

Received June 3, 2021, accepted June 18, 2021, date of publication June 23, 2021, date of current version July 5, 2021. *Digital Object Identifier 10.1109/ACCESS.2021.3091906*

Inertial Derivative-Free Projection Method for Nonlinear Monotone Operator Equations With Convex Constraints

AUWAL BALA ABUBAKAR^{®[1](https://orcid.org/0000-0002-6142-3694),2,3}, POOM KUMAM^{1,4,5}, (Member, IEEE), AND ABDULKARIM HASSAN IBRAHIM^{®[1](https://orcid.org/0000-0001-5534-1759)}

¹Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand

²Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano, Kano 700241, Nigeria

 3 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0204, South Africa

⁴Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand

⁵Departments of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

Corresponding author: Poom Kumam (poom.kumam@mail.kmutt.ac.th)

This work was supported in part by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi, and in part by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under Project 64A306000005.

This work did not involve human subjects or animals in its research.

ABSTRACT In this paper, we propose an inertial derivative-free projection method for solving convex constrained nonlinear monotone operator equations (CNME). The method incorporates the inertial step with an existing method called derivative-free projection (DFPI) method for solving CNME. The reason is to improve the convergence speed of DFPI as it has been shown and reported in several works that indeed the inertial step can speed up convergence. The global convergence of the proposed method is proved under some mild assumptions. Finally, numerical results reported clearly show that the proposed method is more efficient than the DFPI.

INDEX TERMS Monotone nonlinear operator, inertial algorithm, conjugate gradient, projection method.

I. INTRODUCTION

Consider the problem of finding $y \in E$ such that

$$
T(y) = 0,\t(1)
$$

where $T : \mathbb{R}^n \to \mathbb{R}^n$ is a monotone and Lipschitz continuous operator and **E** is a nonempty, closed and convex subset of \mathbb{R}^n . This problem has recently received remarkable attention as it arises in a number of applicable problems. For example, in constrained neural networks [1], nonlinear compressed sensing [2], [3], phase retrieval [4], [5], power flow equations [6], economic and chemical equilibrium problems [7], [8], non-negative matrix factorisation [9], [10], forecasting of financial market, portfolio selection models, price returns [11]–[13] and many more. As such, recently several derivative-free methods such as the conjugate gradient (CG) method have been proposed for solving problem [\(1\)](#page-0-0). Given

The associate editor coordinating the revie[w o](https://orcid.org/0000-0001-8028-0353)f this manuscript and approving it for publication was Gokhan Apaydin¹⁰.

an initial point *y*0, the conjugate gradient method computes the next iterate as:

$$
y_{k+1} = y_k + \alpha_k d_k, \quad k = 0, 1, 2, \ldots,
$$

where $\alpha_k > 0$ is a step size and d_k is called the CG direction of search defined as

$$
d_k := \begin{cases} -T(y_k) & \text{if } k = 0, \\ -T(y_k) + \beta_k d_{k-1} & \text{if } k > 0. \end{cases}
$$

The parameter β_k is called the CG parameter. For more on derivative-free methods for solving [\(1\)](#page-0-0), interested readers can refer to [14]–[35] and references therein.

Recently, several researchers are interested in how to improve the speed of convergence of existing iterative algorithms. One of the approach in this regard is the inertial extrapolation method where a new step called the inertial step is added to the existing step(s) of an iterative method. It has been shown that the inertial step enhance the speed of the existing methods such as methods for solving fixed

point problems, variational inequality problems, equilibrium problems, split feasibility problems, and so on. By choosing two starting points *y*−¹ and *y*0, the inertial term is defined as

$$
v_k = y_k + \theta_k (y_k - y_{k-1}),
$$

where $\{\theta_k\}_{k=1}^{\infty}$ is a sequence satisfying certain condition. Inertial extrapolation method has been employed successfully in improving the convergence of the sequence generated by various algorithms. However, to the best of our knowledge, there is no theoretical proof to justify that, indeed, all one can find is numerical justification using some examples. However, the choice of the parameter θ_k has an effect on the speed of convergence. For more on iterative methods with inertial extrapolation, the reader is referred to [36]–[41] and references therein.

Inspired by the inertial methods [36]–[41] and the derivative-free projection method proposed by Sun and Liu [17] which is an extension of the work of Cheng [42], we propose an inertial derivative-free projection method for finding solutions to problem [\(1\)](#page-0-0). The method is based on the work of Sun and Liu [17], where the inertial term is incorporated in order speed up its convergence. The remaining part of this paper is organized as follows: the next section gives some preliminaries and the proposed algorithm, convergence results is provided in the third section, Numerical results in the fourth section and lastly the conclusion.

Notation. Unless otherwise stated, the symbol $\|\cdot\|$ stands for Euclidean norm on **R** *n* .

II. PROPOSED ALGORITHM

Definition 2.1: Let \mathbb{R}^n be an Euclidean space and T : $\mathbf{R}^n \to \mathbf{R}^n$ be a mapping. Then *T* is

(i) Monotone, if

$$
(T(y) - T(x))^{T} (y - x) \ge 0, \quad \forall y, x \in \mathbf{R}^{n}
$$

(ii) *L*-Lipschitz continuous, if there exists $L > 0$ such that

$$
||T(y) - T(x)|| \le L||y - x||
$$
, $\forall y, x \in \mathbb{R}^n$.

Definition 2.2: Let $\mathbf{E} \subset \mathbf{R}^n$ be closed and convex, the projection of *y* ∈ \mathbb{R}^n onto **E** denoted by P **E**(*y*), is defined as

$$
P_{\mathbf{E}}(y) = \arg\min\{\|x - y\| \mid x \in \mathbf{E}\}.
$$

Lemma 2.3 ([43]): Let $\mathbf{E} \subset \mathbf{R}^n$ be nonempty closed and convex. Then the following inequality hold:

$$
||P_{\mathbf{E}}(y) - P_{\mathbf{E}}(x)|| \le ||y - x||, \ \forall y, x \in \mathbf{R}^{n}
$$

Lemma 2.4 ([44]): Let $y, x \in \mathbb{R}^n$. Then the following equality hold:

$$
||y + x||^2 = ||y||^2 + 2x^T(y + x).
$$

Lemma 2.5 ([45]): Let $\{y_k\}$ and $\{x_k\}$ be sequences of nonnegative real number satisfying the following relation

$$
y_{k+1} \leq y_k + x_k,
$$

where $\sum_{n=1}^{\infty}$ *k*=1 $x_k < \infty$, then $\lim_{k \to \infty} y_k$ exists. *Lemma* 2.6 ([46]): A point $y^* \in SOL(T, E)$ if and only if

 $y^* = P_E(y^* - \mu u)$ for some $u = T(y^*)$ and $\mu > 0$. We make use of the following assumptions.

Assumption 1:

- (a) The feasible set **E** is a nonempty closed and convex subset of the Euclidean space \mathbb{R}^n .
- (b) $T: \mathbb{R}^n \to \mathbb{R}^n$ is monotone and L-Lipschitz continuous.
- (c) The solution set **SOL**(**T**,**E**) of [\(1\)](#page-0-0) is nonempty.

Assumption 2: Let $\{\theta_k\}$ be a sequence of nonnegative real numbers satisfying the conditions:

$$
\theta_k \in (0,1), \sum_{k=1}^{\infty} \theta_k \|y_k - y_{k-1}\| < \infty.
$$

Based on the Sun and Liu [17] derivative-free projection method for monotone nonlinear equation with convex constraints called DFPI, we present an inertial derivative-free projection method for finding solutions to problem [\(1\)](#page-0-0).

Algorithm 2.7 (Inertial Derivative-Free Method (IDFPI):) **(S.0)** Choose a sequence $\{\theta_k\}_{k=1}^{\infty}$ satisfying Assumption [2](#page-1-0) and select the parameters: $Tol > 0$, $\rho \in (0, 1)$, $\zeta >$ 0, σ > 0. Select arbitrary points *y*−1, *y*⁰ ∈ **E**. Set *k* := 0. **(S.1)** Set

$$
v_k = y_k + \theta_k (y_k - y_{k-1})
$$

(S.2) Compute $T(v_k)$. If $||T(v_k)|| \leq Tol$, stop. Otherwise, generate the search direction d_k by

$$
d_k := \begin{cases} -T(v_k) & \text{if } k = 0, \\ -\left(1 + \beta_k \frac{T(v_k)^T d_{k-1}}{\|T(v_k)\|^2}\right) & (2) \\ T(v_k) + \beta_k d_{k-1} & \text{if } k > 0, \end{cases}
$$

where,

.

$$
\beta_k := 0.01 \frac{\|T(v_k)\|}{\|d_{k-1}\|}.\tag{3}
$$

(S.3) Compute a trial point $x_k = v_k + \alpha_k d_k$.

(S.4) Determine the step-size $\alpha_k = \zeta \rho^i$ where *i* is the least nonnegative integer satisfying

$$
-T(v_k + \alpha_k d_k)^T d_k \ge \sigma \alpha_k \|d_k\|^2. \tag{4}
$$

(S.5) If $x_k \in \mathbf{E}$ and $||T(x_k)|| \leq Tol$, stop. Otherwise,

$$
y_{k+1} = P_{\mathbf{E}} \left[v_k - \gamma_k T(x_k) \right],\tag{5}
$$

where

$$
\gamma_k := \frac{T(x_k)^T(v_k - x_k)}{\|T(x_k)\|^2}.
$$

(S.6) Set $k = k + 1$, and go back to (S.1).

Remark 2.8: Let d_k be generated by [\(2\)](#page-1-1)-[\(3\)](#page-1-2) in Algorithm [2.7.](#page-1-3) Then

$$
T(v_k)^T d_k = -\|T(v_k)\|^2.
$$
 (6)

.

III. CONVERGENCE RESULT

Lemma 3.1: The line search condition [\(4\)](#page-1-4) is well-defined. That is, for all $k \geq 0$, there exists a non negative integer *i* satisfying [\(4\)](#page-1-4).

Proof: Suppose there is $k_0 \ge 0$ for which [\(4\)](#page-1-4) is not true for any non-negative integer *i*, i.e.,

$$
-T(v_{k_0} + \zeta \rho^i d_{k_0})^T d_{k_0} < \sigma \zeta \rho^i \|d_{k_0}\|^2.
$$

Using Assumption 1 (b) and allowing $i \rightarrow \infty$, we have that

$$
-T(v_{k_0})^T d_{k_0} \le 0.
$$
 (7)

On the other hand, from [\(6\)](#page-1-5),

$$
-T(v_{k_0})^T d_{k_0} = ||T(v_{k_0})||^2 > 0,
$$

which contradicts [\(7\)](#page-2-0). Hence, [\(4\)](#page-1-4) is well defined.

Lemma 3.2: Let $\{y_k\}$ and $\{x_k\}$ be generated via Algo-rithm [2.7.](#page-1-3) If $y^* \in SOL(T, E)$, then under Assumption [1](#page-1-6) and [2,](#page-1-0) it holds that

$$
||y_{k+1} - y^*||^2 \le ||v_k - y^*|| - \sigma^2 ||v_k - x_k||^4.
$$

Moreover, the sequence $\{y_k\}$ and $\{x_k\}$ are bounded and

$$
\lim_{k \to \infty} ||v_k - x_k|| = 0. \tag{8}
$$

Proof: By the monotonicity of the mapping *T* , we have

$$
T(x_k)^T(v_k - y^*) = T(x_k)^T(v_k - x_k) + T(x_k)^T(x_k - y^*)
$$

\n
$$
\geq T(x_k)^T(v_k - x_k) + T(y^*)^T(x_k - y^*)
$$

\n
$$
= T(x_k)^T(v_k - x_k)
$$

\n
$$
= T(x_k)^T(-\alpha_k d_k)
$$

\n
$$
= \sigma \alpha_k^2 ||d_k||^2
$$

\n
$$
\geq \sigma ||v_k - x_k||^2.
$$
 (10)

By Lemma 2.3 (iii), (5) , (9) and (10) , it holds that for any *y* [∗] ∈ **SOL**(**T**,**E**),

$$
||y_{k+1} - y^*||^2 = ||P_{\mathbf{E}}(v_k - \gamma_k T(x_k)) - y^*||^2
$$

\n
$$
\le ||v_k - \gamma_k T(x_k) - y^*||^2
$$

\n
$$
= ||v_k - y^*||^2 - 2\gamma_k T(x_k)^T (v_k - y^*)
$$

\n
$$
+ \gamma_k^2 ||T(x_k)||^2
$$

\n
$$
\le ||v_k - y^*||^2 - 2\gamma_k T(x_k)^T (v_k - x_k)
$$

\n
$$
+ \gamma_k^2 ||T(x_k)||^2
$$

\n
$$
\le ||v_k - y^*||^2 - \frac{T(x_k)^T (v_k - x_k)^2}{||T(x_k)||^2}
$$

\n
$$
\le ||v_k - y^*||^2 - \frac{\sigma^2 ||v_k - x_k||^4}{||T(x_k)||^2}.
$$
 (11)

From equation [\(11\)](#page-2-2), we can deduce that

$$
||y_{k+1} - y^*|| \le ||v_k - y^*||
$$

= $||y_k + \theta_k(y_k - y_{k-1}) - y^*||$
 $\le ||y_k - y^*|| + \theta_k ||y_k - y_{k-1}||.$ (12)

Because $\sum_{k=1}^{\infty} \theta_k ||y_k - y_{k-1}|| < \infty$, then by Lemma [2.5,](#page-1-9) the limit of $\{y_k - y^*\}$ exists and hence it is bounded. This implies that for all *k*, there exist $M_0 > 0$ such that $||y_k - y^*|| \le$ *M*0. Therefore, for all *k* we can deduce that

$$
||y_k|| \le M_1,\tag{13}
$$

and

$$
||y_k - y_{k-1}|| \leq M,
$$

where $M_1 = M_0 + ||y^*||$ and $M = 2M_1$. Using the above relations, we can have

 $||v_k|| \le M_2$, $||v_k - y^*|| \le M_2$, where $M_2 = 2M$.

Since *H* is Lipschitz continuous, we have

$$
||T(v_k)|| = ||T(v_k) - T(y^*)|| \le L||v_k - y^*|| \le LM_2.
$$
 (14)

Also, using [\(14\)](#page-2-3) and the monotonicity of *T* ,

$$
T(x_k)^T(v_k - x_k) = (T(x_k) - T(v_k))^T(v_k - x_k)
$$

+
$$
T(v_k)^T(v_k - x_k)
$$

$$
\leq T(v_k)^T(v_k - x_k)
$$

$$
\leq ||T(v_k)|| ||v_k - x_k||
$$

$$
\leq LM_2 ||v_k - x_k||.
$$

This together with [\(9\)](#page-2-1) and [\(10\)](#page-2-1) implies that

$$
\|v_k-x_k\|\leq \frac{LM_2}{\sigma}.
$$

Then, we have

$$
||x_k|| \leq \frac{LM_2}{\sigma} + ||v_k||.
$$

Hence the sequence $\{x_k\}$ is bounded since $\{v_k\}$ is bounded. Moreover as *T* is continuous and $\{x_k\}$ is bounded, then ${T(x_k)}$ is bounded. That is, there exists $N > 0$ such that $||T(x_k)|| \leq N$.

By the definition of v_k and [\(13\)](#page-2-4) we have

$$
||v_k - y^*||^2 = ||y_k + \theta_k(y_k - y_{k-1}) - y^*||^2
$$

= $||y_k - y^*||^2$
+ $2\theta_k(y_k - y_{k-1})^T(y_k + \theta_k(y_k - y_{k-1}) - y^*)$
 $\le ||y_k - y^*||^2 + 2\theta_k ||y_k - y_{k-1}|| (||y_k - y^*|| + \theta_k ||y_k - y_{k-1}||)$
 $\le ||y_k - y^*||^2 + 2M\theta_k ||y_k - y_{k-1}|| + 2M\theta_k ||y_k - y_{k-1}||$
= $||y_k - y^*||^2 + 4M\theta_k ||y_k - y_{k-1}||.$ (15)

Combining [\(15\)](#page-2-5) with [\(11\)](#page-2-2), we have

$$
||y_{k+1} - y^*||^2 \le ||y_k - y^*||^2 + 4M\theta_k ||y_k - y_{k-1}|| - \frac{\sigma^2 ||y_k - x_k||^4}{||T(x_k)||^2}.
$$
 (16)

Thus, we have

$$
\frac{\sigma^2 \|v_k - x_k\|^4}{\|T(x_k)\|^2} \le \|y_k - y^*\|^2 + 4M\theta_k \|y_k - y_{k-1}\| - \|y_{k+1} - y^*\|^2. \tag{17}
$$

Adding [\(17\)](#page-3-0) for $k = 0, 1, 2, \ldots$ and the fact that $\{T(x_k)\}\$ is bounded, we have

$$
\frac{\sigma^2}{N^2} \sum_{k=0}^{\infty} \|v_k - x_k\|^4 \le \sum_{k=0}^{\infty} (\|y_k - y^*\|^2 + 4M\theta_k \|y_k - y_{k-1}\| - \|y_{k+1} - y^*\|^2). \tag{18}
$$

Now, let $S_k = \sum_{n=0}^k (||y_n - y^*||^2 - ||y_{n+1} - y^*||^2)$, then $S_k = \sum_{n=0}^k (||y_0 - y^*||^2 - ||y_{k+1} - y^*||^2)$. As limit of { $||y_k - y^*||^2$ } y^* ||} exists from [\(12\)](#page-2-6) with limit say L_1 , then

$$
\left(\lim_{k\to\infty}S_k=\|y_0-y^*\|^2-L_1\right)\in\mathbf{R}.
$$

So,

$$
\sum_{k=0}^{\infty} \left(\|y_k - y^*\|^2 - \|y_{k+1} - y^*\|^2 \right) < \infty
$$

and
$$
\sum_{k=0}^{\infty} \theta_k \|y_k - y_{k-1}\| < \infty.
$$

Using [\(18\)](#page-3-1) together with the above inequalities, we conclude that

$$
\lim_{k\to\infty}\|\nu_k-x_k\|=0.
$$

Remark 3.3: By the definition of $\{x_k\}$ and [\(8\)](#page-2-7), we have

$$
\lim_{k\to\infty}\alpha_k||d_k||=0.
$$

Lemma 3.4: Suppose Assumptions [1-](#page-1-6)[2](#page-1-0) hold and the sequence $\{y_k\}$ and $\{v_k\}$ are generated by Algorithm [2.7.](#page-1-3) Then

$$
\lim_{k \to \infty} \|v_k - y_{k+1}\| = 0.
$$
 (19)

Proof:

Using definition of v_k ,

$$
\|y_k - v_k\| = \|y_k - (y_k + \theta_k(y_k - y_{k-1}))\|
$$

= $\theta_k \|y_k - y_{k-1}\|$.

This implies that

$$
\lim_{k \to \infty} \|y_k - v_k\| = 0. \tag{20}
$$

Also,

$$
\begin{aligned} \|y_k - x_k\| &= \|y_k - v_k + v_k - x_k\| \\ &\le \|y_k - v_k\| + \|v_k - x_k\|. \end{aligned}
$$

Using [\(8\)](#page-2-7) and [\(20\)](#page-3-2), we have

$$
\lim_{k \to \infty} \|y_k - x_k\| = 0. \tag{21}
$$

TABLE 1. Starting points.

Note. For DFPI algorithm [17], the starting point is y_0 .

By Lemma [2.3,](#page-1-7) we have

$$
||y_{k+1} - y_k|| = ||P_{\mathbf{E}}[v_k - \gamma_k T(x_k)] - y_k||
$$

\n
$$
\leq ||v_k - \gamma_k T(x_k) - y_k||
$$

\n
$$
\leq ||v_k - y_k|| + ||\gamma_k E(z_k)||
$$

\n
$$
= ||v_k - y_k|| + ||\frac{T(x_k)^T (v_k - x_k)}{||T(x_k)||^2} T(x_k)||
$$

\n
$$
\leq ||v_k - y_k|| + ||v_k - x_k||. \tag{22}
$$

Thus, from [\(8\)](#page-2-7) and [\(20\)](#page-3-2), we have

$$
\lim_{k \to \infty} \|y_{k+1} - y_k\| = 0.
$$
 (23)

Therefore,

$$
||y_{k+1} - v_k|| = ||y_{k+1} - (y_k + \theta_k(y_k - y_{k-1}))||
$$

\n
$$
\le ||y_{k+1} - y_k|| + \theta_k ||y_k - y_{k-1}||.
$$

Using [\(23\)](#page-3-3) and Assumption [2,](#page-1-0) the desired equation is obtained.

Theorem 3.5: Let $\{y_k\}$ be a sequence generated via Algo-rithm [2.7.](#page-1-3) Using Assumption [1](#page-1-6) and [2,](#page-1-0) then $\{y_k\}$ converge to an element of **SOL**(**T**,**E**).

Proof: We know that the sequence $\{y_k\}$ is bounded from [\(13\)](#page-2-4). This implies that there exists a subsequence $\{y_{k_j}\}$ of $\{y_k\}$ such that $\{y_{k_j}\}$ converge to some point \bar{y} . Also, we have that

$$
||v_{k_j} - y_{k_j}|| = \theta_{k_j} ||y_{k_j} - y_{k_j - 1}|| \to 0, \text{ as } j \to \infty.
$$
 (24)

Claim: $\bar{y} \in SOL(T, E)$. Suppose on the contrary that $\bar{y} \notin$ **SOL**(**T**,**E**). Then from [\(19\)](#page-3-4) and [\(24\)](#page-3-5), we have that

$$
\lim_{j \to \infty} y_{k_j+1} = \lim_{j \to \infty} P_{\mathbf{E}} \left(v_{k_j} - \gamma_{k_j} T(x_{k_j}) \right) = \lim_{j \to \infty} y_{k_j} = \bar{y}.
$$
 (25)

Without loss of generality, if $\gamma_{k_j} \rightarrow \gamma^*$ and $T(x_{k_j}) \rightarrow$ *T*(*x*^{*}). Then since *T* is continuous, we have $T(x^*) = T(\bar{y})$. Therefore, from [\(25\)](#page-3-6)

$$
P_{\mathbf{E}}\left(\bar{\mathbf{y}} - \gamma^*T(x^*)\right) = \bar{\mathbf{y}}.
$$

It then follows from Lemma [2.6](#page-1-10) that y^* ∈ **SOL(T**, **E**), which is a contradiction. Hence, our claim holds. Substituting *y*^{*} with \bar{y} in [\(12\)](#page-2-6), it is easy to see that $\lim_{k \to \infty} ||y_k - \bar{y}||$ exists

 \blacksquare

 \blacksquare

by Lemma [2.5.](#page-1-9) Since \bar{y} is an accumulation point of $\{y_k\}$, we obtain that $\{y_k\}$ converges to \bar{y} .

IV. NUMERICAL EXAMPLES

By comparing the proposed inertial algorithm (Iner. DFPI) to the DFPI algorithm in [17], we show the numerical efficiency and computational advantage of the proposed inertial algorithm (Iner. DFPI) in this section. The MATLAB implementation of the algorithms was executed on a Windows 10 computer with Intel(R) Core(TM) i7 processor with 8.0GB of RAM and CPU of 2.30GHz using MATLAB R2019b software. The numerical experiment made use of the following test problems to measure the efficiency and robustness of the proposed inertial algorithm (Iner. DFPI).

Problem 1: Modified exponential function [47]

$$
t_1(y) = e^{y_1} - 1
$$

\n
$$
t_i(y) = e^{y_i} + y_i - 1, \quad i = 2, ..., n,
$$

\n
$$
\mathbf{E} = \mathbf{R}_+^n.
$$

Problem 2: Logarithmic function [47]

$$
t_i(y_i) = \log(y_i + 1) - \frac{y_i}{n}, \quad i = 1, 2, ..., n,
$$

E = **R**ⁿ₊.

Problem 3: Nonsmooth function [48]

$$
t_i(y) = 2y_i - \sin(|y_i|), \text{ for } i = 1, 2, ..., n,
$$

$$
\mathbf{E} = \{y \in \mathbf{R}_+^n : y \ge 0, \sum_{i=1}^n y_i \le n\}.
$$

Problem 4: Strictly convex function I [47]

$$
t_i(y) = e^{y_i} - 1
$$
, $i = 1, 2, ..., n$,
E = \mathcal{R}_+^n .

Problem 5: Strictly convex function II [47]

$$
t_i(y) = \left(\frac{i}{n}\right)e^{y_i} - 1, \quad i = 1, 2, \dots, n,
$$

$$
\mathbf{E} = \mathbf{R}_+^n.
$$

TABLE 3. Numerical experiments with different coefficients of β_k for problem 6-10 with n = 1000.

Problem 6: Tridiagonal exponential function [47]

$$
t_1(y) = y_1 - e^{\cos(l(y_1 + y_2))}
$$

\n
$$
t_i(y) = y_i - e^{\cos(l(y_{i-1} + y_i + y_{i+1}))}, \quad i = 2, ..., n - 1,
$$

\n
$$
t_n(y) = y_n - e^{\cos(l(y_{n-1} + y_n))},
$$

\n
$$
l = \frac{1}{n+1} \text{ and } \mathbf{E} = \mathbf{R}^n_+.
$$

Problem 7: Nonsmooth function II [49]

$$
t_i(y) = y_i - \sin(|y_i - 1|), \text{ for } i = 1, 2, ..., n,
$$

$$
\mathbf{E} = \left\{ y \in \mathbf{R}_+^n : y \ge -1, \sum_{i=1}^n y_i \le n \right\}.
$$

Problem 8: Penalty function I [16]

$$
\xi_i = \sum_{i=1}^n y_i^2, \quad c = 10^{-5},
$$

\n
$$
t_i(y) = 2c(y_i - 1) + 4(\xi_i - 0.25)y_i, \quad i = 1, 2, ..., n,
$$

\n
$$
\mathbf{E} = \mathbf{R}_+^n.
$$

Problem 9: Pursuit-Evasion problem [16]

$$
t_i(y) = 8^{0.5}y_i - 1
$$
, $i = 1, 2, ..., n$,
E = **R**ⁿ₊.

Problem 10: Pursuit-Evasion problem [16]

$$
t_i(y) = e^{y_i^2} + 3 \sin y_i \cos y_i - 1
$$
, $i = 1, 2, ..., n$,
E = **R**ⁿ₊.

Note that, the mapping *T* is taken as

$$
T(y) = (t_1(y), t_2(y), \ldots, t_n(y))^T,
$$

and recall that, the inertial-type algorithm is an iterative procedure in which subsequent iterates are obtained using the preceding two iterates. As such, for the proposed inertial algorithm (Iner. DFPI), the two preceding iterates used in obtaining the initial iterates are as follows:

Note. For DFPI algorithm [17], the starting point is *y*0.

The above listed problems are solved with dimensions $n =$ 1000, 5000, 10, 000, 50, 000 and 100, 000. The parameters

TABLE 4. Numerical experiments with different sequences $\{\theta_{\bm{k}}\}$ for problem 1-5 with n = 1000.

			$\theta_k =$	$(2k+5)^2$	$\theta_k =$ $\exp\left((k+1)^{k+1}\right)$			$\theta_k =$ $\frac{1}{(k+1)^2}$		
$n = 1000$	SP	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT
	y_1	9	36	0.009119	9	36	0.019343	$\overline{0}$	$\overline{0}$	0.003002
	y_2	10	40	0.009186	10	40	0.013494	10	40	0.024327
	y_3	6	24	0.007353	6	24	0.006644	6	24	0.016818
Problem 1	y_4	$\overline{7}$	28	0.008871	$\overline{7}$	28	0.009398	7	28	0.017854
	y_5	$\overline{7}$	28	0.003838	$\overline{7}$	28	0.011266	7	28	0.011046
	y ₆	$\overline{7}$	28	0.008816	$\overline{7}$	28	0.008429	7	28	0.009511
	y_7	19	76	0.020365	19	76	0.012149	20	80	0.01573
	y_1	11	43	0.062537	11	43	0.011218	$\mathbf{0}$	$\overline{0}$	0.002089
	y_2	13	51	0.009315	13	51	0.00942	13	51	0.013417
	y_3	12	46	0.011573	12	46	0.008909	12	46	0.012356
Problem 2	y_4	13	49	0.011216	13	49	0.009268	13	49	0.016215
	y_{5}	14	53	0.010668	14	53	0.029236	14	53	0.016043
	y_6	12	44	0.008497	12	44	0.00864	12	44	0.013048
	y_7	14	53	0.010962	14	53	0.01112	14	53	0.01145
	y_1	13	52	0.081519	13	52	0.009919	$\boldsymbol{0}$	$\overline{0}$	0.001735
	y_2	13	52	0.010098	13	52	0.009571	13	52	0.008503
	y_3	14	56	0.009522	14	56	0.010984	14	56	0.011609
Problem 3	y_4	14	56	0.012593	14	56	0.013154	14	56	0.013062
	y_5	14	56	0.010016	14	56	0.011638	14	56	0.010194
	346	15	60	0.0169	15	60	0.011157	15	60	0.018817
	y_7	14	56	0.015987	14	56	0.006418	14	56	0.013272
	y_1	13	52	0.027212	12	48	0.007644	$\bf{0}$	$\bf{0}$	0.002682
	y_2	13	52	0.008549	13	52	0.006964	13	52	0.00497
	y_3	13	52	0.011045	13	52	0.006538	13	52	0.011129
Problem 4	y_4	13	52	0.008611	13	52	0.010887	13	52	0.008666
	у5	14	56	0.00786	14	56	0.009174	14	56	0.015178
	y_6	14	56	0.008609	14	56	0.006611	14	56	0.00971
	y_7	15	60	0.009977	15	60	0.009921	15	60	0.007715
	y_1	22	83	0.014915	22	83	0.012003	23	87	0.008566
	y_2	18	68	0.010097	18	68	0.011021	18	68	0.011365
	y_3	22	86	0.009015	22	86	0.012862	22	86	0.009067
Problem 5	y_4	20	80	0.015665	20	80	0.017248	20	80	0.00942
	y_{5}	23	92	0.01444	23	92	0.022297	23	92	0.012842
	y ₆	33	132	0.032199	33	132	0.038352	33	132	0.025196
	117	32	127	0.020831	38	150	0.038326	36	143	0.026164

TABLE 5. Numerical experiments with different sequences $\{\theta_{\bm{k}}\}$ for problem 6-10 with $n = 1000$.

TABLE 6. Numerical results for IDFPI and DFPI algorithms on problem 1.

TABLE 7. Numerical results for IDFPI and DFPI algorithms on problem 2.

For the compared method (DFPI), its parameters were set as reported in [17]. All iterative procedure terminate when $||T(v_k)||$ < 10⁻⁶ is fulfilled. If this condition is not satisfied after 1000 iterations, failure is declared.

TABLE 10. Numerical results for IDFPI and DFPI algorithms on problem 5.

TABLE 8. Numerical results for IDFPI and DFPI algorithms on problem 3.

TABLE 9. Numerical results for IDFPI and DFPI algorithms on problem 4.

				IDFPI	DFPI					
$\mathbf n$	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM	
1000	y_1	22	83	0.006723	3.36E-07	27	125	0.025308	7.64E-07	
	y_2	18	68	0.004817	3.58E-07	27	127	0.013897	5.68E-07	
	y_3	22	86	0.007747	3.16E-07	30	142	0.009465	5.36E-07	
	y_4	20	80	0.007736	9.38E-07	26	130	0.00958	5.96E-07	
	y_5	23	92	0.007882	5.80E-07	27	134	0.010308	9.66E-07	
	y_6	33	132	0.013091	3.68E-07	26	132	0.011363	7.39E-07	
	y_7	36	143	0.015021	9.85E-07	33	173	0.012412	7.77E-07	
	y_1	22	83	0.023041	3.36E-07	27	125	0.028866	9.11E-07	
	y_2	18	68	0.017824	7.77E-07	28	132	0.031948	6.88E-07	
	y_3	23	90	0.019053	6.89E-07	32	150	0.033963	6.55E-07	
5000	y_4	21	84	0.018336	6.11E-07	27	135	0.040092	8.11E-07	
	y_5	27	108	0.033345	3.04E-07	30	147	0.03638	6.11E-07	
	y_6	46	184	0.077517	3.86E-07	27	137	0.032325	9.59E-07	
	y_7	51	203	0.074716	5.05E-07	43	243	0.052204	7.93E-07	
	y_1	25	95	0.042456	8.93E-07	29	138	0.050406	9.96E-07	
	y_2	19	72	0.033543	3.32E-07	28	132	0.047778	9.91E-07	
	y_3	23	90	0.040511	8.91E-07	32	150	0.053794	9.38E-07	
10000	y_4	21	84	0.031568	9.96E-07	32	155	0.0541	5.90E-07	
	y_5	28	112	0.05547	9.14E-07	30	147	0.062782	8.87E-07	
	y_6	50	200	0.18221	3.37E-07	31	154	0.055032	5.36E-07	
	y_7	60	239	0.18747	5.93E-07	38	205	0.074963	9.59E-07	
	y_1	48	187	0.60608	3.42E-07	39	219	0.33566	7.35E-07	
	y_2	19	72	0.12914	7.62E-07	37	194	0.26823	5.90E-07	
	y_3	26	102	0.1525	3.17E-07	33	157	0.20113	5.81E-07	
50000	y_4	34	136	0.3022	8.46E-07	34	163	0.22611	6.85E-07	
	y_5	35	140	0.37456	8.13E-07	33	162	0.22718	9.63E-07	
	y_6	75	300	1.3335	6.68E-07	33	162	0.21739	6.33E-07	
	y_7	88	351	1.4975	5.17E-07	35	167	0.2218	5.56E-07	
	y_1	64	251	1.7805	8.73E-07	37	181	0.4819	8.65E-07	
	y_2	20	76	0.2093	3.27E-07	37	183	0.44101	5.07E-07	
	y_3	26	102	0.37068	5.05E-07	33	159	0.40582	5.19E-07	
100000	y_4	35	140	0.72236	5.66E-07	34	166	0.42738	7.31E-07	
	y_{5}	40	160	0.77446	6.02E-07	35	173	0.47046	5.55E-07	
	y_6	75	300	2.5582	4.79E-07	35	177	0.56666	8.85E-07	
	y_7	98	391	3.6313	3.21E-07	35	168	0.43766	7.18E-07	

TABLE 11. Numerical results for IDFPI and DFPI algorithms on problem 6.

To illustrate in detail the efficiency and robustness of Iner. DFPI, we start by performing some numerical experiments with different coefficients of the parameter β_k and the results are reported in Table [2](#page-4-0) and [3.](#page-5-0) It can be observed from the

tables that the coefficient 0.01 is a good choice. In addition, we performed another numerical experiments with different sequences $\{\theta_k\}$ and the results are reported in Table [4](#page-6-0) and [5.](#page-6-1) It can be observed from the tables that the sequence θ_k = $\frac{1}{(2k+5)^2}$ is a good choice. We further employ the performance

TABLE 12. Numerical results for IDFPI and DFPI algorithms on problem 7.

TABLE 14. Numerical results for IDFPI and DFPI algorithms on problem 9.

	IDEFI						DFFL					
$\mathbf n$	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM			
	y_1	8	32	0.003653	9.31E-08	$\overline{7}$	35	0.088016	2.09E-07			
	y_2	7	28	0.002498	7.06E-07	$\overline{7}$	35	0.002876	1.30E-07			
	y_3	6	24	0.002711	2.03E-07	5	25	0.002588	6.75E-07			
1000	y_4	7	28	0.004252	1.86E-07	$\overline{7}$	35	0.003619	5.39E-07			
	y_{5}	8	32	0.004847	2.91E-07	$\overline{7}$	35	0.005417	6.75E-07			
	y_6	8	31	0.002989	3.19E-07	7	33	0.003767	6.55E-07			
	y_7	9	36	0.003879	2.83E-07	10	50	0.005564	4.13E-07			
	y_1	$\overline{\mathbf{8}}$	32	0.011319	2.08E-07	$\overline{\tau}$	35	0.012628	4.68E-07			
	y_2	8	32	0.010446	1.30E-07	$\overline{7}$	35	0.010796	2.90E-07			
	y_3	6	24	0.007387	4.53E-07	6	30	0.009275	9.64E-08			
5000	y_4	$\overline{7}$	28	0.008646	4.15E-07	8	40	0.011531	7.69E-08			
	y_{5}	8	32	0.011077	6.51E-07	8	40	0.012222	9.64E-08			
	y_6	8	31	0.011479	7.14E-07	8	38	0.012377	9.35E-08			
	y_7	9	36	0.012983	6.29E-07	10	50	0.016196	9.76E-07			
	y_1	$\overline{\mathbf{8}}$	32	0.016198	2.95E-07	7	35	0.019634	6.62E-07			
	y_2	8	32	0.017598	1.84E-07	7	35	0.018425	4.10E-07			
	y_3	6	24	0.015246	6.41E-07	6	30	0.017956	1.36E-07			
10000	y_4	$\overline{7}$	28	0.014948	5.87E-07	8	40	0.021969	1.09E-07			
	y_{5}	8	32	0.018776	9.20E-07	8	40	0.020505	1.36E-07			
	y_6	9	35	0.019481	8.34E-08	8	40	0.024966	1.36E-07			
	y_7	9	36	0.025324	9.03E-07	11	55	0.033891	1.81E-07			
	y_1	$\overline{\mathbf{8}}$	32	0.074381	6.59E-07	$\overline{\mathbf{8}}$	40	0.078752	9.46E-08			
	y_2	8	32	0.057285	4.12E-07	$\overline{7}$	35	0.06381	9.17E-07			
	y_3	7	28	0.05958	1.18E-07	6	30	0.071067	3.05E-07			
50000	y_4	8	32	0.11846	1.08E-07	9	47	0.08954	2.58E-07			
	y_{5}	9	36	0.076652	1.70E-07	9	47	0.087936	2.69E-07			
	y_6	9	35	0.0716	1.87E-07	9	47	0.091278	2.69E-07			
	y_7	10	40	0.20552	1.66E-07	11	55	0.12051	4.06E-07			
	y_1	8	32	0.11275	9.31E-07	8	41	0.14657	8.58E-07			
	y_2	8	32	0.11906	5.83E-07	8	40	0.1458	8.28E-08			
	y_3	7	28	0.22704	1.67E-07	6	30	0.10972	4.31E-07			
100000	y_4	8	32	0.12258	1.53E-07	9	47	0.17732	3.64E-07			
	y_{5}	9	36	0.13371	2.40E-07	9	47	0.2031	3.81E-07			
	y_6	\overline{Q}	35	0.24326	2.64E-07	9	47	0.16742	3.81E-07			
	217	10	40	0.16384	2.36E-07	11	56	0.24561	469E-07			

TABLE 13. Numerical results for IDFPI and DFPI algorithms on problem 8.

profile proposed by Dolan and Morè in [50] in order to summarize Table [6-](#page-6-2)[15.](#page-8-0) The profile is defined as follows:

$$
\rho(\tau) := \frac{1}{|T_P|} \left| \left\{ t_p \in T_P : \log_2 \left(\frac{t_{p,q}}{\min\{t_{p,q} : q \in Q\}} \right) \leq \tau \right\} \right|,
$$

				IDFPI	DFPI				
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	5	20	0.002775	5.46E-07	14	84	0.025842	7.75E-07
	y_2	5	20	0.001703	3.25E-07	14	84	0.00484	4.70E-07
	y_3	5	20	0.00257	3.10E-07	14	84	0.006867	4.48E-07
1000	y_4	6	24	0.003117	5.36E-08	15	90	0.004959	7.58E-07
	y_5	6	24	0.002628	7.25E-08	16	96	0.006006	3.01E-07
	y_6	6	24	0.001932	1.04E-07	16	96	0.005295	4.32E-07
	y_7	5	20	0.001605	6.86E-07	15	90	0.007065	2.93E-07
	y_1	$\overline{6}$	24	0.032784	3.64E-08	15	90	0.023128	5.08E-07
	y_2	5	20	0.004843	7.28E-07	15	90	0.013479	3.08E-07
	y_3	5	20	0.00474	6.94E-07	15	90	0.019939	2.93E-07
5000	y_4	6	24	0.005001	1.20E-07	16	96	0.018103	4.97E-07
	y_5	6	24	0.028177	1.62E-07	16	96	0.059113	6.73E-07
	y_6	6	24	0.005417	2.33E-07	16	96	0.02335	9.66E-07
	y_7	6	24	0.004567	4.61E-08	15	90	0.018177	6.49E-07
	y_1	6	24	0.009786	5.15E-08	15	90	0.035418	7.18E-07
	y_2	6	24	0.013561	3.07E-08	15	90	0.033533	4.35E-07
	y_3	5	20	0.009086	9.82E-07	15	90	0.036702	4.15E-07
10000	y_4	6	24	0.009481	1.69E-07	16	96	0.039716	7.02E-07
	y_{5}	6	24	0.02489	2.29E-07	16	96	0.033306	9.51E-07
	y_6	6	24	0.012618	3.29E-07	17	103	0.034423	8.83E-07
	y_7	6	24	0.009643	6.49E-08	15	90	0.03156	9.16E-07
	y_1	6	24	0.040512	1.15E-07	16	96	0.22563	4.70E-07
	y_2	6	24	0.038022	6.87E-08	15	90	0.1461	9.73E-07
	y_3	6	24	0.04902	6.55E-08	15	90	0.11495	9.28E-07
50000	y_4	6	24	0.039638	3.79E-07	18	109	0.22775	2.97E-07
	y ₅	6	24	0.034356	5.13E-07	18	110	0.18641	8.89E-07
	y_6	6	24	0.039451	7.37E-07	20	126	0.17079	8.65E-07
	y_7	6	24	0.047944	1.44E-07	16	96	0.21042	5.99E-07
100000	y_1	6	24	0.070738	1.63E-07	16	96	0.30649	6.65E-07
	y_2	6	24	0.096217	9.71E-08	16	96	0.26029	4.03E-07
	y_3	6	24	0.1065	9.27E-08	16	96	0.41442	3.84E-07
	y_4	6	24	0.084986	5.36E-07	18	110	0.33314	9.28E-07
	y_{5}	6	24	0.071928	7.25E-07	20	126	0.32012	8.52E-07
	y_6	7	28	0.089085	3.11E-08	22	142	0.53318	8.29E-07
	y_7	6	24	0.096997	2.05E-07	16	96	0.2514	8.50E-07

TABLE 15. Numerical results for IDFPI and DFPI algorithms on problem 10.

where T_P is the test set, $|T_P|$ is the number of problems in the test set T_P , Q is the set of optimization solvers, and $t_{p,q}$ is the number of iterations (or the number of the function evaluations, or the CPU time (in seconds)) for $t_p \in T_p$ and

FIGURE 1. Performance profiles for the number of iterations.

FIGURE 2. Performance profiles for the number of function evaluations.

 $q \in Q$. The performance profile tells the percentage of win by each solver. Figures [1,](#page-9-0) [2](#page-9-1) and [3](#page-9-2) illustrate the performance of the two solvers (Iner. DFPI and DFPI) where the performance indices are the number of iterations, the number of function evaluations and the CPU time in seconds as reported in Tables 2-11. It can be observed from the figures that Iner. DFPI algorithm performs better with a higher percentage win of at least 90% in all the three metrics, i.e., number of iterations, the number of function evaluations and the CPU time. As a consequence, we can conclude that Iner. DFPI algorithm is an efficient solver. It is worth mentioning that the good numerical performance of the Iner. DFPI algorithm is as a result of the inertial term v_k , suitable control parameters such as ρ , σ and the sequence $\{\theta_k\}$.

A detailed report of our numerical experiments is reported in Table [6](#page-6-2)[-15](#page-8-0) in the appendix section. The abbreviations on the tables can be read as follows:

n: denotes the dimension of the problem

SP: denotes the starting points

NOI: denotes the number of iterations

FIGURE 3. Performance profiles for the CPU time (in seconds).

NFE: denotes the number of function evaluations CPUT: denotes the CPU time in seconds LNORM: denotes the final norm

V. CONCLUSION

In this paper, we suggested an inertial derivative-free method for solving nonlinear monotone operator equation. Based on the DFPI method, an inertial term was added to it in order to speed up its convergence. We used some mild assumptions to establish the global convergence of the proposed inertial method. To support the theoretical results, we perform some numerical experiments on some benchmark test problems with the proposed method and the DFPI. The results indicate that the proposed inertial method is faster than DFPI.

APPENDIX

See Tables 2–15.

ACKNOWLEDGMENT

The author Auwal Bala Abubakar would like to thank the Postdoctoral Fellowship from King Mongkut's University of Technology Thonburi (KMUTT), Thailand. He also acknowledge with thanks, the Department of Mathematics and Applied Mathematics at the Sefako Makgatho Health Sciences University.

REFERENCES

- [1] J. Chorowski and J. M. Zurada, ''Learning understandable neural networks with nonnegative weight constraints,'' *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 1, pp. 62–69, Jan. 2015.
- [2] T. Blumensath, ''Compressed sensing with nonlinear observations and related nonlinear optimization problems,'' *IEEE Trans. Inf. Theory*, vol. 59, no. 6, pp. 3466–3474, Jun. 2013.
- [3] A. B. Abubakar, P. Kumam, H. Mohammad, and A. M. Awwal, ''A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration,'' *J. Franklin Inst.*, vol. 357, no. 11, pp. 7266–7285, Jul. 2020.
- [4] E. J. Candes, X. Li, and M. Soltanolkotabi, "Phase retrieval via Wirtinger flow: Theory and algorithms,'' *IEEE Trans. Inf. Theory*, vol. 61, no. 4, pp. 1985–2007, Apr. 2015.
- [5] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, ''A nonconvex approach for phase retrieval: Reshaped Wirtinger flow and incremental algorithms,'' *J. Mach. Learn. Res.*, vol. 18, no. 1, pp. 5164–5198, 2017.
- [6] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, *Power Generation, Operation, and Control*. Hoboken, NJ, USA: Wiley, 2013.
- [7] S. P. Dirkse and M. C. Ferris, ''Mcplib: A collection of nonlinear mixed complementarity problems,'' *Optim. Methods Softw.*, vol. 5, no. 4, pp. 319–345, Jan. 1995.
- [8] K. Meintjes and A. P. Morgan, ''A methodology for solving chemical equilibrium systems,'' *Appl. Math. Comput.*, vol. 22, no. 4, pp. 333–361, Jun. 1987.
- [9] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, ''Algorithms and applications for approximate nonnegative matrix factorization,'' *Comput. Statist. Data Anal.*, vol. 52, no. 1, pp. 155–173, Sep. 2007.
- [10] D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization,'' in *Proc. Adv. Neural Inf. Process. Syst.*, 2001, pp. 556–562.
- [11] Z. Dai, X. Dong, J. Kang, and L. Hong, "Forecasting stock market returns: New technical indicators and two-step economic constraint method,'' *North Amer. J. Econ. Finance*, vol. 53, Jul. 2020, Art. no. 101216.
- [12] Z. Dai and J. Kang, "Some new efficient mean–variance portfolio selection models,'' *Int. J. Finance Econ.*, pp. 1–13, 2021, doi: [10.1002/ijfe.2400.](http://dx.doi.org/10.1002/ijfe.2400)
- [13] Z. Dai, H. Zhou, J. Kang, and F. Wen, "The skewness of oil price returns and equity premium predictability,'' *Energy Econ.*, vol. 94, Feb. 2021, Art. no. 105069.
- [14] A. H. Ibrahim, A. I. Garba, H. Usman, J. Abubakar, and A. B. Abubakar, ''Derivative-free RMIL conjugate gradient method for convex constrained equations,'' *Thai J. Math.*, vol. 18, no. 1, pp. 212–232, 2019.
- [15] A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim, and I. Ahmed, ''Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints,'' *Thai J. Math.*, vol. 18, no. 1, pp. 501–517, 2020.
- [16] A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat, and J. Abubakar, ''A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing,'' *Heliyon*, vol. 6, no. 3, p. e03466, 2020.
- [17] M. Sun and J. Liu, ''Three derivative-free projection methods for nonlinear equations with convex constraints,'' *J. Appl. Math. Comput.*, vol. 47, nos. 1–2, pp. 265–276, 2015.
- [18] A. H. Ibrahim, P. Kumam, A. B. Abubakar, J. Abubakar, and A. B. Muhammad, ''Least-square-based three-term conjugate gradient projection method for ℓ_1 -norm problems with application to compressed sensing,'' *Mathematics*, vol. 8, no. 4, p. 602, 2020.
- [19] A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf, and J. Rilwan, ''Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery,'' *J. Nonlinear Convex Anal.*, vol. 21, no. 9, pp. 1959–1972, 2020.
- [20] A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad, and C. Tammer, ''A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations,'' *Appl. Anal. Optim.*, vol. 4, pp. 1–24, Aug. 2020.
- [21] A. B. Abubakar, P. Kumam, A. H. Ibrahim, and J. Rilwan, ''Derivative-free HS-DY-type method for solving nonlinear equations and image restoration,'' *Heliyon*, vol. 6, no. 11, p. e05400, 2020.
- [22] A. H. Ibrahim, P. Kumam, and W. Kumam, ''A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration,'' *IEEE Access*, vol. 8, pp. 162714–162729, 2020.
- [23] A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf, S. E. Yimer, and K. O. Aremu, ''An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration,'' *AIMS Math.*, vol. 6, no. 1, p. 235, 2020.
- [24] A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, A. B. Muhammad, L. O. Jolaoso, and K. O. Aremu, ''A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration,'' *IEEE Access*, vol. 9, pp. 18262–18277, 2021.
- [25] A. H. Ibrahima, K. Muangchoob, N. S. Mohamedc, and A. B. Abubakard, ''Derivative-free SMR conjugate gradient method for con-straint nonlinear equations,'' *J. Math. Comput. Sci.*, vol. 24, no. 2, pp. 147–164, 2022.
- [26] A. B. Abubakar et al., "FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations,'' *Arab. J. Math.*, 2021, doi: [10.1007/s40065-021-00313-5.](http://dx.doi.org/10.1007/s40065-021-00313-5)
- [27] A. B. Abubakar et al., "PRP-like algorithm for monotone operator equations,'' *Jpn. J. Ind. Appl. Math.*, 2021, doi: [10.1007/s13160-021-00462-2.](http://dx.doi.org/10.1007/s13160-021-00462-2)
- [28] A. H. Ibrahim, K. Muangchoo, A. B. Abubakar, A. D. Adedokun, and H. Mohammed, ''Spectral conjugate gradient like method for signal reconstruction,'' *Thai J. Math.*, vol. 18, no. 4, pp. 2013–2022, 2020.
- [29] A. H. Ibrahim and P. Kumam, "Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints,'' *Ain Shams Eng. J.*, vol. 12, no. 2, pp. 2205–2210, Jun. 2021.
- [30] H. Mohammad, ''Barzilai-Borwein-like method for solving large-scale non-linear systems of equations,'' *J. Nigerian Math. Soc.*, vol. 36, no. 1, pp. 71–83, 2017.
- [31] A. B. Abubakar and P. Kumam, ''A descent Dai-Liao conjugate gradient method for nonlinear equations,'' *Numer. Algorithms*, vol. 81, no. 1, pp. 197–210, May 2019.
- [32] A. B. Abubakar and P. Kumam, "An improved three-term derivative-free method for solving nonlinear equations,'' *Comput. Appl. Math.*, vol. 37, no. 5, pp. 6760–6773, Nov. 2018.
- [33] A. B. Abubakar, P. Kumam, and H. Mohammad, ''A note on the spectral gradient projection method for nonlinear monotone equations with applications,'' *Comput. Appl. Math.*, vol. 39, no. 2, pp. 1–35, May 2020.
- [34] H. Mohammad and A. B. Abubakar, ''A descent derivative-free algorithm for nonlinear monotone equations with convex constraints,'' *RAIRO-Oper. Res.*, vol. 54, no. 2, pp. 489–505, Mar. 2020.
- [35] A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, S. E. Fadugba, K. O. Aremu, and L. O. Jolaoso, ''A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations,'' *J. Math.*, vol. 2021, pp. 1–9, Apr. 2021.
- [36] G. N. Ogwo, C. Izuchukwu, and O. T. Mewomo, "Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity,'' *Numer. Algorithms*, 2021, doi: [10.1007/s11075-](http://dx.doi.org/10.1007/s11075-021-01081-1) [021-01081-1.](http://dx.doi.org/10.1007/s11075-021-01081-1)
- [37] N. Wairojjana, H. U. Rehman, N. Pakkaranang, and C. Khanpanuk, ''An accelerated Popov's subgradient extragradient method for strongly pseudomonotone equilibrium problems in a real Hilbert space with applications,'' *Commun. Math. Appl.*, vol. 11, no. 4, pp. 513–526, 2020.
- [38] N. Wairojjana, H. U. Rehman, M. De la Sen, and N. Pakkaranang, "A general inertial projection-type algorithm for solving equilibrium problem in Hilbert spaces with applications in fixed-point problems,'' *Axioms*, vol. 9, no. 3, p. 101, Aug. 2020.
- [39] P. Cholamjiak, D. V. Thong, and Y. J. Cho, "A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems,'' *Acta Applicandae Mathematicae*, vol. 169, pp. 1–29, Nov. 2019.
- [40] D. V. Thong, N. T. Vinh, and Y. J. Cho, "Accelerated subgradient extragradient methods for variational inequality problems,'' *J. Sci. Comput.*, vol. 80, no. 3, pp. 1438–1462, Sep. 2019.
- [41] D. V. Thong, X.-H. Li, Q.-L. Dong, Y. J. Cho, and T. M. Rassias, "An inertial Popov's method for solving pseudomonotone variational inequalities,'' *Optim. Lett.*, vol. 15, pp. 1–21, May 2020.
- [42] W. Cheng, ''A two-term PRP-based descent method,'' *Numer. Funct. Anal. Optim.*, vol. 28, nos. 11–12, pp. 1217–1230, Dec. 2007.
- [43] X. Y. Wang, S. J. Li, and X. P. Kou, "A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints,'' *Calcolo*, vol. 53, no. 2, pp. 133–145, Jun. 2016.
- [44] W. Takahashi, *Introduction to Nonlinear and Convex Analysis*. Tokyo, Japan: Yokohama Publishers, 2009.
- [45] A. Auslender, M. Teboulle, and S. Ben-Tiba, "A logarithmic-quadratic proximal method for variational inequalities,'' in *Computational Optimization*. Boston, MA, USA: Springer, 1999, pp. 31–40.
- [46] F. Facchinei and J.-S. Pang, *Finite-Dimensional Variational Inequalities and Complementarity Problems*. New York, NY, USA: Springer-Verlag, 2007.
- [47] W. La Cruz, J. M. Martínez, and M. Raydan, "Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments,'' *Math. Comput.*, vol. 75, pp. 1429–1448, Apr. 2006. [Online]. Available: https://www.ime.unicamp.br/martinez/ lmrreport.pdf, doi: [10.1090/S0025-5718-06-01840-0.](http://dx.doi.org/10.1090/S0025-5718-06-01840-0)
- [48] Q. Li and D.-H. Li, "A class of derivative-free methods for large-scale nonlinear monotone equations,'' *IMA J. Numer. Anal.*, vol. 31, no. 4, pp. 1625–1635, Oct. 2011.
- [49] Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, and Z. Li, "Spectral gradient projection method for monotone nonlinear equations with convex constraints,'' *Appl. Numer. Math.*, vol. 59, no. 10, pp. 2416–2423, Oct. 2009.
- [50] E. D. Dolan and J. J. Moré, ''Benchmarking optimization software with performance profiles,'' *Math. Program.*, vol. 91, no. 2, pp. 201–213, Jan. 2002.

 $0.0.0$