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ABSTRACT Unum type-II based Sets-Of-Real-Numbers (SORN) arithmetic is a recently proposed, promis-
ing number representation providing fast and low complex implementations of arithmetic operations at the
expense of low resolution. The format can be applied for constraining large optimization problems by means
of preprocessing. In this work SORN arithmetic is applied for reducing the latency of a Sphere Decoder by
excluding a number of solutions in advance. In particular, a comprehensive hardware implementation is
presented, consisting of an adapted Sphere Decoder, as well as SORN and matrix preprocessing. Logic and
physical synthesis evaluations show that the mean number of visited nodes within the Sphere Decoder can be
reduced by up to 76%, resulting in an overall latency reduction of up to 20%. This improvement comes with
an area and energy increase of up to 58% and 83%, respectively, compared to a standard Schnorr-Euchner
Sphere Decoder.

INDEX TERMS Unum, SORN, digital arithmetic, MIMO, sphere decoding.

I. INTRODUCTION AND RELATED WORK
The representation of numbers in digital systems and
their manipulation in terms of arithmetic operations is
still a paramount challenge for the design of modern
high-performance digital circuits and systems [1]. Besides
trivial integer formats, fixed point (FxD) and floating point
are the two common alternatives for representing real num-
bers in computer architectures and digital signal processing
circuits [2]. In particular, the IEEE-754 standard for float-
ing point arithmetic [3] dominated the market for decades.
Beyond that, also logarithmic number formats have turned
out to be a suitable choice in some special purpose appli-
cations, e.g for solving recursive least-squares problems or
computing the roots of a polynomial using the Laguerre
algorithm [4].

In the recent decade, several new number formats were
proposed [5]. A highly interesting candidate is the universal
number format Unum, presented in three different versions,
all targeting to overcome the limitations of State-of-the-
Art (SotA) formats like traditional floats. Whereas type-I
Unums [6] exploit implicit Interval Arithmetic (IA) in order
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to avoid the propagation of rounding errors, the type-III
Unum approach [7] basically extends traditional floats by an
extra scale factor and amore flexible interpretation of fraction
and exponent field widths, resulting in a higher dynamic
range without increasing the wordlength.

The type-II Unum format and the resulting SORN repre-
sentation [8] denote a coarse resolution format exploiting IA
and enabling fast and low complex datapaths. The SORN rep-
resentation consists of exact values and intervals. Arithmetic
operations are mapped to lookup tables (LUTs) which are
highly appropriate for hardware implementation. This kind
of arithmetic is especially well suited for constraining large
optimization problems by means of preprocessing for exam-
ple when solving linear or nonlinear systems of equations [8].

A possible target application for such kind of arithmetic
is the symbol detection at the receiver in a Multiple-Input-
Multiple-Output (MIMO) wireless communication system,
where a finite-alphabet-constrained least-squares problem
has to be solved in order to reconstruct the transmitted
data [9]. SORN arithmetic applied to MIMO symbol detec-
tion was first introduced in [10], where the basic idea of a
SORN preprocessor in such a scenario was evaluated. The
presented SORN preprocessing unit reduces the number of
possible solutions for the MIMO detection problem in order
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to simplify SotA detectors. In [11] the influence of different
SORN datatype configurations was studied.

To this end, solely the usability of a SORN preprocessor
was investigated in the works mentioned before. This article
targets the second step of this approach, the further processing
of the remaining solutions after SORN preprocessing. A first
simple, software-based examination on this topic has been
carried out in [12], where different permutation algorithms
for applying the SORN-based reduction to a Sphere Decoder
(SD) are evaluated.

In this article the foregoing works are combined and con-
tinued by means of a comprehensive hardware implementa-
tion of a complete MIMO detector. The main contributions of
this article can be summarized as follows:

• Demonstration of the suitability of SORN arithmetic for
signal processing architectures, in this work applied to
an SD for MIMO symbol detection.

• The first hardware implementation of a MIMO detec-
tion algorithm based on SORN preprocessing, com-
bining a SORN preprocessor, a sorting algorithm for
constraining the SD, a QR-decomposition (QRD), and
the constrained SD into a toplevel SORN-based MIMO
decoder.

• A comprehensive evaluation of the proposed approach,
based on software- and hardware-related register-
transfer-level (RTL) simulations, as well as CMOS
28 nm syntheses, including comparisons with a con-
ventional Schnorr-Euchner SD (SE-SD) implementation
and other literature SD and comparable SotA algorithms
and implementations.

II. UNUMS AND SORNs
Traditional IA is a technique where computations are car-
ried out on interval operands rather than single values, used
for example in scientific computing in order to minimize
the effect of rounding errors that come with floating point
computations [1]. Processing intervals leads to quite complex
datapaths, since not only the bitwidth of the operands is
doubled, but also the computational effort of arithmetic oper-
ations increases. A multiplication of two interval operands
for example requires four single float multiplications and
comparison operations [1].

The Unum format is an approach where IA is realized
in a different way. With type-I Unums, implicit IA with
ULP-wide intervals is introduced whenever maximum preci-
sion is exceeded (ULP: Unit of Least Precision [13]). When
an IEEE floating point number would be rounded, a Unum
value indicates an interval between the represented and the
next larger exact value [6]. In this way a doubled operand
bitwidth can be avoided, even though arithmetic operations
are still more complex than for traditional floats.

A. ORIGINAL TYPE-II UNUMS
Type-II Unums maintain the concept of ULP-wide intervals,
but with a rigorous reduced precision, resulting in a very

coarse quantization of the real numbers. In [8] a minimal
example is given, resulting in the following representation of
the reals:

{±∞ (−∞,−1) − 1 (−1, 0) 0 (0, 1) 1 (1,∞)} (1)

The idea of SORNs is a binary representation of the given
set, where every entry of the set is encoded with a dedicated
bit. Union intervals are represented with consecutive bit pat-
tern. A few binary SORN examples for the set from Eq. (1)
are given in the following:

00010000 =̂ (−1, 0)

00000110 =̂ (0, 1]

11111110 =̂ [−∞, 1] (2)

With this SORN representation LUTs can be generated,
which contain all possible outputs for a certain arithmetic
operationwith two SORN inputs. The general design-flow for
a SORN datapath is depicted in Fig. 1 for a half-open SORN
configuration which will be explained in Sec. II-B. From the
SORN representation in Fig. 1a LUTs containing the outputs
of arithmetic operations for the given datatype are generated.
Fig. 1b shows the multiplication LUT for a simplified 3b
SORN datatype. The LUTs are mapped to Boolean Logic
circuits as shown in Fig. 1c.

This kind of LUT-based computation with comparatively
small inputs provides an ultra fast, low complex and very
regular way of implementing arithmetic operations. However,
due to the low resolution a sequence of SORN-based compu-
tations quickly results in large intervals. As a consequence,
the application of SORNs for straight-forward signal process-
ing of complex algorithms or tasks usually leads to very poor
performance only. Nevertheless, if SORNs are considered
for preprocessing recurrently computing simple algorithms,
the low-complexity and fast-computing nature can be effi-
ciently utilized, for example for constraining problems with
a large solution space.

Further details about the original type-II Unums and
SORNs can be found in [8] and [10].

B. ADAPTED SORN ARITHMETIC
The original Unum type-II-based SORN datatypes like
Eq. (1) contain exact values and open intervals. A case study
evaluating different SORN datatypes within a MIMO pre-
processor datapath from [11] shows that the original config-
uration is not optimal, at least for this kind of application.
Due to the fact that the single exact values do not match
the application data, mostly consecutive bit pattern occur
within the LUT-based SORN datapath. A SORN datatype
using half-open intervals performs much better since the
redundancy of an exact value next to an adjacent interval is
removed [11].

Following this evaluation, in this work SORN datatypes
using half-open intervals are considered. The different con-
figurations for different bitwidths are shown in Tab. 1. Solely
the lin17 configuration contains a non-zero exact value
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FIGURE 1. Design-flow for a SORN datapath with (a) an adapted SORN representation with 11b using half-open intervals and linear spacing,
(b) the LUT structure for a multiplication of two SORN operands using a simplified 3b datatype, and (c) the gate-level structure for the
multiplication of two SORN operands using a simplified 3b datatype, evolved from the LUT in (b).

TABLE 1. SORN Datatype Configurations considered in this work, all with linear spacing and half-open intervals. The respective bitwidth is encoded in the
label.

which matches the data symbols of the MIMO transmission
application.

III. MIMO TRANSMISSION AND SPHERE DECODING
In wirelessMIMO transmission systemsmulti-antenna arrays
are used in order to increase the spectral efficiency, i.e. the
datarate, compared to single antenna systems [14]. In this
work the transmission of N single-antenna clients to a bases-
tation with N antennas is considered, as depicted in Fig. 2.
The clients simultaneously transmit digital modulated data
over a flat fading Rayleigh distributed channel, described
by the channel matrix H ∈ CN×N . The transmit data vector
x ∈ SN is composed of symbols from the finite alphabet
S. All symbols have an identical a priori probability. The
received signal vector y ∈ CN can be stated as

y = Hx+ n (3)

with the additive, zero-mean white Gaussian noise vector
n ∈ CN [15]. The channelmatrixH is assumed to be known at
the receiver due to channel estimation. In order to calculate

FIGURE 2. Multiple Client upload scenario for a wireless MIMO
transmission with N transmit and receive antennas.

the estimate of the transmit vector x̂ ∈ SN , the maximum-
likelihood-estimation (MLE) problem

x̂ = argmin
x∈SN

‖y−Hx‖2 (4)

has to be solved at the receiver. Various approaches like the
linear detection methods Matched Filter (MF) or Zero Forc-
ing (ZF) can be applied, as well as non-linear detectors like
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Soft Interference Cancellation (SIC) or the tree-search-based
SD approach [9], [15].

In the following, for all simulations a flat fading Rayleigh
distributed channel with additive, zero-mean white Gaussian
noise and no coding is assumed. The given signal-to-noise
ratio (SNR) values represent the mean SNR over all receive
antennas in decibel (dB). A Quadrature Phase-Shift Keying
(QPSK) modulation with S ∈ {± 1

√
2
± j 1
√
2
} and modulation

number m = 4 is applied.

A. SPHERE DECODING
The basic principle of Sphere Decoding is to search for the
estimate transmit vector x̂ among lattice points x ∈ SN
which lie within a sphere with radius r around the received
vector y [16]. This is done by evaluating the norm of the
lattice points:

‖y−Hx‖2 ≤ r (5)

Since the sphere is multi-dimensional, determining those
lattice points that lie within the sphere would require a high
computational effort. The approach is to reduce the problem
to a single dimension and successively calculate the required
norm. This transforms the problem into a tree search where
every tree level represents one dimension of the sphere.

For applying an element-wise solution, the MLE problem
(4) has to be rewritten by using a QRD of matrix H [9]:

x̂ = argmin
x∈SN

‖QHy︸︷︷︸
ỹ

−Rx‖2 (6)

Q ∈ CN×N is hereby an orthogonal and R ∈ CN×N

an upper triangular matrix [17]. With this transformation,
the squared norm can be defined element-wise:

∥∥ỹ− Rx
∥∥2
2 =

N∑
j=1

∣∣∣∣∣∣ỹj −
N∑
i=j

(Rjixi)

∣∣∣∣∣∣
2

(7)

Since R is upper triangular, the last element from Eq. (7)
i = j = N is computed at the first tree level. Eq. (7)
can be defined recursively as the error e(l) of level l with
e(0) := 0 [18]:

e(l) =

∣∣∣∣∣∣ỹN−l+1 −
N∑

i=N−l+1

RN−l+1,i xi

∣∣∣∣∣∣
2

+ e(l − 1) (8)

The behavior of the tree search algorithm is illustrated
in Fig. 3. The algorithm exploits a depth-width search with
adaptive radius r , which is adjusted every time the bottom tree
level is reached (also called pruning). The initial radius is set
to r = ∞. At the root level the error metric of the lower-level
nodes l = 1 is calculated according to Eq. (8). Following
Schnorr-Euchner [19] the path with lowest error metric is
evaluated first, which is the left subtree in the given example.
When the bottom level is reached, r is adjusted according to
the current e(l) and the remaining branches are evaluated with
the new radius. Whenever e(l) > r the respective branch is

FIGURE 3. Illustration of a SE-SD algorithm with pruning. Each node
contains the accumulated error metric e(l ) for the respective path. The
adaptive radius r is adjusted each time the bottom level is reached.

discarded. The symbol vector corresponding to the bottom
level node with the lowest determined error metric is the
estimated symbol vector x̂.

B. SORN PREPROCESSING
Algorithms like SD are required for MIMO symbol detection
because the number of possible solutions for Eq. (4) |S|N
increases exponentially with the number of transmit antennas
N and the modulation. The straight forward approach would
be an exhaustive search for all possible solutions which is
impractical with standard number formats because of the
high computational complexity and/or long computing time.
With the fast and low complex SORN arithmetic, however,
an exhaustive search becomes feasible.

The SORN preprocessor for MIMO symbol detection pro-
cesses the squared norm ‖y−Hx‖22 for every possible x ∈
SN leading to different SORN values, all representing con-
secutive intervals greater zero (example for lin9 datatype):

‖y−Hxi‖22

∣∣∣∣
SORN

= 000001110 =̂ (0, 1] (9)

∥∥y−Hxj
∥∥2
2

∣∣∣∣
SORN

= 000000011 =̂ (2/3,∞] (10)

Those vectors x leading to a norm with an open-zero lower
interval bound are marked as valid solution and considered
for further processing. In the given example from Eq. (9) xi
leads to a close-to-zero result and would be considered a valid
solution, whereas xj in Eq. (10) leads to a larger norm and
would be discarded.

Due to the limited precision of the SORN datatypes, multi-
ple close-to-zero SORN results appear among the calculated
norms for the different symbol vectors. Consequently, the
output of the SORN preprocessor is a set of possible solution
vectors x̂ ∈ R ⊂ SN with |R| < |S|N . In the following R is
referred to as remaining solutions after SORN preprocessing.
In Fig. 4 the effect of such a SORN preprocessor for

MIMO symbol detection is visualized. The remaining solu-
tions after SORNpreprocessing for different SORNdatatypes
and depending on the SNR are given in Fig. 4a for a 4 × 4
MIMO system and Fig. 4b for 8× 8 MIMO. With increasing
bitwidth and precision of the SORN datatype, the number of
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remaining solutions |R| decreases. For the lin17 datatype and
4×4MIMO the number of possible solutions can be reduced
bymore than 94% on average, for 8×8 and the same datatype
the reduction is more than 86% on average.

Fig. 4c and 4d show the possibility that the maximum-
likelihood (ML) solution is discarded by the preprocessing
algorithm and does not appear among the remaining solu-
tions. It can be observed that the lower the number of remain-
ing solutions, the higher the probability of excluding the
ML result, but only for low SNR values. Further evaluations
in Sec. V-A show that this exclusion of the ML result for
low SNRs does not affect the uncoded bit error rate (BER)
performance of the SORN-reduced SD.

FIGURE 4. (a) & (b) Remaining solutions for the MLE problem after SORN
preprocessing and (c) & (d) number of cases where the ML solution is
excluded by the SORN preprocessor; each in % for a 4× 4 and 8× 8 QPSK
MIMO system with 5× 103 simulations.

C. COMPLEXITY-REDUCED SPHERE DECODING
After the SORN preprocessing step, the number of possible
vectors x ∈ SN to solve the MLE problem (4) is reduced.
This reduction can now be utilized to reduce the number of
nodes in the SD search tree.

Although the standard SD algorithm does not visit every
existing node within the tree due to the adaptive radius fea-
ture, it still contains every possible vector x at the bottom tree
level. In order to reduce the SD tree complexity, the bottom
level nodes corresponding to those symbol vectors x that are
excluded by the preprocessor can be deleted from the search
tree. Fig. 5a shows an example for a 3-dimensional Binary
Phase-Shift Keying (BPSK) tree where two of the bottom
level nodes are deleted.

FIGURE 5. Permutation of the Sphere Decoder search tree: (a) original
tree with deleted nodes (black) resulting from the SORN preprocessing
and (b) permuted tree for an unbalanced node ratio [12].

FIGURE 6. Mean visited nodes of a standard SE-SD (), and a SE-SD with
deleted nodes after SORN preprocessing without permutation (a) &
(b) and with unbalanced permutation (c) & (d); for 4× 4 and 8× 8 QPSK
MIMO with 5× 103 simulations.

The intended outcome of reducing the number of nodes
within the search tree is obviously to reduce the overall
number of visited nodes, i.e. the computing time for one
detection. Fig. 6a (4 × 4) and 6b (8 × 8) show the mean
number of visited nodes for one detection over different SNR
values. For every detection the SD search tree was reduced
according to the result of the respective SORN preprocessing
step. The evaluation was carried out for the different SORN
configurations and for a standard SE-SD with a full search
tree. For a 4×4 system the number of visited nodes is reduced
by more than 75% for low SNRs and a 17b SORN datatype.
For the 8× 8 case the improvement is much lower.
The reduction of the SD search tree and, consequently,

the computing time can be further improved by virtually
permuting the order of the transmit antennas. Applied to the
SD, this results in a permutation of the search tree after the
excluded nodes from the preprocessing are deleted. In [12]
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different permutation techniques are evaluated and it is shown
that a permutation leading to an unbalanced ratio of the sub-
tree sizes can further decrease the number of visited nodes.
The concept is depicted in Fig. 5b: Permuting the tree in
such a way that multiple deleted nodes in one subtree can
be achieved allows to delete the whole subtree. In the given
example from the permutation of two deleted nodes a third
node and therefore a complete subtree can be deleted.

With this unbalanced sorting approach the mean number
of visited nodes can be further decreased as shown in Fig. 6c
(4 × 4) and 6d (8 × 8). Especially for the 8 × 8 case a
huge improvement can be observed compared to a reduced
tree without permutation, but also the 4 × 4 case is further
improved.

D. STATE-OF-THE-ART COMPLEXITY-REDUCTION
APPROACHES
In the history of MIMO detectors, various different
approaches for tree-search-based algorithms have been devel-
oped in order to optimize the conventional SD. An overview
of different algorithms and their hardware implementations
can be found in [20]. In the following, some of these
approaches are discussed and compared to the proposed
SORN-SD approach in terms of computational complexity
and the additional preprocessing effort. The complexity of the
different algorithms is evaluated in terms of the visited nodes
during the tree-search, which are depicted in Fig. 7 for 4× 4
and 8× 8 MIMO for different SNR values.

FIGURE 7. Mean visited nodes of a standard SE-SD, with SQRD, K-Best,
FSD and LR-FSD, and permuted tree after SORN preprocessing; for
(a) 4× 4 and (b) 8× 8 QPSK MIMO with 5× 103 simulations. (The K-Best,
FSD and LR-FSD results are obtained analytically.).

1) SQRD
One approach for decreasing the number of visited nodes
during the detection is given by the SQRD algorithm. This
approach, like the proposed SORN-SD, targets the inter-
change of the symbol order, but based on the properties of
the MIMO channel H. The SQRD algorithm is based on
the Gram-Schmidt method and reorders the columns of the

channel matrix by the norm of the column vectors of H [21],
before the matrix is decomposed. In combination with an
SD this sorted QRD leads to an optimized computing time
because wrong decisions in the first levels of the search tree
are minimized [22].

Considering the visited nodes, the SQRD approach shows
an improvement compared to the standard SE-SD, but shows
equal or worse results compared to the SORN approach,
depending on the SNR and system size. For 4× 4 MIMO the
17b SORN approach outperforms the SQRD over all SNRs,
for 8×8 the number of visited nodes is lower with the SORN
approach for SNRs below 0 dB.

Considering the preprocessing, the QRD is replaced with
the SQRD algorithm. Hardware implementations indicate a
90% increased number of FPGA slice LUTs [23], and a
CMOS area and latency increase of 40% and 7%, respec-
tively [24]. In comparison, in Sec. V-B and IV-F it is shown
that for the hardware implementation of the SORN-SD the
extra preprocessing requires at most 0.56 times the area and
0.16 times the latency of the implemented QRD.

2) K-BEST
The main drawback of the conventional, depth-first SD algo-
rithm regarding hardware implementation is the variable
number of visited nodes per detection and the result-
ing non-deterministic runtime. Two approaches target-
ing this problem are the breadth-first K-Best and the
fixed-complexity SD (FSD) algorithms. For the K-Best SD
in every level of the search tree the k best child nodes with
the lowest error metrics e(l) are determined, all other remain-
ing nodes are discarded [25]. The resulting fixed-number of
visited nodes enables parallelization and pipelining, but also
leads to a degradation in the BER-performance, depending on
the choice of the k parameter [20].

The number of visited nodes for the K-Best decoder can be
determined as follows (m is the modulation number, i.e. the
number of constellation points):

NvisitedNodes,K-Best=

{
m+ mk(N − 1) k ≤ m
m+m2

+mk(N−2) m<k≤m2 (11)

Fig. 7 shows the number of visited nodes for a K-Best
algorithm with k4×4 = 2 and k8×8 = 8, leading to a worse
performance compared to the SORN approach for the 4 × 4
case and for the 8×8 case with SNR≥ 0 dB. When choosing
the k parameters as k4×4 = 4 and k8×8 = 16, the number of
visited nodes is equivalent to the FSD algorithm.

3) FSD
The FSD algorithm also targets a deterministic runtime,
achieved with a fixed number of visited nodes per detection.
Here the search tree is divided into a full expansion (FE)
stage, where all possible paths are considered, and a single
expansion (SE) stage, where only one path per node is fol-
lowed [27]. In order to achieve a quasi-ML performance, for
a 4 × 4 system the first tree level is implemented as an FE
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TABLE 2. Comparison of the preprocessing effort for the SORN-based and FSD algorithms supplementary to a QRD and QHy.

stage, where all m paths are evaluated, while the lower levels
are considered as SE stage where only one path is followed.
For 8×8 the first two levels are considered as FE stages. The
values for the FSD algorithm in Fig. 7 are obtained according
to [27] and [28]:

NvisitedNodes,FSD,4×4 = m+ (N − 1)m2

NvisitedNodes,FSD,8×8 = m+ m2
+ (N − 2)m3 (12)

Compared to the SORN-based approach, the number of
visited nodes is higher for the FSD approach for both the 4×4
and 8× 8 case.
For achieving a quasi-ML performance, the FSD algorithm

requires a preprocessing step where the channel matrix H
is reordered in order to detect the signals with a high noise
amplification in the FE stage and those with a low noise
amplification in the SE stage [27]. This reordering introduces
an additional preprocessing step before the QRD, which is
listed in Tab. 2 in terms of floating point operations (FLOPs)
[26] for a quadratic MIMO system N × N . Since the sup-
plementary preprocessing for the SORN-SD requires only
SORN and integer operations, which can be implemented
much more efficiently, a fair comparison can hardly be made.
However, considering a complex N ×N QRDwhich requires
37.3N 3 FLOPs [17], [26], it can be shown that the complexity
for the FSD ordering of H is 1.2 times higher than for a
QRD (N = 4). In contrast, in Sec. V-B and IV-F it is
shown that for the implementation of the SORN-SD the extra
preprocessing requires at most 0.56 times the area and 0.16
times the latency of the implemented QRD, which indicates
a lower preprocessing effort than for the FSD.

Independent of preprocessing and visited nodes, both the
K-Best and the FSD allow a deterministic runtime which is
an advantage, compared to the conventional and the SORN-
SD, when considering hardware implementation. With par-
allelism and pipelining these approaches can achieve higher
throughputs, at the expense of increased hardware resources,
which will be shown in Sec. V-C.

4) LR-FSD
Besides the conventional SD, K-Best and FSD, there exist
numerous derivatives and intermediate approaches, targeting
different improvements or hardware platforms, also apart
from ASIC or FPGA [29]. One example is the lattice-reduced
FSD (LR-FSD) algorithm [26] where applying a lattice

reduction (LR) to the channel matrix H as a further prepro-
cessing step leads to a reduced search tree in the FE-stage
of the FSD algorithm. Comparable to K-Best, the LR-FSD
algorithm considers not all m nodes for the FE-stage of
the FSD, but a reduced number mLR, which is based on
the lattice-reduction step. This approach further reduces the
number of visited nodes but also results in a degradation
of the BER-performance, depending on the choice of the
parameter mLR [26]. The values for the LR-FSD in Fig. 7
are obtained according to Eq. (12) with m = mLR = 3 and
show a similar performance than the K-Best approach for the
simulated scenario. The additional preprocessing complexity
is higher than for the FSD algorithm and also listed in Tab. 2.

IV. SORN SPHERE DECODER IMPLEMENTATION
In this section the RTL implementation of a complete SD
with reduced complexity based on SORN preprocessing is
described for a 4×4MIMO system. The design can be param-
eterized for any FxD datapath width, and for all different
SORNdatatypes fromTab. 1, covering 9b to 17b. The toplevel
design combining all required subcomponents is depicted
in Fig. 8 for 16b FxD. The design is composed of the five
following main submodules:

• SORN: A SORN-based preprocessing unit reducing the
number of possible solutions for the SD as described in
Sec. III-B.

• SORT: A sorting unit calculating the permutation for the
channel matrix H based on the preprocessing results as
described in Sec. III-C.

• QRD: A QRD unit decomposing the permuted channel
matrix into an orthogonal matrix Q and an upper trian-
gular matrix R.

• MVM: A unit performing the matrix-vector-
multiplication ỹ = QHy which is required for the SD
according to Eq. (6). QH is the hermitian matrix of Q.

• SD: A complexity-reduced SD with deleted nodes
depending on the preprocessing result as described in
Sec III-C and working on the inputs ỹ andRwhich result
from the permuted and decomposed channel matrix.

Additionally, the design contains minor subcomponents for
permuting the channel matrixH and the SORN preprocessing
result, as well as applying the inverse permutation to the result
of the SD. The submodules QRD, MVM and SD are driven
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FIGURE 8. Toplevel architecture of the proposed SORN-SD for 4× 4 MIMO and a 16b FxD datapath: The SORN preprocessor (SORN) and sorting
unit (SORT) are running with the fast clock signal, the other modules QRD, matrix-vector-multiplication (MVM) and SD with a 10× lower clock frequency.

by a slower clock signal than SORN and SORT, provided by
a frequency divider with a factor of 10.

In order to provide a comparable design, also a traditional
SE-SD is implemented, consisting of a QRD, MVM and the
actual SD. TheQRD andMVM implementations are identical
for both designs, the differences of both SD implementations
are described in Sec. IV-E. Both designs are evaluated and
compared in Sec. V.

A. SORN PREPROCESSOR
The SORN preprocessing unit is responsible for reducing the
number of possible solutions for the MLE problem. This is
accomplished by means of an exhaustive search such that the
squared, complex norm from Eq. (4)

‖y−Hx‖22 (13)

is processed for every possible symbol vector x ∈ SN
in SORN arithmetic. For the given 4 × 4 MIMO scenario
using a QPSK modulation the number of possible symbol
vectors is

|S|N = mN = 44 = 256. (14)

The architecture of the SORN preprocessor is depicted
in Fig. 9. The design is composed of the following
subcomponents:

• A conversion unit transforming the FxD inputs H and y
into the chosen SORN datatype.

• Two parallel SORN solvers processing the squared norm
from Eq. (13) in SORN arithmetic, implemented using
the SORN datapath generator from [30], both containing
3 pipeline stages.

• A counter unit providing two signals which count the
index of the symbol vectors x that are fed to the SORN
solvers, and a unit that selects these vectors according to
the counters.

• A register file that stores the calculated norms for every
possible solution.

FIGURE 9. SORN preprocessing unit performing an exhaustive search of
the MLE problem (4) with two parallel SORN solvers and determining the
remaining solutions.

• A unit evaluating the processed results, determining
those with a minimal norm as described in Sec. III-B,
and setting the output accordingly.

B. SORTING UNIT
The objective of the sorting algorithm is to find a permutation
of the transmit antennas such that an unbalanced node ratio in
the reduced SD search tree can be achieved, as described in
Sec. III-C. In [12] such an algorithm was developed which
calculates and maximizes the standard deviation of each
subtree size per tree level. Due to the exponentially scaling
computational complexity of this algorithm depending on the
number of tree levels, an approximate version of the sorting
algorithm was developed, which considers only the standard
deviations of the first tree level. Additionally, the standard
deviation itself is approximated by a squared sum, neglecting
some constant terms which are irrelevant for the required
comparison. Further details about the sorting algorithm and
the performed approximations, as well as a performance eval-
uation of both algorithm versions can be found in [12].
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FIGURE 10. Sorting unit calculating the permutation order for the
channel matrix and an unbalanced SD search tree based on the SORN
preprocessing.

The RTL implementation of the approximate sorting algo-
rithm is given in Fig. 10 and will be explained in the follow-
ing: The result of the SORN preprocessor is a 256b vector
with each bit denoting one of the possible solution vectors
x ∈ SN , either included (→ 1) or excluded (→ 0) by
the preprocessor. The concatenation of all vectors x can be
interpreted as a matrix X ∈ C4×256, as depicted in Fig. 11.
Per row of this matrix, the SORN results for one of the four
symbols are mapped to a 64b signal which is passed to the
next module. In Fig. 11 this is shown for the symbol 1

√
2
(1+j).

This behavior results in 16 different combinations (4 rows, 4
symbols), which are selected according to a counter signal
provided by a finite-state-machine (FSM).

The 64b mapped SORN result is passed to a counter which
counts all the ones and then adds this value to the result from
the previous iteration. The sum is squared and passed to a
feedback loop to accumulate with the result from the next
iteration. After every fourth iteration, the accumulated result
corresponds to the approximated standard deviation of one
row and is passed to the module which sorts the results of all
rows in a descending order. After all iterations are completed,
the final output permutation order can be calculated.

C. QR-DECOMPOSITION
With QRD the complex channel matrix H ∈ CN×N can be
split into an orthogonal matrix Q ∈ CN×N and an upper
triangular matrix R ∈ CN×N , which are required for the
SD algorithm. For computing the decomposition orthogonal
transformations like Gram-Schmidt, Householder Reflection
or Givens Rotation can be applied [17].

In this implementation a complex Givens Rotation is used.
The algorithm successively generates zero-elements below
the main diagonal of the input matrix by multiplying with a
complex rotation matrix:

1 . . . 0 0 . . . 0

..
.

..
.

..
.

..
.

0 . . . c s . . . 0
0 . . . −s∗ c∗ . . . 0

..
.

..
.

..
.

..
.

0 . . . 0 0 . . . 1
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.
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.

0 . . . Rii Rij . . . RiN
0 . . . Rji Rjj . . . RjN

. .
.

..
.

. .
.

..
.

0 . . . RNi RNj . . . RNN



=



R11 . . . R1i R1j . . . R1N

..
.

..
.

..
.

..
.

0 . . . R′ii R′ij . . . R′iN
0 . . . 0 R′jj . . . R′jN

..
.

..
.

..
.

. .
.

0 . . . RNi RNj . . . RNN


(15)

The R′xx entries are changed by the rotation; c∗ and s∗

represent the complex conjugates of c and s, respectively.
In order to create the zero entry at position {j, i}, the elements
of the rotation matrix are determined as follows:

c =
R∗ii√

|R∗ii|
2 + |R∗ji|

2
s =

R∗ji√
|R∗ii|

2 + |R∗ji|
2

(16)

After every iteration the matrix R is updated according
to the rotation result and c and s are recalculated for the
next rotation until all lower diagonal elements are zero. The
Q matrix is the product of all intermediate rotation matri-
ces [17].

The QRD architecture is composed of two different sub-
module types:
• The Givens Generate (GG) module calculates the entries
of the rotation matrix c and s for the input values Rii
and Rji according to Eq. (16). The inverse square root is
implemented using the iterative Newton-Raphson (NR)
method described in [31] with 3 iterations.

• The Givens Apply (GA) module performs the rotation
by calculating the (sub-)matrix multiplication for the
current rows {i, j} of the matrix R. Two versions of the
GA module are implemented to compute either R′ik or
R′jk :{

R′ik = cRik + sRjk
R′jk = −s

∗ Rik + c∗ Rjk

}
for k ∈{i, . . . ,N }, i< j

(17)

FIGURE 11. Representation of the SORN preprocessing result and the corresponding symbol vectors x. Per row, the SORN result bits for the symbol
1
√

2
(1+ j ) are mapped to the next stage.
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The matrix decomposition is performed iteratively. For the
implemented 4×4matrix size 6 global iterations are required,
producing one 0 entry in R per iteration. In every iteration
one GG module computes the rotation coefficients before the
rotation is applied (GA). The design contains 11 GAmodules
and 2 complexmultipliers to compute all new entries ofQ and
R per iteration in parallel. In addition, registers for storing the
current rotation coefficients c and s, and the two matrices Q
and R are implemented.

D. MATRIX-VECTOR-MULTIPLICATION
The matrix-vector-multiplication (MVM) module is respon-
sible for calculating the SD input ỹ = QHy, according to
Eq. (6). It is composed of 16 complex multiplication and
14 complex addition/subtraction units, implemented as tree
structure with one pipeline level, as well as registers for
storing the output vector.

E. SPHERE DECODER
The SD algorithm solves the MLE problem element-wise
by using a QRD as shown in Eq. (6)-(7) and described in
Sec. III-A. While traversing the search tree, at every node the
level-specific error e(l) is calculated as described in Eq. (8).
Those paths with the lowest error metric are followed first,
and at the bottom level a decision about adapting the search
radius r is made, before following the next path. In this work
a standard SE-SD as well as a SORN-reduced version of the
algorithm were implemented. In the following, the design of
the standard SD will be described first. The adaptions made
for the SORN-based version will be discussed afterwards.

1) SE-SD
The general behavior of the implemented SD architecture is
depicted in Fig. 12. At every tree level l, the error metric is
calculated for the possible values of x, indexed by the counter
value cnode. When all m errors are processed, they are sorted
and compared with the global radius r in order to determine
the next level. If the current level is the bottom one, the final
error of the current path is compared to the radius r , and if
e < r the search radius is adapted. Before the next level nodes
are processed, the counter cnode is reset.
The control path of the SE design is composed of an FSM

managing the current level and level transitions. In addition,
the design contains registers for storing the current errors and
those of the previous levels, the counter values, the global
radius and the already visited node counts. The datapath
consists of the error calculation and comparison operations
for sorting the errors and deciding about a radius adaption.

2) SORN-REDUCED SD
The main additional component for the SORN-based SD
calculates the nodes that can be cut out of the search tree.
As discussed in Sec. IV-B, the preprocessing result is a bit
vector representing the included and excluded symbol vectors
x, which also correspond to the bottom level tree nodes of the
search tree. Consequently, the discarded bottom nodes can

FIGURE 12. Behavior of the standard SE-SD. Additional steps and
adaptions made for the SORN-reduced SD are displayed with dashed
lines/blocks.

be directly taken from the preprocessing result. In order to
delete the nodes of the higher tree levels, the bits from the
lower levels are connected by an m dimensional OR-gate.
WithNl(i) representing the i-th node at tree level l andNN (i)
corresponding to the bottom tree level nodes, the deletion of
the higher level nodes can be calculated with

Nl(i) =
m(i+1)−1∨
j=m×i

Nl+1(j) (18)

with i ∈ {0, . . . ,ml − 1}, l ∈ {1, . . . ,N − 1},
∨

as logical
OR and the modulation number m.

The standard SE-SD calculates m error values per
(sub-)tree level l before taking a decision for the next path.
Due to the deletion of nodes through all tree levels, in the
SORN-SD the number of error calculations per (sub-)tree
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FIGURE 13. RTL simulation results for (a) uncoded BER, (b) mean visited nodes and (c) latency in required clock cycles; all for the hardware
implementation of the SORN-based SD with preprocessing and QRD, and the standard SE-SD with QRD for 4× 4 QPSK MIMO with 5× 103

simulations and 16b FxD.

level is not fixed anymore. As shown in Fig. 12, after every
error calculation the next node count cnode has to be deter-
mined based on the node deletion described in Eq. (18). Addi-
tionally, after the error calculation of one level is completed
and the next level is determined, the number of nodes in the
next subtree cmax has to be determined.
From the architectural perspective, and compared to the

SE-SD design described above, the SORN-based SD imple-
mentation contains additional modules for determining the
deleted nodes of all tree levels and calculating the next node
during the error calculation process, as well as an additional
register for the number of nodes cmax.

F. TIMING BEHAVIOR
In this section the timing behavior by means of the required
clock cycles for both the SE-SD and the SORN-SD is dis-
cussed. The standard SE-SD toplevel design is composed of
a QRD, MVM and the SD itself, whereas the SORN-based
SD additionally contains the SORN preprocessor and the
sorting module, as depicted in Fig. 8. The three submodules
appearing in both designs, QRD, MVM and SD, are imple-
mented for a frequency of 100MHz. The SORN preprocessor
and the sorting module are driven by a frequency of 1GHz
in order to allow a fast processing of the exhaustive search
performed within the preprocessor. The SORN-SD toplevel
design contains a frequency divider with a factor of 10 to
provide both frequencies.

The number of required clock cycles C for a complete
detection for both SD designs at 100MHz are given in the
following:

CSE−SD = CQRD︸ ︷︷ ︸
=97

+CMVM︸ ︷︷ ︸
=5

+CSD = 102+ CSD (19)

CSORN−SD = CSORN︸ ︷︷ ︸
=13.1

+CSORT︸ ︷︷ ︸
=1.9

+CQRD︸ ︷︷ ︸
=97

+CMVM︸ ︷︷ ︸
=5

+CSD

= 117+ CSD (20)

The latency of each submodule is hereby obtained as
follows:

• CQRD: The QRD performs 6 global iterations, each
requiring 16 clock cycles (14 for the GG and 2 for
the GA). Additionally 1 initial clock cycle is required,
resulting in 97 cycles in total.

• CMVM : For the MVM 1 of the 4 rows of the input
matrix/vector is inserted into the tree structure per clock
cycle. As the tree contains a pipeline level, in total
5 cycles are required.

• CSD: Both SD versions require 1 clock cycle per visited
node plus 1 initial cycle. The number of visited nodes is
non-deterministic.

• CSORN : The SORNmodule processes 256 possible solu-
tions with two parallel solvers containing three pipeline
levels, resulting in a total number of 131 cycles at 1GHz
or 13.1 cycles at 100MHz.

• CSORT : The sorting module requires 16 clock cycles for
traversing the 4×4 matrix, plus one initial and two final
cycles, resulting in 19 cycles at 1GHz or 1.9 cycles at
100MHz.

V. RESULTS
The implemented Schnorr-Euchner and SORN-based SD
designs are evaluated in terms of RTL-simulations and an
STMicroelectronis (STM) 28 nm CMOS technology synthe-
sis. The evaluations cover both 16b and 32b FxD datapaths,
as well as all different SORN datatypes from 9b to 17b.

A. RTL-SIMULATIONS
In Fig. 13 three different evaluations are given for the imple-
mented detector architectures for a complex 4 × 4 MIMO
system using QPSK modulation. When comparing the 16b
and 32b FxD implementations no differences are visible.

Fig. 13a shows the uncoded BER after demodulating the
detected symbols for the SE-SD and the SORN-based SD
using the different SORN datatypes for preprocessing. Even
though in Sec. III-B and Fig. 4c it was shown that the SORN
preprocessor excludes the correct solution with a certain
probability, almost no differences in the BER between the
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TABLE 3. Post-Synthesis results for the SORN-based SD with Preprocessing and QRD, and the standard SE-SD with QRD; all for 4× 4 QPSK MIMO,
synthesized for 28 nm CMOS technology.

SE- and the SORN-SD can be observed. Only for the 9b
SORN datatype a worse BER performance for high SNR
values occurs, caused by the lowest of all implemented
resolutions.

The mean visited nodes for the different detector imple-
mentations are depicted in Fig. 13b. Compared to the
software-based simulation results from Fig. 6c, a similar
behavior can be observed: The SORN-based SD requires
much less node visits than the SE-SD. The reduction depends
on the implemented SORN datatype and the SNR. For nega-
tive SNRs a reduction of the visited nodes by up to 76% can be
achieved. Another interesting aspect is the fact that the mean
number of visited nodes is nearly stable over different SNRs
for the higher bit SORN approaches, whereas for the SE-SD
it is highly SNR dependent.

Since the SD is only one part of the architecture, in Fig. 13c
the latency in terms of clock cycles for the complete
design including preprocessing and decomposition is given.
As described in Sec. IV-F, the SD is the only component with
a variable latency, which is why the overall latency is a shifted
version of the mean visited nodes. Even though the speedup
of the SORN-based SD is reduced compared to Fig. 13b,
an improvement over the SE-SD can still be observed. For
negative SNRs the improvement is up to 20% for the 17b
SORN-based approach, for 0 dB it is still 7%.

From the presented simulations it can be concluded that the
SORN-SD approach is especially well suited for low SNR
regions since the number of visited nodes and the latency
are lower than for the SE-SD, without any loss of BER-
performance. However, at some point towards positive SNR
the SE-SD shows a lower latency than the SORN-based
approach. Since the implemented SORN-SD is still able
to behave like a conventional SD when switching off the
SORN preprocessing, the best from both approaches can be
combined with an adaptive, SNR-dependent preprocessing
disabling.

B. SYNTHESIS
All implemented designs were synthesized for a 28 nm
CMOS process from STM. Tab. 3 shows the synthesis results
for the SORN-based SD for all combinations of FxD and
SORN datapath widths, as well as both SE-SD versions. All
designs were synthesized for frequencies of 100MHz for the
FxD and 1GHz for the SORN components.

The total chip area is given in µm2 and Gate Equivalents
(GE), the latter is a technology independent measure where
the total area is normalized by the area of a 2-input NAND
gate with lowest driver strength. With increasing SORN
bitwidth the total area increases by up to 12% for the 16b FxD
designs (up to 4% for 32b FxD). A similar behavior occurs for
the energy which is given in [µW/MHz]. Here an increase of
up to 17% (8%) can be observed.

The partial area results show that the SORN preprocessor
occupies about 10% to 19% (4% to 8%) of the whole design.
The area of the sortingmodule is independent from the SORN
bitwidth and requires about 9% (3.5%) of the chip area. The
largest submodule is the QRD which utilizes 50% to 55%
(67% to 70%). The SD itself is the smallest submodule and
requires about 6.5% to 7.5% (8% to 8.5%) of the total chip
area.

When comparing the SORN-based SD design with the
SE-SD (both with QRD and MVM), the area increase is 41%
to 58% for the 16b FxD and 14% to 18% for the 32b FxD
design in total. The energy increases by 57% to 83% (18%
to 27%). The main reason for the high energy increase is,
besides the larger chip area, the high frequency which is
applied for the SORN and sorting components.

C. SotA COMPARISONS
In order to classify the performance of the implemented
detectors, Tab. 4 provides a comparison to SotA SDs and
comparable architectures. All detectors were implemented
for 4 × 4 MIMO systems. To allow a fair comparison the

91398 VOLUME 9, 2021



M. Bärthel et al.: Hardware Implementation of Latency-Reduced SD With SORN Preprocessing

TABLE 4. Comparison results for the implemented SE-SD and SORN-SD with SORN preprocessing (both without QRD and MVM) and reference
architectures.

results for the architectures implemented in this work are
given without the QRD and MVM modules since the refer-
ence designs do not include these steps either. The SORN
preprocessing and sorting, however, are included in the given
results. Further, the area of the different designs is given in
GE in order to allow a technology-independent comparison.
The power consumption is normalized to a 65 nm technology
with 1.2V supply voltage (Vdd ) [20]:

norm. Power = Power×
(
1.2V
Vdd

)2

×

(
65 nm
Tech.

)
(21)

The throughput is obtained as

throughput =
N × log2(m)

C
× f [bit/s] (22)

with the MIMO dimension N , the symbol bitwidth log2(m)
with modulation number m, the number of required clock
cycles C and the clock frequency f [18].
The first observation from the comparison is that the imple-

mented SE-SD achieves a good throughput-area-ratio and
low power consumption, compared to the two SD reference
designs [32] and [33]. For the SORN-SD the throughput is
further increased while power and area are at a moderate
level. Although the area and power increase between SE and
SORN-SD seem to be quite high for this comparison, it has to
be considered that these results do not include the QRDmod-
ule, which takes themajor part of both designs area and power
consumption, as discussed in the previous section V-B.When
compared to the reference design from [32], the SORN-SD
shows similar hardware results with a lower throughput, but
achieves a better (quasi-ML) BER-performance. Regarding
reference [34], area and power consumption of the imple-
mented SE-SD and SORN-SD are on a comparable level,
whereas the throughput is lower by an order of magnitude.
However, it has to be considered that for [34] the throughput is

TABLE 5. Comparison of the implemented and reference 4× 4 complex
QRD architectures.

given for an SNR of 12 dB whereas the implemented designs
are evaluated for lower SNR regions.

In comparison with the fixed-complexity approaches
K-Best [35] and FSD [36] the achieved throughput of the
SD and SORN-SD approaches is about two orders of mag-
nitude lower. However, the parallelization and pipelining for
these two designs leads to higher area demands and power
consumption, also in comparison to the proposed SORN-SD.
Additionally, it has to be considered that the results for both
implementations [35] and [36] do not include the required
preprocessing supplementary to a QRD, as discussed in
Sec. III-D, nor do they achieve an optimal BER-performance.

1) QRD
The results of the implemented QRD module are com-
pared to reference implementations in Tab. 5. It can be
seen that the QRD architecture implemented in this work
provides a low-complexity and low-power approach with a
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lower throughput than the reference architectures. This low
throughput results from the iterative design approach where
the parameter for the Givens Rotation are recalculated using
the NR method for every iteration. The reference designs are
implemented as systolic array [38], [39] or massively parallel
CORDIC processors [37] in order to enhance the throughput,
and resulting in a high complexity and power consumption.

If a more complex and higher throughput QRD design is
used within the presented SORN-SD approach, the benefit
of the SORN preprocessing step would increase accordingly,
since the QRD requires at least half of the chip area and the
highest amount of required clock cycles. A further increase of
the QRD area would minimize the relative complexity over-
head that is introduced by the SORN preprocessing. Further-
more, a lower QRD latency would relate to a higher impact of
the reduced number of visited nodes for the SORN-SD and a
higher overall latency reduction compared to the SE-SD.

VI. CONCLUSION
Sphere Decoding for wireless MIMO communication can
be accelerated by introducing SORN-based preprocessing
which deletes nodes from the SD search tree and effectively
reduces the latency by means of visited nodes. For the pre-
sented evaluation the mean number of visited nodes within
the adapted SD can be significantly reduced by up to 76%
for negative SNRs, compared to a SotA SE-SD. A hardware
implementation comprising a SORN preprocessor, a sort-
ing module, a QRD and an adapted SD show an overall,
SNR-dependent latency reduction of up to 20%, compared
to a standard SE-SD with QRD. Even though the SE-SD
performs better for high SNRs, the presented SORN-based
design is not restricted to low SNR regions since the detector
is capable of behaving like a SE-SD by switching off the pre-
processing. With this feature a very flexible design showing
best performance in all SNR regions can be achieved.

The area and energy of the SORN-SD increase by up to
58% and 83% for the presented 16b FxD implementation,
and by up to 18% and 27% for 32b FxD, compared to the
SE-SD. The energy increase is hereby mainly caused by the
high frequency which is used for the SORN components.
Even though the SORN preprocessing introduces an area and
energy overhead compared to the SE design, comparisons to
SotA detectors show that this overhead is still on a low level
and would not have a high impact in a complex System-on-
Chip (SoC) architecture. Additionally, the presented imple-
mentation utilizes a comparatively slow and low complex
QRD. When a faster and more area- and energy-demanding
decomposition implementation is used, the latency improve-
ment of the SORN-SD will be further increased while the
relative complexity and energy overhead will decrease.

This work shows how SORN arithmetic can be utilized
to effectively reduce the complexity of the SD algorithm.
For future work SORN-based preprocessing can be investi-
gated for different MIMO detection approaches as well as
for optimization problems in other domains of digital signal
processing.
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