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ABSTRACT With the ever-growing demand for even higher throughput, ultradense networks (UDNs) are
being deployed for the fifth generation (5G) mobile communications. Although massively distributed radio
access points (APs) result in a considerable increase in throughput, they also cause some critical problems.
When employing a wireless backhaul, the backhaul capacity becomes a limiting factor, which may result in
a high packet loss rate. Furthermore, dense deployment of APs leads to more frequent handoffs for mobile
user equipments, which results in heavy measurement and signaling overhead. To address the problem of
frequent handoffs, virtual cell (VC) has been considered as a promising solution. However, the limited
wireless backhaul capacity encountered by inflexible VC design may still result in an intolerable packet
loss rate. For a better trade-off between the packet loss rate and the handoff overhead, a machine learning
approach for flexible VC design is proposed that leverages particle swarm optimization (PSO) to quickly
find the optimal VC solution. To be responsive to the dynamic traffic demand and backhaul capacity of
APs, a new parameter called ‘‘weighted distance’’ is employed in the modified K-means algorithm, which
is nested in the PSO procedures for master AP selection and VC boundary determination. Compared with
an exhaustive search, optimal VC solutions can be found efficiently through considerably fewer iterations.
The proposed method is generic and applicable to disparate UDN application scenarios.

INDEX TERMS K-means clustering, mobility management, particle swarm optimization, resource man-
agement, ultradense networks, virtual cell.

I. INTRODUCTION
With the explosive growth of mobile traffic during recent
decades, the fifth generation (5G) mobile communication
system is in the stage of standardization and commercial
deployment. Throughput, spectral and energy efficiency, reli-
ability, and latency are the key driving forces when offering
various user-centric 5G services. To satisfy these require-
ments, the ultradense network (UDN) has been regarded as
one of the most critical technologies for 5G [1], [2]. By intro-
ducing low-power and low-cost radio access nodes, the den-
sity of radio access points (APs) increase greatly in UDN.
Thus, spectral efficiency is dramatically improved. More-
over, the densely deployed network faces many new chal-
lenges, which can be categorized into five key issues: flexible
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architecture, mobility management, resource management,
interference management, and security management [1], [3].

The proposed flexible virtual cell (VC) design aims to
solve the following two problems. The first problem is to
reduce the handoff overhead through mobility management.
Unlike traditional cellular networks, APs in UDN deploy
randomly and densely. The distance between two neighboring
APs can be as close as 10 m to offer seamless connections,
while the density of APs is comparable to the density of user
equipment (UE). The irregular deployment of APs is mainly
due to practical limitations of infrastructure deployment and
the opportunistic introduction of low-cost APs [2]. Mobile
UEs such as vehicular transceivers or mobile phones on a
vehicle are faced with unprecedented and frequent handoffs,
which may cause undesired heavy measurement and sig-
naling overhead. Moreover, the allowed handoff execution
time decreases significantly. If handoff procedures are not
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FIGURE 1. System model.

properly designed, then UE mobility will face an intolerable
handoff failure rate. Thus, mobility management is of crucial
importance.

The second problem is to maximize the network capacity
with wireless backhaul constraints through resource man-
agement. To satisfy the UE’s demand for quality of service
(QoS) no matter where it is located, user-centric service is
efficient when allowing access to multiple APs [4]. However,
due to the rapid increase of the AP density and different
QoS requirements for UEs, it is a complex task to allocate
radio resources such as bandwidth and time slots. Moreover,
prediction of incoming traffic and load balancing among
APs for context-aware resource allocation are challenging.
In addition to the problems above, low cost is yet another
vital goal. For some scenarios, it is economically impractical
to deploy wired backhaul for every AP. Therefore, capacity-
limited wireless backhaul may be employed to complement
the wired backhaul. In a typical scenario, APs are supported
with appropriate backhaul that can optimize jointly from the
topology, bandwidth, and power aspects [5].

In this article, in addition to inter-cell interference, both
handoff overhead and backhaul capacity are taken into con-
sideration when forming VCs. VC formation is the process
of spectrum allocation, as all APs in the same VC share
the same channel(s). For the proposed flexible VC design,
the master AP, which manages the backhaul of all user data
within the VC and monitors inter-VC handoffs, needs to be
dynamically selected. Generally, the master AP is located
near the center of the slave APs. Therefore, each VC can be
regarded as a cluster that contains a master AP and several
slave APs. At the same time, the VC design can be considered
as a clustering problem with multiple constraints. An optimal
VC design scheme needs to trade off the packet loss rate
and inter-VC handoff overhead. As can be seen from Fig. 1,
if the coverage of a VC is too extensive, then the demand for
backhaul within the VC may exceed the backhaul capacity

of the master AP, causing a high packet loss rate. When the
total required throughput exceeds the backhaul capacity of
the master AP, the packet loss rate of the associated VC will
deteriorate. In addition, if the VC is too small, then a mobile
UE will face frequent handoffs between VCs. An inter-VC
handoff is triggered when the VC with which a UE is asso-
ciated is changed. When the whole region confronts high
mobility, heavy inter-VC handoff overheadwill occur. Hence,
the coverage of each VC cannot be too large or too small
when backhaul constraint and inter-VC handoff overhead are
jointly taken into consideration.

To address the problems above, the number of VCs,
which corresponds to the optimal VC solution, needs to
be determined by a clustering algorithm. In the traditional
approach, an exhaustive search is used to calculate the
performance with a different number of clusters, but this
tends to be inefficient. Instead, particle swarm optimization
(PSO) is used. This is a distributed artificial intelligence
(AI) algorithm that can be implemented by parallelizing the
operation of each particle. It is more efficient than an exhaus-
tive search. K-means is a classic clustering method with the
advantages of simplicity and high efficiency. Considering
the limitation of the backhaul capacity, it may lead to a
high packet loss rate. Therefore, we define the ‘‘weighted
distance’’ and propose a weighted-distance-based K-means.
The main contributions of this article are summarized as
follows.
• We expose the main challenges that arise in VC design
suitable for various UDN application scenarios. Then,
we present a machine-learning-based approach for flex-
ible VC design. It can be employed to find the optimal
number of clusters and VC boundary to better trade off
the handoff overhead and packet loss rate.

• We define a new parameter termed ‘‘weighted distance’’
by considering the backhaul capacity. It is proven in
this article that network performance is enhanced when
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the weighted distance replaces the actual distance in
K-means.

• We leverage PSO and modified K-means clustering to
dynamically change the coverage of VCs to adapt to
varying traffic requirements and backhaul constraints in
scenarios with mobile UEs. This is more generic and
applicable to various UDN application scenarios.

The rest of this article is organized as follows: We review
the related work in Section II. The system model is presented
in Section III. We discuss the proposed machine-learning-
based flexible VC design procedures in detail in Section IV.
After that, the performance of the proposed VC design
scheme and simulation results are given in Section V. Finally,
Section VI concludes this article.

II. RELATED WORKS
From the perspective of mobility management, cell virtual-
ization can be an attractive approach to dealing with mobility
problems. In [6], a VC-based mobility enhancement design
was proposed to offer seamless coverage and improve handoff
performance. In this article, a VC is dynamically formed with
multiple APs that cooperatively serve a UE. However, the VC
forming or reforming procedure involves high complexity
and a large number of UEs. Therefore, another VC design
for seamless connectivity and senselessmovingwas proposed
in [7]. This is a local-anchor-based architecture that contains
a static cluster of APs. UEs within a VC can select multiple
serving APs according to their different channel conditions.
The local anchor takes the responsibility of managing the
backhaul of all user data within the VC as well as handoffs
for UEs within the same VC or between different VCs. In this
work, the backhaul between the local anchor and the core
network is assumed to be ideal (i.e., the backhaul capacity
is unlimited), and only static VC is considered for hot-spot
application scenarios such as highly dense business or resi-
dential buildings. Although the formation of VC is simplified,
the VC may not be flexible enough to accommodate the
dynamic traffic requirements of mobile UEs.

As the most important branch of AI, machine learning
(ML) has great potential to solve these complicated prob-
lems in UDN. Recently, ML-based algorithms were pro-
posed for resource management and mobility management.
The extracted information can be used to build an efficient
decision-making system by using ML algorithms, which
helps to explore regularities in complicated wireless envi-
ronments such as UDNs [8]. For example, by employ-
ing deep reinforcement learning (DRL), a method that can
achieve a trade-off between spectrum efficiency, energy effi-
ciency, and fairness was proposed for resource allocation
in UDN. Furthermore, it significantly outperformed tradi-
tional algorithms [9]. Cluster-based resource management
issues in UDN have been studied extensively. For example,
in [10], the authors introduced a clustering-based resource
allocation framework for downlink transmission in UDN to
address the challenges of large communication overhead and

inter-cluster interference. In addition, a hierarchical resource
allocation framework was proposed in [11] to include four
stages: clustering, intra-cluster subchannel allocation, inter-
cluster collision resolution, and power adjustment. This was
verified to achieve satisfactory system performance with a
faster convergence speed. Similarly, a cluster-based energy-
efficient resource allocation scheme was proposed to mitigate
the interference and boost energy efficiency in UDN [12].
Instead of employing a predetermined fixed number of clus-
ters, a modified K-means algorithm was utilized in the BS
clustering process to dynamically adjust the number of BS
clusters according to the BS density [12].

In [13], the authors presented a comprehensive review of
impediments to the wide deployment of UDN. They pro-
posed a software-defined space-air-ground integratedmoving
cells (SAGECELL) architecture, which is a programmable
and flexible framework to integrate space, air, and ground
resources for matching dynamic traffic demands with net-
work capacity supplies. It was also envisioned that network
function virtualization can be employed to create VC in
SAGECELL [13]. However, it should be noted that the real-
ization of SAGECELL heavily relied on not only the ultra-
dense deployment of moving cells but also efficient resource
sharing of different types of network elements among multi-
ple operators or parties.

To satisfy the demanding requirements of 5G communica-
tions, cognitive radio (CR)-based dynamic spectrum access
(DSA) has been widely investigated as an important enabling
technology. In DSA systems, secondary users (SU) may
access the spectrum of licensed primary users (PU) oppor-
tunistically on a non-interference basis. For 5G networks,
multi-tier or hierarchical spectrum access systems (SAS)with
different priorities and QoS requirements were proposed in
which each tier has different QoS requirements [14]. As an
example, the U.S. President’s Council of Advisors on Science
and Technology (PCAST) recommended a three-tier hierar-
chy (i.e., federal primary access, priority secondary access,
and general authorized access) for access to the federal spec-
trum [15]. In this three-tier architecture, the first-tier users
are entitled to interference protection to a level such that their
communication performance requirements are satisfied. The
second-tier users receive short-term priority authorizations,
while third-tier users are entitled to use the spectrum on an
opportunistic basis and are not entitled to interference pro-
tection. In the U.S., the FCC proposed a dynamic spectrum
management framework for the Citizen Broadband Radio
Service (CBRS) governed by SAS [16]. However, the spec-
trum allocation in the current 3.5 GHz CBRS standard
only considers co-channel interference from neighboring
cells.

Different from the related works above, we propose a
method to find an optimal VC solution and select the mas-
ter AP by leveraging PSO and weighted distance-based
K-means. Instead of an exhaustive search, PSO is used
to reduce the search time, in which modified K-means is
executed for every iteration. Moreover, in our proposed
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algorithms, network fitness is defined to better trade off the
packet loss rate and the handoff overhead.

III. SYSTEM MODEL
Since small cells are currently widely deployed, we focus on
resource management and mobility management in a single-
tier UDN with an architecture of small cells. Fig. 1 shows the
system model. We consider a single-tier UDN with a large
number of APs distributed in a region following the hard core
point process (HCPP), in which no two points of the process
coexist with a separating distance shorter than a predefined
hard core parameter rh [17]. UEs are randomly distributed
with different demands on backhaul and mobility trajectories.
The set of all APs is denoted as C = {1, 2, . . . ,M}, where
M is the total number of APs. A VC is a cluster of APs
that contains a master AP and several slave APs. To make
the VC design more practical, the backhaul between the core
network and APs is assumed to be wireless with limited
capacity. The coverage of VC dynamically changes to adapt
to different traffic requirements and user mobility scenarios.

We consider the packet loss rate and number of inter-
VC handoffs as the network performance indicators. Packet
loss occurs when the throughput requirements exceed the
backhaul capacity, so the packet loss rate in the n-th VC (Pn)
is estimated by

Pn =


Rsumn − Cn
Rsumn

, Rsumn > Cn

0, Rsumn ≤ Cn
(1)

where Rsumn is the sum throughput demand from all UEs in the
n-th VC, and Cn is the backhaul capacity of the master AP in
the n-th VC. Inter-VC handoffs occur when the moving UEs
pass through the VCs.

Modified hyperbolic tangent functions (i.e., f -function)
can be employed to evaluate network performance and can
accommodate a large range of performance variations and
capture the value of the service to the user quite naturally [18].
The f -function can be written as

fi(x, x0) =
1
2
{tanh[σi(ηi − x

/
x0)]+1} (2)

where x and x0 are the performance metric and its target
value, respectively; σi (i= 1, 2) is a spread parameter; and ηi
(i = 1, 2) is threshold of x/x0.
When considering the packet loss rate, Pn is actually x/x0.

Then, the fitness of the n-th VC can be calculated by

f1 (Pn) =
1
2
{tanh[σ1(η1 − Pn)]+ 1} (3)

where σ1 is a spread parameter, and η1 is threshold of Pn.
If the estimated packet loss rate surpasses the packet loss
threshold that the network can tolerate, then the correspond-
ing fitness drops quickly close to zero. Furthermore, the fit-
ness of the average packet loss rate is estimated by

Upl =
1
K

K∑
n=1

f1(Pn) (4)

where K denotes the number of VCs.

For a feasible VC scheme, the number of boundary cross-
ings made by mobile UEs (i.e., Ho) is estimated based on the
instantaneous velocity of UEs and the geographical informa-
tion (e.g., a street map). Generally, a handoff threshold (Hth)
is defined according to the capability of the networks to deal
with inter-VC handoffs. Similarly, the fitness accounting for
inter-VC handoff can be calculated by

f2 (Ho,Hth) =
1
2
{tanh[σ2(η2 − Ho

/
Hth)]+ 1} (5)

where σ2 is a spread parameter, and η2 is the threshold of
Ho/Hth. If the estimated total number of handoffs exceeds
the handoff threshold, then the corresponding fitness value
becomes extremely small.

FIGURE 2. Fitness function corresponding to packet loss rate vs. handoff
overhead.

The fitness function corresponding to the packet loss rate
vs. handoff overhead decreases according to the trend shown
in Fig. 2. When x/xo equals the threshold (ηi), the fitness
is 0.5. Spread parameter (σi) determines the decline rate
of fitness. The larger the parameters, the faster the fitness
decreases.

To better trade off the packet loss rate and inter-VC hand-
offs, the network fitness (Unet ) is introduced. The network
fitness of a VC design scheme is calculated by jointly consid-
ering backhaul constraints and the estimated inter-VC hand-
off overhead, and indicates how well a solution balances the
packet loss rate and handoff overhead. It is calculated by

Unet = α
1
K

K∑
n=1

f1(Pn)+ βf2(Ho,Hth) (6)

which is a weighted combination of two parts, namely,
the average utility of all VCs in the network according to
the estimated packet loss rate in each VC and the system
overhead according to the number of estimated inter-VC
handoffs (Ho). Note that the sum of two weights equals 1
(i.e., α+ β = 1). Therefore, the process of finding the optimal
VC design is actually the process of optimizing the network
fitness.
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IV. PROPOSED VC DESIGN
In this section, an ML-based flexible VC design approach
is detailed that aims to enable scenario-aware flexible
VC designwhile taking related factors such as traffic demand,
packet loss rate, and handoff overhead into consideration.
The flexible VC design scheme is adaptable to dynamic traf-
fic requirements, mobility scenarios, and different network
topologies.

The VC design consists of two interlocking procedures:
determination of the number of VCs for the given scenario
and boundary determination for all VCs, and selection of the
master AP for each VC. Obviously, it is difficult to know
beforehand into how many VCs the whole region should be
divided, and what the coverage of each VC should be. As a
design criterion, if a region features high user mobility and a
light burden on backhaul, then the coverage ofVC is preferred
to be large. Otherwise, if a region features low user mobility
and a heavy burden on backhaul, then the VC coverage tends
to be small. In other circumstances, these two key factors
need to be carefully weighed. As a prior estimation of inter-
VC handoff overhead is needed in order to evaluate the
performance of the VC design, the VC boundary needs to be
determined before estimating the number of handoffs for a
candidate VC scheme.

In this article, the proposed VC design algorithm lever-
ages PSO and the modified K-means clustering algorithm
to solve the above-mentioned problems. Each particle exe-
cutes a modified K-means to find the optimal AP clustering
under a certain number of VCs. In order to evaluate the
performance of the scheme given by the modified K-means,
the corresponding VC boundary is generated by employing
Voronoi tessellation. Multiple particles run in parallel to find
the optimal number of VCs and the corresponding VC design
scheme. Next, the detailed design of PSO and the modified
K-means algorithms are discussed.

A. FINDING OPTIMAL NUMBER OF VCs
For different user traffic distributions, user mobility patterns,
and AP distribution scenarios, the optimal number of VCs
can be as large as the total number of APs or as small as one.
When there is a great number of APs, it is highly inefficient to
search for every possible number of VCs and the correspond-
ing optimal coverage of each VC exhaustively. Thus, PSO is
employed to speed up the search process. The optimization
process is executed by particles distributed randomly in the
search space. Multiple particles that form a population move
in the search space for the best solution. A particle is an
independent agent that can combine the experience of itself
with its companions.

The search space spans 1 to M . In each iteration, all parti-
cles will move toward better positions by adjusting two key
parameters: velocity and position. The velocity of a particle
determines the direction and the step size it will choose. The
position of each particle is updated according to the updated
velocity. The position of a particle represents the number

of VCs. Therefore, the velocity and position are both integers,
which are updated by

vk+1i = vki +
〈
φ1r1(gbestk − yki ) + φ2r2(pbest

k
i − y

k
i )
〉

(7)

yk+1i = yki + v
k+1
i (8)

where vk+1i and vki represent the current and previous veloci-
ties of the i-th particle, respectively; yk+1i and yki are the cur-
rent and previous positions of the i-th particle, respectively;
φ1 and φ2 are acceleration factors; r1 and r2 are random
numbers between [0, 1]; pbesti is the best fitness of the i-th
particle; gbest is the global best fitness; and 〈·〉 means to
round the value.

Maximum and minimum values are set for velocity and
position. When the value exceeds the maximum, it will equal
the maximum. The same occurs when the value is less than
the minimum.

Each particle can turn toward a better position in each iter-
ation because there are two important parameters: pbest and
gbest . In each iteration, every particle updates the best posi-
tion and the corresponding best fitness pbest throughout the
current iteration. The global best fitness gbest is updated and
shared among all particles. Particles update their positions
according to the respective best fitness and global fitness.
The process of searching for gbest is the process of searching
for the optimal network fitness. The entire search process
stops when the network fitness converges or the number of
iterations reaches maximum. The major pseudocode of the
PSO procedure is shown in Algorithm 1 below.

Algorithm 1 Finding Optimal VC Solution by PSO
1: Randomly select Np different locations from [1, M ] as

initial locations of Np particles
2: Initialize gbest
3: for each particle i do
4: Calculate Unet leveraging the modified K-means and

VC boundary determined by Voronoi
5: Initialize pbesti
6: end for
7: repeat
8: for each particle i do
9: Update velocity vi according to gbest and pbesti

10: Update position yi
11: Calculate Unet
12: Update pbesti
13: Update gbest by choosing the particle with the best

Unet
14: end for
15: until gbest converges or reaches the maximum number

of iterations

B. DETERMINING APPROPRIATE BOUNDARY
BETWEEN VCs
In order to find an optimal VC design scheme under a certain
number of VCs generated by a particle of PSO, the proposed

VOLUME 9, 2021 91579



Z. Cheng et al.: Flexible VC Design for UDNs: Machine Learning Approach

algorithm can be divided into two stages: the AP-clustering
stage and the boundary determination stage. We utilize the
modified K-means method in the AP-clustering stage by con-
sidering the dynamic demand on the backhaul surrounding
the AP centroid and the backhaul capacity of the AP centroid.
Then, in the second stage, Voronoi is employed to determine
the VC boundary and calculate the corresponding network
fitness of the generated AP clustering scheme.

For the proposed flexible VC design, we introduce the
weighted distance for the modified K-means algorithm,
where the weighting factor (w) is set proportionally to the
ratio of the AP centroid’s backhaul demand to its backhaul
capacity limit. For example, the weighting factor for the i-th
cluster (wi), which is calculated when clustering all APs into
K clusters, is defined by

wi =
Ri/Ci∑K
k Rk/Ck

(9)

where Ri and Ci denote the backhaul demand surrounding the
i-th AP centroid and the backhaul capacity limit of the i-th
AP centroid, respectively. Then we can define the weighted
distance between the i-th AP centroid and the m-th AP by

Dmi = widmi (10)

where dmi represents the geometrical distance between the
i-th AP centroid and the m-th AP. If Dmi < Dmj is satisfied
∀j ∈ [1,K ](j 6= i), then we tend to add APm to the i-th cluster.
Therefore, the weighting factor indicates that the higher the
backhaul demand on the i-th cluster, the lower probability that
APm will be added into the i-th cluster. By contrast, the larger
the backhaul capacity of the i-th AP centroid, the higher
probability that APm will be assigned to the i-th cluster.
The weighted distance, which considers both the geometric
distance and the backhaul demand and capacity, can adapt to
the dynamic traffic demand and backhaul capacity of APs.

We use a combination of PSO and modified K-means in
which each particle searches for an optimal solution in the
updated position through the modified K-means algorithm.
Assuming that the updated position of a particle is K in
one iteration, we divide all APs in the entire region into
K clusters based on the modified K-means algorithm. The
modified K-means clustering, which determines the coverage
of each VC, jointly considers the user traffic demand on
backhaul surrounding the AP centroid and the limited back-
haul capacity between the master AP centroid and the core
network. Thus, a VC design scheme is formed that can adapt
to disparate UE requirement scenarios and AP distribution
scenarios. At the beginning of the procedure, we selectK APs
with a minimum distance longer than rKh as initial centroids.
To maintain sufficient distance between the initial centroids,
rKh is defined by

rKh = rh ×

√
M
K

(11)

where rh is the minimum distance between APs, M is the
number of APs, and K is the number of clusters, which

changes dynamically in each iteration. Then, in each iteration,
we group APs into a cluster with the minimum weighted
distance. In the traditional K-means, the centroid of each
cluster is not necessarily a clustering AP. In contrast, in our
modified K-means algorithm, we select the AP closest to the
geometric center as the new centroid of a cluster in the next
iteration. After the algorithm stops iterating, current centroids
are selected as master APs of this VC design scheme.

Algorithm 2 Selecting Master AP and Determining
VC Boundary by Modified K-Means

1: Select K APs with a minimum distance greater than rKh
as initial centroids

2: repeat
3: for each AP m do
4: for each cluster i do
5: Calculate Dmi
6: if Dmi is the minimum weighed distance of APm

then
7: Add APm to the i-th cluster
8: end if
9: end for
10: end for
11: for each cluster i do
12: Select the closest AP to the geometric center as new

centroid
13: end for
14: until The positions of cluster centroids stay the same as

last iteration
15: Generate the boundary of the VCs by Voroni
16: Calculate Unet //, and then update the pbest of each

particle in Algorithm 1

In the next stage, the VC boundary is determined so that
we can estimate the inter-VC handoff overhead and average
packet loss rate of the network. Due to the spatial randomness
distribution of APs and the uncertainty of the number of
APs in a VC, the VC boundary is usually irregular. Voronoi
is a mathematical tool that can form a planar graph called
Voronoi tessellation. It is constructed using perpendicular
lines that bisect the segment between two points [17]. The
VC boundary is determined by Voronoi tessellation. First,
Voronoi is employed to generate the boundary of each AP.
Each Voronoi cell can be taken as the coverage of each small
cell. Second, multiple APs that belong to the same cluster are
combined to form the coverage of each VC. In this way, a VC
scheme under a certain number of VCs is formed. Finally,
Unet is calculated by a weighted combination of f1 and f2.
The pseudocode of modified K-means procedures for master
AP selection and VC boundary determination is shown in
Algorithm 2 below.

The time complexity of the K-means clustering algo-
rithm is O(KlN ). In this work, K is the number of clusters,
N is the number of APs, and l is the number of itera-
tions of K-means [19]. In our modified K-means algorithm,
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employment of the weighted distance will not affect the com-
plexity, and K is far lower than N . Therefore, the complexity
can reduce to approximately O(lN ). Furthermore, the com-
plexity of Algorithm 1 is approximately equal to O(mlN +
mI ) ∼ O(lN + I ), where I is the number of iterations of PSO
and m is the number of particles, which is far lower than N
and I .

V. SIMULATION RESULTS
In this section, we evaluated the performance of the proposed
VC design algorithm. The simulation parameters are listed
in Table 1.

TABLE 1. List of simulation parameters.

As shown in Table 1, the simulation area is
1000 m × 1000 m, in which 100 APs are generated as an
HCPP. The minimum distance between APs (rh) is set
to 60 m. The backhaul capability of APs ranges from
30 to 100 Mbps. Two hundred UEs with traffic demands are
randomly distributed and move in the simulation area. The
velocity of the UEs varies from 0 to 100 km/h. The number of
particles in the PSO is 3. The weight for packet loss (α) is 0.6,
and the weight for handoff overhead (β) is 0.4 in the simula-
tion. The inter-VC handoff threshold (Hth) is set to 60. To ver-
ify the advantages of the proposed algorithm implementing
PSO nested with modified K-means, an exhaustive search is
conducted as a performance comparison. At the same time,
to evaluate clustering performance, a direct clusteringmethod
is used as a baseline approach for comparison.

Fig. 3 shows the initial Voronoi cell. Each triangle repre-
sents an AP. When adopting different VC design schemes,
various boundaries of VCs are generated.

Fig. 4 and Fig. 5 show the estimated average packet loss
rate and total number of inter-VC handoffs of the network
when using the exhaustive search, respectively. As expected,
when the number of VCs increases, the average packet loss
rate of the network decreases while the inter-VC handoff
overhead increases gradually. As shown in Fig. 4, com-
pared with the traditional K-means and baseline method,

FIGURE 3. Boundary of each AP coverage generated by Voronoi (Note:
each triangle represents an AP).

FIGURE 4. Average packet loss rate vs. number of VCs by exhaustive
search.

FIGURE 5. Number of inter-VC handoffs vs. number of VCs by exhaustive
search.

the packet loss rate is significantly reduced when using the
weighted distance. Furthermore, in Fig. 5, the number of
handoffs can be also reduced with proper VC design. This
indicates that the weighted distance we proposed is more
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FIGURE 6. Network fitness generated by exhaustive search.

FIGURE 7. Network fitness generated by PSO.

suitable for wireless backhaul demand and capacity in UDN
than the geometric distance.

Fig. 6 shows the network fitness through an exhaustive
search, while Fig. 7 shows the network fitness of the optimal
scheme found through several rounds of PSO iterations.
It can be seen that the proposed PSO algorithm converges
within 2 iterations and obtains an optimal network fitness
of 0.87. When using the exhaustive search, we also find the
optimal network fitness is 0.87. This proves that PSO can
find the same optimal network fitness attained by an exhaus-
tive search with a significantly fewer number of iterations.
Thus, the proposed algorithm can dramatically speed up the
process of searching for the optimal VC design scheme.
Moreover, as can be seen from Fig. 6 and Fig. 7, the pro-
posed modified K-means (using weighted distance) algo-
rithm also contributes to an even higher optimal network
fitness as compared with the baseline method and the tradi-
tional K-means clusteringmethodwithout using the weighted
distance. Therefore, the modified K-means has better clus-
tering performance when considering the backhaul capacity
constraint.

FIGURE 8. Optimal VC clustering scheme (Note: each triangle represents
an AP, all triangles with same color belong to same VC, and triangle with
circle is selected master AP).

FIGURE 9. Optimal VC boundary scheme (Note: each triangle represents
an AP. Coverage of each VC is shown in same color, and triangle with
circle is selected master AP).

The best VC scheme leveraging PSO and modified
K-means algorithm is shown in Fig. 8, in which the triangles
with the same color belong to the same VC. APs surrounded
by circles are selected as master APs by employing the mod-
ified K-means, and the number of circles is also the number
of optimal VCs. Fig. 9 shows the boundary of the optimal
VC scheme, which is the best clustering scheme with the
maximum network fitness. Compared with Fig. 9, it is obvi-
ous that many different colored Voronoi VCs are formed,
where the coverage of each VC is shown in the same color.
Moreover, Fig. 9 also presents the clustering result with the
best network fitness via modified K-means.

VI. CONCLUSION
In this article, considering the huge handoff overhead and
high packet loss rate encountered by inflexible VC design for
UDN, amachine-learning-based flexible VC design approach
was proposed. We utilized PSO in searching for the optimal
VC scheme. The optimal network fitness was quickly attained
via a small number of PSO iterations. A modified K-means
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algorithm which adopts the weighted distance was nested
in PSO, enabling cluster APs according to their dynamic
traffic demand and backhaul capacity. It was revealed through
our simulation analysis that an irregular network topology,
dynamic traffic demand on backhaul capacity, and mobility
of UEs can be captured by the proposed algorithm in a timely
and efficient fashion. Thus, the proposed method is generic
to various UDN application scenarios.

In future work, heterogeneous UDN scenarios will be fur-
ther considered, where other network performance metrics
(e.g., handoff delays and VC deployment costs) can be eval-
uated. In addition, the proposed VC design scheme can be
further validated and improved with a test bed or field test.
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