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ABSTRACT Over the past decades, the understanding of peptides and proteins biological functions has
been an active research topic. Latest research works in this field have suggested that protein conformations
may be a key feature for gaining insights into protein biological functions. However, analyzing small and
highly flexible protein chunks, namely oligopeptides made of a handful of amino acids, remains challenging
because of their dynamics and wide range of conformations. In this paper, a statistical methodology based
on unsupervised statistical learning is proposed for analyzing 3D conformations small and highly flexible
elastin-derived peptides. The goal of this study is twofold: first, is it aimed at identifying the most frequent
conformations of each peptide and to study their stability. Second, and most important, it is aimed at
comparing main conformations of different elastin-derived peptides to identify the ‘‘signature’’ than can be
linked to a biological activity. The main strength of the present work is to propose a method for confirmation
recognition that is not affected by peptide rotations or translations and, hence, avoids the use of the complex
superposition methods. In addition, the proposed approach uses Kernel PCA to eliminate atypical peptide
conformations. Due to the instability of those peptides, removing outliers is crucial since they may dramati-
cally impact clustering results. To extract the most frequent conformations, we propose to use a hierarchical
clustering method. Eventually, a peptide activity detector is defined based on comparison of main confor-
mation found in different peptides. The main interests of the proposed method are twofold: first, it is fully
automatic method, second, it does not require any additional information or expertise and, third, it can iden-
tify conformations accurately that make peptides enabling a given biological activity. Experimental results
on a large dataset of peptides conformations highlight the relevance and efficiency of the proposed method.

INDEX TERMS Automatic conformation identification, hierarchical classification, flexible peptide confor-
mation, structure classification of protein, outliers detection.

I. INTRODUCTION
In the 1970s, Anfinsen&al. demonstrated in [1] that the func-
tion of a protein is encoded in its sole amino-acid sequence.
Therefore, it came clear that the 3D structure of a protein
is fully determined by the sequence of amino-acid is it
made of. This sequence encodes the 3D shape of the protein
as well as its biological function. Since then, considerable
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research efforts have been made to understand the relation-
ships between such an amino-acid sequence, the ensuing 3D
conformations of a protein, its dynamics and its possible
biological functions. Despite significant advances [2], this
task still remains extremely challenging for proteins. This
is even more for highly dynamic structures such as pep-
tides. In the field of biology, peptides (very small protein
sequences) have been found to regulate key biological func-
tions by behaving, for instance, as cardiac hormones [3] or
antimicrobial molecules [4]. Further, antigenic peptides are
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used to design vaccines. As a consequence, they deserve con-
siderable attention. Because, peptides are small molecules,
their structure is more dynamic than that of proteins which
are much larger. Consequently, the analysis of molecular
simulations aiming at understanding the variation of their
3D structure over time (trajectories) is difficult. This holds
particularly for peptides derived from elastin.

Elastin is a polymeric macromolecule from the extracellu-
lar matrix responsible for the elasticity and proper function-
ing of tissues such as lung, skin or arteries [5]. More than
82% of tropoelastin (monomer of elastin) chains are built
from 5 amino acids, out of 20, with numerous permutations.
Elastin is synthetized during infancy and it is extremely sta-
ble. Nevertheless, it is degrading fatefully as we age and in
age-related disorders such as type 2 diabetes, atherosclerosis
or aneurysm formation [6].

Elastin degradation releases small peptides, so-called
elastin-derived peptides (EDP), which are characterized by
a wide range of biological activities [7], [8]. The activity
of these peptides relies on their interaction with dedicated
receptors. Only certain very specific peptides ‘‘active’’ con-
formations match with those receptor and, hence, are able to
trigger and sustain a biological function [9]. A serious limit
in our understanding of EDP functions is their considerable
conformational variability because it hampers the analysis of
their 3D trajectories when they are in water. Indeed, water is a
plasticizer for elastin so that the elastin-water system is char-
acterized by a very high entropy [10]. Extracting structures
from chaos is no easy task.

In this work, we design a statistical method that aims at
analyzing the trajectories of peptides in order to identify and
extract recurrent conformations along their trajectory. Our
method is computationally efficient, without alignment or
superposition, while being fully automated. Further, we apply
this procedure to EDP trajectories in view of identifying their
bioactive conformers.

A. PRIOR WORKS AND CONTRIBUTION OF THE PRESENT
PAPER
A vast majority of prior methods for identifying peptides
main conformations can be divided into two categories;

The first category is based on protein or peptide com-
position in terms of amino acid sequence [11]–[15] which
bring important physicochemical property of thewhole chain.
The amino-acid sequence is thus used to extract features that
are assumed to capture all information about peptide key
functions. Therefore, such features can be used as an input
of any machine learning method with the purpose to identify
what in the composition gives birth to a given biological
function of interest. When peptide functionalities are known
one can use to so-called supervised method while, on the
opposite, peptides whose natures are unknown are analyzed
with non-supervised methods.

As examples, the method proposed in [11] used peptides
sequence to extract 20 features representing each amino acid
occurrence frequency. A fuzzy non-supervised method has

been applied to cluster the protein sequences and their main
conformations. A different approach developed [14] proposes
to use the amino acid sequence to extract physico-chemical
properties such as its molecular weight, isoelectric point,
length of amino acids, atomic composition, etc.. . .A labeled
dataset is used to compare the accuracy of several supervised
neural network with respect to identification of main confor-
mations.

Interestingly, those works show that the amino-acid
sequence is loosely related to biological function. However,
such approaches are limited because they can hardly take
into account all information related to dynamics and 3D
conformation of peptides while it seems crucial to match a
target receptor [16].

Methods from the second category try to relate
3D conformations of peptides with their biological
functionalities [17]–[23]. In this category, the main approach
consists in comparing 3D conformations using alignment
such as DALI [17] or SSAP [19]. These two methods consist
in representing each a peptide through the so-called distance
matrix that contains all distances between all pairs of atoms.
The DALI method [17] consists in chopping the distance
matrices into parts that correspond to hexapeptide in order to
find similar chunks in different 3D conformations. Although
DALI is accurate, it comes at a very expensive computational
cost since it will search similarities because of chunks of
conformations: the number of combinations grows with the
square of amino acid sequence length. In addition, DALI has
mostly being evaluated over macro proteins whose large size
makes them stable over molecular dynamic simulations: all
conformations are gathered closely around several main con-
formations, with little or almost no spread. On the opposite,
this paper focuses on elastin peptides which are arranged in
a large number of very similar sequences (82% of them are
composed of the same 5 amino acids). In addition their small
size makes them very flexible; they all share a wide range of
confirmations, many being identical.

In recent years, various alternative approaches have been
proposed. A superposition of pairwise distance matrices has
been proposed in [23], to determine the similarity between
conformations. After reducing a conformation to the position
of 7 most important atoms from the backbone, the root-
mean-squared deviation (RMSD) is computed to cluster
together similar conformations. This approach is simple but
its efficiency has been assessed over a rather simple peptide
with very little degree of freedom. A different approach
has been proposed in [15], [18] modeling peptide backbone
conformations with a parameterized curve which capture its
global shape. Again, a measure of distance between curves
can be used to compare them and assign those as being from
the same conformation. While interesting, a vast majority
of prior works suffer from the two main limitations. First
of all, non-supervised approaches require prior information
about the correct number of clusters. Second, peptide 3D
conformation is reduced to the sole backbone. This prevents
taking into account information from side chains, in general
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FIGURE 1. Overview of the proposed methodology. From dynamic
trajectory simulation the first consists in KPCA-based outlier removal
followed by main conformations classification using hierarchical
clustering. The main conformations from all simulations are compared to
get insights with respect to biological functionality.

to lower computational complexity, while their impact on the
biological function remains mostly unstudied.

The present paper proposes a novel method for analyzing
simulated molecular dynamics of different peptides with the
following two main goals. First of all, it is aimed at identify-
ing in a simple and efficient manner themain or most frequent
3D conformations from those simulation. This first step must
be fully automatic while it must also allow the practitioner to
visualize the results and tune the cluster method accordingly.
Second, the ultimate goal is to be able to identify which
peptide can be associated with a biological activity and,
more precisely, what conformation may be key that enable
such activity. An overview of the main steps involved in the
proposed methodology is presented in Figure 1.

It should be noted that the present work focus on
elastin-derived oligopeptides of small size, hence, whose
conformations are extremely flexible and very unstable over
time. We especially show that in this context side chains
are essential and relevant to capture fine differences between
numerous and similar conformations.

Thus, the main contributions of this paper are the
following:

1) We study very similar yet very small and, hence,
extremely flexible peptides. On a practical point of
view, their conformations keep fluttering, they can take
a wide range of forms which change abruptly and sud-
denly over time. This behavior acts like a strong noise
that make the identification ofmain conformations very
difficult.

2) In order to extract main conformations in a fully auto-
matic manner we propose a novel method based on
two statistical tools. First a sharp filtering method
is applied to remove outlier conformations. Then,
an unsupervised-learning method is proposed for iden-
tification of main conformations such that it can be
tuned by practitioners.

3) We leverage a specific representation of conformation
as well as a relevant similarity measure between two
of them; this reduces the computational complexity
dramatically.

4) Eventually, we propose a detection rule to determine
whether a peptide is active or not.

The present paper is organized as follows: Section II
formally states the problem of peptide main conforma-
tions identification. Then, Section III presents the proposed
methodology for determining peptides most representative
conformations from the molecular dynamic simulation. The
validation of this method as well as the setting of its param-
eters is detailed in Section IV. Application on real data is
presented in Section V. Section VI addresses the problem of
comparing main conformations extracted from several differ-
ent peptides. Finally, the ultimate goal of identifying active
peptides and main underlying conformations is addressed in
Section VI-A. Section VII concludes the paper.

II. IDENTIFYING MAIN CONFORMATIONS: PROBLEM
STATEMENT
In order to determine the peptide conformation that triggers a
biological function, the first step of the proposed approach is
to determine each peptide main conformations. This section
states the problem of identifying main conformations as well
as properties one can expect from a suitable solution.

A. DEFINITION AND PROBLEM STATEMENT
A peptide essentially consists of a set of atoms lying in the
3 dimensional space and linked to each other. The coordi-
nates of these atoms are referred to as the structure of the
peptide denoted S = (a1, a2, . . . , aN )> where N is the
total number of atoms and an ∈ R3 is the 3D coordinate
of n-th atom. In a real situation, atoms of a structure all
keep moving rapidly and randomly under thermodynamic
influences. In the present paper, we use dynamic molec-
ular simulations [24] to reproduce accurately thermody-
namic motions of atoms via a sequence of structure denoted
S = (S1, . . . ,ST ).

Formally speaking, two structures St and Su belong to
the same conformation if, and only if, there is a rotation,
characterized by matrix R, and a translation, characterized
by vector ζ ∈ R3, such that:

Su = StR+ 1N ζ>, (1)

with 1N ∈ RN containing only ones.
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Therefore the conformation Fu can be defined as the set of
all structures that are symmetric to Su:

Fu =
{
St
∣∣ ∃Rt , ∃ζ t , Su = StRt + 1N ζ>t

}
. (2)

In general, two structures are not exactly symmetric. It is
therefore more realistic to define a conformation as the set of
all structures that are symmetric to Su up to epsilon:

Fεu =
{
St
∣∣ min
Rt , ζ t

d
(
Su , StRt + 1N ζ>t

)
< ε

}
, (3)

where d(·, ·) can be any distance, from a mathematical point
of view, and ε is the maximal distance between two structures
from the same conformation.

B. PRACTICAL DIFFICULTIES AND CONSIDERATIONS
Before moving into practical considerations, let us point
out that from the definition of main conformations, Eq. (3),
a given structure St may either belong to one single main
conformation, to two or more main conformations, or does
not belong to any of the main conformations. The latter case
represents a structure that is referred to as an outlier: it is
quite far away from all cluster of conformations and, hence
such it has no interest to understand how conformations are
related to biological activities. The former case, in which a
structure St belongs to two, or more, main conformations is
more troublesome. The most likely explanation is that this
constitutes a transitional structure between the two confor-
mations and, as such, also does not constitute key elements
for understanding activity.

As a consequence, we will assign a structure St to the
conformation Ct using following assignment rules:

Lt = 0 if ∀k ∈ 1, . . . ,K , St /∈ Fεk
Lt = 0 if ∃ (k, l) such that St ∈ Fεk and St ∈ Fεl
Lt = k if St ∈ Fεk and ∀l 6= k, St /∈ Fεl

(4)

Equations (1) - (4) formally state the first fundamental
problems of present work and enable us to point out the main
difficulties we have to address.

First of all, in the definition (3), it is very difficult to define
ε in practice since this ‘‘tolerance’’ essentially depends on
the activation of a target biological function which is hardly
measurable.

Second, it is important to note that definition (3) fits
well with the most general case in which, due to electrical
properties of atoms, most structures are close to one of the
few so-called ‘‘metastable structure’’ [25] between which
transitions are very rare. On the opposite, elastin peptides are
highly flexible and elastic and, hence, they have many widely
different conformations between which transitions occur very
frequently.

Additionally, Equation (1)-(3) highlight the superposition
problem that must be solved: finding for each and every
structure the rotation and the translation that minimizes a dis-
tance with a given main conformations. Solving this problem
is computationally demanding and does not always lead to

an optimal solution. Hence, we suggest finding a manner to
bypass this issue.

In practice, one cannot know the number of main con-
formations in sequence S. In addition, the method proposed
in the present paper will be used by practitioners with-
out knowledge on data processing and that would rather
visualize, inspect and interpret the similarities between the
obtained main conformations. Therefore, the proposed clus-
tering method must automatically determine the main confor-
mations and their number while it must be flexible enough to
allow practitioners to visualize the conformation and adjust
the results accordingly.

Last, but not least, the reference structure, denoted Su in
Eq.(1)-(3) is not known and must be automatically extracted
from the sequence itself. To this end, we must carefully take
into account the outliers, as defined in Eq. (4), because even
though it they have no interest, they may have a dramatic
impact especially when it comes to automatic identification
of main conformations. One must note that, generally speak-
ing, automatic detection and removal of an outlier is a difficult
task.

All those difficulties may be summarized as follows: it
is wished to design a method that inspects a sequence of
very unstable structures, that very often moves randomly
and abruptly, and without any prior information or even a
clear definition of main conformations, it must automatically
define the main conformations and, on the opposite, must
eliminate the outliers structures that do not belong to a single
main conformation.

III. METHODOLOGY FOR FINDING THE MAIN
CONFORMATIONS
Once the main difficulties and objectives have been clearly
pointed out, this section describes the method for identifying
main conformation from peptides dynamic trajectory.

First of all, let us state that in order to tackle to super-
position problem, it is proposed to represent a peptide by
its distance matrix; formally, for a structure St the distance
matrixMSt is defined by its components:

MSt (k, l) = ‖ak − al‖2 , (5)

where ‖v‖2 stands for the Euclidean norm of vector v, k and
l are the atoms index.

The main advantage of this representation (5) is that,
thanks the properties of Euclidean distance between vectors,
it remains unchanged under translation and rotation. There-
fore, the comparison of two structures St and Sj can be
simply carried out by the difference between their distance
matrices MSt −MSj [26]. The distance matrix MSt will thus
be considered as an observation representing the structure St
in the so-called ‘‘conformational space’’.

A. OUTLIERS DETECTION
As previously noted, elastin peptides are highly flexible and
dynamic and hence give birth to peculiar or atypical struc-
tures. In order to achieve a higher robustness these outliers
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must be removed or discarded before identifying main con-
formations. In our context, small elastin-derived peptides are
made of about N = 80 atoms which makes the distance
matrix be made of Q = N (N−1)

2 = 3160 different dis-
tances. In such high-dimensional space, several methods have
been proposed for outliers remove, see for instance [27].
In this context, angle-based methods or those based on near-
est neighbors are among the most popular. However it can
become quite computationally demanding especially when
sequences are made of numerous structure.

In our case, it seems obvious that all the distance matrix
MSt does contain some redundancy. Methods based on
dimensionality reduction and subspace outlier detection are
extremely relevant and among those, Principal Component
Analysis (PCA) is certainly a fundamental tool. In brief, for
a sequence of structuresmSt , t = {1, . . . ,T } each put into a
vector of Q = N (N−1)

2 components, the PCA seeks the linear
projector RQ

→ Rq, represented by the orthonormal matrix
Pq of size q×Q, which reduces observations toQ components
while minimizing the mean square error:

1
T

T∑
t=1

∥∥∥mSt − PqP>q MSt

∥∥∥2
2
. (6)

A few algebra show that, for a single observationmSt , PCA
reconstruction error is given by:

ErrRec
(
mSt

)
=

T∑
t=1

∥∥∥mSt − PqP>q MSt

∥∥∥2
2

(7)

=
∥∥mSt

∥∥2
2 −

∥∥∥P>q MSt

∥∥∥2
2

(8)

The key idea of PCA for subspace outlier identification is
illustrated in Fig. 2. Since the goal is to minimize the mean
square reconstruction error (6) outliers will be poorly repre-
sented and hence will feature a much higher reconstruction
error (7).

FIGURE 2. Illustration of PCA: The black line represents the first principal
axis along which the variance is maximal (left) while reconstruction error
is minimal (right).

While PCA is efficient for this purpose [27], [28], it can
be noted that it is limited to the case where observation can
be represented in a linear subspace. In our case, due to the
nature of distance matrix, we have noted that this assump-
tion does not hold true. Instead of using a high-dimensional

subspace we have to leverage a non-linear subspace for rep-
resentation of observation, using the so-called Kernel PCA
(or K-PCA) [29].

To turn PCA into a non-linear representation, a map-
ping function 8 is applied to transform the observation mSt
from the ‘‘conformational space’’ Rd to the so-called fea-
ture space F . Kernel PCA simply consists in applying the
same PCA method over the transformed data, in the feature
space F .

In order to apply the transformation of data 8 while keep-
ing a low computational complexity one must note that the
application of PCA exclusively uses scalar products. There-
fore, one does not need to explicitly defines the mapping
function8 but rather to know on to compute a scalar product
in the feature space:

8(mSt )
>8(mSu ) = k

(
mSt ,mSu

)
.

This so-called ‘‘Kernel trick’’ consists in defining the ker-
nel function k(·, ·) that corresponds to the scalar product in a
feature space without explicitly defining the mapping8 [30].

Following the method explained in the linear case of the
PCA, see Fig. 2, it is proposed in the present paper to classify
as an outlier the observations with the highest reconstruction.

In the present paper, we have used the most universal
kernel [29] which is the Gaussian Kernel defined by:

k
(
mSt ,mSu

)
= exp

(
−

∥∥mSt −mSu
∥∥2
2

2σ 2

)
. (9)

KPCA has shown a great efficiency especially for outlier
removal [29], which is the one of interest in this paper. The
reader is referred to [29], [31] for assessment and details.

For the application of this methodology, two parameters
have to be determined: the number of eigenvectors q used
for K-PCA and the width σ of the Gaussian kernel (9).
The selection of these parameters as well as the number of
observations that shall be classified as ‘‘outliers’’ will be
discussed in Section IV.

B. CLUSTERING METHOD
Regarding the recognition of themain conformations, we pro-
pose to use a hierarchical clustering method due to its flex-
ibility and accuracy. This method is one of the most widely
used for unsupervised classification problems [32]. It consists
in considering each observation as a cluster and to merge
iteratively the two clusters which are the closest to each other,
according to some distance. Obviously such a methodology
works without any prior information. Moreover, allows rep-
resenting the relation between conformation by showing how
clusters are merged, see for instance Figure 7. In addition,
it also helpful for practitioners to inspect each conforma-
tion at each level in order to be able to adjust the result
accordingly.

We will briefly explain the proposed hierarchical method;
to this end, let us consider I clusters denoted Ci with ni
observations for clusters i ∈ {1, . . . , I }. Let us also denote D
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the matrix whose element dij is the distance between clusters i
and j. The Hierarchical Agglomerative Clustering algorithm
can be described as follows:
Step1: Find the smallest distance di,j remaining in D.
Step2: Merge clusters i and j into a new cluster noted k
Step3: Update the set of distances in D.

The three steps above are carried out iteratively until one
single cluster remains.

Obviously, the definition of the distance between clusters
is fundamental is such a clustering method. While many
different distances have been proposed, see for instance [33],
in the present paper we have used Ward which is defined as:

di,j =
ninj(

ni + nj
) ∥∥m̄i − m̄j

∥∥2
2 , (10)

where m̄i stands for the expectation (geometrical mean) of
cluster i which is simply given by the average of all data that
belongs this cluster:

m̄i =
1
ni

∑
t∈Ci

mSt

We have selected this distance because it is relatively
simple, it offers ensuing good performance and because it is
generally considered as the most suitable distance when data
have unknown distributions [34], which fit well with our case.

To help the practitioner visualize the main conformations
resulting from this method, we have chosen to represent each
cluster using a single conformation, that is the average.; the
clustering will hence results in also defining the dictionary
of main representative conformations for a peptide dynamic
trajectory simulation.

IV. VALIDATION AND PARAMETERS SELECTION
The methodology proposed in the present paper involves
several parameters whose setting must be validated, namely
the number q of principal components in the KPCA, the σ
width of Gaussian kernel and the default number of main con-
formations from a sequence. The main difficulty is that ‘‘real
data’’, which results from dynamic trajectory simulations are
not provided with a ‘‘ground truth’’ that could be used to
assess the relevance of the method. A review of methods
used to overcome this problem has been presented in [35];
following the suggestions from the prior work, it is proposed
in this paper to use an artificial dataset of structures such
that we can investigate in order to design a methodology for
parameter validation.

A. ASSESSMENT ON ARTIFICIAL DATASET
The virtual dataset we will use for this purpose has been
generated randomly in a controlled manner; this dataset is
illustrated in Fig. 3 and is made of:
• an artificial 9 atoms planar molecule that is each atom is
defined by a two-valued (x, y) coordinates;

• 4 main conformations to be found;
• 1300 structures derived from the main conformations by
adding noise;

FIGURE 3. Illustration of structures from computer-generated data; note
the 9 different atoms position which are equidistant from each other
gathered around four main conformations (shown, for readability, in blue,
red, yellow and green). The transitional structures are shown in purple.

FIGURE 4. Outlier detection efficiency, using AUC over computer
generated data, see Fig. 3, as a function of σ and for 5 different number q
of KPCA.

• 350 transitional structures between every two pairs of
conformations.

The value of additive Gaussian noise as well as the probability
of transition is set to mimic data from dynamic trajectories
simulations.

First of all, Figure 4 shows the efficiency of the proposed
method for outlier detection. Note that while the Receiver
Operational Characteristic (ROC) Curve allows presenting
the empirical probabilities of outlier detection as a function
of the false alarm probability (that is the classify a noisy
conformation observation as an outlier); in the present paper,
however, the results are shown using the Area Under the ROC
Curve (AUC) because it summarizes with one single real
value the detection accuracy: the higher the AUC the more
accurate the detection, see [36] for more details.

Figure 4 shows outlier detection accuracy through, with the
AUC metric, as a function of kernel width σ and for a few
different number q of KPCA. This figure shows three impor-
tant things: first of all, the proposed KPCA subspace outlier
detection method is very efficient since its AUC reaches 0.99
which means that all outliers can be removed with almost
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FIGURE 5. Number of eigenvectors q versus σ for 4 different inertia
rates (11) over the simulated DB2. The circled zone represents the most
relevant set of values.

no error. Second, this figure shows that a relatively small
kernel width is more relevant; this is not surprising because
conformations are ‘‘rather close’’, the kernel should therefore
be set to distinguish those clusters which are nearby each
other. Last and not least, this figure shows that the setting of
parameters from results of this simulation is difficult since the
same accuracy for outlier detection is reached regardless of
the number of KPCA. Intuitively, it seems desirable to keep
the number of KPCA eigenvectors q as low as possible but
this statement must be supported.

In order to be able to extend the proposed KPCA outlier
detection to real trajectories simulation, and especially the
underlying method for parameters assessment, we proposed
to measure the ‘‘inertia rate’’ which is defined by:

I =

∑q
d=1 λd∑Q
d=1 λd

(11)

where λi is the ith largest eigenvalue associated with the
ith eigenvector from KPCA and Q is the total dimension of
observations.

Roughly speaking, the so-called ‘‘inertia rate’’ express of
the average fraction of observations that are preserved within
KPCA subspace and.

Figure 5 shows the required number of PCA eigenvectors
q requires achieve specific inertia rate values, as a function of
Gaussian kernel width σ . Interestingly, the curves presenting
the couple of parameters (σ, q) clearly highlights an inflexion
point in Figure 5. Intuitively, this point corresponds to an
optimal setting as a larger Gaussian kernel width seems quite
inefficient for representing the observations while, on the
opposite, the number of principal components must increase
significantly when kernel width is only slightly reduced.

This method can be justified observing that a small enough
value for σ can push the Gaussian function k

(
mSt ,mSu

)
to be

close to zeros for any two observations t and u with t 6= u.
Which means that data is spread all apart and, hence, more
eigenvector is required to represent them all. On the opposite,
for very large values of σ , k

(
mSt ,mSu

)
≈ cst , hence almost

all samples are gathered and assumed similar, hence can be

FIGURE 6. Matrix representing the euclidean distance between pairs of
observations coming from the 5 000 successive structures of the peptide
EGFEPG. It is used to present the similarity between them.

represented with low number of principal components, and
the use of kernel PCA becomes meaningless as explained
in [29].

This method, which essentially aims at finding the optimal
values of parameters (σ, q) can be applied blindly, without
information on the dataset, hence its application over ‘‘real
data’’ from dynamic trajectories simulations.

V. CLUSTERING RESULTS ON REAL DATA
A. REALISTIC DATASETS
In the present work, the dataset of ‘‘real’’ peptide struc-
tures actually comes from a dynamic trajectories simula-
tions from 12 considered different peptides. Each simulation
has been acquired with a sampling period of 200ns, is it
made of a total 40 000 structures whose size, in terms of
the number of atoms, ranges from N = 79 to 87. Prior
studies have shown 4 peptides (namely APGVGV, GVGVAP,
PGVGVA, VAPGVG) are not associated with any activity
while, on the opposite, 5 peptides are active (GVAPGV,
PGAIPG, VGVAPG,EGFEPG, LGTIPG); in addition 3 are
of unknown activity (PGAYPG, VGLAPG, VVGPGA).

B. VISUALIZATION AND CONFORMATION
IDENTIFICATION ASSESSMENT
As already explained, blindly identification of main confor-
mations, without any knowledge on the expected outcomes
can hardly be assessed and presented.

For the sake of clarity and presentation, we have proposed
to focus on a sequence of 5 000 structures from peptides
EGFEPG. On the one hand, this sequence is rather represen-
tative of the whole dataset while, on the other hand, seems
particularly stable, with a handful of main confirmations,
among which the structures are not extremely similar, and
transitions that generated outliers.

This small structure sample is represented in Figure 6
via the distance between each and every structure. This fig-
ure highlights large blue squares along the diagonal among
which distance between structures is much smaller, hence
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FIGURE 7. Illustrative example of the dendogram obtained from the
5 000 peptides structures EGFEPG 6 showing how clusters are gathered
(x-axis) when increasing the minimal distance between centers (y-axis).

likely made of the same conformation. On the opposite the
figure shows large yellow/red area apart from the diago-
nal which indicates that structures are much more different.
We will use this small dataset to study the impact of param-
eters (σ, q) on the proposed method for outlier detection as
well as to visualize ensuing main identified conformations to
get insights from practitioners.

First of all, we assumed that 20% of the data are outliers;
this rate may seem very high but since we are only interested
in the most representative conformations, we would rather
drop too many structures than having clusters affected with
those outliers. We used the same results presented in Figure 5
to identify the relevant values for parameters (σ, q) which
results in σ = 5 and q = 12; those values are naturally larger
as compared to those found for artificial data because of their
large size (in terms of atoms) and the higher number of less
stable of main conformations.

To confirm these results, we propose to visualize the
impact of those parameters on main conformation identifica-
tion by measuring the evolution of their centers through the
inter-center distance defined as:

‖m̄r − m̄s‖2 . (12)

Figure 8 shows the evolution of distances between cen-
ters (12) when increasing the numbers of eigenvalues used
with proposed method of subspace outlier detection based on
KPCA. Note that for the sake of readability and clarity we
used the same scale for all the sub-figures. Figure 8 clearly
shows that, from approximately 12 eigenvectors, the three
main conformation centers remain very close when increas-
ing the number of principal components. Roughly speak-
ing, this emphasizes that, when the kernel width σ is kept
unchanged, increasing numbers of principal components in
the KPCA do not bring much information about main con-
formations. This post-hoc justify our choice to set q = 12
with σ = 5.

Another manner to visualize the results of main conforma-
tion identification is via the so-called dendogram presented in
the Figure 7. In this figure, the y-axis represents the distance

between clusters centers, see Eq. (10); on the opposite, the
x-axis shows structures. Together the dendogram show the
main conformations, also referred to as the clusters, and how
they are merged together for different distances.

Figure 7 clearly shows that the 5 000 samples, illustrated
in Figure 6, are made of three main conformations (numbered
from 1 to 3) but also that each of those can be split into two
(numbered from 4 to 9).

C. ANALYSIS AND COMPARISON WITH PRIOR ARTS
We have stated that one the main contribution of the present
method is to able practitioners to visualize the outcome
and manually adjust the settings according to their needs.
As an illustrative example for this feature, Figure 9 shows
the most representative structures for each main of the three
conformations. A practitioner would certainly be interested in
comparing the two sub-clusters that give birth to one cluster,
e.g. subclusters 4 and 5, in order to decide what is the most
relevant outcome from expertise point of view. Such example
is illustrated in Figure 10 which shows clearly that sub-
cluster 4 and 5 share the same backbones while differences
are on the orientation of the ultimate side-chain orientation.
With those tools of hierarchical clustering along with the
proposal for visualizing most representatives conformations
and performing comparison, the practitioner can use of its
expertise to guide the process.

Current art methods for protein main conformations iden-
tification usually focus only on protein backbones. By doing
so, it is assumed that side chains are not relevant for charac-
terizing the main conformations, hence on the ensuing func-
tionality. While this allows simplification, by dramatically
reducing the number of atoms, this strong assumption has,
up to our knowledge, never been proved and in fact seldom
studied. The result illustrated in Figure 10 deeply question
this assumption.

Though the present paper does not aim at answering this
question definitively our results seems to indicate that side
chains may be of high interest for main conformations iden-
tification. To provide further evidence along this direction,
we have contrasted the results obtained with and without side
chains using the proposed method over the 40 000 structures,
from sequence ‘‘VGVAPG’’. We have chosen this specific
peptide for simplicity and clarity of the presentation because
since it is one of the least flexible from our dataset it has
a limited number of main conformations, thus making the
comparison easier.

The result shown in Table 1 compares the fraction of
structures that are classified into the same main conforma-
tions with or without side chains. While almost 94% of the
data from the third main conformation are classified into the
same conformation either side chains are used or not; this
fraction is down to approx. 77.5%. With more than 23%
and 15% of data classified into different main conformations
(for the first and second ones) it is obviously questionable to
assume that side chains is not relevant. We would claim that
such results, along with those obtained with other peptides,
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FIGURE 8. Evolution of distances between class centers, see Eq. (12) as a function of the number of eigenvectors used in kernel PCA.

FIGURE 9. Visual outcome of the hierarchical clustering method: the three most representative structures of all three main conformations.

TABLE 1. Percentage of the structures classified into possible main
conformations with and without side chains.

that side chains shall be considered for clustering small and
flexible elastin-derived peptides. Their impact on the ensuing
biological activity should also be considered.

Last but not least, wewould like to emphasize the relevance
of the proposed method via a comparison with prior arts
and especially the most relevant and popular one, namely
DBSCAN [37]. This alternative approach is also interesting
because it is one of the very few approach that performs both
outlier removal and clustering. Roughly speaking, the princi-
ple of DBSCAN is to gather iteratively data that are within a
certain range ε. Clusters with less than MinPts are assumed
to be made of outliers. It is thus simple, efficient, and only
require the user to set those two parameters (ε, ε).
Table 2 shows the results, in terms of the number of clusters

and number of outliers, obtained when using DBSCAN over

FIGURE 10. Representation of the most representatives conformations
for two sub-clusters 4 and 5, as labeled in Fig. 7.

the same set of 5 000 with different values for parameters ε
(in columns) and MinPts (in rows). We have carried out a
grid-search approach and refined the grids in order to focus
on results that are sound, i.e. that does not put all data into
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TABLE 2. Number of outliers and clusters obtained with the DBSCAN method. The results are shown in this form: (number of outliers, number of
clusters). The columns correspond to the minimal number of points MinPts, and the lines correspond to the radius of the circles ε.

FIGURE 11. Comparison between the classification of peptide series over
time using the proposed method (a) and the well-known DBSCAN
approach with various settings (b-d).

only one cluster or split all data and assumed that the dataset
is made only of outliers.

First of all, Table 2 shows that this approach is hardly
usable in the context of elastin-derived peptide structures
because it is extremely sensitivity. Parameters (ε, ε) must be
finely tuned and do not generalize for various peptides. More
important, a brief comparison of the results obtained with
the proposed approach and those obtained with DBSCAN,
presented in Figure 11 show that the low relevance of the
latter. Indeed when obtaining the same number of clusters,
one can notice that DBSCAN always put a vast majority of
data into the same cluster and only a very few number of
samples into the others which do not match with ground truth,
see Figure 6.

VI. ANALYSIS OF PEPTIDE ACTIVITY
The ultimate goal of the present paper is to study whether
the biological activity can be due to its spatial conforma-
tions. To this end, this section focuses on finding potential
‘‘conformational signatures’’ that would distinguish active
peptides from non-active ones. To address this problem we

must compare the main conformations from each and every
peptides.

From the collaboration between scientists from data anal-
ysis and molecular biological sciences we propose to clus-
ter the molecular dynamic simulations using a dissimilarity
threshold equal to 200 for all peptides, see Figure 7.
Let us state first that we have experimentally found

that methods that directly compare structures of different
sizes [38] are highly inefficient in the present context; it
indeed stated as similar conformations that were consid-
ered as very different from the point of view of molecu-
lar biology. As a consequence, we keep with the approach
described in Section III that essentially consists in calculating
the Euclidean distance the distance matrix representing each
conformation. However this is only possible for peptides with
the same size. To this end, we have to restrain the comparison
to the atoms of the backbone.

The method we proposed is the following. For each
and every main conformations extracted from all peptides,
we extracted the most representative structure (the observa-
tion with the least distance from the conformation center).
Then, we measure if the same structure can be found in other
peptides by finding the conformation which minimizes the
distance with the given structure. Eventually, we determine a
threshold such that active peptide share similar conformation
while non-active peptide does not.

Fig. 12 show such a binary result; each row corresponds
to a single conformation while each column corresponds to
the set of conformation extract for a given peptides. The
first four peptides are those without biological activity while
the last five are the active ones. A blue color indicates a
similarity between a specific conformation (in row) and all
those extracted from a given peptide (in column) higher than
the determined threshold; on the opposite, red color indicates
that a given conformation cannot be found in a given peptides.
The long blue lines on the bottom right corner of Fig. 12
clearly points out that active peptides share several similar
conformations. On the opposite, the top left corner show
very little similarity between conformations from inactive
peptides.

Interestingly, one can note that only 6 different conforma-
tions that can be found in active peptide. Even more inter-
esting, among those conformations two are shared among all
active peptides. This confirms the assumption it is wished to
verify, activity of a peptide could be due to the presence of
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FIGURE 12. Matrix that represents the identical conformations in each peptide. Each column represents a peptide. Each line corresponds to a
conformation.The blue color indicates that they are identical, and red indicates the opposite.

FIGURE 13. The two main conformations extracted from the active
peptides only.

this specific conformation. Themost representative structures
that features those conformations are presented in Figure 13.

On the opposite, we noted that among inactive peptides
several main conformations are shared with active peptides.

However, the two conformations that are shared by all active
peptide are never found among inactive one. This is also
an important clue that support the assumption that a given
biological activity may be due to a specific conformation that
matches a target receptor.

A. IDENTIFICATION OF ACTIVE PEPTIDES
We propose to verify with the three peptides whose activity is
unknown, namely PGAYPG, VGLAPG, VVGPGA, the two
main results that results from analysis of peptides activity.
Those results are, first, that active peptides share the same two
conformations and, second, that non-active peptides almost
do not share similar conformations at all.

To this end, we applied the same method described in
Sections III and IV for outliers removal. Then we propose
to assign each and every observation, from a given sequence,
to the closest one among the 64 different reference conforma-
tions extracted from the 9 whose activities are known.

Figure 14 represents the application of this method to the
9 whose activities are known; obviously, it confirmed the
previous mentioned point, while active structure are very
often similar to the main conformation of active peptides,
the non-active peptide do not share many similar structures.
Table 3 shows the same results under a different form; as
shown in Figure 14, we have divided the 64 main different
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FIGURE 14. The number of elements close to each conformation. The
x-axis corresponds to the conformations of all the peptides. The first
58 conformations belong to the inactive peptides, and the last
6 conformations belong to the active peptides.

TABLE 3. The average effective structure of each peptide within the
conformations which belong to the non-active peptides (first column) and
active peptides (second column).

conformations into two groups: those extracted from inac-
tive peptides (from 1 to 58) and those extracted from active
peptides (from 59 to 64). Table 3 shows the average number

of structures whose closest conformation is in each group.
From those results, it is obvious that the average of structures
closest to the first group is much higher for inactive while,
on the opposite, the number of structures closest to the second
group is much higher to active peptide. Note that Table 3
includes the results to the three peptides whose activity is
unknown, see latest rows. We can conclude from these results
that peptides PGAYPG and VGLAPG should allow biologi-
cal activity while, on the opposite, the peptideVVGPGA shall
not trigger the target biological function. Those conclusions
have then been supported empirically.

VII. CONCLUSION
The present paper proposes a novel statistical methodology,
based on the clustering of 3D structures, with the ultimate
goal of analyzing the biological activity of highly flexible
elastin-derived peptides. This novel method combines dif-
ferent statistical algorithms to detect the conformation of
peptides that trigger a given biological functionality. The
proposed method is based on the following two main steps:
(1) Kernel-PCA is used for outlier removal (2) Hierarchical
clustering allows identification of main conformation into a
flexiblemanner that can be adjusted by practitioners.We have
presented a method for parameters selection and assessed its
relevance of a set of dynamics trajectories simulations. This
allows us to identify two conformation which is always found
among active peptides while, on the opposite, structures from
non-active peptides are rarely similar.

It is expected to extend the proposed method for blind
identification of peptide activities. Besides, our future work
consists in quantifying the biological activity of peptides in
order to be able to relate this amount with the frequency at
which a given conformation occurs in our simulations.
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