that
the proposed system can maximize user QoE by as much
as 35 % while minimizing cost by up to 30 %. The results
also revealed that increasing the number of workers in the
system can steadily improve user QoE, payment savings, and
satisfaction, whereas larger task sizes can adversely affect
MDC performance.

In this work, we have considered a fixed budget for the
execution of an application that shrinks the worker selec-
tion due to budget constraints. In the future, given that the
user budget for execution of application tasks is dynamically
adjustable rather than being fixed, developing a resource
allocation algorithm in an MDC environment that can further
increase user QoE could be an interesting problem to solve.
Moreover, other multi-objective evolutionary approaches can
be considered to find an optimal solution with more number
of instances to minimize the runtime complexity of the for-
mulated MOLP objective function.
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