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ABSTRACT The rapid development of renewable energy power has improved global energy and envi-
ronmental problems. However, with the high volatility of renewable energy, it is an important challenge
to guarantee the consumption of renewable energy and the reliable operation of high percentage renewable
energy power systems. To solve this problem, this paper proposes a tracking absorption strategy for renewable
energy based on the interaction between the supply side and the demand side, which adjusts the charging
process of electric vehicles (EVs) through electric vehicle aggregator (EVA) to realize the tracking absorption
of renewable energy abandoned electricity. In view of this process, we analyze the interaction among power
grid, EVA and renewable energy generation (REG) as well as their market characteristics. The master-slave
game model of EVA and REG was constructed considering the charging behavior characteristics of EVs
and the output characteristics of REGs. Then the model solving strategy based on soft actor-critic (SAC)
algorithm is proposed, and the REG pricing strategy and EVA scheduling strategy are calculated to optimize
the mutual benefits. The case analysis shows that, under the same scale of electric vehicles, the proposed
method can promote about 93.89% of the power abandonment consumption of wind power system, 96.00%
of the photovoltaic system, and 97.41% of the wind-solar system. This strategy reduces the electricity
purchase cost of EVA, promotes the interaction among renewable energy, vehicles and power grid, and
improves the utilization efficiency of renewable energy.

INDEX TERMS Reinforcement learning, electric vehicles, renewable energy abandoned power consump-
tion, curve tracking, V2G.

I. INTRODUCTION
China’s renewable energy is in a period of rapid development,
by the end of 2020, the total installed capacity of renew-
able energy generation in China reached 930 million kW,
accounting for 42.4% of the total installed capacity, and the
National Energy Administration expects that by the 14th
Five-Year Plan period, the proportion of clean energy in the
incremental energy consumption will reach 80%. The con-
sumption of renewable energy will be one of the key issues
facing the development of renewable energy in China, and the
aggregated dispatch of EVs can realize the consumption of
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renewable energy. By the end of 2020, the number of EVs in
China will reach 4.7million, and the number of charging piles
will reach 1.148 million, which has the potential to aggregate
and consume renewable energy.

Because the renewable energy has great instability, in the
case of sufficient power supply, the renewable energy power
is often discarded to choose power resources to ensure the
economic and reliable operation of the power system [1].
In response to this situation, there are two main measures,
one is to improve the prediction accuracy of renewable
energy sources, and the other is to deploy energy storage or
other coupling to suppress load fluctuations in the form of
energy transfer [2]–[4]. For example, Zhou et al. [5] pro-
posed a wind speed forecasting method with heteroscedastic
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multi-kernel learning controlling the wind power forecast-
ing error between 4.57% and 8.751%, helpfully adjusts the
unit scheduling plan in time. This method can reduce the
power abandonment loss, but it cannot effectively elimi-
nate the power abandonment loss. Wang et al. [6] studied
the optimal ratio of photovoltaic and battery. The bat-
tery is used to store and release electric energy to ensure
power supply, and the discarded electricity can be reduced
from 100% to 0% by putting into the energy storage bat-
tery. However, this method needs to invest energy storage
resources and pay a large cost. Through the price incentive
of renewable energy generators and the response scheduling
of Electric Vehicle Aggregator (EVA), the consumption of
renewable energy can be promoted while controlling the
cost.

Renewable energy output data varies on different days and
at different time periods, and EVs show different adjustable
capabilities at different incentive levels. Therefore, regulating
the charging and discharging process of EVs by means of
real-time price guidance is a reliable approach. In a study
by Luo et al. [7], a dynamic price mechanism was proposed
to regulate the subject behavior, which increased the profit
of renewable energy power plants by 7% and adjusted the
charging load of EVAs. However, the game process between
the generation side and the user side in the price setting
process should be considered. This article has made a special
design to this point.

How to design an optimal dispatching strategy for
large-scale electric vehicles is an important issue for EV to
absorb renewable energy. The current research on the optimal
dispatching process for large-scale EVs can be summarized
in two points [8]–[10]: 1) How to motivate adjustable EVs to
participate in the electricity market? To address this problem,
Gan et al. [11] studied charging behavior of EV owners and
designed a corresponding price incentive method to realize
load transfer through price guidance. However, user behavior
is an individual characteristic, and its sample data is difficult
to collect [12], [13], its typicality is questionable, and it is
not universal [14]. Therefore, we transfer the study of user
behavior to EVA, to achieve orderly charging of electric
vehicles. EVA acts as the agent for users to respond to price
signals of renewable energy and EVA selects EVs willing to
participate in the scheduling to respond to load regulation.
2) How to design a dispatch plan for large-scale EVs? In
current research, optimal scheduling plans can be formed by
solving optimization algorithms, including non-cooperative
game [15], Probabilistic, coordinated charging method [16]
and other methods. However, these methods are limited
by their algorithm complexity, computational scale, and
other conditions, and cannot solve the real-time schedul-
ing problem of large-scale EVs. However the soft actor-
critic algorithm based on deep reinforcement learning (DPL)
mechanism can achieve large-scale and fine scheduling of
EVs [17]. The SAC algorithm overcomes the defects of tradi-
tional algorithms and can provide support for real-time EVs
scheduling.

For the first time, this paper studies the method of con-
suming renewable energy on the demand side, and proposes
a strategy of reasonably scheduling EVS charging process to
absorb renewable energy power. EVA reduces the charging
cost of EVs by purchasing abandoned electricity, and REG
increases the revenue of electricity sales by increasing elec-
tricity sales. The whole process promotes the consumption of
renewable energy in an interactive way between the supply
side and demand side of electricity, and maintains the econ-
omy, cleanliness and reliability of the power system opera-
tion. In general, this paper proposes a market model for EVA
to track and consume abandoned electricity; for the market
game process of EVA and REG, it proposes a master-slave
game based REG pricing model and EVA dispatching model,
which is helpful to achieve a win-win situation for multiple
subjects; and it proposes a model solving method based on
SAC deep reinforcement learning, which realizes real-time
optimal dispatching of large-scale electric vehicles; the inter-
action between wind power, photovoltaic, wind-solar systems
and EVA is analyzed, and the energy exchange efficiency
between different energy systems and EVA is studied.

The first part of this paper is the introduction, which
discusses the development of EV and renewable energy;
the other parts of this paper are structured as follows:
section 2 dissects the scenario of EVA tracking renewable
energy for abandoned power consumption; section 3 con-
structs the behavioral model and market game model of EVA
tracking REG absorbing abandoned power; section 4 estab-
lishes the model solving algorithm based on SAC deep rein-
forcement learning; section 5 constructs a case study of EVA
tracking for renewable energy consumptionwhich verifies the
effectiveness of this paper’s model; section 6 concludes and
discusses the whole paper.

II. FRAMEWORK OF THE SCENE
A. SCHEDULING FRAMEWORK FOR EV TRACKING
RENEWABLE ENERGY CONSUMPTION
In a conventional power system, REG acts as an important
generation resource to deliver power to the grid and provide
energy supply to demand-side users; EVA acts as an aggrega-
tor to purchase power from the electricity market for EVs and
obtains power through the grid thus charging EVs [18], [19].
In the process of delivering power to the grid by the REG,
when the power delivery channel is full or the power demand
is satisfied, the REG has to discard some of the power. In the
process of EVA receiving power from the grid, the charging
time, the power of charging, and the charging quantity of EV
can be adjusted, but they are not utilized.

Therefore, this paper proposes a power tracking and con-
sumption strategy to reduce the power purchase cost of EVAs
and promote the consumption of renewable abandoned power
through direct trading between EVs and REGs. The response
strategy of EVs tracking and consuming renewable energy is
shown in Figure 1.

The process promotes the consumption of renewable
energy and reduces the charging cost of EVAs through direct
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electricity trading between REG and EVAs. The process has
the following characteristics.

(1) Most of RGE’s electricity is sold through the wholesale
market and transmitted through the grid to customers across
the country. Feed-in electricity of RGE depends on the grid
electricity demand, and the feed-in price is determined by
RGE’s market bidding in the wholesale market. Generation
resources aremainly consideredwind power and photovoltaic
(PV).

(2) EVA receives most of its electricity from grid trans-
mission. Moreover, EVA accepts electricity from state grid at
wholesale market prices.

(3) Part of RGE’s electricity is abandoned because the
power grid cannot fully accept it. For this part of electricity,
RGE directly trades with EVA to achieve renewable energy
tracking and consuming, which is a kind of small-scale
vehicle to grid (V2G). And in the process, RGE sends the
price signal to EVA; then, EVA schedules the charging and
discharging process of EVs in real time according to its own
power demand and power purchase cost; finally, it completes
the adjustment of load distribution and consumes renewable
energy power.

B. SCHEDULING PROCESS
In this paper, the process of EVs tracking renewable energy
is as follows: First, RGE makes a short-term forecast based
on the generation of the units, and compares the forecasted
power output with the current power contract to get the power
abandonment curve. Then, RGE sends a transaction request
to EVA for power tracking and consumption, along with a
time-divided power trading volume quota and price demand.
After receiving the trading request from RGE, EVA makes
a reasonable power dispatch on the same day, taking into
account the power system constraints and economic con-
straints, and trying to consume this part of the abandoned
power. Finally, EVA and RGE checked the renewable energy
power tracked and consumed, and settle the amount of elec-
tricity according to the time-divided price published by RGE.

III. MODEL FOR TRACKING THE CONSUMPTION OF
RENEWABLE ENERGY
A. ELECTRIC VEHICLE BEHAVIOR MODEL
According to the charging and discharging process of EV,
the single EV behavior model is constructed as shown in
equation (1)-equation (6). Where equation (1) is the EV
electric energy description formula; equation (2) describes
the charging satisfaction situation when the EV leaves;
equation (3) is the EV electric energy change constraint;
equation (4)-equation (6) is the EV charging power con-
straint [20].

dev,t = η
t∑

k=tin

Pev,k1t = dt−1 + ηPev,t1t (1)

dmin,tout = dmax,tout = Dexpect (2)

dmin,t ≤ dev,t ≤ dmax,t (3)

FIGURE 1. The response strategy of EVs tracking and consumption of
renewable energy.

Pmax,t =
min

(
Pev,max , dmax,t − dt−1

)
η1t

(4)

Pmin,t =
max

(
Pev,min, dmin,t − dt−1

)
η1t

(5)

Pmin,t ≤ Pev,t ≤ Pmax,t (6)

where, dev,t is the energy trajectory value of EV at the time
of t; dmin,tout and dmax,tout are the lower limit and upper limit
of the energy trajectory dt at time t; η is charging efficiency;
Pev,k is the constant power in the period from time k to time
k+1;1t is the time interval of the scheduling period; tin and
tout are the time of EV access and departure, that is, EV access
at the time of tin and departure at the time of tout ; Dexpect is
charging demand of EV; Pev,max is the upper limit of rated
charging power of EV battery; Pev,t , Pmax,t and Pmin,t are
the charging power of EV and the maximum and minimum
charging power restricted by energy boundary constraints at
the time t .
At the same time, for the aggregation process of EVs,

there are equations (7)–(13). Among them, equation (7) is
the calculation formula of EVA electrical energy; equation
(7)-equation (10) is the constraint of the electric quantity of
EVA purchase; equation (11)-equation (13) is the constraint
of EVA load.

dm,t = η
t∑

k=1

Pm,k,t1t = dm,t−1 + ηPm,t1t (7)

dmin,m,t ≤ dm,t ≤ dmax,m,t (8)

dmin,m,t =
nm∑
l=1

dmin,m,l (9)

dmax,m,t =
nm∑
l=1

dmax,m,l (10)

Pm,t =
nm∑
l=1

Pev,m,l,t (11)

Pmin,m,t =
nm∑
l=1

Pev,min,m,l,t ≤ Pm,t (12)

Pmax,m,t =
nm∑
l=1

Pev,min,m,l,t ≥ Pm,t (13)
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where, dm,t is the energy trajectory of the subset group at time
t; dmin,m,t and dmax,m,t are the upper and lower limits of the
energy trajectories of the subset group at time t; Pm,t is the
total charging power of the subset group at time t;Pmin,m,t and
Pmax,m,t are respectively the charging lower limit and upper
limit of the subset group at time t; nm is the total number
of EVs belonging to EVA at time t; dmin,m,l,t , dmax,m,l,t and
Pev,min,m,l,t , Pev,min,m,l,t are respectively the lower and upper
bounds of the energy trajectory of the EV of the subset group
l at time t and the lower and upper bounds of the charging
power.

B. TRACKING AND ABSORBING MODEL BASED ON
MASTER-SLAVE GAME
In the process of tracking the consumption, firstly, the REG
puts forward the load regulation demand based on the pre-
dicted output value, and then the EVA will carry out the load
regulation. In this process, REG is in the leading position
as the main body of the consumption curve, and EVA is
in the following position as the executor of the load con-
sumption curve. In this process, REG will release the load
consumption curve and its corresponding consumption price,
and EVA will make consumption behaviors in response to
the curve and consumption prices and create feedback on
the pricing strategy of REG. And finally achieve a dynamic
balance between the REG and the EVA, forming a stable price
level [21]–[23].

This master-slave game can be described as follows.

max
T∑
t=1

(
Pload,t · pt + Pev2,t · pev,t

)
(14)

S.t. (1)–(13)

Pev2,t ≤ Pwt,t + Ppv,t − Pload,t (15)

pev,t < pt (16)

where, Pload,t is the total load at time t; T is the total number
of periods; pt is the electricity selling price at time t; Pev2,t
is the amount of renewable energy absorbed by EVA at a
moment; pev,t is the time-divided electricity price of renew-
able energy power purchased by EVA at time t .

In the master slave game, the renewable energy power
plant establishes the optimal consumption electricity price
through the optimized Equations (14)–(16), and transmits the
electricity price to EVA through communication equipment.
Then EVA formulates charging strategy Pev with the lowest
electricity purchase cost as the optimization goal, and its
model is as follows.

Pev = argmin
T∑
t=1(

Pev1,t · pt + Pev2,t · pev,t
)

(17)
T∑
t=1

(
Pev1,t · pt + Pev2,t · pev,t

)
=

T∑
t=1

Pm,t (18)

Pev1,t + Pev2,t = Pm,t (19)

where, Pev1,t is the electric quantity directly purchased by
EVA at time t .

IV. SAC BASED MODEL SOLVING ALGORITHM
In contrast to traditional distributed optimization algorithms,
reinforcement learning (RL) allows continuous interaction
with the environment through the ‘‘trial and error’’ pro-
cess of the agent. It uses a model-based reward mecha-
nism to seek solutions that maximize cumulative benefits,
and is an optimization decision approach for the interac-
tion of EVs with sources, networks, and loads [24]. The
SAC algorithm is a reinforcement learning algorithm pro-
posed by T. Haarnoja et al. [25]. It can make accurate and
effective charging and discharging decisions for large-scale
EVs in complex power supply and demand environments by
introducing a maximum entropy encouragement strategy to
improve the robustness of the algorithm while accelerating
the training speed [25], [26].

A. IMPORTANT CONCEPTS
SAC algorithm, by introducing entropy into RL [27], [28],
makes the policy as random as possible and then enables
agents to explore the policy space more fully. Its important
concepts include policy, entropy, and soft value function.

1) THE MAXIMUM REWARD POLICY

π∗max = argmax
π

T∑
t=1

E(st ,at )∼pt [r (st , at)+ αH (π ( ·| st))]

(20)

where, st is the state space of EVA at time t (i.e., system base
load); at is the action space of EVA at time t (i.e., the charge
and discharge conditions); r (st , at) is the reward function of
EVA at time t , which is reflected in equation (20) in this
paper; (st , at) ∼ pπ is the state-action trajectory formed
by strategy π ; pπ represents the distribution followed by the
state-action pair that the agent will encounter under the policy
π ; α is temperature, which determines the effect of entropy
on the reward; H (π ( ·| st)) is the entropy of the strategy in
state st , and its calculation method is shown in equation (21).

2) ENTROPY
It is used to measure the randomness of a random variable,
and the random distribution it follows is directly considered
in the actual calculation.

H (π (at | st)) = −
∫
at
π (at | st) log (π (at | st))dat

= Eat∼pπ
[
− log (π (at | st))

]
(21)

3) SOFT VALUE FUNCTION
Soft Value Function can be used to evaluate the goodness
of the strategy. The soft Q function can be calculated as in
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Equation (22).

Q
(
sq, aq

)
= r

(
sq, aq

)
+ γEst+1∼p

[
Q
(
sq+1, aq+1

)]
(22)

where, γ is the discount factor of reward.
And the calculation formula of Soft Value Function is

shown in (23).

V (st) = Eat∼π
[
Q (st , at)− logπ (at | st+1)

]
(23)

B. POLICY ITERATION
1) SOFT POLICY EVALUATION
Fixed policy, using Bellman equation (24) to update Q value
until convergence.

Q (st , at) = r (st , at)+ γEst+1∼p [Q (st+1, at+1)
−α logπ (at+1| st+1)

]
(24)

The convergence can be achieved by iteration based on
Equations (22)-(23).

2) SOFT POLICY IMPROVEMENT

π ′ (s) = argmin
πk∈

∏ DKL

πk ( ·| sq)∥∥ exp
(
1
α
Qπold (sk , ·)

)
Zπold (sk)


(25)

where, DKL is KL divergence;
∏

is the policy set; Zπold
(
sq·
)

is the partition function, and is used for the normalized dis-
tribution.

C. SOFT ACTOR-CRITIC
First, we need to build a Q value network and a policy net-
work. The Q-value network outputs single-value Q through
several layers of neural networks, and the policy network out-
puts a Gaussian distribution [29]. In this process, the neural
network will be updated. The Q value network parameter
has an update strategy as shown in Formula (26), and the
policy network parameter has an update strategy as shown
in Formula (27).

JQ (θ) = E(st ,at ,st+1)∼D[
1
2

(
Q (st , at)−

(
r (st , at)+ γVθ̄ (st+1)

))2] (26)

Jπ (φ) = DKL

(
π ( ·| st)‖ exp

(
1
α
Qθ (st , ·)− logZ (st)

))
(27)

where, θ is the Q value network parameter.; φ is the policy
network parameter.

What’s more, we usually give a fixed temperature as the
weight of entropy. But in fact, due to the constant changes
of rewards, it is not reasonable to use a fixed temperature,
which will make the whole training unstable. Therefore,
a constrained optimization method (28)-(29) is considered so

FIGURE 2. Calculation flow of EVA optimization scheduling based on SAC.

that the mean value of temperature is limited and variable
under different states.

max
πk∈

∏E

[
T∑
t=0

r (st , at)

]
(28)

s.t. ∀H (πt) ≥ H0 (29)

After solving, we can get the loss of temperature as equa-
tion (30).

J (α) = Eat∼πt
[
−α logπt (at |πt)− αH0

]
(30)

D. CALCULATION FLOW
In the process of EVA tracking and absorbing renewable
energy abandoned electricity, a master-slave game is adopted,
which fully considers the scale characteristics and market
positions of both sides. SAC algorithm is used to solve the
problem, which fully considers the complexity characteris-
tics of calculation scale and decision. The calculation flow
of EVA optimization scheduling based on SAC is shown
in Figure 2.

V. CASE STUDY
A. BASIC SITUATION OF THE CASE
This paper takes the output data and load data of a typical
scene in Northeast China as an example to analyze. In this
case, the typical output curves of wind power generation in
different seasons are shown in Fig. 3, the typical output situ-
ation of photovoltaic power generation in different seasons is
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FIGURE 3. Wind power generation.

FIGURE 4. Photovoltaic power generation.

FIGURE 5. Power generation of wind-solar system.

shown in Figure 4, the typical output situation of wind-solar
system in different seasons is shown in Figure 5, and the load
of EVs is shown in Figure 6.

In this section, 3 typical scenarios are designed for analy-
sis. Scenario 1 is the renewable energy tracking and consump-
tion of wind power; Scenario 2 documents the renewable
energy tracking and consumption of PV; Scenario 3 is the
renewable energy tracking and consumption of wind power
and PV. Figure 7, Figure 8 and Figure 9 show the distribution

FIGURE 6. Load situation of EVs.

FIGURE 7. Power to be consumed in scenario 1.

FIGURE 8. Power to be consumed in scenario 2.

of abandoned electricity from renewable energy under three
scenarios.

The on-grid electricity price of wind power in this region is
0.57yuan/kWh, including subsidies of 0.179yuan/kWh; The
on-grid electricity price of photovoltaic is 0.75yuan/kWh,
including subsidy 0.37yuan/kWh; The electricity price
for users to purchase electricity from the grid side is
0.64yuan/kWh. All data are the result of local real data pro-
cessing in 2019.
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TABLE 1. The consumption of renewable energy abandoned electricity.

FIGURE 9. Power to be consumed in scenario 3.

In this section, we solve the pricing strategy of REG and the
optimal scheduling strategy of EVA. Then we calculate the
increased revenue and the increased consumption of renew-
able energy under three scenarios, and prove the economy and
effectiveness of the model and method proposed in this paper.
Finally, by comparing the optimal scheduling results of the
three scenarios, the coupling performance between different
energy sources and EVs can be judged, which provides a ref-
erence for EVA to select a suitable cooperative manufacturer.

The computing environment is Python TensorFlow 2.0.
The computer model is a quad-core 2.60-GHz Intel
Core i7-6700HQ processor with 16GB of RAM.

B. CALCULATION RESULTS
The reward function of SAC algorithm is constructed based
on equation (14)-(19), the SAC iterative network is con-
structed based on equation (20)-(30), and the solution con-
straints are generated based on equation (1)-(13). After 3000
iterations of solving and 8 hours of calculation, the optimal
time-divided price of REG for scenario 1 is obtained as shown
in Figure 10, the optimal time-divided price of REG for
scenario 2 is obtained as shown in Figure 11, the optimal
time-divided price of REG for scenario 3 is obtained as
shown in Figure 12. The optimal EVA optimized scheduling

FIGURE 10. Time-divided price of REG for scenario 1.

FIGURE 11. Time-divided price of REG for scenario 2.

strategy for scenario 1 is shown in Figure 13, and the optimal
EVA optimized scheduling strategy for scenario 2 is shown
in Figure 14, and the optimal EVA optimized scheduling
strategy for Scenario 3 is shown in Figure 15.

In order to compare the load absorbing capacity of EV in
three typical scenarios, the consumption of renewable energy
abandoned electricity is calculated as shown in Table 1, and
the revenue growth of REG and EVA is calculated as shown
in Table 2.
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TABLE 2. The revenue growth of REG and EVA.

FIGURE 12. Time-divided price of REG for scenario 3.

FIGURE 13. EVA optimized scheduling strategy for scenario 1.

Table 1 illustrates EVA’s tracking and consumption of
renewable energy in different seasons and different scenarios.
Comparing the consumption in different seasons, it can be
found that wind resources aremore abundant in spring and PV
resources are more abundant in summer. And in the season
of more abundant resources, the proportion of EVA tracking
consumption of renewable energy will not weaken. This is
because even in the season with a lot of electric abandoning,
the electric abandoning does not produce new peak value,
but the time distribution is more extensive. Therefore, EVA
can still absorb this part of electric abandoning by fully
scheduling the charging process of EV.

FIGURE 14. EVA optimized scheduling strategy for scenario 2.

FIGURE 15. EVA optimized scheduling strategy for scenario 3.

Comparing the renewable energy consumption in different
scenarios, we can find that the highest proportion of renew-
able energy is tracked and consumed in scenario 3, followed
by scenario 2 and finally scenario 1. It can be seen that
for wind power system, PV system and wind-solar system,
the coupling of wind-solar system promotes the tracking and
consumption of renewable energy by EVA; the more regular
abandonment distribution of PV system is also conducive
to the tracking and consumption of renewable energy by
EVA. While the discrete and spike characteristics of wind
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FIGURE 16. Algorithm convergence graph.

power system are not conducive to EVA’s high proportion of
consumption of renewable energy.

Table 2 compares the incremental benefits of each market
player after the absorption of renewable energy power by
EVA in different scenarios. The larger the scale of power
abandonment, the higher the incremental benefit generated
by EVA tracking absorption, such as spring in scenario 1,
summer in scenario 2, and summer in scenario 3. In the three
typical scenarios, REG increases its revenue by selling the
abandoned power at an average price of 0.59 yuan/kWh; EVA
saves the power purchase cost of 0.05 yuan/kWh on average.

Figure 16 is the SAC algorithm convergence graph, which
shows the convergence of the SAC algorithm during the
training process.

In the case of real-time updating of REG pricing policy and
EVA scheduling policy, the SAC algorithm shows some oscil-
lation in the convergence process due to the irregularity of the
data source. However, it began to realize positive revenue and
steady increase after 200 iterations, and achieved stable test
results and good overall performance after 1300 iterations.
SAC algorithm is a reinforcement learning algorithm suitable
for EVA tracking and absorbing renewable energy.

VI. CONCLUSION
In order to promote the consumption of renewable energy
and the development of V2G, this paper uses EVA to aggre-
gate and schedule the charging process of EVS, realizes the
tracking absorption of renewable energy’s abandoned power,
and solves the problem of power supply and demand balance
under the condition of large-scale renewable energy input
into the network. In the market response process, REG sends
price signals and EVA accepts and responds to them in a way
that ensures supply-side revenue and controls recipient cost.
The scheduling process is carried out by the EVA, taking its
own power purchase cost and customers’ charging demands
into account, to make reasonable and optimal scheduling.
At the same time, a master-slave game model between REG
and EVA is constructed to form a pricing strategy for REG
and a scheduling strategy for EVA to maximize the interests

of both parties by combining the economic and physical
constraints of the system. The SAC deep reinforcement learn-
ing algorithm is used to solve the problems of high data
dimension and large sample dispersion in the model solution
process.

The model in this paper is verified based on the basic
situation of A region. The results show that the model in
this paper can achieve 93.89% of the power consumption
of wind power system, 96.00% of the photovoltaic system,
and 97.41% of the wind-solar system. Created a daily eco-
nomic return of not less than 10,000 yuan (about 25%)
for REG, and a daily economic return of not less than
1,000 yuan (about 7%) for EVA. The results prove the effec-
tiveness and economy of the strategy in this paper, and have
important reference value for promoting the consumption
of renewable energy and the development of electric vehi-
cles. The market transaction organization method between
wind power, photovoltaic and EVA is the next research
content.
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