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ABSTRACT Single -image super resolution (SR) is used to reconstruct a high-resolution image with more
high-frequency details based on a low-resolution image as input. In recent years, image SR reconstruction
based on deep learningmethods has shown a considerably better performance than traditional methods. Early
deep-learning-based methods deepen convolutional layers and directly reconstruct high-resolution images
with complex neural networks. However, with the stacking of modules, network depth and model parameters
increase, thereby raising computational resource; hence, it is difficult to apply on low-configuration devices.
Furthermore, existing methods ignore the high-frequency details of the image, resulting in unsatisfactory
performance. To solve these problems, a lightweight network model that applies the iterative back projec-
tion (IBP) mechanism to the network and reduces the dimensionality of the input image features is proposed.
The proposed network model consists of three parts, namely, entrance module, main body module, and exit
module. It designs a lightweight modular design to reduce the model calculation and control the network
depth more easily by adjusting the number of ADB modules. The main part of the model consists of
four lightweight accelerating deep residual back projection (ADB) modules. Each ADB module initially
decreases the dimensionality of the input image features through a 1 × 1 convolutional layer to reduce
the amount of calculation. Then, IBP is used to back project the image iteratively. Each ADB module
only performs the downsampling back projection operation because the image features become larger after
upsampling. Through three iterative downsampling back projection units, the high-frequency features of
the image are fully explored, and the output image features are then compared with the shallow layer.
Image feature fusion is used as input of the next ADB module, and the output part combines the high-
and low-frequency image feature output by multiple ADB modules to complete the upsampling by using
the PixelShuffle method to generate high-resolution images. Several experiments confirm that the proposed
algorithm achieves better SR reconstruction accuracy with faster reconstruction speed than existing image
SR methods.

INDEX TERMS Image SR, residual network, light-weight convolutional neural network.

I. INTRODUCTION
Image super resolution (SR) [1] is a widely-used image
processing technique for acquiring images with high spa-
tial resolution. Several examples of image SR applications
in the real world include face recognition in surveillance
videos, improving resolution of images in remote sens-
ing, object detection in scenes (especially small objects),
mobile smart devices, andHD television sets. The lightweight
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model is more suitable for mobile smart devices and surveil-
lance camera, which require less computation and memory.
In recent years, with the rapid development of artificial
intelligence technology, image SR models based on deep
learning have been widely explored. Dong et al. [2] pro-
posed the SR convolutional neural network (SRCNN), which
initially uses three-layer CNN to fit the nonlinear map-
ping, to realize image block extraction, feature representa-
tion, feature nonlinear mapping, and final reconstruction.
This method is a pioneer of deep neural network, which
is introduced in SR reconstruction. The experiment results
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showed that SRCNN performs better than other traditional
methods.

In deep learning research, theoretical studies [3] show
that in several cases, increasing the depth of network effec-
tively obtains more image hierarchical structure features.
VDSR [4] is the first model that applies a very deep net-
work in single-image SR, which has a network architecture
of 20 layers. To train a deep model similar to this approach,
the authors selected a relatively high learning rate to speed
up the convergence and used gradient clipping to prevent gra-
dient explosion. To overcome the difficulty of training deep
recursive CNN, DRCN [5] and ResNet [6] adopted the resid-
ual structure model. Based on this structure, the authors in [7]
proposed SRResNet, which is composed of 16 residual units
(one residual unit is composed of two nonlinear convolutional
layers with residual learning). Lee et al. proposed EDSR [8]
that achieved state-of-the-art performance. Compared with
the residual unit in the previous work, EDSR eliminates the
use of BN, greatly raises the number of output features of
each layer, and increases the difficulty of training.

In many SR studies [9], people usually utilize the results
of bicubic and HR images to achieve supervised learning.
In addition, unsupervised SR methods based on the GAN
network, similar to [10], [11], can achieve good results.
Especially, [11] can effectively overcome the lack of paired
images of HR and LR. This network does not require paired or
aligned training datasets; it is composed of unpaired kernel,
noise correction network CNet, and pseudo paired stochas-
tic resonance network SRNet, where CNet is used to train
unpaired and clear LR images, and SRNet is used to train
the generation of paired clear images from LR to HR. The
SR reconstruction effect is good; however, it requires high
computing cost and hardware configuration of SR image
reconstruction due to the use of dual network. Alam et al. [12]
proposed the network based on adversarial network, which
effectively processes the photo-realistic image and recon-
structs the image similar to the original image. The method
captures the EIA by connecting to a lens array and the camera
sensors of a 2Dmicroscope. Then, OVI that contains multiple
directional view images that can generate 3D perception to
the observer is generated from EIA according to the mapping
algorithm. The high-quality resolution enhanced image can
be obtained when the directional view image is directly used
to feed the SR algorithm. Abbass et al. [13] proposed the
method that uses bicubic interpolation to enlarge the chro-
maticity component. Then, they adjusted the chromaticity
component by guiding the filter and took the image brightness
as the reference when the chromaticity component of bicubic
interpolation was the input of the filter to obtain the recon-
struction image with a sharper edge and a higher resolution.

To detect and restore small-scale pedestrians with more
details from the monitoring image better, Pang et al. pro-
posed JCS-Net [14] that consists of two subnets, which
are used for SR and classification. In the monitoring
image, large-scale pedestrians have more detailed informa-
tion. The SR subnet can extract relevant image features from

large-scale pedestrians to restore the high-frequency features
of small-scale pedestrian images and realize the image SR
reconstruction of small-scale pedestrians.

CNN is also widely used in motion deblurring of video
images in mobile scenes. Liu et al. [15] proposed a decou-
pling end-to-end CNN model based on cooperative learning.
This model eliminates the assumption that only a single
degradation is available. The model is more suitable for
different types of degraded images by decoupling and cooper-
ative learning. It can process each degradation by developing
the corresponding restoration network and flexibly process
multiple degradation simultaneously to achieve the decompo-
sition and synthesis of multi -image SR in continuous motion
and motion deblurring.

Although many excellent SR methods achieve a high SR
performance, several studies show that the following prob-
lems remain in existing SR methods: (1) Most SR meth-
ods, such as RDN [16] and SRFBN [17], do not focus on
the aggregation of residual features and the collection of
high-frequency features. Thus, reproducing high-frequency
details in HR images is difficult. (2) Many SR methods,
such as EDSR [8] and DBPN [18], show high accuracy of
deep models, but deploying them to real-world scenarios, for
which massive parameters and computational burden may
account, is difficult. This network is designed to address
several problems on high computational cost and difficulty
in controlling network depth. Therefore, a lightweight SR
method is urgently required for application to reality with
accuracy retention. To solve these problems, a lightweight
deep model should be designed for SISR, and the existing
deepmodel should be simplified to reduce the parameters and
computation with minimal performance degradation. There-
fore, developing lightweight, fast SRmethods becomes a new
direction of the current SR research.

Any image can be divided into two parts, namely, low
frequency and high frequency. The former refers to the area
where the image intensity changes slowly, namely, the place
where large color blocks are located. The latter represents
the area where the image intensity changes sharply, usually
the edge of the image. Iterative back projection (IBP) [18]
is an early SR algorithm for obtaining high-frequency image
features. It iteratively calculates the reconstruction errors and
propagates them back to acquire more high-frequency image
features to use large filters. In several existing networks,
the large filter is not used because it slows down the conver-
gence speed and might achieve local optimal results. How-
ever, using iterative projection units enables the network to
suppress this limitation and achieve better performance on a
large scaling factor even with shallow networks. Various pre-
vious works pointed out that the fusion of dense connection
of high-frequency features and residual features can effec-
tively assist in reconstructing images. The present paper aims
to explore a unified framework that can fully integrate the
shallow features and residual features with fewer parameters
and lower computational cost. Iterative downsampling back
projection (IBP) is used to collect high-frequency features to
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realize the lightweight, high accuracy of SR image finally.
To achieve this object, a residual network is proposed for
lightweight IBP (ADBNet), which emphasizes a lightweight
modular design. Thus, model network depth is easier to con-
trol. It is composed of three parts, namely, entrance module,
main body module, and exit module. The main body consists
of four lightweight accelerating deep residual back projec-
tion (ADB) modules. Each ADB module initially decreases
the dimension of the shallow features of the input image to
reduce calculation through 1 × 1 convolutional layer and
then performs downsampling back projection only on the
image. Through three iterative downsampling back projection
units, the high-frequency features are fully obtained, and the
output image features are fused with the shallow features
again as the input of the next ADB module. In the output
part, high- and low-frequency features from multiple ADB
modules are fused, and the PixelShuffle method is adopted to
complete the upsampling to generate high-resolution images.
Compared with the existing single image SR reconstruction
model, the main contributions of this paper are as follows:

a) An image SR model named ADBNet that fully fuses
the shallow features and the residual features of the images
with less parameters and computation is proposed. The
high-frequency features of the image are collected by the
downsampling iteration to realize the lightweight SR of
the image.

b) Combined with the traditional IBP method, after
comparison of a large amount of experimental data, only
downsampling back projection is implemented for LR image
feature extraction. On the premise of speed, our method ade-
quately extracts the high-frequency features, thereby improv-
ing the accuracy of image reconstruction.

c) Our method has a good application prospect in mobile
devices, such as smartphone and smart screen, because of the
improvement in calculation speed without losing excessive
accuracy of HR images.

The remainder of this paper is arranged as follows: Related
research background is reviewed in Section II. The detailed
architecture ofADBNet is described in Section III. The exper-
imental data and result analysis are presented in Section IV.
Finally, a conclusion is drawn in Section V.

II. RELATED RESEARCH BACKGROUND
Many advanced algorithms, such as [16], [17] and [19],
are available for high-frequency image feature extraction.
Liu et al. [20] used full convolution network for object detec-
tion; it only consists of convolutions and deconvolutions,
and has abandoned fully connected layers to achieve SR
reconstruction. The convolutional layer is used to extract
features as the encoder, and deconvolutional layer is used
to reconstruct the image as the decoder. Multiscale encoder
inputs low-resolution LR image and PC edge image with
phase into CNN. It also uses multiscale decoder to guide
the prediction of edge details of image to reconstruct SR
image with multiscale edge details. However, the algorithm
has the disadvantages of numerous model parameters and

requiring PC edge image and extended time because of the
complexity of the end-to-end structure. Final experimental
data comparison shows that PSNR and SSIM are relatively
low and should be further improved.

The images have a wide range of cross scale block sim-
ilarity. According to the natural cross scale feature corre-
spondence, high-frequency details can be searched from the
LR images. Mei et al. [21] proposed the cross scale non-
local attention module and applied it in the CSNLN net-
work model. Through the SEM unit, combined with local,
intrascale nonlocal, and cross-scale nonlocal feature correla-
tion, more image high-frequency information can be mined
as much as possible [22]. However, the performance can be
slightly improved compared with the experimental data of
other attention modules.

Haris et al. [18] proposed DBPN, which introduced an
effective IBP into SR, to capture the interdependence of LR
and HR image pairs. This SR framework attempts to utilize
back projection iteratively to calculate the reconstruction
error carefully to extract high-frequency features and then
fuses it to improve the accuracy of theHR image. Fig. 1 shows
the architecture diagram. It alternately connects the upsam-
pling layer and the downsampling layer, and further improves
the performance through dense connection, especially when
magnified by a factor of 8. However, this method is computa-
tionally expensive for image feature extraction, which raises
network complexity and running time. The final experimental
results show that the performance is not improved remarkably
compared with simply using downsampling IBP. Moreover,
the dense connection does not focus on the fusion of shallow
features and residual features. Similarly, SRFBN [17] adopts
the iterative up/down sampling feedback block with more
dense connections and learns a better representation. RBPN
for video SR [23] extracts contexts from consecutive video
frames and integrates these contexts through the back pro-
jection module to generate cyclic output frames. The model
in this framework can better identify the deep relationship
between LR and HR image pairs to provide higher-quality
reconstruction results. Nevertheless, the design standard of
the back projection module is still unclear. The framework
has great potential and requires further exploration because
this mechanism has been recently introduced into SR based
on deep learning.

FIGURE 1. The framework of DBPN.

Although many methods based on deep learning have
achieved unprecedented success in the SR field, they are
unsuitable for low configuration devices because of their high
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computing cost and large memory occupation. Therefore,
studying the lightweight SR network for real application
scenarios is very important. FSRCNN [24] designed a convo-
lution network with a funnel structure, which does not require
preprocessing and changes the input feature dimension again.
In addition, it used a smaller convolution kernel and a series
of setting, such as deconvolution upsampling, to realize the
lightweight of the network with very few network parameters
and very fast image reconstruction speed. Multiscale residual
networks [25] designed a global feature fusion structure,
which constructs the network by fusing the output of resid-
ual blocks with different depths. Global feature fusion costs
less computation than local feature fusion [16]. Thus, this
structure fuses features with different depths from a global
perspective to improve the quality of the reconstructed image
and reduce the number of network parameters. Fig. 2 shows
the network architecture, where Mn denotes the output of
the n-th residual block, ILR denotes the input low-resolution
image, and IHR’ denotes the reconstructed high-resolution
image.

FIGURE 2. Global feature fusion.

At present, the excellent lightweight SR network mod-
els are LatticeNet [26], SLUA [27], MAFFSRN [28], and
RFDN [29]. TheMAFFSRNnetwork initially uses a convolu-
tion to extract features and then uses many FFGs to refine and
enhance features. Combined with the multiscale upsampling
module, the residual image is obtained and finally added with
the results of the bicubic image to obtain HR. The RFDN
network proposes a novel residual feature aggregation frame-
work for a more effective feature extraction. The network is
composed of many RFA modules, which directly aggregate
and transform the features of many residual modules and fuse
them with local residual branches through the Add mode.
Finally, a lightweight attention mechanism ESA is also intro-
duced.

III. ADBNET MODEL AND METHOD
A. MODEL CONSTRUCTION
The network architecture adopts global feature fusion and
introduces IBP, which is mainly composed of three modules,
namely, entrance module, main module, and exit module.
Fig. 3 shows the framework.

B. ENTRANCE MODULE
Low-frequency features of images can be easily detected with
the strong expression ability of CNN. Therefore, a shallow
CNN model is also qualified for this task. Similar to the

FIGURE 3. The framework of ADBNet.

previous methods, the entrance module consists of a convo-
lutional layer whose convolution kernel is 3 × 3, with three
input channels and 50 output channels. The algorithm can be
described in Formula (1):

F0 = CONV 3×3(LR) (1)

where LR denotes the input three-channel color image, andF0
denotes the initial feature. The input image is extracted into
shallow image features with 50 channels by CONV function.

C. MAIN MODULE
The main module is the key to the proposed method. Its
architecture is schematically presented in Fig. 3, which is
mainly composed of four lightweight ADB modules. The
common residual module stacking design used in the past
producesmany redundant featuremaps due to the deep layers,
thereby increasing calculation complexity. The main module
of our method adopts residual feature integration, which adds
the output features of four lightweight ADB modules. Our
method can adjust the number of convolutional layers by con-
trolling the number of ADB modules in the code; thus, it can
control the number of network layers and the computational
expense. The ablation study reveals that four lightweight
ADB modules can reach a good balance between the param-
eters, calculation, and performance of reconstruction images.
The algorithm can be described in Formulas (2)-(6):

Ob1 = ADB(F0) (2)

Ob2 = ADB(Ob1) (3)

Ob3 = ADB(Ob2) (4)

Ob4 = ADB(Ob3) (5)

Ob = lrelu(CONV 1×1(Ob1 + Ob2 + Ob3 + Ob4) (6)

where F0 is the output of the input module; Ob1, Ob2, Ob3,
and Ob4 denote the outputs of four lightweight ADB mod-
ules. The output feature maps are added and fused by ADB,
and then the dimension is reduced by a 1 × 1 convolutional
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layer for less computation. The image feature Ob is extracted
using LreLU function. Finally, Ob is fused with F0 through
a 3 × 3 convolutional layer to obtain the final output Olr of
the main module.

The LreLU activation function can be represented in
Formula (7):

LreLU (x) =

{
x, if x > 0
negative_slope× x otherwise

(7)

where LreLU is a variant of ReLU , and the response to the
input less than 0 is changed, reducing the sparsity of ReLU .
The negative_slope coefficient ensures a weak output when
the input is less than 0, alleviating the dying ReLU problem.
The lightweight ADB module collects the high-frequency

features of the image mainly through IBP. Each ADB mod-
ule contains three downsampling back projection units. The
algorithm is described as follows:

Dc1 = LreLU (CONV 1×1(F0)) (8)

Rc1 = CONV 3×3(F0) (9)

Tc1 = IBP(Rc1) (10)

Tc2 = IBP(Tc1) (11)

Tc3 = IBP (Tc2) (12)

Ro = CONV 1×1 (Dc1 + Tc1 + Tc2 + Tc3) (13)

Each ADB module decreases the dimension through 1× 1
convolutional layer to obtain Dc1, outputs 50-channel fea-
tures simultaneously through 3 × 3 convolutional layer, and
then outputs 25-channel features. The inputF0 image features
are processed by IBP thrice to extract high-frequency features
of the LR image, and the image features Tc1, Tc2, and Tc3
are obtained. All acquired image features are fused, and the
dimension is reduced by 1 × 1 convolutional layer to obtain
the final output feature Ro.
The IBP downsampling back projection unit includes

upsampling (upsampling without back projection calcula-
tion), downsampling, back projection calculation, and merg-
ing output parts. The algorithm is described as follows:

up sampling:H i
0 = (M i−1

∗ut ) ↑s (14)

down sampling:M i
0 = (H i

0 ∗ dt ) ↓s (15)

back projection calculation:E li = (M i
0−M

i−1) (16)

merging output:M i
= (M i−1

+ E li ) (17)

where i denotes the i-th stage, and so is the sampling factor.
The LR image featureM i−1 from the previous stage is consid-
ered the input, and then the enlarged HR image feature H i

0 is
obtained by deconvolution. The enlarged image is downsam-
pled with the interpolate function and mapped back to LR to
obtain the image featureM i

0. Then, the high-frequency feature
E li betweenM

i−1 andM i
0 is obtained by residual calculation.

Finally, the output is the fusion of the input image feature and
the sum ofM i−1 and E li .
In conclusion, the design of the main module strictly

controls the size and number of convolutional layers by

dimension reduction, using convolutional layer with small
convolution kernel and image feature optimization with few
(25 and 50) channels to realize the light weight of the model.
It converges and transforms the high-frequency features of
images obtained by multiple lightweight ADB modules and
fuses them with local residual branches by using the Add
method. Then, the residual features of different levels are
aggregated, and more high-frequency features are generated.
Thus, the accuracy of the reconstructed image is improved.

D. EXIT MODULE
This section considers the image features from the main
module as input, generates 50-channel features through a con-
volutional layer with 3× 3 convolution kernel, and then adds
and fuses with the image features of the entrance module.
Finally, the HR image is reconstructed by the reconstruction
module. The process can be described as follows:

COLR = CONV 3×3 (Ob)+ F0 (18)

HR = upsampler (COLR) (19)

where Ob is the output of the main module, F0 is the output
of the entrance module, COLR is the image feature fused
prior to reconstruction, and upsampler uses the PixelShuf-
fle [30] method to achieve high-resolution image output. The
main idea is to obtain a high-resolution feature map from
a low-resolution one through convolution and multichannel
reconstruction. This approach is effective for current image
SR upsampling. Fig. 4 shows the algorithm flowchart.

FIGURE 4. Upsampler flowchart.

Its function is to change a low-resolution image of
H×W into a high-resolution image of rH×rW by subpixel
operation.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL CONFIGURATION
The evaluation dataset is composed of four public datasets,
namely, Set5 [31], Set14 [32], BSDS100 [33], and
Urban100 [34]. The training data set adopts DIV2K [35],
and the input size for training is 96 × 96 by randomly
clipping [36]. DIV2K is a new high-quality dataset for
image reconstruction; it contains 800 training images,
100 evaluation images, and 100 test images. The Set5 and
Set14 datasets are low-complexity single-image SR datasets
based on non-negative neighborhood embedding. The
BSDS100 dataset is divided into 200-image training set and
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100-image test set. The Urban100 dataset contains 100 chal-
lenging urban landscapes with different frequency bands. All
training experiments are implemented on Ubuntu 16.4 and
eight NVIDIA GTX2080TI GPUs with 8 G memory for
each one.

Mean square error is used as the loss function; it is the most
commonly used regression loss function to realize image SR
with a neural network. The distance from each training point
to the optimal fitting line is minimized (or the sum of squares
is minimized), and the loss function is as follows:

J (w, b) =
1
2n

n∑
1

‖y− a‖2 (20)

a = f (l) = f (w × x + b), x is the input, w and b are
the network parameters, and f (l) is the activation function.
Adopting the mean square error as the loss function is bene-
ficial to obtaining a higher PSNR.

Comparison methods include SRCNN [2], FSRCNN [24],
VDSR [4], EDSR [8], DBPN [18], and RFDN [29], among
which RFDN is a lightweight, efficient image SR network
proposed by Nanjing University and was the champion of the
AIM20-ESR competition in 2020.

B. COMPARISON OF AVERAGE RUNNING TIME OF
RECONSTRUCTED IMAGES
To validate the running time of our method on the computer
with low configuration, the test was conducted on the PC
only with integrated graphics, of which the CPU is Intel
I3-8300 and the RAM is 4G. Fig. 5 is a bar chart compar-
ing the average running time of the image reconstruction
on four evaluation datasets of Set5, Set14, BSD100, and
Urban100 when scaling factor is 4. The figure shows that
with lightweight design and few parameters, the average time
of image reconstruction of our method in the four datasets
is very short. The average running times are 0.293, 0.285,
0.146, and 0.853. The higher resolution of the reconstructed
image results in a more evident contrast. For example, when
reconstructing the image in the Urban100 dataset, the pro-
posed method is 31 times faster than the DBPNmethod using
double sampling IBP, slightly faster than the lightweight
RFDN network, 34 times faster than EDSR, 12 times faster
than VDSR, and three times faster than the earliest SRCNN.
Although FSRCNN is slightly faster than our method, its
performance of image construction is poor. Therefore, our
method is fast and very suitable for the operation on the
platform with a low configuration.

C. ABLATION STUDY
In the study of our method, a variety of combination research
on the ADB module was conducted, the backbone net-
work was set without the ADB modules as ADBNet#.
Table 1 shows that when the number of ADB modules was
raised to seven, the parameter increased by 200.46k, multiadd
calculation increased, and PSNR only increased by 0.11 after
image reconstruction. When the number of ADB modules

FIGURE 5. Average running time of the image reconstruction of seven
methods.

TABLE 1. Ablation study of ADBNet.

was reduced to two, the PSNR value was only 30.83, which
is lower than that of existing advanced methods, although
the parameter was reduced by 239.13K and the calculation
of multiadds was reduced. The internal structure of the ADB
module was changed from the original downsampling back
projection to upsampling back projection and downsampling
back projection, and iterated for four times. The parameter
was 3443.71k larger than the original, the calculation of mul-
tiadds increased sharply, but the PSNR value only increased
by 0.15, which shows that the combination (ADBNet#+four
ADBs) is a good setting. Moreover, the reconstruction speed
was only 0.29 s, which is the fastest on the whole dataset
and is suitable for running on the computers with low
configuration.

D. COMPARISON OF MODEL COMPLEXITY WITH
EXISTING METHOD
To validate the effectiveness of our method on the lightweight
aspect, it was compared with the recent three years
lightweight SR method in terms of parameters, multiadds,
and PSNR. Fig. 6 shows that the parameter of our method is
between 400K and 600K, which is similar to that of RFDN,
MAFFSRN, and IDN* [37]with less parameter. The multiadd
calculation of our method is 20-40 G, which is near that
of the RFDN, MAFFSRN, and IDN*. Thus, our method
is a lightweight model with low complexity and running
time. Table 2 shows the comparison of PSNR and SSIM
above our method and existing methods on 2×, 4×, and 8×.
The PSNR and SSIM values of our method are the highest
among the four datasets on 4× and 8×. Hence, our method
can reach a good balance between performance and model
complexity.
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FIGURE 6. Performance comparison of existing lightweight methods on
Set5 [3] (4×). Multi adds are calculated on a 720 p HR image.

TABLE 2. Comparison of PSNR and SSIM values of image reconstruction
by eight methods.

E. COMPARISON OF IMAGE RECONSTRUCTION
PERFORMANCE
Fig. 7 shows a local magnification of each image selected
from the Set5, Set14, BSDS100, and Urban100 datasets and
reconstructed with 4× SR by seven methods. According to

the comparison of PSNR and SSIM values in Table 2 and the
details in Fig. 7, bicubic image quality assessments are the
lowest. The entire bicubic reconstruction image is blurry and
very smooth, and the features of high and low frequencies
are not evident. The PSNR and SSIM values of SRCNN
are much higher than that of bicubic, and the reconstruction
effect is much better than that of bicubic. Details are evidently
enhanced, and high-frequency features have been initially
revealed from the low frequency. FSRCNN is a lightweight
upgraded version of SRCNN. Although the values of PSNR
and SSIM are only slightly higher than those of the former,
a great progress is still observed from the comparison of the
details in Fig. 7, especially in the comparison of the last graph.
Evident square blocks can be seen from the two bright lines at
the bottom of the former, and few square blocks can be seen
from that of the latter. The PSNR and SSIM values of EDSR
are much higher than those of FSRCNN, but the effect of
detail improvement is not evident from Fig. 7. The PSNR and
SSIM values of DBPN are slightly lower than those of EDSR
at 2×. Although a slight improvement is found compared
with EDSR at 4× and 8×, DBPN adopts iterative up and
down sampling back projection to improve the extraction
ability of high-frequency features. The detail comparison
in Fig. 7 shows that the display of high-frequency features by
DBPN is higher than that of the four previous methods with
rich details. However, several mistakes are observed from the
four comparison graphs. For example, more superimposed
wavy lines are found above the double bright lines in the
last picture, and one more prominent white pattern in the
middle of the first picture is insufficiently smooth. The PSNR
and SSIM values of RFDN are slightly higher than those
of DBPN at 2× and 4× and lower than those of DBPN
at 8×. According to the detailed comparison graph at 4×
in Fig. 7, the high-frequency characteristics of the second
graph of RFDN are less than those of DBPN, the first graph
is more improved than the previous, and the overall reality
of the fourth graph is better than that of DBPN. Our method
adopts the global feature fusion network backbone structure,
such as RFDN, but the PSNR and SSIM values are slightly
lower than RFDN at 2× mainly because the RFDN uses
residual module in image feature extraction method, which
uses skip connections in the network design to avoid gradients
from vanishing and allows the design of very deep networks.
In addition, it can fully combine the low-level feature and
high-level feature, and achieve a good performance in low
magnification. However, with the increase in magnification,
our method can better obtain and restore the high-frequency
features with IBP iterative downsampling back projection.
The PSNR and SSIM values are slightly higher than those of
the IBP module at a low magnification, which is decided by
the IBP algorithm. The lower magnification results in the less
evident effect of high-frequency feature extraction. At 4× and
8×magnification, the PSNR and SSIM values of our method
are higher than those of the previous algorithms, and the
reconstruction effect is the best with rich details and strong
sense of reality. For example, the last contrast graph shows
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FIGURE 7. Reconstruction performance of different methods on the magnification of 4 times.

that the high-frequency features are evident, and the curve
above the double bright line is closer to the HR graph than
other algorithms. Our method simultaneously requires less
computation and memory to adapt to the actual application
better.

F. THE COMPARISON OF VISUAL FEATURE MAP BETWEEN
IMAGE FEATURE EXTRACTION AND THE AGGREGATION OF
HIGH-FREQUENCY FEATURE
To observe the network model better for extracting the
image feature and aggregating the high-frequency feature,
the visual convolution graph is adopted to analyze EDSR,
DBPN, RFDN, and ADBNet at 8× SR. Fig. 8 shows that
EDSR adopts residual structure, and the convolution layer
of 0-31 residual units is selected for visualization. The
convolution layers in the selection have numerous invalid

black blocks. Moreover, the difference between image fea-
ture extraction and high-frequency aggregation of several
units in the 11 feature maps selected from each unit is not
very evident. The DBPN network adopts dense connection
and iterative upsampling and downsampling back projec-
tion. Several convolution layers are selected for visualiza-
tion from down1 to down5 and up1 to up7 units, and the
results show that invalid black blocks in the extracted convo-
lution layers are remarkably reduced. Further aggregation of
high-frequency features is found evidently from the feature
maps selected from each unit, but the final image feature
extraction is not the best. RFDN adopts a lightweight net-
work structure with global feature fusion and residual feature
aggregation. The convolution layers of B1.c1_d to b1.c5_d
units is visualized, and the finding reveal that the number of
invalid black blocks of selected convolution layers is similar
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FIGURE 8. The comparison of visual feature map between image feature extraction and the aggregation of high-frequency feature of 4 networks.

to that of DBPN. However, the aggregation of high-frequency
features is evidently inferior to that of DBPN. Our network
ADBNet adopts global feature fusion and iterative down-
sampling back projection. The convolution layers of mod-
ule.B1 to module.B4 is visualize, and no valid black blocks
are found in the visualized convolution. Moreover, each fea-
ture map has evident image features, and the aggregation
of high-frequency features is evidently better than the three
previous networks. We can conclude that the network archi-
tecture adopting global feature fusion and iterative down-
sampling back projection not only realizes the lightweight
of the network but also highlights the high-frequency feature
aggregation of the image.

V. CONCLUSION
An ADBNet network is proposed to solve the problems of
massive model size, complex model structure, and slow run-
ning speed in current mainstream image SR methods. The
proposed ADBNet achieves the light weight and high effi-
ciency of the network by reducing feature dimension and con-
trolling network depth, using small convolution kernels and
global feature fusion. IBP is combined to enhance the extrac-
tion of image feature and aggregation of high-frequency
feature to improve the reconstruction accuracy (PSNR and
SSIM) of the output image and obtain more detailed image
in visualization. The comprehensive benchmark evaluation
shows that our ADBNet model is effective in terms of model
complexity and running speed. In the future, we will delve
into the transformation of image SR.
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