

Received June 3, 2021, accepted June 18, 2021, date of publication June 23, 2021, date of current version July 5, 2021. Digital Object Identifier 10.1109/ACCESS.2021.3091906

Inertial Derivative-Free Projection Method for **Nonlinear Monotone Operator Equations** With Convex Constraints

AUWAL BALA ABUBAKAR^{[0],2,3}, POOM KUMAM^{1,4,5}, (Member, IEEE), AND ABDULKARIM HASSAN IBRAHIM¹⁰

¹Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand

²Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano, Kano 700241, Nigeria

³Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0204, South Africa

⁴Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand

⁵Departments of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

Corresponding author: Poom Kumam (poom.kumam@mail.kmutt.ac.th)

This work was supported in part by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi, and in part by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under Project 64A306000005.

This work did not involve human subjects or animals in its research.

ABSTRACT In this paper, we propose an inertial derivative-free projection method for solving convex constrained nonlinear monotone operator equations (CNME). The method incorporates the inertial step with an existing method called derivative-free projection (DFPI) method for solving CNME. The reason is to improve the convergence speed of DFPI as it has been shown and reported in several works that indeed the inertial step can speed up convergence. The global convergence of the proposed method is proved under some mild assumptions. Finally, numerical results reported clearly show that the proposed method is more efficient than the DFPI.

INDEX TERMS Monotone nonlinear operator, inertial algorithm, conjugate gradient, projection method.

I. INTRODUCTION

Consider the problem of finding $y \in \mathbf{E}$ such that

$$T(\mathbf{y}) = 0,\tag{1}$$

where $T : \mathbf{R}^n \to \mathbf{R}^n$ is a monotone and Lipschitz continuous operator and E is a nonempty, closed and convex subset of \mathbf{R}^n . This problem has recently received remarkable attention as it arises in a number of applicable problems. For example, in constrained neural networks [1], nonlinear compressed sensing [2], [3], phase retrieval [4], [5], power flow equations [6], economic and chemical equilibrium problems [7], [8], non-negative matrix factorisation [9], [10], forecasting of financial market, portfolio selection models, price returns [11]–[13] and many more. As such, recently several derivative-free methods such as the conjugate gradient (CG) method have been proposed for solving problem (1). Given

The associate editor coordinating the review of this manuscript and approving it for publication was Gokhan Apaydin¹⁰.

an initial point y_0 , the conjugate gradient method computes the next iterate as:

$$y_{k+1} = y_k + \alpha_k d_k, \quad k = 0, 1, 2, \dots,$$

where $\alpha_k > 0$ is a step size and d_k is called the CG direction of search defined as

$$d_k := \begin{cases} -T(y_k) & \text{if } k = 0, \\ -T(y_k) + \beta_k d_{k-1} & \text{if } k > 0. \end{cases}$$

The parameter β_k is called the CG parameter. For more on derivative-free methods for solving (1), interested readers can refer to [14]–[35] and references therein.

Recently, several researchers are interested in how to improve the speed of convergence of existing iterative algorithms. One of the approach in this regard is the inertial extrapolation method where a new step called the inertial step is added to the existing step(s) of an iterative method. It has been shown that the inertial step enhance the speed of the existing methods such as methods for solving fixed

point problems, variational inequality problems, equilibrium problems, split feasibility problems, and so on. By choosing two starting points y_{-1} and y_0 , the inertial term is defined as

$$v_k = y_k + \theta_k (y_k - y_{k-1}),$$

where $\{\theta_k\}_{k=1}^{\infty}$ is a sequence satisfying certain condition. Inertial extrapolation method has been employed successfully in improving the convergence of the sequence generated by various algorithms. However, to the best of our knowledge, there is no theoretical proof to justify that, indeed, all one can find is numerical justification using some examples. However, the choice of the parameter θ_k has an effect on the speed of convergence. For more on iterative methods with inertial extrapolation, the reader is referred to [36]–[41] and references therein.

Inspired by the inertial methods [36]–[41] and the derivative-free projection method proposed by Sun and Liu [17] which is an extension of the work of Cheng [42], we propose an inertial derivative-free projection method for finding solutions to problem (1). The method is based on the work of Sun and Liu [17], where the inertial term is incorporated in order speed up its convergence. The remaining part of this paper is organized as follows: the next section gives some preliminaries and the proposed algorithm, convergence results is provided in the third section, Numerical results in the fourth section and lastly the conclusion.

Notation. Unless otherwise stated, the symbol $\|\cdot\|$ stands for Euclidean norm on \mathbb{R}^n .

II. PROPOSED ALGORITHM

Definition 2.1: Let \mathbf{R}^n be an Euclidean space and T: $\mathbf{R}^n \to \mathbf{R}^n$ be a mapping. Then T is

(i) Monotone, if

$$(T(y) - T(x))^T (y - x) \ge 0, \quad \forall y, x \in \mathbf{R}^n$$

(ii) L-Lipschitz continuous, if there exists L > 0 such that

$$||T(y) - T(x)|| \le L ||y - x||, \quad \forall y, x \in \mathbf{R}^n.$$

Definition 2.2: Let $\mathbf{E} \subset \mathbf{R}^n$ be closed and convex, the projection of $y \in \mathbf{R}^n$ onto \mathbf{E} denoted by $P_{\mathbf{E}}(y)$, is defined as

$$P_{\mathbf{E}}(y) = \arg\min\{||x - y|| | x \in \mathbf{E}\}.$$

Lemma 2.3 ([43]): Let $\mathbf{E} \subset \mathbf{R}^n$ be nonempty closed and convex. Then the following inequality hold:

$$\|P_{\mathbf{E}}(\mathbf{y}) - P_{\mathbf{E}}(\mathbf{x})\| \le \|\mathbf{y} - \mathbf{x}\|, \ \forall \mathbf{y}, \mathbf{x} \in \mathbf{R}^n$$

Lemma 2.4 ([44]): Let $y, x \in \mathbf{R}^n$. Then the following equality hold:

$$||y + x||^2 = ||y||^2 + 2x^T(y + x).$$

Lemma 2.5 ([45]): Let $\{y_k\}$ and $\{x_k\}$ be sequences of nonnegative real number satisfying the following relation

$$y_{k+1} \le y_k + x_k$$

where $\sum_{k=1}^{\infty} x_k < \infty$, then $\lim_{k \to \infty} y_k$ exists. Lemma 2.6 ([46]): A point $y^* \in \mathbf{SOL}(\mathbf{T}, \mathbf{E})$ if and only if

 $y^* = P_{\mathbf{E}}(y^* - \mu u)$ for some $u = T(y^*)$ and $\mu > 0$. We make use of the following assumptions.

Assumption 1:

- (a) The feasible set \mathbf{E} is a nonempty closed and convex subset of the Euclidean space \mathbf{R}^n .
- (b) $T : \mathbf{R}^n \to \mathbf{R}^n$ is monotone and L-Lipschitz continuous.
- (c) The solution set SOL(T, E) of (1) is nonempty.

Assumption 2: Let $\{\theta_k\}$ be a sequence of nonnegative real numbers satisfying the conditions:

$$\theta_k \in (0, 1), \sum_{k=1}^{\infty} \theta_k ||y_k - y_{k-1}|| < \infty.$$

Based on the Sun and Liu [17] derivative-free projection method for monotone nonlinear equation with convex constraints called DFPI, we present an inertial derivative-free projection method for finding solutions to problem (1).

Algorithm 2.7 (Inertial Derivative-Free Method (IDFPI):) (S.0) Choose a sequence $\{\theta_k\}_{k=1}^{\infty}$ satisfying Assumption 2 and select the parameters: $Tol > 0, \ \rho \in (0, 1), \ \zeta > 0, \ \sigma > 0$. Select arbitrary points $y_{-1}, y_0 \in \mathbf{E}$. Set k := 0. (S.1) Set

$$v_k = y_k + \theta_k (y_k - y_{k-1})$$

(S.2) Compute $T(v_k)$. If $||T(v_k)|| \le Tol$, stop. Otherwise, generate the search direction d_k by

$$d_k := \begin{cases} -T(v_k) & \text{if } k = 0, \\ -\left(1 + \beta_k \frac{T(v_k)^T d_{k-1}}{\|T(v_k)\|^2}\right) & (2) \\ T(v_k) + \beta_k d_{k-1} & \text{if } k > 0, \end{cases}$$

where,

$$\beta_k := 0.01 \frac{\|T(v_k)\|}{\|d_{k-1}\|}.$$
(3)

(S.3) Compute a trial point $x_k = v_k + \alpha_k d_k$.

(S.4) Determine the step-size $\alpha_k = \zeta \rho^i$ where *i* is the least nonnegative integer satisfying

$$-T(v_k + \alpha_k d_k)^T d_k \ge \sigma \alpha_k \|d_k\|^2.$$
(4)

(S.5) If $x_k \in \mathbf{E}$ and $||T(x_k)|| \le Tol$, stop. Otherwise,

$$y_{k+1} = P_{\mathbf{E}} \left[v_k - \gamma_k T(x_k) \right], \tag{5}$$

where

$$\gamma_k := \frac{T(x_k)^T(v_k - x_k)}{\|T(x_k)\|^2}.$$

(**S.6**) Set k = k + 1, and go back to (S.1).

Remark 2.8: Let d_k be generated by (2)-(3) in Algorithm 2.7. Then

$$T(v_k)^T d_k = -\|T(v_k)\|^2.$$
 (6)

III. CONVERGENCE RESULT

Lemma 3.1: The line search condition (4) is well-defined. That is, for all $k \ge 0$, there exists a non negative integer *i* satisfying (4).

Proof: Suppose there is $k_0 \ge 0$ for which (4) is not true for any non-negative integer *i*, i.e.,

$$-T(v_{k_0}+\zeta\rho^i d_{k_0})^T d_{k_0} < \sigma \zeta \rho^i \|d_{k_0}\|^2.$$

Using Assumption 1 (b) and allowing $i \to \infty$, we have that

$$-T(v_{k_0})^T d_{k_0} \le 0. (7)$$

On the other hand, from (6),

$$-T(v_{k_0})^T d_{k_0} = \|T(v_{k_0})\|^2 > 0,$$

which contradicts (7). Hence, (4) is well defined.

Lemma 3.2: Let $\{y_k\}$ and $\{x_k\}$ be generated via Algorithm 2.7. If $y^* \in \mathbf{SOL}(\mathbf{T}, \mathbf{E})$, then under Assumption 1 and 2, it holds that

$$||y_{k+1} - y^*||^2 \le ||v_k - y^*|| - \sigma^2 ||v_k - x_k||^4$$

Moreover, the sequence $\{y_k\}$ and $\{x_k\}$ are bounded and

$$\lim_{k \to \infty} \|v_k - x_k\| = 0.$$
 (8)

Proof: By the monotonicity of the mapping T, we have

$$T(x_{k})^{T}(v_{k} - y^{*}) = T(x_{k})^{T}(v_{k} - x_{k}) + T(x_{k})^{T}(x_{k} - y^{*})$$

$$\geq T(x_{k})^{T}(v_{k} - x_{k}) + T(y^{*})^{T}(x_{k} - y^{*})$$

$$= T(x_{k})^{T}(v_{k} - x_{k}) \qquad (9)$$

$$= T(x_{k})^{T}(-\alpha_{k}d_{k})$$

$$= \sigma \alpha_{k}^{2} ||d_{k}||^{2}$$

$$\geq \sigma ||v_{k} - x_{k}||^{2}. \qquad (10)$$

By Lemma 2.3 (iii), (5), (9) and (10), it holds that for any $y^* \in \mathbf{SOL}(\mathbf{T}, \mathbf{E})$,

$$\begin{aligned} \|y_{k+1} - y^*\|^2 &= \|P_{\mathbf{E}}(v_k - \gamma_k T(x_k)) - y^*\|^2 \\ &\leq \|v_k - \gamma_k T(x_k) - y^*\|^2 \\ &= \|v_k - y^*\|^2 - 2\gamma_k T(x_k)^T (v_k - y^*) \\ &+ \gamma_k^2 \|T(x_k)\|^2 \\ &\leq \|v_k - y^*\|^2 - 2\gamma_k T(x_k)^T (v_k - x_k) \\ &+ \gamma_k^2 \|T(x_k)\|^2 \\ &\leq \|v_k - y^*\|^2 - \frac{T(x_k)^T (v_k - x_k)^2}{\|T(x_k)\|^2} \\ &\leq \|v_k - y^*\|^2 - \frac{\sigma^2 \|v_k - x_k\|^4}{\|T(x_k)\|^2}. \end{aligned}$$
(11)

From equation (11), we can deduce that

$$||y_{k+1} - y^*|| \le ||v_k - y^*||$$

= $||y_k + \theta_k(y_k - y_{k-1}) - y^*||$
 $\le ||y_k - y^*|| + \theta_k ||y_k - y_{k-1}||.$ (12)

Because $\sum_{k=1}^{\infty} \theta_k ||y_k - y_{k-1}|| < \infty$, then by Lemma 2.5, the limit of $\{y_k - y^*\}$ exists and hence it is bounded. This implies that for all *k*, there exist $M_0 > 0$ such that $||y_k - y^*|| \le M_0$. Therefore, for all *k* we can deduce that

$$\|y_k\| \le M_1,\tag{13}$$

and

$$\|y_k - y_{k-1}\| \le M,$$

where $M_1 = M_0 + ||y^*||$ and $M = 2M_1$. Using the above relations, we can have

$$||v_k|| \le M_2$$
, $||v_k - y^*|| \le M_2$, where $M_2 = 2M$.

Since *H* is Lipschitz continuous, we have

$$||T(v_k)|| = ||T(v_k) - T(y^*)|| \le L ||v_k - y^*|| \le LM_2.$$
(14)

Also, using (14) and the monotonicity of T,

$$T(x_k)^T(v_k - x_k) = (T(x_k) - T(v_k))^T(v_k - x_k) + T(v_k)^T(v_k - x_k) \leq T(v_k)^T(v_k - x_k) \leq ||T(v_k)|| ||v_k - x_k|| \leq LM_2 ||v_k - x_k||.$$

This together with (9) and (10) implies that

$$\|v_k-x_k\|\leq \frac{LM_2}{\sigma}.$$

Then, we have

$$\|x_k\| \leq \frac{LM_2}{\sigma} + \|v_k\|.$$

Hence the sequence $\{x_k\}$ is bounded since $\{v_k\}$ is bounded. Moreover as T is continuous and $\{x_k\}$ is bounded, then $\{T(x_k)\}$ is bounded. That is, there exists N > 0 such that $\|T(x_k)\| \le N$.

By the definition of v_k and (13) we have

$$|v_{k} - y^{*}||^{2} = ||y_{k} + \theta_{k}(y_{k} - y_{k-1}) - y^{*}||^{2}$$

$$= ||y_{k} - y^{*}||^{2}$$

$$+ 2\theta_{k}(y_{k} - y_{k-1})^{T}(y_{k} + \theta_{k}(y_{k} - y_{k-1}) - y^{*})$$

$$\leq ||y_{k} - y^{*}||^{2} + 2\theta_{k}||y_{k} - y_{k-1}||(||y_{k} - y^{*}||$$

$$+ \theta_{k}||y_{k} - y_{k-1}||)$$

$$\leq ||y_{k} - y^{*}||^{2} + 2M\theta_{k}||y_{k} - y_{k-1}||$$

$$+ 2M\theta_{k}||y_{k} - y_{k-1}||$$

$$= ||y_{k} - y^{*}||^{2} + 4M\theta_{k}||y_{k} - y_{k-1}||.$$
(15)

Combining (15) with (11), we have

$$\|y_{k+1} - y^*\|^2 \le \|y_k - y^*\|^2 + 4M\theta_k \|y_k - y_{k-1}\| - \frac{\sigma^2 \|v_k - x_k\|^4}{\|T(x_k)\|^2}.$$
 (16)

Thus, we have

$$\frac{\sigma^2 \|v_k - x_k\|^4}{\|T(x_k)\|^2} \le \|y_k - y^*\|^2 + 4M\theta_k \|y_k - y_{k-1}\| - \|y_{k+1} - y^*\|^2.$$
(17)

Adding (17) for k = 0, 1, 2, ... and the fact that $\{T(x_k)\}$ is bounded, we have

$$\frac{\sigma^2}{N^2} \sum_{k=0}^{\infty} \|v_k - x_k\|^4 \le \sum_{k=0}^{\infty} (\|y_k - y^*\|^2 + 4M\theta_k \|y_k - y_{k-1}\| - \|y_{k+1} - y^*\|^2).$$
(18)

Now, let $S_k = \sum_{n=0}^k (||y_n - y^*||^2 - ||y_{n+1} - y^*||^2)$, then $S_k = \sum_{n=0}^k (||y_0 - y^*||^2 - ||y_{k+1} - y^*||^2)$. As limit of $\{||y_k - y^*||\}$ exists from (12) with limit say L_1 , then

$$\left(\lim_{k\to\infty}S_k=\|y_0-y^*\|^2-L_1\right)\in\mathbf{R}.$$

So,

$$\sum_{k=0}^{\infty} \left(\|y_k - y^*\|^2 - \|y_{k+1} - y^*\|^2 \right) < \infty$$

and
$$\sum_{k=0}^{\infty} \theta_k \|y_k - y_{k-1}\| < \infty.$$

Using (18) together with the above inequalities, we conclude that

$$\lim_{k\to\infty}\|v_k-x_k\|=0.$$

Remark 3.3: By the definition of $\{x_k\}$ and (8), we have

$$\lim_{k \to \infty} \alpha_k \|d_k\| = 0.$$

Lemma 3.4: Suppose Assumptions 1-2 hold and the sequence $\{y_k\}$ and $\{v_k\}$ are generated by Algorithm 2.7. Then

$$\lim_{k \to \infty} \|v_k - y_{k+1}\| = 0.$$
(19)

Proof:

Using definition of v_k ,

$$||y_k - v_k|| = ||y_k - (y_k + \theta_k(y_k - y_{k-1}))||$$

= $\theta_k ||y_k - y_{k-1}||.$

This implies that

$$\lim_{k \to \infty} \|y_k - v_k\| = 0.$$
 (20)

Also,

$$||y_k - x_k|| = ||y_k - v_k + v_k - x_k||$$

$$\leq ||y_k - v_k|| + ||v_k - x_k||.$$

Using (8) and (20), we have

$$\lim_{k \to \infty} \|y_k - x_k\| = 0.$$
 (21)

TABLE 1. Starting points.

SP	y_{-1}	y_0
y_1	$(0.2, \ldots, 0.2)^T$	$(0.1, \ldots, 0.1)^T$
y_2	$(0.2, \ldots, 0.2)^{I}$	$(0.2, \ldots, 0.2)^{I}$
y_3	$(0.5,\ldots,0.5)^T$	$(0.5,\ldots,0.5)^T$
y_4	$(1.2, \ldots, 1.2)^T$	$(1.2, \ldots, 1.2)^T$
y_5	$(1.5,\ldots,1.5)^T$	$(1.5,\ldots,1.5)^T$
y_6	$(2,\ldots,2)^T$	$(2,\ldots,2)^T$
y_7	$\operatorname{rand}(n,1)$	$\operatorname{rand}(n,1)$

Note. For DFPI algorithm [17], the starting point is y_0 .

By Lemma 2.3, we have

$$\|y_{k+1} - y_k\| = \|P_{\mathbf{E}}[v_k - \gamma_k T(x_k)] - y_k\|$$

$$\leq \|v_k - \gamma_k T(x_k) - y_k\|$$

$$\leq \|v_k - y_k\| + \|\gamma_k E(z_k)\|$$

$$= \|v_k - y_k\| + \left\|\frac{T(x_k)^T (v_k - x_k)}{\|T(x_k)\|^2} T(x_k)\right\|$$

$$\leq \|v_k - y_k\| + \|v_k - x_k\|.$$
(22)

Thus, from (8) and (20), we have

$$\lim_{k \to \infty} \|y_{k+1} - y_k\| = 0.$$
 (23)

Therefore,

$$||y_{k+1} - v_k|| = ||y_{k+1} - (y_k + \theta_k(y_k - y_{k-1}))||$$

$$\leq ||y_{k+1} - y_k|| + \theta_k ||y_k - y_{k-1}||.$$

Using (23) and Assumption 2, the desired equation is obtained.

Theorem 3.5: Let $\{y_k\}$ be a sequence generated via Algorithm 2.7. Using Assumption 1 and 2, then $\{y_k\}$ converge to an element of **SOL**(**T**, **E**).

Proof: We know that the sequence $\{y_k\}$ is bounded from (13). This implies that there exists a subsequence $\{y_{k_j}\}$ of $\{y_k\}$ such that $\{y_{k_j}\}$ converge to some point \overline{y} . Also, we have that

$$\|v_{k_j} - y_{k_j}\| = \theta_{k_j} \|y_{k_j} - y_{k_j-1}\| \to 0, \text{ as } j \to \infty.$$
 (24)

Claim: $\bar{y} \in SOL(T, E)$. Suppose on the contrary that $\bar{y} \notin SOL(T, E)$. Then from (19) and (24), we have that

$$\lim_{j \to \infty} y_{k_j+1} = \lim_{j \to \infty} P_{\mathbf{E}} \left(v_{k_j} - \gamma_{k_j} T(x_{k_j}) \right) = \lim_{j \to \infty} y_{k_j} = \bar{y}.$$
 (25)

Without loss of generality, if $\gamma_{k_j} \rightarrow \gamma^*$ and $T(x_{k_j}) \rightarrow T(x^*)$. Then since *T* is continuous, we have $T(x^*) = T(\bar{y})$. Therefore, from (25)

$$P_{\mathbf{E}}\left(\bar{y} - \gamma^* T(x^*)\right) = \bar{y}.$$

It then follows from Lemma 2.6 that $y^* \in \text{SOL}(\mathbf{T}, \mathbf{E})$, which is a contradiction. Hence, our claim holds. Substituting y^* with \bar{y} in (12), it is easy to see that $\lim_{k\to\infty} ||y_k - \bar{y}||$ exists

			0.01	l		0.5			1.5		2			
n=1000	SP	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT	
	y_1	9	36	0.00568	36	144	0.021784	96	384	0.044784	188	752	0.10513	
	y_2	10	40	0.003477	25	100	0.011812	126	504	0.059805	282	1128	0.11457	
	y_3	6	24	0.003472	28	112	0.010859	84	336	0.033187	222	888	0.081797	
Problem 1	y_4	7	28	0.003033	26	104	0.008285	87	348	0.033013	319	1276	0.1232	
	y_5	7	28	0.00311	18	72	0.008741	102	408	0.049486	91	364	0.043828	
	y_6	7	28	0.002948	28	112	0.010702	114	456	0.045376	175	700	0.094839	
	y_7	19	76	0.006554	26	104	0.010181	191	764	0.077315	-	-	-	
	y_1	11	43	0.069731	11	43	0.004505	11	43	0.004516	11	43	0.005377	
	y_2	13	51	0.004297	13	51	0.004481	13	51	0.00571	13	51	0.004752	
	y_3	12	46	0.005032	12	46	0.004509	12	46	0.004683	12	46	0.00444	
Problem 2	y_4	13	49	0.005324	13	49	0.006814	13	49	0.004967	13	49	0.005646	
	y_5	14	53	0.005046	14	53	0.005374	14	53	0.005185	14	53	0.00466	
	y_6	12	44	0.004429	12	44	0.006134	12	44	0.004458	12	44	0.004317	
	y_7	14	53	0.00526	25	95	0.008445	179	713	0.090395				
	y_1	13	52	0.063903	13	52	0.004482	13	52	0.00409	13	52	0.004058	
	y_2	13	52	0.004457	13	52	0.004565	13	52	0.004368	13	52	0.003968	
	y_3	14	56	0.004882	14	56	0.004492	14	56	0.003748	14	56	0.004461	
Problem 3	y_4	14	56	0.005488	14	56	0.004633	14	56	0.004022	14	56	0.005487	
	y_5	14	56	0.004491	14	56	0.005229	14	56	0.004916	14	56	0.004376	
	y_6	15	60	0.005917	15	60	0.005052	15	60	0.003972	15	60	0.004675	
	y_7	14	56	0.004507	114	456	0.039936	-	-	-	-	-	-	
	y_1	13	52	0.016113	13	52	0.004009	13	52	0.005635	13	52	0.004117	
	y_2	13	52	0.00361	13	52	0.003692	13	52	0.003629	13	52	0.003991	
	y_3	13	52	0.004013	13	52	0.004321	13	52	0.004246	13	52	0.003573	
Problem 4	y_4	13	52	0.003393	13	52	0.003838	13	52	0.004084	13	52	0.003938	
	y_5	14	56	0.005	14	56	0.006158	14	56	0.004706	14	56	0.00564	
	y_6	14	56	0.00404	14	56	0.005038	14	56	0.003816	14	56	0.003763	
	y_7	15	60	0.004885	23	92	0.006901	153	612	0.040723	-	-	-	
	y_1	22	83	0.02265	25	93	0.006098	185	734	0.053499	-	-	-	
	y_2	18	68	0.005	26	98	0.006317	144	567	0.039396	-	-	-	
	y_3	22	86	0.006487	25	98	0.007825	176	696	0.05854	-	-	-	
Problem 5	y_4	20	80	0.006677	27	108	0.007371	142	568	0.036509	-	-	-	
	y_5	23	92	0.00758	28	112	0.007031	159	636	0.042945	-	-	-	
	y_6	33	132	0.015034	26	104	0.007602	142	568	0.038659	-	-	-	
	y_7	39	155	0.014079	34	134	0.011338	161	639	0.045031	-	-	-	

TABLE 2. Numerical experiments with	n different coefficients of β_k	for problem 1-5 with n = 1000
-------------------------------------	---------------------------------------	-------------------------------

by Lemma 2.5. Since \bar{y} is an accumulation point of $\{y_k\}$, we obtain that $\{y_k\}$ converges to \bar{y} .

IV. NUMERICAL EXAMPLES

By comparing the proposed inertial algorithm (Iner. DFPI) to the DFPI algorithm in [17], we show the numerical efficiency and computational advantage of the proposed inertial algorithm (Iner. DFPI) in this section. The MATLAB implementation of the algorithms was executed on a Windows 10 computer with Intel(R) Core(TM) i7 processor with 8.0GB of RAM and CPU of 2.30GHz using MATLAB R2019b software. The numerical experiment made use of the following test problems to measure the efficiency and robustness of the proposed inertial algorithm (Iner. DFPI).

Problem 1: Modified exponential function [47]

$$t_1(y) = e^{y_1} - 1$$

$$t_i(y) = e^{y_i} + y_i - 1, \quad i = 2, ..., n,$$

$$\mathbf{E} = \mathbf{R}^n_{-}.$$

Problem 2: Logarithmic function [47]

$$t_i(y_i) = \log(y_i + 1) - \frac{y_i}{n}, \quad i = 1, 2, ..., n,$$

 $\mathbf{E} = \mathbf{R}_+^n.$

Problem 3: Nonsmooth function [48]

$$t_i(y) = 2y_i - \sin(|y_i|), \text{ for } i = 1, 2, \dots, n, \mathbf{E} = \left\{ y \in \mathbf{R}^n_+ : y \ge 0, \sum_{i=1}^n y_i \le n \right\}.$$

Problem 4: Strictly convex function I [47]

$$t_i(y) = e^{y_i} - 1, \quad i = 1, 2, ..., n,$$

 $\mathbf{E} = \mathcal{R}^n_{\perp}.$

Problem 5: Strictly convex function II [47]

$$t_i(\mathbf{y}) = \left(\frac{i}{n}\right) e^{\mathbf{y}_i} - 1, \quad i = 1, 2, \dots, n,$$
$$\mathbf{E} = \mathbf{R}_+^n.$$

		0.01				0.5			1.5		2			
n=1000	SP	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT	
	y_1	16	64	0.028171	16	64	0.008079	74	296	0.039752	530	2120	0.27322	
	y_2	16	64	0.006196	16	64	0.007641	73	292	0.038947	529	2116	0.26621	
	\overline{y}_3	16	64	0.007024	16	64	0.007142	74	296	0.03997	524	2096	0.24974	
Problem 6	y_4	15	60	0.007648	15	60	0.007185	72	288	0.031371	510	2040	0.2355	
	y_5	15	60	0.007387	15	60	0.007385	70	280	0.03291	496	1984	0.24424	
	y_6	15	60	0.0087	15	60	0.007901	65	260	0.031665	467	1868	0.2211	
	y_7	16	64	0.007314	16	64	0.007423	43	172	0.020312	489	1956	0.22663	
	y_1	8	32	0.024297	8	32	0.00364	8	32	0.004126	8	32	0.00538	
	y_2	7	28	0.00333	7	28	0.002719	7	28	0.002391	7	28	0.003311	
	y_3	6	24	0.01827	6	24	0.002887	6	24	0.0024	6	24	0.003263	
Problem 7	y_4	7	28	0.004197	7	28	0.002811	7	28	0.003058	7	28	0.003245	
	y_5	8	32	0.004041	8	32	0.004093	8	32	0.00396	8	32	0.003798	
	y_6	8	31	0.003253	8	31	0.003851	8	31	0.003888	8	31	0.003131	
	y_7	9	36	0.004528	21	84	0.007788	456	1824	0.16334	410	1640	0.3094	
	y_1	9	32	0.018072	9	32	0.004243	9	32	0.004036	9	32	0.004227	
	y_2	9	32	0.003068	9	32	0.003102	9	32	0.003234	9	32	0.003993	
	y_3	9	32	0.003516	9	32	0.0029	9	32	0.00361	9	32	0.003437	
Problem 8	y_4	9	32	0.00303	9	32	0.003161	9	32	0.00347	9	32	0.003267	
	y_5	9	32	0.003866	9	32	0.003489	9	32	0.003431	9	32	0.005727	
	y_6	9	32	0.003614	9	32	0.002902	9	32	0.00275	9	32	0.004086	
	y_7	87	317	0.020828	-	-	-	-	-	-	-	-	-	
	y_1	5	20	0.016153	5	20	0.001863	5	20	0.001487	5	20	0.002629	
	y_2	5	20	0.001592	5	20	0.00164	5	20	0.001465	5	20	0.001785	
	y_3	5	20	0.002472	5	20	0.001823	5	20	0.001626	5	20	0.002922	
Problem 9	y_4	6	24	0.001959	6	24	0.001971	6	24	0.002312	6	24	0.002833	
	y_5	6	24	0.002435	6	24	0.002336	6	24	0.002423	6	24	0.003877	
	y_6	6	24	0.001855	6	24	0.001686	6	24	0.00168	6	24	0.00189	
	y_7	5	20	0.001481	5	20	0.002654	5	20	0.001523	5	20	0.001975	
	y_1	9	36	0.021723	9	36	0.006713	9	36	0.006291	9	36	0.010543	
	y_2	10	40	0.00665	10	40	0.006561	10	40	0.007961	10	40	0.009544	
	y_3	1	3	0.000977	1	3	0.001388	1	3	0.00115	1	3	0.002128	
Problem 10	y_4	1	4	0.001237	1	4	0.001396	1	4	0.00149	1	4	0.001539	
	y_5	1	3	0.001488	1	3	0.001946	1	3	0.001396	1	3	0.002452	
	y_6	1	4	0.001899	1	4	0.002218	1	4	0.001877	1	4	0.002951	
	y_7	11	44	0.007231	45	180	0.028201	447	1788	0.24792	405	1620	0.67977	

TABLE 3. Numerical experiments with different coefficients of β_k for problem 6-10 with n = 1000.

Problem 6: Tridiagonal exponential function [47]

$$t_1(y) = y_1 - e^{\cos(l(y_1 + y_2))}$$

$$t_i(y) = y_i - e^{\cos(l(y_{i-1} + y_i + y_{i+1}))}, \quad i = 2, ..., n - 1,$$

$$t_n(y) = y_n - e^{\cos(l(y_{n-1} + y_n))},$$

$$l = \frac{1}{n+1} \text{ and } \mathbf{E} = \mathbf{R}_+^n.$$

Problem 7: Nonsmooth function II [49]

$$\mathbf{E} = \left\{ y \in \mathbf{R}_{+}^{n} : y \ge -1, \quad \sum_{i=1}^{n} y_{i} \le n \right\}.$$

Problem 8: Penalty function I [16]

$$\xi_i = \sum_{i=1}^n y_i^2, \quad c = 10^{-5},$$

$$t_i(y) = 2c(y_i - 1) + 4(\xi_i - 0.25)y_i, \quad i = 1, 2, \dots, n,$$

$$\mathbf{E} = \mathbf{R}_+^n.$$

Problem 9: Pursuit-Evasion problem [16]

$$t_i(y) = 8^{0.5}y_i - 1, \quad i = 1, 2, ..., n,$$

 $\mathbf{E} = \mathbf{R}^n_{\perp}.$

Problem 10: Pursuit-Evasion problem [16]

$$t_i(y) = e^{y_i^2} + 3\sin y_i \cos y_i - 1, \quad i = 1, 2, ..., n,$$

 $\mathbf{E} = \mathbf{R}_+^n.$

Note that, the mapping T is taken as

$$T(y) = (t_1(y), t_2(y), \dots, t_n(y))^T,$$

and recall that, the inertial-type algorithm is an iterative procedure in which subsequent iterates are obtained using the preceding two iterates. As such, for the proposed inertial algorithm (Iner. DFPI), the two preceding iterates used in obtaining the initial iterates are as follows:

Note. For DFPI algorithm [17], the starting point is *y*₀.

The above listed problems are solved with dimensions n = 1000, 5000, 10, 000, 50, 000 and 100, 000. The parameters

TABLE 4. Numerical experiments with different sequences $\{\theta_k\}$ for problem 1-5 with n = 1000.

		l	$\theta_k = \frac{1}{(2)}$	$\frac{1}{(k+5)^2}$	θ_k	$= \frac{1}{\exp(h)}$	$\frac{1}{(k+1)^{k+1}}$		$\theta_k = \frac{1}{(k)}$	$\frac{1}{(+1)^2}$
n = 1000	SP	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT
	y_1	9	36	0.009119	9	36	0.019343	0	0	0.003002
	y_2	10	40	0.009186	10	40	0.013494	10	40	0.024327
	y_3	6	24	0.007353	6	24	0.006644	6	24	0.016818
Problem 1	y_4	7	28	0.008871	7	28	0.009398	7	28	0.017854
	y_5	7	28	0.003838	7	28	0.011266	7	28	0.011046
	y_6	7	28	0.008816	7	28	0.008429	7	28	0.009511
	y_7	19	76	0.020365	19	76	0.012149	20	80	0.01573
	y_1	11	43	0.062537	11	43	0.011218	0	0	0.002089
	y_2	13	51	0.009315	13	51	0.00942	13	51	0.013417
	y_3	12	46	0.011573	12	46	0.008909	12	46	0.012356
Problem 2	y_4	13	49	0.011216	13	49	0.009268	13	49	0.016215
	y_5	14	53	0.010668	14	53	0.029236	14	53	0.016043
	y_6	12	44	0.008497	12	44	0.00864	12	44	0.013048
	y_7	14	53	0.010962	14	53	0.01112	14	53	0.01145
	y_1	13	52	0.081519	13	52	0.009919	0	0	0.001735
	y_2	13	52	0.010098	13	52	0.009571	13	52	0.008503
	y_3	14	56	0.009522	14	56	0.010984	14	56	0.011609
Problem 3	y_4	14	56	0.012593	14	56	0.013154	14	56	0.013062
	y_5	14	56	0.010016	14	56	0.011638	14	56	0.010194
	y_6	15	60	0.0169	15	60	0.011157	15	60	0.018817
	y_7	14	56	0.015987	14	56	0.006418	14	56	0.013272
	y_1	13	52	0.027212	12	48	0.007644	0	0	0.002682
	y_2	13	52	0.008549	13	52	0.006964	13	52	0.00497
	y_3	13	52	0.011045	13	52	0.006538	13	52	0.011129
Problem 4	y_4	13	52	0.008611	13	52	0.010887	13	52	0.008666
	y_5	14	56	0.00786	14	56	0.009174	14	56	0.015178
	y_6	14	56	0.008609	14	56	0.006611	14	56	0.00971
	y_7	15	60	0.009977	15	60	0.009921	15	60	0.007715
	y_1	22	83	0.014915	22	83	0.012003	23	87	0.008566
	y_2	18	68	0.010097	18	68	0.011021	18	68	0.011365
	y_3	22	86	0.009015	22	86	0.012862	22	86	0.009067
Problem 5	y_4	20	80	0.015665	20	80	0.017248	20	80	0.00942
	y_5	23	92	0.01444	23	92	0.022297	23	92	0.012842
	y_6	33	132	0.032199	33	132	0.038352	33	132	0.025196
	y_7	32	127	0.020831	38	150	0.038326	36	143	0.026164

TABLE 5. Numerical experiments with different sequences $\{\theta_k\}$ for problem 6-10 with n = 1000.

		($\theta_k = \frac{1}{(2)}$	$\frac{1}{(k+5)^2}$	θ_k	$=\frac{1}{\exp(h)}$	$\frac{1}{k+1)^{k+1}}$		$\theta_k = \frac{1}{(k)}$	$\frac{1}{(+1)^2}$
n = 1000	SP	NOI	NFE	CPUT	NOI	NFE	CPUT	NOI	NFE	CPUT
	y_1	16	64	0.080299	16	64	0.017491	16	64	0.016929
	y_2	16	64	0.013439	16	64	0.011797	16	64	0.011792
	y_3	16	64	0.018681	16	64	0.012646	16	64	0.017659
Problem 6	y_4	15	60	0.014368	15	60	0.013669	15	60	0.016687
	y_5	15	60	0.013089	15	60	0.017483	15	60	0.014834
	y_6	15	60	0.014044	15	60	0.016498	15	60	0.024312
	y_7	16	64	0.012709	16	64	0.021474	16	64	0.013924
	y_1	8	32	0.032771	8	32	0.006973	8	32	0.013911
	y_2	7	28	0.005828	7	28	0.008311	7	28	0.008
	y_3	6	24	0.037642	6	24	0.005015	6	24	0.00695
Problem 7	y_4	7	28	0.006844	7	28	0.008496	7	28	0.011212
	y_5	8	32	0.009869	8	32	0.006206	8	32	0.008115
	y_6	8	31	0.014343	8	31	0.011633	8	31	0.014518
	y_7	9	36	0.007226	9	36	0.006186	9	36	0.006638
	y_1	10	34	0.03011	10	34	0.004109	9	31	0.010335
	y_2	10	34	0.00805	10	34	0.004493	10	34	0.005206
	y_3	10	34	0.00437	10	34	0.005042	10	34	0.00788
Problem 8	y_4	10	34	0.009151	10	34	0.007257	10	34	0.003722
	y_5	10	34	0.008475	10	34	0.006482	10	34	0.00584
	y_6	10	34	0.006564	10	34	0.005847	10	34	0.005513
	y_7	12	39	0.010024	12	39	0.006773	13	42	0.008748
	y_1	5	20	0.039191	5	20	0.007925	5	20	0.009406
	y_2	5	20	0.004174	5	20	0.005295	5	20	0.005742
	y_3	5	20	0.002224	5	20	0.003368	5	20	0.007404
Problem 9	y_4	6	24	0.007065	6	24	0.014478	6	24	0.007671
	y_5	6	24	0.003812	6	24	0.004744	6	24	0.007709
	y_6	6	24	0.002333	6	24	0.002989	6	24	0.004279
	y_7	5	20	0.008178	5	20	0.006976	5	20	0.006137
	y_1	9	36	0.089549	9	36	0.016183	0	0	0.00387
	y_2	10	40	0.019257	10	40	0.018461	10	40	0.0118
	y_3	1	3	0.002148	1	3	0.003585	1	3	0.004648
Problem 10	y_4	1	4	0.005166	1	4	0.00363	1	4	0.002651
	y_5	1	3	0.004204	1	3	0.003815	1	3	0.004593
	y_6	1	4	0.009407	1	4	0.0036	1	4	0.00679
	y_7	11	44	0.024152	11	44	0.019788	11	44	0.021147

θ_k	$= \overline{\alpha}$	$\frac{1}{k+5)^2}$	ζ:	= 1,	ρ =	= 0	.7,	$\sigma =$	0.01	were	chose	n for
the	Iner	DFP	I al	lgorit	hm 1	to o	btai	n the	e best	possi	ble re	sults.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	9	36	0.017162	6.68E-07	76	403	0.024481	7.21E-07
	y_2	10	40	0.012476	5.19E-07	74	394	0.024509	6.86E-07
	y_3	6	24	0.004145	2.76E-07	76	405	0.024232	7.26E-07
1000	y_4	7	28	0.007213	4.53E-07	76	406	0.026091	5.12E-07
	y_5	7	28	0.009987	2.98E-07	49	270	0.019812	8.46E-07
	y_6	7	28	0.005634	2.47E-07	90	478	0.036841	5.10E-07
	y_7	19	76	0.009093	8.82E-07	75	400	0.024059	7.17E-07
	y_1	7	28	0.010122	7.08E-07	82	434	0.10282	8.03E-07
	y_2	8	32	0.01214	7.91E-07	72	384	0.079772	1.37E-10
	y_3	6	24	0.010519	4.74E-07	87	461	0.09622	8.07E-07
5000	y_4	7	28	0.011582	5.70E-07	73	392	0.082718	5.71E-07
2000	y_5	7	28	0.010631	4.47E-07	58	316	0.069378	9.41E-07
	y_6	7	28	0.012023	4.64E-07	88	469	0.1209	5.67E-07
	y_7	21	84	0.028841	4.15E-07	78	416	0.098002	7.90E-07
	y_1	7	28	0.019183	4.89E-07	81	429	0.17261	1.93E-14
	y_2	7	28	0.016653	8.52E-07	83	441	0.18057	5.39E-07
	y_3	6	24	0.014861	6.41E-07	89	472	0.21044	5.70E-07
10000	y_4	7	28	0.017194	6.94E-07	70	377	0.17188	8.07E-07
10000	y_5	7	28	0.023033	5.83E-07	90	479	0.19026	7.81E-07
	y_6	7	28	0.021992	6.39E-07	89	476	0.22891	7.77E-15
	y_7	21	84	0.054409	5.30E-07	93	492	0.19355	5.62E-07
	y_1	6	24	0.067682	2.67E-07	75	399	0.68515	2.15E-14
	y_2	6	24	0.054711	2.58E-07	75	399	0.69894	1.18E-13
	y_3	7	28	0.12306	1.03E-07	75	400	0.67299	1.25E-13
50000	y_4	8	32	0.094062	2.09E-07	72	389	0.96128	3.20E-10
20000	y_5	8	32	0.074329	1.26E-07	82	445	0.80865	6.53E-07
	y_6	8	32	0.10103	8.10E-08	84	459	0.86014	8.22E-15
	y_7	22	88	0.25757	5.05E-07	90	478	1.0839	6.27E-07
	y_1	6	24	0.12284	1.69E-07	73	389	1.6516	6.06E-14
	y_2	6	24	0.10121	1.47E-07	81	431	1.4517	9.10E-15
	y_3	7	28	0.11899	1.07E-07	82	438	1.3592	8.99E-07
100000	y_4	8	32	0.31637	2.11E-07	79	430	1.2955	1.80E-13
	y_5	8	32	0.17021	1.29E-07	87	475	3.2752	8.66E-15
	y_6	8	32	0.17119	8.56E-08	86	480	1.5122	8.04E-07
	y_7	22	88	0.60812	7.15E-07	91	485	1.4229	7.04E-07

TABLE 6. Numerical results for IDFPI and DFPI algorithms on problem 1.

TABLE 7. Numerical results for IDFPI and DFPI algorithms on problem 2.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	11	43	0.005001	8.52E-07	3	9	0.058465	5.17E-07
	y_2	13	51	0.004356	3.18E-07	4	12	0.002939	6.04E-09
	y_3	12	46	0.00557	8.35E-07	4	12	0.002548	4.37E-07
1000	y_4	13	49	0.007236	4.32E-07	5	15	0.002855	1.52E-07
	y_5	14	53	0.007473	4.27E-07	6	18	0.009373	1.10E-09
	y_6	12	44	0.004463	9.51E-07	6	18	0.002567	1.74E-08
	y_7	14	53	0.005317	7.52E-07	106	318	0.060475	9.65E-07
	y_1	12	47	0.017058	5.52E-07	3	9	0.003876	1.75E-07
	y_2	13	51	0.016004	6.89E-07	4	12	0.005113	6.27E-10
	y_3	13	50	0.015614	5.37E-07	4	12	0.005662	1.42E-07
5000	y_4	13	49	0.015854	9.11E-07	5	15	0.007849	3.94E-08
	y_5	14	53	0.016588	9.11E-07	5	15	0.007635	4.05E-07
	y_6	13	48	0.017176	5.76E-07	6	18	0.007015	2.36E-09
	y_7	15	57	0.021617	5.08E-07	365	1095	0.45786	9.84E-07
	y_1	12	47	0.024133	7.77E-07	3	9	0.009625	1.21E-07
	y_2	13	51	0.027397	9.71E-07	4	12	0.008537	2.79E-10
	y_3	13	50	0.031404	7.55E-07	4	12	0.009399	9.73E-08
10000	y_4	14	53	0.031945	3.83E-07	5	15	0.011722	2.56E-08
	y_5	15	57	0.03006	3.84E-07	5	15	0.013383	2.93E-07
	y_6	13	48	0.025585	8.04E-07	6	20	0.016129	3.62E-09
	y_7	15	57	0.034146	7.18E-07	416	1248	0.93838	9.70E-07
	y_1	13	51	0.15665	5.19E-07	3	9	0.025051	6.32E-08
	y_2	14	55	0.10992	6.49E-07	4	12	0.060209	6.75E-11
	y_3	14	54	0.10742	5.04E-07	4	12	0.033312	4.87E-08
50000	y_4	14	53	0.12007	8.52E-07	6	22	0.076411	5.75E-08
	y_5	15	57	0.14337	8.55E-07	7	28	0.070887	9.31E-09
	y_6	14	52	0.1029	5.33E-07	7	28	0.078715	9.31E-09
	y_7	16	61	0.16827	4.84E-07	365	1095	3.4659	8.63E-07
	y_1	13	51	0.26108	7.34E-07	3	9	0.051374	5.40E-08
	y_2	14	55	0.2078	9.18E-07	4	12	0.064736	4.27E-11
	y_3	14	54	0.24524	7.12E-07	5	17	0.084643	7.37E-10
100000	y_4	15	57	0.27307	3.61E-07	8	34	0.19686	1.10E-09
	y_5	16	61	0.23156	3.62E-07	8	34	0.16312	1.10E-09
	y_6	14	52	0.33684	7.53E-07	8	34	0.15642	1.10E-09
	y_7	16	61	0.30503	6.84E-07	346	1042	10.5937	5.00E-07

For the compared method (DFPI), its parameters were set as reported in [17]. All iterative procedure terminate when $||T(v_k)|| < 10^{-6}$ is fulfilled. If this condition is not satisfied after 1000 iterations, failure is declared.

TABLE 8. Numerical results for IDFPI and DFPI algorithms on problem 3.

TABLE 10. Numerical results for IDFPI and DFPI algorithms on problem 5.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	13	52	0.006685	4.82E-07	22	110	0.071091	7.52E-07
	y_2	13	52	0.005691	9.91E-07	23	115	0.007863	7.47E-07
	y_3	14	56	0.003863	6.78E-07	24	120	0.008379	8.92E-07
1000	y_4	14	56	0.005027	8.58E-07	25	125	0.009312	8.38E-07
	y_5	14	56	0.006172	4.93E-07	25	125	0.012101	8.90E-07
	y_6	15	60	0.00505	6.63E-07	25	125	0.009162	8.19E-07
	y_7	14	56	0.007421	7.33E-07	24	120	0.014291	9.51E-07
	y_1	14	56	0.017961	3.23E-07	23	115	0.039916	8.41E-07
	y_2	14	56	0.013373	6.65E-07	24	120	0.042328	8.36E-07
	y_3	15	60	0.017098	4.55E-07	25	125	0.042063	9.98E-07
5000	y_4	15	60	0.018924	5.76E-07	26	130	0.040312	9.36E-07
	y_5	15	60	0.015824	3.31E-07	26	130	0.040585	9.95E-07
	y_6	16	64	0.016746	4.45E-07	27	134	0.042017	0
	y_7	15	60	0.018791	4.99E-07	26	130	0.045348	5.35E-07
	y_1	14	56	0.026742	4.57E-07	24	118	0.082392	0
	y_2	14	56	0.030263	9.40E-07	24	118	0.066964	0
	y_3	15	60	0.033116	6.43E-07	26	128	0.068461	0
10000	y_4	15	60	0.029508	8.14E-07	27	133	0.065645	0
	y_5	15	60	0.030222	4.68E-07	28	139	0.065254	0
	y_6	16	64	0.033895	6.29E-07	28	139	0.062041	0
	y_7	15	60	0.035151	7.06E-07	26	130	0.073951	7.60E-07
	y_1	15	60	0.10247	3.07E-07	25	123	0.20488	0
	y_2	15	60	0.1067	6.31E-07	25	123	0.20469	3.70E-22
	y_3	16	64	0.20393	4.32E-07	25	123	0.20252	0
50000	y_4	16	64	0.10433	5.46E-07	29	147	0.24523	9.26E-07
	y_5	16	64	0.1076	3.14E-07	28	141	0.27392	0
	y_6	17	68	0.27182	4.22E-07	28	141	0.23675	0
	y_7	16	64	0.14651	4.73E-07	27	133	0.28916	4.88E-23
	y_1	15	60	0.21037	4.34E-07	25	125	0.61769	9.40E-07
	y_2	15	60	0.31285	8.92E-07	25	123	0.40009	0
	y_3	16	64	0.23906	6.10E-07	26	128	0.40665	0
100000	y_4	16	64	0.26002	7.73E-07	28	142	0.81468	0
	y_5	16	64	0.25336	4.44E-07	28	142	0.52701	0
	y_6	17	68	0.22276	5.97E-07	28	143	0.45238	0
	y_7	16	64	0.4129	6.68E-07	27	134	0.56451	1.32E-22

TABLE 9. Numerical results for IDFPI and DFPI algorithms on problem 4.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	13	52	0.004035	4.10E-07	22	110	0.022312	6.82E-07
	y_2	13	52	0.00492	7.01E-07	23	115	0.006507	6.15E-07
	y_3	13	52	0.004044	7.14E-07	24	120	0.006548	5.54E-07
1000	y_4	13	52	0.004554	9.53E-07	22	110	0.010051	5.79E-07
	y_5	14	56	0.005693	8.47E-07	25	126	0.008113	5.94E-07
	y_6	14	56	0.003309	7.79E-07	24	121	0.007482	9.98E-07
	y_7	15	60	0.005889	3.52E-07	24	120	0.012266	5.25E-07
	y_1	13	52	0.012538	9.17E-07	23	115	0.022903	7.62E-07
	y_2	14	56	0.012422	4.70E-07	24	120	0.024653	6.88E-07
	y_3	14	56	0.010397	4.79E-07	25	125	0.023646	6.20E-07
5000	y_4	14	56	0.011449	6.39E-07	23	115	0.02075	6.47E-07
	y_5	15	60	0.015644	5.68E-07	26	131	0.024758	6.64E-07
	y_6	15	60	0.015205	5.22E-07	24	122	0.024551	6.33E-07
	y_7	15	60	0.013931	8.16E-07	25	125	0.022842	5.91E-07
	y_1	14	56	0.018642	3.89E-07	24	120	0.041772	5.39E-07
	y_2	14	56	0.020051	6.65E-07	24	120	0.039254	9.73E-07
	y_3	14	56	0.022804	6.77E-07	25	125	0.043002	8.76E-07
10000	y_4	14	56	0.020417	9.04E-07	26	131	0.051036	9.36E-07
	y_5	15	60	0.023572	8.04E-07	26	131	0.043001	9.39E-07
	y_6	15	60	0.022412	7.39E-07	27	138	0.044418	9.36E-07
	y_7	16	64	0.023027	3.49E-07	25	125	0.051145	8.37E-07
	y_1	14	56	0.13458	8.70E-07	25	125	0.1406	6.03E-07
	y_2	15	60	0.076105	4.46E-07	26	128	0.14453	0
	y_3	15	60	0.074626	4.54E-07	26	130	0.3076	9.80E-07
50000	y_4	15	60	0.078944	6.06E-07	-	-	-	-
	y_5	16	64	0.087076	5.39E-07	-	-	-	-
	y_6	16	64	0.090052	4.96E-07	30	157	0.18098	0
	y_7	16	64	0.092506	7.71E-07	27	136	0.14182	7.33E-07
	y_1	15	60	0.22368	3.69E-07	25	125	0.25496	8.52E-07
	y_2	15	60	0.14734	6.31E-07	-	-	-	-
	y_3	15	60	0.14545	6.42E-07	26	129	0.66636	0
100000	y_4	15	60	0.21704	8.58E-07	-	-	-	-
	y_5	16	64	0.16062	7.63E-07	32	169	0.91603	0
	y_6	16	64	0.16709	7.01E-07	34	186	0.41102	0
	y_7	17	68	0.26252	3.25E-07	28	141	0.29815	5.18E-07

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	22	83	0.006723	3.36E-07	27	125	0.025308	7.64E-07
	y_2	18	68	0.004817	3.58E-07	27	127	0.013897	5.68E-07
	y_3	22	86	0.007747	3.16E-07	30	142	0.009465	5.36E-07
1000	y_4	20	80	0.007736	9.38E-07	26	130	0.00958	5.96E-07
	y_5	23	92	0.007882	5.80E-07	27	134	0.010308	9.66E-07
	y_6	33	132	0.013091	3.68E-07	26	132	0.011363	7.39E-07
	y_7	36	143	0.015021	9.85E-07	33	173	0.012412	7.77E-07
	y_1	22	83	0.023041	3.36E-07	27	125	0.028866	9.11E-07
	y_2	18	68	0.017824	7.77E-07	28	132	0.031948	6.88E-07
	y_3	23	90	0.019053	6.89E-07	32	150	0.033963	6.55E-07
5000	y_4	21	84	0.018336	6.11E-07	27	135	0.040092	8.11E-07
5000	y_5	27	108	0.033345	3.04E-07	30	147	0.03638	6.11E-07
	y_6	46	184	0.077517	3.86E-07	27	137	0.032325	9.59E-07
	y_7	51	203	0.074716	5.05E-07	43	243	0.052204	7.93E-07
	y_1	25	95	0.042456	8.93E-07	29	138	0.050406	9.96E-07
	y_2	19	72	0.033543	3.32E-07	28	132	0.047778	9.91E-07
	y_3	23	90	0.040511	8.91E-07	32	150	0.053794	9.38E-07
10000	\overline{y}_4	21	84	0.031568	9.96E-07	32	155	0.0541	5.90E-07
10000	y_5	28	112	0.05547	9.14E-07	30	147	0.062782	8.87E-07
	y_6	50	200	0.18221	3.37E-07	31	154	0.055032	5.36E-07
	y_7	60	239	0.18747	5.93E-07	38	205	0.074963	9.59E-07
	y_1	48	187	0.60608	3.42E-07	39	219	0.33566	7.35E-07
	y_2	19	72	0.12914	7.62E-07	37	194	0.26823	5.90E-07
	y_3	26	102	0.1525	3.17E-07	33	157	0.20113	5.81E-07
50000	y_4	34	136	0.3022	8.46E-07	34	163	0.22611	6.85E-07
20000	y_5	35	140	0.37456	8.13E-07	33	162	0.22718	9.63E-07
	y_6	75	300	1.3335	6.68E-07	33	162	0.21739	6.33E-07
	y_7	88	351	1.4975	5.17E-07	35	167	0.2218	5.56E-07
	y_1	64	251	1.7805	8.73E-07	37	181	0.4819	8.65E-07
	y_2	20	76	0.2093	3.27E-07	37	183	0.44101	5.07E-07
	y_3	26	102	0.37068	5.05E-07	33	159	0.40582	5.19E-07
100000	y_4	35	140	0.72236	5.66E-07	34	166	0.42738	7.31E-07
	y_5	40	160	0.77446	6.02E-07	35	173	0.47046	5.55E-07
	y_6	75	300	2.5582	4.79E-07	35	177	0.56666	8.85E-07
	117	98	391	3.6313	3.21E-07	35	168	0.43766	7 18E-07

TABLE 11. Numerical results for IDFPI and DFPI algorithms on problem 6.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	16	64	0.010483	3.56E-07	27	135	0.033919	6.16E-07
	y_2	16	64	0.009273	3.42E-07	27	135	0.014032	5.92E-07
	y_3	16	64	0.008048	3.01E-07	27	135	0.013855	5.22E-07
1000	y_4	15	60	0.007367	6.87E-07	26	130	0.01828	7.14E-07
	y_5	15	60	0.005634	5.52E-07	26	130	0.014308	5.73E-07
	y_6	15	60	0.006965	3.25E-07	25	125	0.019782	6.76E-07
	y_7	16	64	0.010309	3.05E-07	27	135	DFPI CPUT 0.033919 0.014032 0.013855 0.014308 0.014308 0.019782 0.016674 0.062147 0.062147 0.062147 0.062147 0.062147 0.053509 0.051204 0.051204 0.051204 0.050872 0.071807 0.11459 0.11246 0.10514 0.10514 0.10514 0.10514 0.10514 0.10359 0.11459	5.22E-07
	y_1	16	64	0.029797	7.98E-07	28	140	DFPI CPUT LN 0.033919 6.1 0.033919 6.1 0.014032 5.9 0.013855 5.2 0.013855 5.2 0.013855 5.2 0.014308 5.7 0.019782 6.7 0.016674 5.2 0.053856 6.6 0.053509 5.8 0.051204 8.0 0.050872 7.5 0.011459 7.3 0.11246 7.0 0.01514 9.0 0.11459 7.3 0.11246 7.0 0.11393 6.2 0.71122 0.49267 0.429267 0.74557 0.44817 0.42038 0.38266 0.49133 1.4108 1.9585 1.1235 1.0369 1.0626 0.95013 1.2456	6.90E-07
	y_2	16	64	0.027649	7.66E-07	28	140	0.053856	6.63E-07
	y_3	16	64	0.025924	6.75E-07	28	140	0.053509	5.84E-07
5000	y_4	16	64	0.02971	4.62E-07	27	135	DFPI CPUT 0.033919 0.014032 0.014032 0.0143855 0.014308 0.019782 0.0162147 0.053856 0.053856 0.053509 0.056174 0.056124 0.056674 0.056674 0.056674 0.056674 0.056674 0.056674 0.056674 0.056674 0.011459 0.11246 0.11246 0.11245 0.10514 0.10514 0.10514 0.10554 0.10554 0.10554 0.10554 0.10554 0.10554 0.10254 0.42038 0.38266 0.44817 0.42038 0.38265 1.2456	8.00E-07
	y_5	16	64	0.025478	3.71E-07	27	135	0.056674	6.42E-07
	y_6	15	60	0.023231	7.29E-07	26	130	0.050872	7.57E-07
	y_7	16	64	0.026982	6.80E-07	28	140	0.071807	5.90E-07
	y_1	17	68	0.060317	3.39E-07	29	146	0.11459	7.32E-07
	y_2	17	68	0.049807	3.25E-07	29	146	0.11246	7.04E-07
	y_3	16	64	0.047161	9.55E-07	29	146	0.11393	6.20E-07
10000	y_4	16	64	0.045383	6.54E-07	28	140	0.11162	5.66E-07
	y_5	16	64	0.055288	5.24E-07	27	135	0.10514	9.08E-07
	y_6	16	64	0.04654	3.09E-07	27	135	0.10359	5.35E-07
	y_7	16	64	0.047746	9.63E-07	29	146	DFPI CPUT 0.033919 0.014032 0.014032 0.013855 0.01828 0.019782 0.016674 0.053856 0.053509 0.051204 0.056124 0.056872 0.071807 0.014308 0.011459 0.11459 0.11246 0.11393 0.11246 0.10514 0.77122 0.42871 0.42038 0.329267 0.44817 0.42038 0.329267 0.44817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34817 0.42038 0.34813 1.4108 1.5855 1.1235 1.1235 1.2456	6.25E-07
	y_1	17	68	0.39191	7.57E-07	33	172	0.77122	0
	y_2	17	68	0.18194	7.27E-07	33	172	0.49267	0
	y_3	17	68	0.18105	6.41E-07	32	165	0.74557	0
50000	y_4	17	68	0.29297	4.38E-07	29	145	0.44817	0
	y_5	17	68	0.18165	3.52E-07	29	145	0.42038	0
	y_6	16	64	0.18681	6.91E-07	27	133	0.38266	0
	y_7	17	68	0.22631	6.46E-07	32	165	0.49133	0
	y_1	18	72	0.44716	3.21E-07	35	189	1.4108	0
	y_2	18	72	0.52194	3.09E-07	35	188	1.9585	0
	y_3	17	68	0.40182	9.06E-07	34	181	1.1235	0
100000	y_4	17	68	0.53042	6.20E-07	31	160	1.0369	0
	y_5	17	68	0.50865	4.98E-07	29	146	1.0626	0
	y_6	16	64	0.43562	9.78E-07	27	134	0.95013	0
	y_7	17	68	0.6718	9.13E-07	34	181	1.2456	0

To illustrate in detail the efficiency and robustness of Iner. DFPI, we start by performing some numerical experiments with different coefficients of the parameter β_k and the results are reported in Table 2 and 3. It can be observed from the

tables that the coefficient 0.01 is a good choice. In addition, we performed another numerical experiments with different sequences $\{\theta_k\}$ and the results are reported in Table 4 and 5. It can be observed from the tables that the sequence $\theta_k = \frac{1}{(2k+5)^2}$ is a good choice. We further employ the performance

 TABLE 12.
 Numerical results for IDFPI and DFPI algorithms on problem 7.

TABLE 14. Numerical results for IDFPI and DFPI algorithms on problem 9.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	8	32	0.003653	9.31E-08	7	35	0.088016	2.09E-07
	y_2	7	28	0.002498	7.06E-07	7	35	0.002876	1.30E-07
	y_3	6	24	0.002711	2.03E-07	5	25	0.002588	6.75E-07
1000	y_4	7	28	0.004252	1.86E-07	7	35	0.003619	5.39E-07
	y_5	8	32	0.004847	2.91E-07	7	35	0.005417	6.75E-07
	y_6	8	31	0.002989	3.19E-07	7	33	0.003767	6.55E-07
	y_7	9	36	0.003879	2.83E-07	10	50	0.005564	4.13E-07
	y_1	8	32	0.011319	2.08E-07	7	35	0.012628	4.68E-07
	y_2	8	32	0.010446	1.30E-07	7	35	DFP1 SFE CPUT 35 0.088016 35 0.002876 25 0.002876 35 0.003619 35 0.003619 35 0.005564 35 0.012628 36 0.012628 37 0.005564 38 0.012222 38 0.012237 36 0.019634 35 0.019634 35 0.019634 36 0.017956 40 0.021969 40 0.022905 50 0.06381 30 0.071966 40 0.021969 40 0.021969 40 0.021965 41 0.048954 417 0.08954 417 0.08954 41 0.14657 40 0.12051 41 0.14657 40 0.12051 41 0.14657 <td>2.90E-07</td>	2.90E-07
	y_3	6	24	0.007387	4.53E-07	6	30		9.64E-08
5000	y_4	7	28	0.008646	4.15E-07	8	40	0.011531	7.69E-08
2000	y_5	8	32	0.011077	6.51E-07	8	40	0.012222	9.64E-08
	y_6	8	31	0.011479	7.14E-07	8	38	0.012377	9.35E-08
	y_7	9	36	0.012983	6.29E-07	10	50	CPUT 0.088016 0.002876 0.002588 0.003619 0.005544 0.005564 0.005564 0.005564 0.005564 0.005564 0.005564 0.005564 0.005564 0.005564 0.0012628 0.012628 0.012628 0.012628 0.012551 0.012222 0.012377 0.016196 0.017965 0.017965 0.017965 0.017965 0.021969 0.022968 0.024966 0.033891 0.078752 0.06381 0.071067 0.12657 0.14657 0.14657 0.14657 0.14657 0.14657 0.14657 0.1732 0.2031 0.07732 0.2031 0.24561	9.76E-07
	y_1	8	32	0.016198	2.95E-07	7		6.62E-07	
	y_2	8	32	0.017598	1.84E-07	7	35	0.018425	4.10E-07
	y_3	6	24	0.015246	6.41E-07	6	30	0.017956	1.36E-07
10000	y_4	7	28	0.014948	5.87E-07	8	40	0.021969	1.09E-07
	y_5	8	32	0.018776	9.20E-07	8	40	0.020505	1.36E-07
10000	y_6	9	35	0.019481	8.34E-08	8	40	0.024966	1.36E-07
	y_7	9	36	0.025324	9.03E-07	11	55	0.033891	1.81E-07
	y_1	8	32	0.074381	6.59E-07	8	40	0.078752	9.46E-08
	y_2	8	32	0.057285	4.12E-07	7	35	0.06381	9.17E-07
	y_3	7	28	0.05958	1.18E-07	6	30	0.071067	3.05E-07
50000	y_4	8	32	0.11846	1.08E-07	9	47	0.08954	2.58E-07
	y_5	9	36	0.076652	1.70E-07	9	47	0.087936	2.69E-07
	y_6	9	35	0.0716	1.87E-07	9	47	0.091278	2.69E-07
	y_7	10	40	0.20552	1.66E-07	11	55	0.12051	4.06E-07
	y_1	8	32	0.11275	9.31E-07	8	41	0.14657	8.58E-07
		32	0.11906	5.83E-07	8	40	0.1458	8.28E-08	
	y_3	7	28	0.22704	1.67E-07	6	30	0.10972	4.31E-07
100000	y_4	8	32	0.12258	1.53E-07	9	47	0.17732	3.64E-07
	y_5	9	36	0.13371	2.40E-07	9	47	0.2031	3.81E-07
	y_6	9	35	0.24326	2.64E-07	9	47	0.16742	3.81E-07
	y_7	10	40	0.16384	2.36E-07	11	56	0.24561	4.69E-07

TABLE 13. Numerical results for IDFPI and DFPI algorithms on problem 8.

				IDFPI				DFPI	
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	9	32	0.004774	6.76E-08	14	84	0.047306	9.29E-07
	y_2	9	32	0.002911	6.76E-08	14	86	0.007059	9.29E-07
	y_3	9	32	0.004649	6.76E-08	14	89	0.006651	9.29E-07
1000	y_4	9	32	0.005168	6.76E-08	14	91	0.007693	9.29E-07
	y_5	9	32	0.003576	6.76E-08	14	92	0.012985	9.29E-07
	y_6	9	32	0.002819	6.76E-08	15	99	0.012506	9.29E-07
	y_7	93	340	0.033585	9.32E-07	-	-	-	-
	y_1	11	41	0.017931	2.99E-07	16	107	0.04506	4.92E-07
	y_2	11	41	0.014838	2.99E-07	16	109	0.032913	4.92E-07
	y_3	11	41	0.015599	2.99E-07	16	111	0.10903	4.92E-07
5000	y_4	11	41	0.072565	2.99E-07	17	129	0.038967	4.92E-07
	y_5	11	41	0.026755	2.99E-07	17	126	0.051708	4.92E-07
	y_6	11	41	0.020458	2.99E-07	18	142	0.04588	4.92E-07
	y_7	32	112	0.033263	8.56E-07	-	-	-	-
	y_1	8	29	0.051059	4.42E-07	11	75	0.052377	6.02E-07
	y_2	8	29	0.027061	4.42E-07	11	77	0.049877	6.02E-07
	y_3	8	29	0.023059	4.42E-07	11	80	0.10928	6.02E-07
10000	y_4	8	29	0.026803	4.42E-07	12	99	0.080173	6.02E-07
	y_5	8	29	0.028654	4.42E-07	13	107	0.079948	6.02E-07
	y_6	8	29	0.026353	4.42E-07	14	132	0.093111	6.02E-07
	y_7	27	102	0.065685	7.89E-07	-	-	-	-
	y_1	6	22	0.075446	1.89E-07	10	76	0.34388	4.68E-07
	y_2	6	22	0.15044	1.89E-07	10	78	0.2456	4.68E-07
	y_3	6	22	0.070266	1.89E-07	11	97	0.31595	4.68E-07
50000	y_4	6	22	0.069065	1.89E-07	14	154	0.54484	4.68E-07
	y_5	6	22	0.10305	1.89E-07	14	151	0.4634	4.68E-07
	y_6	6	22	0.11076	1.89E-07	16	201	0.75152	4.68E-07
	y_7	9	33	0.1275	7.76E-07	11	97	0.28241	4.68E-07
	y_1	8	31	0.22729	1.95E-07	8	65	0.40538	1.73E-07
	y_2	8	31	0.24876	1.95E-07	8	67	0.41492	1.73E-07
	y_3	8	31	0.21451	1.95E-07	10	104	0.72037	1.73E-07
100000	y_4	8	31	0.35928	1.95E-07	13	176	1.3032	1.73E-07
	y_5	8	31	0.21663	1.95E-07	14	202	1.4652	1.73E-07
	y_6	8	31	0.22028	1.95E-07	16	255	1.7952	1.73E-07
	y_7	11	43	0.36981	6.82E-07	11	115	0.85792	1.73E-07

profile proposed by Dolan and Morè in [50] in order to summarize Table 6-15. The profile is defined as follows:

$$\rho(\tau) := \frac{1}{|T_P|} \left| \left\{ t_p \in T_P : \log_2\left(\frac{t_{p,q}}{\min\{t_{p,q} : q \in Q\}}\right) \le \tau \right\} \right|$$

	IDFPI					DFPI				
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM	
	y_1	5	20	0.002775	5.46E-07	14	84	0.025842	7.75E-07	
	y_2	5	20	0.001703	3.25E-07	14	84	0.00484	4.70E-07	
	y_3	5	20	0.00257	3.10E-07	14	84	0.006867	4.48E-07	
1000	y_4	6	24	0.003117	5.36E-08	15	90	0.004959	7.58E-07	
	y_5	6	24	0.002628	7.25E-08	16	96	0.006006	3.01E-07	
	y_6	6	24	0.001932	1.04E-07	16	96	0.005295	4.32E-07	
	y_7	5	20	0.001605	6.86E-07	15	90	DPP1 DP21 CPUT 0.025842 0.00484 0.006867 0.004959 0.006066 0.0023128 0.007065 0.023128 0.013479 0.013479 0.013479 0.013479 0.0135418 0.0359113 0.0359113 0.0359113 0.035716 0.035716 0.033706 0.033706 0.033706 0.033706 0.033716 0.033706 0.03418 0.033706 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033146 0.22775 0.18641 0.12029 0.21042 0.30649 0.23014 0.3314 0.32012 0.3318 0.25118	2.93E-07	
	y_1	6	24	0.032784	3.64E-08	15	90	DFPI CPUT 0.025842 0.00484 0.006867 0.004959 0.006006 0.005295 0.007065 0.023128 0.013479 0.019939 0.018103 0.02335 0.018107 0.035418 0.033533 0.036702 0.035418 0.03356 0.034423 0.03156 0.22563 0.1461 0.11495 0.22775 0.18641 0.17079 0.21042 0.30649 0.26029 0.41442 0.3314 0.32012 0.53318	5.08E-07	
	y_2	5	20	0.004843	7.28E-07	15	90	0.013479	3.08E-07	
	y_3	5	20	0.00474	6.94E-07	15	90	0.019939	2.93E-07	
5000	y_4	6	24	0.005001	1.20E-07	16	96	0.018103	4.97E-07	
	y_5	6	24	0.028177	1.62E-07	16	96	0.059113	6.73E-07	
	y_6	6	24	0.005417	2.33E-07	16	96	0.02335	9.66E-07	
	y_7	6	24	0.004567	4.61E-08	15	90	0.018177	6.49E-07	
	y_1	6	24	0.009786	5.15E-08	15	90	0.035418	7.18E-07	
	y_2	6	24	0.013561	3.07E-08	15	90	0.033533	4.35E-07	
	y_3	5	20	0.009086	9.82E-07	15	90	0.036702	4.15E-07	
10000	y_4	6	24	0.009481	1.69E-07	16	96	0.039716	7.02E-07	
	y_5	6	24	0.02489	2.29E-07	16	96	0.033306	9.51E-07	
	y_6	6	24	0.012618	3.29E-07	17	103	0.034423	8.83E-07	
	y_7	6	24	0.009643	6.49E-08	15	90	DPP1 DP21 CPUT 0.025842 0.00484 0.006867 0.004959 0.006066 0.0023128 0.007065 0.023128 0.013479 0.013479 0.013479 0.013479 0.0135418 0.0359113 0.0359113 0.0359113 0.035716 0.035716 0.033706 0.033706 0.033706 0.033706 0.033716 0.033706 0.03418 0.033706 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033706 0.03418 0.033146 0.22775 0.18641 0.12029 0.21042 0.30649 0.23014 0.3314 0.32012 0.3318 0.25118	9.16E-07	
	y_1	6	24	0.040512	1.15E-07	16	96	0.22563	4.70E-07	
	y_2	6	24	0.038022	6.87E-08	15	90	0.1461	9.73E-07	
	y_3	6	24	0.04902	6.55E-08	15	90	0.11495	9.28E-07	
50000	y_4	6	24	0.039638	3.79E-07	18	109	0.22775	2.97E-07	
	y_5	6	24	0.034356	5.13E-07	18	110	0.18641	8.89E-07	
	y_6	6	24	0.039451	7.37E-07	20	126	0.17079	8.65E-07	
	y_7	6	24	0.047944	1.44E-07	16	96	0.21042	5.99E-07	
	y_1	6	24	0.070738	1.63E-07	16	96	0.30649	6.65E-07	
	y_2	6	24	0.096217	9.71E-08	16	96	0.26029	4.03E-07	
	y_3	6	24	0.1065	9.27E-08	16	96	0.41442	3.84E-07	
100000	y_4	6	24	0.084986	5.36E-07	18	110	0.33314	9.28E-07	
	y_5	6	24	0.071928	7.25E-07	20	126	0.32012	8.52E-07	
	y_6	7	28	0.089085	3.11E-08	22	142	0.53318	8.29E-07	
	y_7	6	24	0.096997	2.05E-07	16	96	0.2514	8.50E-07	

 TABLE 15. Numerical results for IDFPI and DFPI algorithms on problem 10.

				IDFPI	DFPI				
n	SP	NOI	NFE	CPUT	LNORM	NOI	NFE	CPUT	LNORM
	y_1	9	36	0.007359	7.97E-07	17	119	0.050153	8.17E-07
	y_2	10	40	0.006139	1.95E-07	18	126	0.017728	5.55E-07
	y_3	1	3	0.001581	0	1	3	0.00131	0
1000	\overline{y}_4	1	4	0.001474	0	2	11	0.003299	0
	y_5	1	3	0.001559	0	19	134	0.018093	7.43E-07
	y_6	1	4	0.001463	0	19	135	0.026692	8.51E-07
	y_7	11	44	0.011139	9.03E-07	19	133	0.019643	6.11E-07
	y_1	10	40	0.026382	2.84E-07	18	126	0.056932	6.85E-07
	y_2	10	40	0.025512	4.35E-07	19	133	0.060359	4.65E-07
	y_3	1	3	0.002706	0	19	133	0.077922	8.49E-07
5000	y_4	1	4	0.00444	0	20	141	DFPI CPUT 0.0501728 0.0017128 0.001738 0.001738 0.001738 0.001738 0.001738 0.001792 0.016643 0.06585 0.077922 0.06585 0.077922 0.06585 0.077922 0.06585 0.072448 0.12476 0.12265 0.12476 0.12265 0.12476 0.12275 0.12476 0.12476 0.12275 0.12476 0.12475 0.1441 1.1563 0.1475 0.14	8.56E-07
	y_5	1	3	0.002336	0	20	141		6.23E-07
	y_6	1	4	0.004291	0	21	151	0.06585	8.59E-07
	y_7	12	48	0.03001	3.47E-07	20	140	DFPI CPUT 1 0.050153 8 0.017728 5 0.00131 0.003299 0.018093 7 0.026692 8 0.019643 6 0.056932 6 0.060359 4 0.077922 8 0.065807 6 0.065807 6 0.06585 8 0.072448 4 0.12476 5 0.12265 6 0.12326 4 0.15724 4 0.15724 4 0.15724 4 0.15724 5 0.63901 2 0.64155 5 0.69792 5 0.69792 5 0.8938 7 1.171 2 1.2389 7 1.0994 2 1.356 2	4.97E-07
	y_1	10	40	0.047915	4.02E-07	18	126	0.12476	9.69E-07
	y_2	10	40	0.053406	6.15E-07	19	133	0.12265	6.58E-07
	y_3	1	3	0.004908	0	20	140	0.12326	4.51E-07
10000	y_4	1	4	0.005123	0	21	148	0.15724	4.54E-07
	y_5	1	3	0.003785	0	20	142	0.14843	8.59E-07
	y_6	1	4	0.010065	0	22	158	0.15989	4.56E-07
	y_7	12	48	0.060441	4.85E-07	20	140	DFPI CPUT 0.050153 0.017728 0.00131 0.0026692 0.019643 0.060359 0.060359 0.060359 0.060359 0.06685 0.077922 0.06685 0.012476 0.12476 0.12476 0.132724 0.132725 0.132726 0.132755 0.69901 0.59465 0.49973 0.63901 0.64155 0.6992 0.8938 0.5043 1.171 1.356 1.4711 1.673	7.04E-07
	y_1	10	40	0.15997	9.00E-07	19	133	DFP1 E CPUT 0 0.050153 5 0.017728 0.00315 0.00131 5 0.017728 0.003299 0.018093 5 0.026992 3 0.019643 5 0.056932 3 0.0177922 3 0.0077922 0 0.085871 1 0.065850 0 0.072448 5 0.12266 6 0.12326 8 0.15724 2 0.14843 8 0.15724 0 0.3272 3 0.32455 0 0.49973 7 0.64155 7 0.64155 7 0.64972 8 0.5938 9 1.171 0 1.2389 1 1.356 3 1.356 3 1.4711 7	8.13E-07
	y_2	11	44	0.41328	2.20E-07	20	140		5.51E-07
	y_3	1	3	0.019508	0	21	147	0.63901	3.78E-07
50000	y_4	1	4	0.023778	0	22	157	DFP1 CPUT 0.050153 0.017728 0.00131 0.003299 0.017728 0.00131 0.003299 0.019643 0.056932 0.019643 0.056937 0.055932 0.077922 0.08587 0.06585 0.077448 0.12265 0.12276 0.12276 0.12276 0.12276 0.12275 0.15724 0.14843 0.15989 0.13272 0.63901 0.64155 0.69792 0.8938 0.5043 1.171 1.2389 1.0994 1.356 1.4711 1.2389 1.0994 1.356 1.4711 1.6933 0.59465 1.4711 1.693 0.59465 0.4155 0.44153 0.5946 0.5043 0.504 0.50 0.50	9.89E-07
	y_5	1	3	0.017874	0	23	167	0.69792	9.89E-07
	y_6	1	4	0.033341	0	24	178	0.8938	9.93E-07
	y_7	13	52	0.24602	1.77E-07	21	148	CPUT 1 0.050153 8 0.017728 2 0.00131 0.003299 0.018093 2 0.019643 0 0.056932 0 0.06585 0 0.056952 0 0.056952 0 0.056952 0 0.05685 0 0.0585714 0 0.0585714 0 0.12265 0 0.12326 0 0.12326 0 0.12326 0 0.12326 0 0.12326 0 0.12326 0 0.13272 0 0.59445 0 0.69415 0 0.69792 0 0.8938 0 0.69415 0 0.6994 1.3356 1.4711 1.4932 1.673 2	7.42E-07
	y_1	11	44	0.48433	2.03E-07	20	140	1.171	4.31E-07
	y_2	11	44	0.33993	3.11E-07	20	140	1.2389	7.80E-07
	y_3	1	3	0.023354	0	22	155	1.0994	4.10E-07
5000 10000 50000	y_4	1	4	0.058607	0	25	183	1.356	4.59E-07
	y_5	1	3	0.030501	0	26	193	1.4711	4.59E-07
	y_6	1	4	0.057797	0	28	217	DFPI CPUT 0.050153 0.0017728 0.0017728 0.0017728 0.001728 0.001943 0.026692 0.0056932 0.0056932 0.0056932 0.06585 0.072448 0.12265 0.12276 0.12276 0.12276 0.12276 0.12276 0.12275 0.12476 0.12275 0.12476 0.12275 0.12476 0.12275 0.12476 0.12275 0.12475 0	4.72E-07
	u_7	13	52	0.61981	2.49E-07	22	155	1.1673	3.93E-07

where T_P is the test set, $|T_P|$ is the number of problems in the test set T_P , Q is the set of optimization solvers, and $t_{p,q}$ is the number of iterations (or the number of the function evaluations, or the CPU time (in seconds)) for $t_p \in T_P$ and

FIGURE 1. Performance profiles for the number of iterations.

FIGURE 2. Performance profiles for the number of function evaluations.

 $q \in Q$. The performance profile tells the percentage of win by each solver. Figures 1, 2 and 3 illustrate the performance of the two solvers (Iner. DFPI and DFPI) where the performance indices are the number of iterations, the number of function evaluations and the CPU time in seconds as reported in Tables 2-11. It can be observed from the figures that Iner. DFPI algorithm performs better with a higher percentage win of at least 90% in all the three metrics, i.e., number of iterations, the number of function evaluations and the CPU time. As a consequence, we can conclude that Iner. DFPI algorithm is an efficient solver. It is worth mentioning that the good numerical performance of the Iner. DFPI algorithm is as a result of the inertial term v_k , suitable control parameters such as ρ , σ and the sequence { θ_k }.

A detailed report of our numerical experiments is reported in Table 6-15 in the appendix section. The abbreviations on the tables can be read as follows:

n: denotes the dimension of the problem

SP: denotes the starting points

NOI: denotes the number of iterations

FIGURE 3. Performance profiles for the CPU time (in seconds).

NFE: denotes the number of function evaluations CPUT: denotes the CPU time in seconds LNORM: denotes the final norm

V. CONCLUSION

In this paper, we suggested an inertial derivative-free method for solving nonlinear monotone operator equation. Based on the DFPI method, an inertial term was added to it in order to speed up its convergence. We used some mild assumptions to establish the global convergence of the proposed inertial method. To support the theoretical results, we perform some numerical experiments on some benchmark test problems with the proposed method and the DFPI. The results indicate that the proposed inertial method is faster than DFPI.

APPENDIX

See Tables 2–15.

ACKNOWLEDGMENT

The author Auwal Bala Abubakar would like to thank the Postdoctoral Fellowship from King Mongkut's University of Technology Thonburi (KMUTT), Thailand. He also acknowledge with thanks, the Department of Mathematics and Applied Mathematics at the Sefako Makgatho Health Sciences University.

REFERENCES

- J. Chorowski and J. M. Zurada, "Learning understandable neural networks with nonnegative weight constraints," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 1, pp. 62–69, Jan. 2015.
- [2] T. Blumensath, "Compressed sensing with nonlinear observations and related nonlinear optimization problems," *IEEE Trans. Inf. Theory*, vol. 59, no. 6, pp. 3466–3474, Jun. 2013.
- [3] A. B. Abubakar, P. Kumam, H. Mohammad, and A. M. Awwal, "A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration," *J. Franklin Inst.*, vol. 357, no. 11, pp. 7266–7285, Jul. 2020.
- [4] E. J. Candes, X. Li, and M. Soltanolkotabi, "Phase retrieval via Wirtinger flow: Theory and algorithms," *IEEE Trans. Inf. Theory*, vol. 61, no. 4, pp. 1985–2007, Apr. 2015.

- [5] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi, "A nonconvex approach for phase retrieval: Reshaped Wirtinger flow and incremental algorithms," J. Mach. Learn. Res., vol. 18, no. 1, pp. 5164–5198, 2017.
- [6] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, *Power Generation*, *Operation, and Control*. Hoboken, NJ, USA: Wiley, 2013.
- [7] S. P. Dirkse and M. C. Ferris, "Mcplib: A collection of nonlinear mixed complementarity problems," *Optim. Methods Softw.*, vol. 5, no. 4, pp. 319–345, Jan. 1995.
- [8] K. Meintjes and A. P. Morgan, "A methodology for solving chemical equilibrium systems," *Appl. Math. Comput.*, vol. 22, no. 4, pp. 333–361, Jun. 1987.
- [9] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization," *Comput. Statist. Data Anal.*, vol. 52, no. 1, pp. 155–173, Sep. 2007.
- [10] D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst., 2001, pp. 556–562.
- [11] Z. Dai, X. Dong, J. Kang, and L. Hong, "Forecasting stock market returns: New technical indicators and two-step economic constraint method," *North Amer. J. Econ. Finance*, vol. 53, Jul. 2020, Art. no. 101216.
- [12] Z. Dai and J. Kang, "Some new efficient mean-variance portfolio selection models," *Int. J. Finance Econ.*, pp. 1–13, 2021, doi: 10.1002/ijfe.2400.
- [13] Z. Dai, H. Zhou, J. Kang, and F. Wen, "The skewness of oil price returns and equity premium predictability," *Energy Econ.*, vol. 94, Feb. 2021, Art. no. 105069.
- [14] A. H. Ibrahim, A. I. Garba, H. Usman, J. Abubakar, and A. B. Abubakar, "Derivative-free RMIL conjugate gradient method for convex constrained equations," *Thai J. Math.*, vol. 18, no. 1, pp. 212–232, 2019.
- [15] A. B. Abubakar, J. Rilwan, S. E. Yimer, A. H. Ibrahim, and I. Ahmed, "Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints," *Thai J. Math.*, vol. 18, no. 1, pp. 501–517, 2020.
- [16] A. H. Ibrahim, P. Kumam, A. B. Abubakar, W. Jirakitpuwapat, and J. Abubakar, "A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing," *Heliyon*, vol. 6, no. 3, p. e03466, 2020.
- [17] M. Sun and J. Liu, "Three derivative-free projection methods for nonlinear equations with convex constraints," J. Appl. Math. Comput., vol. 47, nos. 1–2, pp. 265–276, 2015.
- [18] A. H. Ibrahim, P. Kumam, A. B. Abubakar, J. Abubakar, and A. B. Muhammad, "Least-square-based three-term conjugate gradient projection method for ℓ₁-norm problems with application to compressed sensing," *Mathematics*, vol. 8, no. 4, p. 602, 2020.
- [19] A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf, and J. Rilwan, "Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery," *J. Nonlinear Convex Anal.*, vol. 21, no. 9, pp. 1959–1972, 2020.
- [20] A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad, and C. Tammer, "A modified descent Dai-Yuan conjugate gradient method for constraint nonlinear monotone operator equations," *Appl. Anal. Optim.*, vol. 4, pp. 1–24, Aug. 2020.
- [21] A. B. Abubakar, P. Kumam, A. H. Ibrahim, and J. Rilwan, "Derivative-free HS-DY-type method for solving nonlinear equations and image restoration," *Heliyon*, vol. 6, no. 11, p. e05400, 2020.
- [22] A. H. Ibrahim, P. Kumam, and W. Kumam, "A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration," *IEEE Access*, vol. 8, pp. 162714–162729, 2020.
- [23] A. H. Ibrahim, P. Kumam, A. B. Abubakar, U. B. Yusuf, S. E. Yimer, and K. O. Aremu, "An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration," *AIMS Math.*, vol. 6, no. 1, p. 235, 2020.
- [24] A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, A. B. Muhammad, L. O. Jolaoso, and K. O. Aremu, "A new three-term Hestenes-Stiefel type method for nonlinear monotone operator equations and image restoration," *IEEE Access*, vol. 9, pp. 18262–18277, 2021.
- [25] A. H. Ibrahima, K. Muangchoob, N. S. Mohamedc, and A. B. Abubakard, "Derivative-free SMR conjugate gradient method for con-straint nonlinear equations," *J. Math. Comput. Sci.*, vol. 24, no. 2, pp. 147–164, 2022.
- [26] A. B. Abubakar *et al.*, "FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations," *Arab. J. Math.*, 2021, doi: 10.1007/s40065-021-00313-5.
- [27] A. B. Abubakar et al., "PRP-like algorithm for monotone operator equations," Jpn. J. Ind. Appl. Math., 2021, doi: 10.1007/s13160-021-00462-2.

- [28] A. H. Ibrahim, K. Muangchoo, A. B. Abubakar, A. D. Adedokun, and H. Mohammed, "Spectral conjugate gradient like method for signal reconstruction," *Thai J. Math.*, vol. 18, no. 4, pp. 2013–2022, 2020.
- [29] A. H. Ibrahim and P. Kumam, "Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints," *Ain Shams Eng. J.*, vol. 12, no. 2, pp. 2205–2210, Jun. 2021.
- [30] H. Mohammad, "Barzilai-Borwein-like method for solving large-scale non-linear systems of equations," J. Nigerian Math. Soc., vol. 36, no. 1, pp. 71–83, 2017.
- [31] A. B. Abubakar and P. Kumam, "A descent Dai-Liao conjugate gradient method for nonlinear equations," *Numer. Algorithms*, vol. 81, no. 1, pp. 197–210, May 2019.
- [32] A. B. Abubakar and P. Kumam, "An improved three-term derivative-free method for solving nonlinear equations," *Comput. Appl. Math.*, vol. 37, no. 5, pp. 6760–6773, Nov. 2018.
- [33] A. B. Abubakar, P. Kumam, and H. Mohammad, "A note on the spectral gradient projection method for nonlinear monotone equations with applications," *Comput. Appl. Math.*, vol. 39, no. 2, pp. 1–35, May 2020.
- [34] H. Mohammad and A. B. Abubakar, "A descent derivative-free algorithm for nonlinear monotone equations with convex constraints," *RAIRO-Oper. Res.*, vol. 54, no. 2, pp. 489–505, Mar. 2020.
- [35] A. B. Abubakar, K. Muangchoo, A. H. Ibrahim, S. E. Fadugba, K. O. Aremu, and L. O. Jolaoso, "A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations," *J. Math.*, vol. 2021, pp. 1–9, Apr. 2021.
- [36] G. N. Ogwo, C. Izuchukwu, and O. T. Mewomo, "Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity," *Numer. Algorithms*, 2021, doi: 10.1007/s11075-021-01081-1.
- [37] N. Wairojjana, H. U. Rehman, N. Pakkaranang, and C. Khanpanuk, "An accelerated Popov's subgradient extragradient method for strongly pseudomonotone equilibrium problems in a real Hilbert space with applications," *Commun. Math. Appl.*, vol. 11, no. 4, pp. 513–526, 2020.
- [38] N. Wairojjana, H. U. Rehman, M. De la Sen, and N. Pakkaranang, "A general inertial projection-type algorithm for solving equilibrium problem in Hilbert spaces with applications in fixed-point problems," *Axioms*, vol. 9, no. 3, p. 101, Aug. 2020.
- [39] P. Cholamjiak, D. V. Thong, and Y. J. Cho, "A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems," *Acta Applicandae Mathematicae*, vol. 169, pp. 1–29, Nov. 2019.
- [40] D. V. Thong, N. T. Vinh, and Y. J. Cho, "Accelerated subgradient extragradient methods for variational inequality problems," J. Sci. Comput., vol. 80, no. 3, pp. 1438–1462, Sep. 2019.
- [41] D. V. Thong, X.-H. Li, Q.-L. Dong, Y. J. Cho, and T. M. Rassias, "An inertial Popov's method for solving pseudomonotone variational inequalities," *Optim. Lett.*, vol. 15, pp. 1–21, May 2020.
- [42] W. Cheng, "A two-term PRP-based descent method," Numer. Funct. Anal. Optim., vol. 28, nos. 11–12, pp. 1217–1230, Dec. 2007.
- [43] X. Y. Wang, S. J. Li, and X. P. Kou, "A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints," *Calcolo*, vol. 53, no. 2, pp. 133–145, Jun. 2016.
- [44] W. Takahashi, Introduction to Nonlinear and Convex Analysis. Tokyo, Japan: Yokohama Publishers, 2009.
- [45] A. Auslender, M. Teboulle, and S. Ben-Tiba, "A logarithmic-quadratic proximal method for variational inequalities," in *Computational Optimization*. Boston, MA, USA: Springer, 1999, pp. 31–40.
- [46] F. Facchinei and J.-S. Pang, *Finite-Dimensional Variational Inequalities* and Complementarity Problems. New York, NY, USA: Springer-Verlag, 2007.
- [47] W. La Cruz, J. M. Martínez, and M. Raydan, "Spectral residual method without gradient information for solving large-scale nonlinear systems: Theory and experiments," *Math. Comput.*, vol. 75, pp. 1429–1448, Apr. 2006. [Online]. Available: https://www.ime.unicamp.br/martinez/ lmrreport.pdf, doi: 10.1090/S0025-5718-06-01840-0.
- [48] Q. Li and D.-H. Li, "A class of derivative-free methods for large-scale nonlinear monotone equations," *IMA J. Numer. Anal.*, vol. 31, no. 4, pp. 1625–1635, Oct. 2011.
- [49] Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, and Z. Li, "Spectral gradient projection method for monotone nonlinear equations with convex constraints," *Appl. Numer. Math.*, vol. 59, no. 10, pp. 2416–2423, Oct. 2009.
- [50] E. D. Dolan and J. J. Moré, "Benchmarking optimization software with performance profiles," *Math. Program.*, vol. 91, no. 2, pp. 201–213, Jan. 2002.

...