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ABSTRACT In this paper, we propose an inertial derivative-free projection method for solving convex
constrained nonlinear monotone operator equations (CNME). The method incorporates the inertial step with
an existing method called derivative-free projection (DFPI) method for solving CNME. The reason is to
improve the convergence speed of DFPI as it has been shown and reported in several works that indeed the
inertial step can speed up convergence. The global convergence of the proposed method is proved under
some mild assumptions. Finally, numerical results reported clearly show that the proposed method is more
efficient than the DFPI.

INDEX TERMS Monotone nonlinear operator, inertial algorithm, conjugate gradient, projection method.

I. INTRODUCTION
Consider the problem of finding y ∈ E such that

T (y) = 0, (1)

where T : Rn
→ Rn is a monotone and Lipschitz con-

tinuous operator and E is a nonempty, closed and convex
subset of Rn. This problem has recently received remarkable
attention as it arises in a number of applicable problems.
For example, in constrained neural networks [1], nonlinear
compressed sensing [2], [3], phase retrieval [4], [5], power
flow equations [6], economic and chemical equilibrium prob-
lems [7], [8], non-negative matrix factorisation [9], [10], fore-
casting of financial market, portfolio selection models, price
returns [11]–[13] and many more. As such, recently several
derivative-free methods such as the conjugate gradient (CG)
method have been proposed for solving problem (1). Given
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an initial point y0, the conjugate gradient method computes
the next iterate as:

yk+1 = yk + αkdk , k = 0, 1, 2, . . . ,

where αk > 0 is a step size and dk is called the CG direction
of search defined as

dk :=

{
−T (yk ) if k = 0,
−T (yk )+ βkdk−1 if k > 0.

The parameter βk is called the CG parameter. For more on
derivative-free methods for solving (1), interested readers can
refer to [14]–[35] and references therein.

Recently, several researchers are interested in how to
improve the speed of convergence of existing iterative algo-
rithms. One of the approach in this regard is the inertial
extrapolation method where a new step called the inertial
step is added to the existing step(s) of an iterative method.
It has been shown that the inertial step enhance the speed
of the existing methods such as methods for solving fixed
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point problems, variational inequality problems, equilibrium
problems, split feasibility problems, and so on. By choosing
two starting points y−1 and y0, the inertial term is defined as

vk = yk + θk (yk − yk−1),

where {θk}∞k=1 is a sequence satisfying certain condition.
Inertial extrapolationmethod has been employed successfully
in improving the convergence of the sequence generated by
various algorithms. However, to the best of our knowledge,
there is no theoretical proof to justify that, indeed, all one
can find is numerical justification using some examples.
However, the choice of the parameter θk has an effect on the
speed of convergence. For more on iterative methods with
inertial extrapolation, the reader is referred to [36]–[41] and
references therein.

Inspired by the inertial methods [36]–[41] and the
derivative-free projection method proposed by Sun and
Liu [17] which is an extension of the work of Cheng [42],
we propose an inertial derivative-free projection method for
finding solutions to problem (1). The method is based on the
work of Sun and Liu [17], where the inertial term is incorpo-
rated in order speed up its convergence. The remaining part
of this paper is organized as follows: the next section gives
some preliminaries and the proposed algorithm, convergence
results is provided in the third section, Numerical results in
the fourth section and lastly the conclusion.

Notation. Unless otherwise stated, the symbol ‖ · ‖ stands
for Euclidean norm on Rn.

II. PROPOSED ALGORITHM
Definition 2.1: Let Rn be an Euclidean space and T :

Rn
→ Rn be a mapping. Then T is

(i) Monotone, if

(T (y)− T (x))T (y− x) ≥ 0, ∀y, x ∈ Rn.

(ii) L-Lipschitz continuous, if there exists L > 0 such that

‖T (y)− T (x)‖ ≤ L‖y− x‖, ∀y, x ∈ Rn.

Definition 2.2: Let E ⊂ Rn be closed and convex, the pro-
jection of y ∈ Rn onto E denoted by PE(y), is defined as

PE(y) = argmin{‖x − y‖ |x ∈ E}.

Lemma 2.3 ([43]): Let E ⊂ Rn be nonempty closed and
convex. Then the following inequality hold:

‖PE(y)− PE(x)‖ ≤ ‖y− x‖, ∀y, x ∈ Rn

.
Lemma 2.4 ([44]): Let y, x ∈ Rn. Then the following

equality hold:

‖y+ x‖2 = ‖y‖2 + 2 xT (y+ x).

Lemma 2.5 ([45]): Let {yk} and {xk} be sequences of non-
negative real number satisfying the following relation

yk+1 ≤ yk + xk ,

where
∞∑
k=1

xk <∞, then lim
k→∞

yk exists.

Lemma 2.6 ([46]): A point y∗ ∈ SOL(T,E) if and only if
y∗ = PE(y∗ − µu) for some u = T (y∗) and µ > 0.
We make use of the following assumptions.
Assumption 1:

(a) The feasible set E is a nonempty closed and convex
subset of the Euclidean space Rn.

(b) T : Rn
→ Rn is monotone and L-Lipschitz continuous.

(c) The solution set SOL(T,E) of (1) is nonempty.
Assumption 2: Let {θk} be a sequence of nonnegative real

numbers satisfying the conditions:

θk ∈ (0, 1),
∞∑
k=1

θk‖yk − yk−1‖ <∞.

Based on the Sun and Liu [17] derivative-free projection
method for monotone nonlinear equation with convex con-
straints called DFPI, we present an inertial derivative-free
projection method for finding solutions to problem (1).
Algorithm 2.7 (Inertial Derivative-FreeMethod (IDFPI):)
(S.0) Choose a sequence {θk}∞k=1 satisfying Assumption 2

and select the parameters: Tol > 0, ρ ∈ (0, 1), ζ >

0, σ > 0. Select arbitrary points y−1, y0 ∈ E. Set k := 0.
(S.1) Set

vk = yk + θk (yk − yk−1)

(S.2) Compute T (vk ). If ‖T (vk )‖ ≤ Tol, stop. Otherwise,
generate the search direction dk by

dk :=


−T (vk ) if k = 0,

−

(
1+ βk

T (vk )T dk−1
‖T (vk )‖2

)
T (vk )+ βkdk−1 if k > 0,

(2)

where,

βk := 0.01
‖T (vk )‖
‖dk−1‖

. (3)

(S.3) Compute a trial point xk = vk + αkdk .
(S.4) Determine the step-size αk = ζρi where i is the least

nonnegative integer satisfying

−T (vk + αkdk )T dk ≥ σαk‖dk‖2. (4)

(S.5) If xk ∈ E and ‖T (xk )‖ ≤ Tol, stop. Otherwise,

yk+1 = PE [vk − γkT (xk )] , (5)

where

γk :=
T (xk )T (vk − xk )
‖T (xk )‖2

.

(S.6) Set k = k + 1, and go back to (S.1).
Remark 2.8: Let dk be generated by (2)-(3) in Algo-

rithm 2.7. Then

T (vk )T dk = −‖T (vk )‖2. (6)
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III. CONVERGENCE RESULT
Lemma 3.1: The line search condition (4) is well-defined.

That is, for all k ≥ 0, there exists a non negative integer i
satisfying (4).

Proof: Suppose there is k0 ≥ 0 for which (4) is not true
for any non-negative integer i, i.e.,

−T (vk0 + ζρ
idk0 )

T dk0 < σζρi‖dk0‖
2.

Using Assumption 1 (b) and allowing i → ∞, we have
that

−T (vk0 )
T dk0 ≤ 0. (7)

On the other hand, from (6),

−T (vk0 )
T dk0 = ‖T (vk0 )‖

2 > 0,

which contradicts (7). Hence, (4) is well defined.

Lemma 3.2: Let {yk} and {xk} be generated via Algo-
rithm 2.7. If y∗ ∈ SOL(T,E), then under Assumption 1 and 2,
it holds that

‖yk+1 − y∗‖2 ≤ ‖vk − y∗‖ − σ 2
‖vk − xk‖4.

Moreover, the sequence {yk} and {xk} are bounded and

lim
k→∞
‖vk − xk‖ = 0. (8)

Proof: By the monotonicity of the mapping T , we have

T (xk )T (vk − y∗) = T (xk )T (vk − xk )+ T (xk )T (xk − y∗)

≥ T (xk )T (vk − xk )+ T (y∗)T (xk − y∗)

= T (xk )T (vk − xk ) (9)

= T (xk )T (−αkdk )

= σα2k‖dk‖
2

≥ σ‖vk − xk‖2. (10)

By Lemma 2.3 (iii), (5), (9) and (10), it holds that for any
y∗ ∈ SOL(T,E),

‖yk+1 − y∗‖2 = ‖PE(vk − γkT (xk ))− y∗‖2

≤ ‖vk − γkT (xk )− y∗‖2

= ‖vk − y∗‖2 − 2γkT (xk )T (vk − y∗)

+ γ 2
k ‖T (xk )‖

2

≤ ‖vk − y∗‖2 − 2γkT (xk )T (vk − xk )

+ γ 2
k ‖T (xk )‖

2

≤ ‖vk − y∗‖2 −
T (xk )T (vk − xk )2

‖T (xk )‖2

≤ ‖vk − y∗‖2 −
σ 2
‖vk − xk‖4

‖T (xk )‖2
. (11)

From equation (11), we can deduce that

‖yk+1 − y∗‖ ≤ ‖vk − y∗‖

= ‖yk + θk (yk − yk−1)− y∗‖

≤ ‖yk − y∗‖ + θk‖yk − yk−1‖. (12)

Because
∑
∞

k=1 θk‖yk − yk−1‖ < ∞, then by Lemma 2.5,
the limit of {yk − y∗} exists and hence it is bounded. This
implies that for all k , there existM0 > 0 such that ‖yk−y∗‖ ≤
M0. Therefore, for all k we can deduce that

‖yk‖ ≤ M1, (13)

and

‖yk − yk−1‖ ≤ M ,

whereM1 = M0 + ‖y∗‖ and M = 2M1.
Using the above relations, we can have

‖vk‖ ≤ M2, ‖vk − y∗‖ ≤ M2, whereM2 = 2M .

Since H is Lipschitz continuous, we have

‖T (vk )‖ = ‖T (vk )− T (y∗)‖ ≤ L‖vk − y∗‖ ≤ LM2. (14)

Also, using (14) and the monotonicity of T ,

T (xk )T (vk − xk ) = (T (xk )− T (vk ))T (vk − xk )

+T (vk )T (vk − xk )

≤ T (vk )T (vk − xk )

≤ ‖T (vk )‖‖vk − xk‖

≤ LM2‖vk − xk‖.

This together with (9) and (10) implies that

‖vk − xk‖ ≤
LM2

σ
.

Then, we have

‖xk‖ ≤
LM2

σ
+ ‖vk‖.

Hence the sequence {xk} is bounded since {vk} is bounded.
Moreover as T is continuous and {xk} is bounded, then
{T (xk )} is bounded. That is, there exists N > 0 such that
‖T (xk )‖ ≤ N .

By the definition of vk and (13) we have

‖vk − y∗‖2 = ‖yk + θk (yk − yk−1)− y∗‖2

= ‖yk − y∗‖2

+ 2θk (yk − yk−1)T (yk + θk (yk − yk−1)− y∗)

≤ ‖yk − y∗‖2 + 2θk‖yk − yk−1‖(‖yk − y∗‖

+ θk‖yk − yk−1‖)

≤ ‖yk − y∗‖2 + 2Mθk‖yk − yk−1‖

+ 2Mθk‖yk − yk−1‖

= ‖yk − y∗‖2 + 4Mθk‖yk − yk−1‖. (15)

Combining (15) with (11), we have

‖yk+1 − y∗‖2 ≤ ‖yk − y∗‖2 + 4Mθk‖yk − yk−1‖

−
σ 2
‖vk − xk‖4

‖T (xk )‖2
. (16)
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Thus, we have

σ 2
‖vk − xk‖4

‖T (xk )‖2
≤ ‖yk − y∗‖2 + 4Mθk‖yk − yk−1‖

−‖yk+1 − y∗‖2. (17)

Adding (17) for k = 0, 1, 2, . . . and the fact that {T (xk )} is
bounded, we have

σ 2

N 2

∞∑
k=0

‖vk − xk‖4 ≤
∞∑
k=0

(‖yk − y∗‖2 + 4Mθk‖yk − yk−1‖

−‖yk+1 − y∗‖2). (18)

Now, let Sk =
∑k

n=0
(
‖yn − y∗‖2 − ‖yn+1 − y∗‖2

)
, then

Sk =
∑k

n=0
(
‖y0 − y∗‖2 − ‖yk+1 − y∗‖2

)
. As limit of {‖yk−

y∗‖} exists from (12) with limit say L1, then(
lim
k→∞

Sk = ‖y0 − y∗‖2 − L1

)
∈ R.

So,
∞∑
k=0

(
‖yk − y∗‖2 − ‖yk+1 − y∗‖2

)
<∞

and
∞∑
k=0

θk‖yk − yk−1‖ <∞.

Using (18) together with the above inequalities, we con-
clude that

lim
k→∞
‖vk − xk‖ = 0.

Remark 3.3: By the definition of {xk} and (8), we have

lim
k→∞

αk‖dk‖ = 0.

Lemma 3.4: Suppose Assumptions 1-2 hold and the
sequence {yk} and {vk} are generated by Algorithm 2.7. Then

lim
k→∞
‖vk − yk+1‖ = 0. (19)

Proof:
Using definition of vk ,

‖yk − vk‖ = ‖yk − (yk + θk (yk − yk−1))‖

= θk‖yk − yk−1‖.

This implies that

lim
k→∞
‖yk − vk‖ = 0. (20)

Also,

‖yk − xk‖ = ‖yk − vk + vk − xk‖

≤ ‖yk − vk‖ + ‖vk − xk‖.

Using (8) and (20), we have

lim
k→∞
‖yk − xk‖ = 0. (21)

TABLE 1. Starting points.

By Lemma 2.3, we have

‖yk+1 − yk‖ = ‖PE[vk − γkT (xk )]− yk‖

≤ ‖vk − γkT (xk )− yk‖

≤ ‖vk − yk‖ + ‖γkE(zk )‖

= ‖vk − yk‖ +

∥∥∥∥T (xk )T (vk − xk )
‖T (xk )‖2

T (xk )

∥∥∥∥
≤ ‖vk − yk‖ + ‖vk − xk‖. (22)

Thus, from (8) and (20), we have

lim
k→∞
‖yk+1 − yk‖ = 0. (23)

Therefore,

‖yk+1 − vk‖ = ‖yk+1 − (yk + θk (yk − yk−1))‖

≤ ‖yk+1 − yk‖ + θk‖yk − yk−1‖.

Using (23) and Assumption 2, the desired equation is
obtained.

Theorem 3.5: Let {yk} be a sequence generated via Algo-
rithm 2.7. Using Assumption 1 and 2, then {yk} converge to
an element of SOL(T,E).

Proof: We know that the sequence {yk} is bounded
from (13). This implies that there exists a subsequence {ykj}
of {yk} such that {ykj} converge to some point ȳ. Also, we have
that

‖vkj − ykj‖ = θkj‖ykj − ykj−1‖ → 0, as j→∞. (24)

Claim: ȳ ∈ SOL(T,E). Suppose on the contrary that ȳ /∈
SOL(T,E). Then from (19) and (24), we have that

lim
j→∞

ykj+1= lim
j→∞

PE
(
vkj − γkjT (xkj )

)
= lim
j→∞

ykj = ȳ. (25)

Without loss of generality, if γkj → γ ∗ and T (xkj ) →
T (x∗). Then since T is continuous, we have T (x∗) = T (ȳ).
Therefore, from (25)

PE
(
ȳ− γ ∗T (x∗)

)
= ȳ.

It then follows from Lemma 2.6 that y∗ ∈ SOL(T,E),
which is a contradiction. Hence, our claim holds. Substituting
y∗ with ȳ in (12), it is easy to see that lim

k→∞
‖yk − ȳ‖ exists
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TABLE 2. Numerical experiments with different coefficients of βk for problem 1-5 with n = 1000.

by Lemma 2.5. Since ȳ is an accumulation point of {yk},
we obtain that {yk} converges to ȳ.

IV. NUMERICAL EXAMPLES
By comparing the proposed inertial algorithm (Iner. DFPI)
to the DFPI algorithm in [17], we show the numerical effi-
ciency and computational advantage of the proposed inertial
algorithm (Iner. DFPI) in this section. The MATLAB imple-
mentation of the algorithms was executed on a Windows
10 computer with Intel(R) Core(TM) i7 processor with 8.0GB
of RAM and CPU of 2.30GHz using MATLAB R2019b soft-
ware. The numerical experiment made use of the following
test problems to measure the efficiency and robustness of the
proposed inertial algorithm (Iner. DFPI).
Problem 1: Modified exponential function [47]

t1(y) = ey1 − 1

ti(y) = eyi + yi − 1, i = 2, . . . , n,

E = Rn
+.

Problem 2: Logarithmic function [47]

ti(yi) = log(yi + 1)−
yi
n
, i = 1, 2, . . . , n,

E = Rn
+.

Problem 3: Nonsmooth function [48]

ti(y) = 2yi − sin(|yi|), for i = 1, 2, . . . , n,

E =
{
y ∈ Rn

+ : y ≥ 0,
∑n

i=1 yi ≤ n
}
.

Problem 4: Strictly convex function I [47]

ti(y) = eyi − 1, i = 1, 2, . . . , n,

E = Rn
+.

Problem 5: Strictly convex function II [47]

ti(y) =
(
i
n

)
eyi − 1, i = 1, 2, . . . , n,

E = Rn
+.
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TABLE 3. Numerical experiments with different coefficients of βk for problem 6-10 with n = 1000.

Problem 6: Tridiagonal exponential function [47]

t1(y) = y1 − ecos(l(y1+y2))

ti(y) = yi − ecos(l(yi−1+yi+yi+1)), i = 2, . . . , n− 1,

tn(y) = yn − ecos(l(yn−1+yn)),

l =
1

n+ 1
and E = Rn

+.

Problem 7 : Nonsmooth function II [49]

ti(y) = yi − sin(|yi − 1|), for i = 1, 2, . . . , n,

E =

{
y ∈ Rn

+ : y ≥ −1,
n∑
i=1

yi ≤ n

}
.

Problem 8: Penalty function I [16]

ξi =

n∑
i=1

y2i , c = 10−5,

ti(y) = 2c(yi − 1)+ 4(ξi − 0.25)yi, i = 1, 2, . . . , n,

E = Rn
+.

Problem 9: Pursuit-Evasion problem [16]

ti(y) = 80.5yi − 1, i = 1, 2, . . . , n,

E = Rn
+.

Problem 10: Pursuit-Evasion problem [16]

ti(y) = ey
2
i + 3 sin yi cos yi − 1, i = 1, 2, . . . , n,

E = Rn
+.

Note that, the mapping T is taken as

T (y) = (t1(y), t2(y), . . . , tn(y))T ,

and recall that, the inertial-type algorithm is an iterative
procedure in which subsequent iterates are obtained using
the preceding two iterates. As such, for the proposed inertial
algorithm (Iner. DFPI), the two preceding iterates used in
obtaining the initial iterates are as follows:

Note. For DFPI algorithm [17], the starting point is y0.
The above listed problems are solved with dimensions n =

1000, 5000, 10, 000, 50, 000 and 100, 000. The parameters
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TABLE 4. Numerical experiments with different sequences {θk } for
problem 1-5 with n = 1000.

TABLE 5. Numerical experiments with different sequences {θk } for
problem 6-10 with n = 1000.

θk =
1

(2k+5)2
ζ = 1, ρ = 0.7, σ = 0.01 were chosen for

the Iner. DFPI algorithm to obtain the best possible results.

TABLE 6. Numerical results for IDFPI and DFPI algorithms on problem 1.

TABLE 7. Numerical results for IDFPI and DFPI algorithms on problem 2.

For the compared method (DFPI), its parameters were set
as reported in [17]. All iterative procedure terminate when
‖T (vk )‖ < 10−6 is fulfilled. If this condition is not satisfied
after 1000 iterations, failure is declared.
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TABLE 8. Numerical results for IDFPI and DFPI algorithms on problem 3.

TABLE 9. Numerical results for IDFPI and DFPI algorithms on problem 4.

To illustrate in detail the efficiency and robustness of Iner.
DFPI, we start by performing some numerical experiments
with different coefficients of the parameter βk and the results
are reported in Table 2 and 3. It can be observed from the

TABLE 10. Numerical results for IDFPI and DFPI algorithms on problem 5.

TABLE 11. Numerical results for IDFPI and DFPI algorithms on problem 6.

tables that the coefficient 0.01 is a good choice. In addition,
we performed another numerical experiments with different
sequences {θk} and the results are reported in Table 4 and 5.
It can be observed from the tables that the sequence θk =

1
(2k+5)2

is a good choice. We further employ the performance
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TABLE 12. Numerical results for IDFPI and DFPI algorithms on problem 7.

TABLE 13. Numerical results for IDFPI and DFPI algorithms on problem 8.

profile proposed by Dolan and Morè in [50] in order to
summarize Table 6-15. The profile is defined as follows:

ρ(τ ) :=
1
|TP|

∣∣∣∣{tp ∈ TP : log2 ( tp,q
min{tp,q : q ∈ Q}

)
≤ τ

}∣∣∣∣ ,

TABLE 14. Numerical results for IDFPI and DFPI algorithms on problem 9.

TABLE 15. Numerical results for IDFPI and DFPI algorithms on
problem 10.

where TP is the test set, |TP| is the number of problems in
the test set TP, Q is the set of optimization solvers, and tp,q
is the number of iterations (or the number of the function
evaluations, or the CPU time (in seconds)) for tp ∈ TP and
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FIGURE 1. Performance profiles for the number of iterations.

FIGURE 2. Performance profiles for the number of function evaluations.

q ∈ Q. The performance profile tells the percentage of win
by each solver. Figures 1, 2 and 3 illustrate the performance
of the two solvers (Iner. DFPI and DFPI) where the perfor-
mance indices are the number of iterations, the number of
function evaluations and the CPU time in seconds as reported
in Tables 2-11. It can be observed from the figures that Iner.
DFPI algorithm performs better with a higher percentage
win of at least 90% in all the three metrics, i.e., number of
iterations, the number of function evaluations and the CPU
time. As a consequence, we can conclude that Iner. DFPI
algorithm is an efficient solver. It is worth mentioning that
the good numerical performance of the Iner. DFPI algorithm
is as a result of the inertial term vk , suitable control parameters
such as ρ, σ and the sequence {θk}.
A detailed report of our numerical experiments is reported

in Table 6-15 in the appendix section. The abbreviations on
the tables can be read as follows:

n: denotes the dimension of the problem
SP: denotes the starting points
NOI: denotes the number of iterations

FIGURE 3. Performance profiles for the CPU time (in seconds).

NFE: denotes the number of function evaluations
CPUT: denotes the CPU time in seconds
LNORM: denotes the final norm

V. CONCLUSION
In this paper, we suggested an inertial derivative-free method
for solving nonlinear monotone operator equation. Based on
the DFPI method, an inertial term was added to it in order to
speed up its convergence. We used some mild assumptions
to establish the global convergence of the proposed inertial
method. To support the theoretical results, we perform some
numerical experiments on some benchmark test problems
with the proposed method and the DFPI. The results indicate
that the proposed inertial method is faster than DFPI.

APPENDIX
See Tables 2–15.
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